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ABSTRACT 

A multi-hop packet  radio  network  employing 
Code  Division  Multiple  Access  (CDMA)  is  considered. 
The  network  is  modeled  as  a  system of interacting 
queues, and  sufficient  conditions  for  the  stability 
of the  queueing  system  model  are  obtained. Also, 
an upper  bound on the  network  mean  packet  delay  is 
found.  The  obtained  results  are  used  to char- 
acterize  the  throughput  performance of a  radio 
network  employing frequency-hop spread-spectrum 
signaling. 

I. INTRODUCTION 

Multi-hop CDMA  packet  radio  networks  have been 
treated in [2 -41  and  elsewhere.  When  buffered 
users  are considered, such  networks  are  modeled  as 
systems  of  highly  interacting  and  interdependent 
queues. The  stability  analysis  and  throughput- 
delay  performance  of  such  multiqueue  systems is an 
open problem, even  for  the  simplest  network  models. 

When confronted  with  a  difficult problem, 
approximations  are often useful.  This  is  reflected 
in the  work of Silvester [ 4 ] ,  who  assumes  that 
queues  are  independent  and  parameterizes  their 
interaction  with  a steady-state estimate of their 
state. In their  recent  study of non-CDMA networks 
[l], Tsybakov  and  Bakirov  take  a  different 
approach, and  construct an easy-to-analyze 
auxiliary  network  of queues, whose  stability 
implies  that of the  original network; this  approach 
provides  sufficient  (but not necessary)  conditions 
for  network  stability. 

In this  paper  some of the  results  in [l] are 
extended to  CDMA  networks  with  receiver  directed 
codes, and an upper  bound on the  average  packet 
delay  is found. A  particular frequency-hopping 
(FH) transmission  scheme  with  memoryless  FH 
patterns  is  then  introduced  and  the  probability of 
successful  packet  reception  in  the  presense of 
multi-access interference is found. Finally, some 
numerical  results on the  throughput  performance  are 
presented  for  symmetric  networks. 

The  paper  is  organized  as follows. Section I1 
defines  the  basic  network model. Network  stability 
is  dealt  with  in  Section  111.  Section  IV  treats 
frequency-hopping. 
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11. NETWORK MODEL 

The  network  model  is  specified in terms of 
topology, input traffic, channel access, and 
routing. 

Topology 
The  network  has  M  users (M<m)  indexed 

1,2, . . . ,  M. Users  i  and j are  called  neighbors  if 
they  are in the  transmission range of  each other. 
Let Vi denote  the  set of neighbors of user i, and 
vi denote  their number. The  collection of sets, 
T=(Vl, . . . ,  VM),  will  be  referred  to  as  the network’s 
topolooy. We assume  that T is  arbitrary but fixed. 
Given T, the  network can be  represented  by  a non- 
directional  graph  with  M  nodes  (node i represents 
user i, i=l, . . . ,  M),  in which nodes i and j are con- 
nected  by  a  link if, and  only if, they  are 
neighbors. 

Input  Traffic 
The  time  axis  is  divided in unit  length inter- 

vals, called slots. Let the  interval [k,k+l] 
denote  the k-th slot, k-O,1,2,. . . We  assume that, 
during  each slot,user i  generates  a  packet 
with  probability  gi  and  generates no packets  with 
probability l-gi, i=l, . . . ,  m. All  packets have 
fixed length, and  the  packet  transmission  time  is 
equal  to z, where z<l. 

Channel  Access 
Users  initiate  transmission  only  at  slot boun- 

daries. If at  the  beginning of a  slot  the  queue of 
user  i  is non-empty, then  user i transmits  a  packet 
with probability  p  and  remains  silent with 
probability 1-p. The  priority with which  packets 
are  transmitted (i.e., the  queue  service discip- 
line)  may  be  arbitrary  but  fixed. 

In receiver  oriented  CDMA  each of the 
neighbors of user i,  i=l,,..,M is  assigned  a  unique 
code,  and, when i  transmits  a  packet  intended  for 
his  neighbor m, he encodes  this  packet in m’s code. 
Let c  denote  the code of user j . We assume  that 
c.+cm! jzm, j ,msVi,  i=l,, , , ,M, and  that  each  user 
has his receiver  tuned to his own code. J 

A  packet  transmitted  by  user i, i=l,. . . ,M to 
user mcVi during  slot k, is  successfully  received 
by  m if, and  only if, all  three of the  following 
events  occur  during  slot k. 
El = (user m is not transmitting) 
E2 = [user i is  the  only  neighbor  of  transmitting 

in m’s code) 



E3 = (m's receiver  decodes  correctly  i's  packet). 

We  will  assume that, given El,  E2, and  given 
the  event I. = (the total  number  of  packets trans- 
mitted  by  tae  neighbor  of m during slot k is j+l), 
the  probability  of  E3  depends  only on the  number j 
of interfering packets.i.e., 

Pr(E31EL,E2,1j) = c(j), j=0,1,2 . . .  (1) 

The  sequenca {c(j),j=O,l,2, . . .  I depends on the par- 
ticular  co(le  division  scheme  and forward-error 
correction  codes used. 'de will  elaborate on this 
in Section IV , where  we  discuss frequency-hop 
spread  spectrum signaling. At  this point, we  will 
only  make  the  following  assumption: 

( A . l )  c(j)  is non-increasing in j 

Upon successful  reception  of a packet  from i ,  m 
sends an acknow1edgemer.t  to i encoded  in  i's code. 
(Like packets, acknowledgments  are  also  encoded  in 
the  receiver's code.) Note  that  an  acknowledgement 
from m to i might  interfer  with  an  acknowledgement 
transmitted  from  user 1 to user 1' , where levi- (m) 
and l'cV1-(n,i); however, since  only  the acknowl- 
edgement  from m to i uses i's code, this  interfere- 
nce  is limited. For  simplicity  in  the analysis, we 
will  assume  that  acknowledgements  are  always 
decoded correctly. We  will  also  assume  that  the 
acknowledgenent  transnission time, propagation 
delays, and  processing  delays  are  such  that  their 
sum  does not exceed 1-z units  of time, where z is 
the  packet  transmission time. Thus, the acknowl- 
edgement  for a packet  that  was  successfully trans- 
mitted  in  slot k is decoded  by  the  transmitter  of 
the  packet '5y the  end of the slot, and  the  packet 
leaves  the  transmitter's  queue  by  time k+l. 

Routing 
A simple  random  routing  model  is  considered: 

a packet  transmitted  by user- i is  destined  for  his 
neighbor m (i,  e, , the  packet is encoded in m's 
code)  with  probability l/v . ,  mtvi,i=l, . . . ,  M. A 
packet  successfully  received ky user i leaves  the 
network (i,e,, user i is  its  final  destination) 
with probability f, and  remains in the  network 
(i. e. , enters  the  queue  of  user i to  be  forwarded) 
with  probability 1-f. 

111. NETWORK  STABILITY 

Let Ni(k) denote  the  number of packets  in  the 
queue  of  user i,i=l,.,,,M, at  time k,k=O,l, . . . .  
Under the  model  of  Section 11, the  vector  process 
N(k)=[Nl(k), ...,KM( k)j is a Markov chain. The 
network will be  called  stable  if N(k) is ergodic. 

Determining  explicit  conditions  for  the 
ergodicity  of  vector  Markov chains, such  as N(k) , 
is a hard open problem [ 5 ] .  Here  we  follow  the 
approach  taken  by  Tsybakov  and  Bakirov [l] . This 
approach  uses an easy-to-analyze auxiliary  Markov 
chain  whose  ergodicity  implies  that  of N(k). The 
analysis in [l] refers to  the model of Section  I1 
with c(O)=l,  c(j)=O for j # O  (i.e,, a narrowbound 
Aloha-type network); however, the  key  results  in 
[l] can be extended  to  the  case  where c(j)  is non- 
increasing  in j, but otherwise arbitrary. 

Let E(k)=[Rl(k), . . . , NM(k)] ,k=0,1,. . . , where 
Ri(k) is  the number of packers  in  the  queue of user 
i, at  time k, in the  network  specified  by  the 
following model. 
Dominant network model. This  model  coincides  with 
the  model of Section  I1  in  all  respects  except  for 

the following: a user with an empty  queue trans- 
mits a fictitious  packet  with  probability p and 
remains  silent  with  probability 1-p. Until  its 
first  successful transmission, a fictitious  packet 
is not included in the  number  of  packets in the 
queue of the  user  that  generated it; otherwise, 
fictitious  packets  are in no way  different  from 
real  ones. 

The  role  of  the  fictitious  packets in the 
dominant network model  is  to  make  the  outcome of a 
packet  transmission  from a user  independent of the 
state  of  the  queue  (empty vs. non-empty) of  any 
other  user in the network. As a result, Ni(k) is a 
Markov chain for  each i, i-1 . . . ,  M.  What  is im- 
portant, however, is  that N(k) dominates N(k) in 
the  sense  of  the  following  inequality: 

for  every k, m, and  initial  state p = [ p  l,...,pM]. 

Inequality ( 2 )  is  the  basis in the  proof  of 
the  following key theorem. 

Theorem A [Thm. 1, [l]]: If gi(k)  is  ergodic  for 
all i, i=l,,,.,m, then N(k)  is  also ergodic. 

The  ergodicity  analysis  of Ri(k)  is standard, 
and  the  following  result is  as expected. 

Proposition 1. Ei(k) is  ergodic if, and  only if, 

gi+ri < si, (3) 

where si is  the  probability  of  successful  packet 
transmission, and ri is  the  probability of success- 
ful  packet  reception  of  user i in the  dominant 
network . 

The  probabilities si and ri are  as  follows: 

v -1 m 

v, -1 

where qim(j)  is  the probability  that (j+l)  of  m's 
neighbors  transmit  and  only  the  neighbor i uses  m's 
code; qim(j) is as  given below: 

where K - (k l,...,k.), kl<k2< . . .  <kj, knsVm-ii), 
J 

n-1,. . . ,j. 

In view of Proposition 1 ,  Theorem A yields  the 
following  corollary. 

Corollary 1: The  network  is  stable  if  gi+ri<si, 
for  all i, i-1, . . . ,  M. 
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While  Corollary 1 gives  a  sufficient  condition 
for  network stability, the  following  theorem  gives 
a  sufficient  condition  for  network  instability. 

Theorem  B [Thm. 3,[1]]: If gi+ri>si, for  all i, 
i=l,,.,,M, then Ni(k)+m, with  probability 1 for  all 
i. 

For  the  special  case of a  symmetric  network  in 
which vi=v and gi=g, for  all i, we  have  that si's 
and  ri=r=(l-f)s,  for  all i, where 

By  Corollary 1 and  Theorem B, we  have  that  for 
given v,  f, and c(j), j=1,2,. . . , such  a  symmetric 
network  is  stable if, and  only if, 

g < g* = fS* ( 7 )  

where s*  is  the  maximum s ,  attained  for  p=p* in 
(6). We refer to  g* as  the  user  maximum  stable 
throughput of the  symmetric  network. 

We  close  this  section  by  giving an upper  bound 
on the mean packet  delay in the  network. Let (3) 
hold  for  all  i.  and  let 

Using  standard  analysis  techniques  for  the  Markov 
chain Ni(k), yields Li - (ri+gi(l-gi)/(si-ri-gi). 
Therefore, by (2) and  Little's result, we  have  that 
the mean steady  state  packet delay, 
D(=L/(gl+  ...+gM)),  is bounded  from  above  as 
follows: 

For  a  symmetric  network (8) becomes 

D 5 [ (l-f)s+g(l-g)  I/(fs-g)g. 

where s is  as  given in ( 6 ) .  

IV. NETWORK  PERFORMANCE  WITH  FREQUENCY-HOPPING 

In this section, we  first  evaluate  the 
probability of correct  packet  decoding in the 
presense of j interfering packets, c(j), defined in 
(1) , for  a  particular FH transmission scheme; the 
results of the  previous  section  are  then  used  to 
evaluate  the  throughput  performance  of  symmetric 
FH-CDMA networks. 

We  assume  that  the  available  bandwidth  is 
divided  into  q  orthogonal  frequency sub-bands and 
that  packets  are  divided  into  n  bytes  each.  For 
the  transmission of a  packet to  user m, the 
frequency  hopping  pattern Fm-(fP), lsk5n) is used; 
i e  the k-th byte  is  transmitted in sub-band 
f p j  where f P )  is  one  of  the  q sub-bands. The 
frequency  hopping  patterns  satisfy  the  following 
properties: i) For  each m,  m=l,..,,M, Fm is  a 
collection of i.i.d. random variables, which  are 

uniformly  distributed  over  the  set  of  the q 
frequency sub-bands. ii)  The  patterns F1,. . . 
are  statistically  independent. 

3 Fm 

Packet  transmissions  are slot-synchronous, but 
synchronization  at  the  byte  level  is  not  assumed. 
We  say  that  the k-th byte of a  packet  transmitted 
to  user  m  is hit if, at  any  time  during  the 
reception of the k-th byte, user m can hear  another 
packet  at  the  same  frequency sub-band. We  assume 
that  receivers  have  side  information  which  enables 
them  to  determine  which  bytes  have been hit [2] ; 
bytes  with  hits  are erased, and  erasure  correction 
decoding is used to recover  the  packet.  We  will 
assume  that  extended Reed-Solomon (n,I) codes  are 
used, with  block  length n a  power of 2. The 
alphabet  size  is  equal  to n and  the erasure- 
correction capbility, e, is  equal  to n-1. 

Consider  a  silent receiver, say m, which 
during  a  slot  hears  j+l  packet  transmissions, 
indexed 1,2,. . . ,j+l, and  assume  that  only  packet 1 
utilizes m's hopping  pattern.  Define  the  random 
variables Hk,  k=l, . . . ,  n, such  that  Hk=l  if  the k-th 
byte of packet 1 is hit  at  receiver m, and  Hk=O 
otherwise. Clearly, 

The  right  hand  side of (9) will  be  evaluated 
under  the  following  assumption: 
(A.2)  The  frequency  hopping  patterns 

corresponding to  packets 2,. . . , j+l  are 
independent, 

This  assumption  does  not  hold  if  two  or  more of the 
involved  packets  use  the  frequency  hopping  pattern 
of the  same receiver, say I, where  I+m. However, 
in  certain cases, (A. 2)  is pessimistic, i. e. , c(j) 
is  underestimated.  Such is the  case in networks 
where  the  maximum  propagation  delay  between  any  two 
neighbor  users  does not exceed  the  time  to  transmit 
a  byte (i.e., the  length of the  hop  interval). In 
any case, relaxing  (A.2)  requires  a  model  for  the 
propagation  delays between neighbor  users. 

Under  (A.2),  the  sequence (H1, . . . ,  Hn) is 
Markov: Pr(HklHk-l, , . . ,H1)-Pr(HklHk-l), 2dSn. 
This  is in contrast to  the hop-synchronous case, 
where  the Hk's  are  independent.  The  transition 
probabilities  tlq=Pr(Hk=mIHk-l-i), 25&n, are  as 
given  below  (detalls can be found in [6]): 

too - &l-q-V+(l-q-5  (1-2q-y (lO.a) 

Po = Pr(Hk=O)-(l-q-1)2j ,15k5n,P1-l-P0 

Remark: Note  from (10) that  byte  hits  are 
independent  only when j-2,  or  as  q-rm. 
Nevertheless, in practice, q  is large, and  assuming 
independent  byte  hits  is  a  good  approximation. 

Using (lo), Pr(H1+ . . . +  Hn=i) was computed 
recursively [6], and  used in (9) to obtain c(j). 
Figure  1  gives c(j) for q=25, n=32, and  B/n-1/4, 
1/2,  and  3/4. 

The  user  maximum  stable  throughput  g*,  given 

n-32, and n/1=1/2  and  3/4  is given in Table 1, for 
in ( 7 ) ,  for  a  symmetric  network  with  q-50, f=l, 

various  values of v  (number of neighbors). In the 
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same  table  we  have  included  the  user  maximum 
normalized  stable throughput, E* = g(P/n)  (l/q), to 
account  for  the  bandwidth expansion, and  the 
throughput 8" of the  corresponding non-CDMA 
network, in which c(j)=O for jrl and  c(O)=l.  The 
values of p that  maximize  the  throughput  in  each 
case  are  also given; they  are  denoted  by p*. 

From  Table 1 we  observe  the following: 
i) The  nornalized  throughput E* of the FH-CDMA 
network  is  always  smaller  than  the  throughput 6" of 
the  corresponding non-CDMA network. 

ii) Given n/P, the  ratio g*/k* increases  with  the 
number of neighbors. 
iii)  The  value  of g*  is  less sensitive  than 6" to 
changes in the  number of neighbors; the  same  is 
true when the  transmission  probability  deviates 
from  its  optimal value, although  this  cannot  be 
observed  from  the  given table. 

REFERENCES 

[l] B.S. Tsybakov  and V.L. Bakirov, "Packet 
transmission in radio networks," Probl. Pered. 
Inform., 1985. 

121 M.B. Pursley, "Frequency-hop transmission  for 
satellite  packet  switching  and  terrestrial 
packet  radio network," IEEE Trans. Info. 
Theor., vol. IT-32,  no.5, pp. 652-667, Sept. 
1986. 

[3]  M.S. Chen, R. Boorstyn, and A. Kersernbaum, 
"Throughput  analysis of multiple  hop  packet 
radio  network  using a CDMA protocol," 
22nd  Allerton  Conf. Commun. Contr. Comp., 
Univ. of Illinois  at Urbana-Champaign, Mon- 
ticello, IL, Oct.  1984,  pp.  30-39. 

[4: J.A. Silvester, "Performance  of  spread 
spectrum networks," Proc. 22nd  Allerton  Conf. 
Commun.  Contr. Comp., Univ. of Illinois  at 
Urbana-Champaign, Monticello, IL, Oct. 1984, 

[5j W. Szpankowski, "Ergodicity  aspects  of multi- 
dimensional  Markov  chains  with  applications to 
communication  systems analysis," Proc. 
Internat. Symp. Model.  Perform.  Eval. Meth., 

[6] L. Merakos, M. Georgiopoulos, and  Hai Xie, 
"Stability  and  performance  of FH-CDMA 
networks, " Techn. Rep. CDSP *115, CDSP Lab., 
ECE Dept., Northeastern University, 
Boston, M A ,  Aug. 1987. 

pp. 30-39. 

V O ~ .  3 ,  pp.  23-258, 1983. 

1 . 0  

0 . 8  

0 . 6  

0 . 4  

0 . 2  

0 . 0  

Figure 1 .  The  probability c ( j )  f o r  q-25. n.32 
1 .  l / n = 1 / 4  
2 .  l/n=1/2 
3 .  l / n = 3 / 4  

71 1 



FH-CDMA NOn-CDMA 

v p* 1 /n  
- 

9' e* P* g*  

112 0 .1924  E-2  0 . 1 9 2 4   0 . 4 2  
2 0 . 1 4 8 1   0 . 3 3  

314 

0 . 1 6 8 7   E - 2   0 . 1 1 2 5   0 . 2 1  314 

0 .1600  E-2   0 .1600 0 . 3 6  1 / 2  

0 . 2 5 3 9   E - 2   0 . 1 6 9 3   0 . 3 9  314 

0 . 1 7 0 0   E - 2   0 . 1 7 0 0   0 . 3 9  112 

0 . 2 6 2 3  E-2 0 . 1 7 4 8   0 . 4 0  314 

0 . 1 7 4 9   E - 2   0 . 1 7 4 9   0 . 4 0  112 

0 . 2 8 8 6   E - 2   0 . 1 9 2 4   0 . 4 2  

4 0 . 8 1 9 2   E - 1   0 . 2 0  

6 0 . 5 6 6 3   E - 1   0 . 1 4  

25 0 . 1 4 4 1   E - 1   0 . 0 4  

50 I 1 0 ' 2 4  ~ 0 '1296 1 1 0 . 0 2  1 0 . 7 2 8 3  E-2 

100 0 .01   0 .3660   E -2  

0 .1296  E-2  

0 . 1 2   0 . 6 9 1 8  E-1  0.1037  E-2 

0 . 1 3   0 . 8 3 5 7  E-1  0.8357  E-3 

314  0 .06   0 .3847  E-1   0 .5771  E-3  

T a b l e  1 .  The u s e r  maximum s t a b l e  t h r o u g h p u t s   g * ,   g * ,  and $*, 
- 

f o r  q=50 and n=32 .  
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