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2 Notation and Terminology 

Abstract 

A collection of results related to learning in 
ARTl networks is presented. These results are 
concerned primarily with the complexity of the 
learning process, rather than with the quality 
of the learned concepts. These results provide 
numerous insights into the operation of ARTl 
networks, and detail the conditions under which 
such networks can learn efficiently. 

1 Introduction 

Adaptive Resonance Theory was introduced in 
1976 as a means of studying the learning process 
in brain-like networks [9]. A specific neural net- 
work architecture, based on Adaptive Resonance 
Theory, was subsequently derived by Carpenter 
and Grossberg [2]. This architecture, termed 
ART1, has been employed in various capacities 
in a variety of systems that require autonomous 
learning capabilities [l, 3, 4, lo]. In this pa- 
per we present a number of results related to  
the learning process in ART1. These results do 
not consider the quality of the pattern clustering 
produced by this network, but rather the time 
and resource complexity of the learning process. 
Furthermore, we have restricted our results in 
this paper to the ARTl network. Learning re- 
sults for ARTMAP and Fuzzy ART can be found 
in [8, 111. 

In the following section we introduce some ter- 
minology and then provide a brief overview of the 
ARTl network. In Section 3 we present some 
specific results, along with a discussion of their 
implications. 
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In this section we supply a brief overview of the 
notation and terminology we will use to  describe 
the ARTl network. For a more detailed descrip- 
tion of this model see [2]. An ARTl network is 
composed of two layers of nodes, denoted the Fl 
and Fz layers. A node in the F2 layer is denoted 
by v; (i = 1,2, .  . . , M), and a node in the Fz 
layer by vj. Every node in the F1 layer is con- 
nected via bottom-up long term memory (LTM) 
traces to all of the nodes in the FZ layer. F'urther- 
more, every node in the Fz layer is connected via 
top-down LTM traces to  all  of the nodes in the 
Fl layer. The bottom-down and top-down LTM 
traces between node v; and vj are denoted by z;, 
and zj ; ,  respectively. Binary (0,l) input patterns 
are presented at the F1 layer of ART1. An input 
list (or training set) is a collection of N input 
patterns that we wish to  learn, and a list presen- 
tation involves one presentation of each pattern 
in the training set to  the Fl layer. Fast learn- 
ing is said to occur if we allow the limiting value 
of a l l  LTM traces to  be reached on every pat- 
tern presentation. In the case of top-down LTM 
traces this implies a value of either 0 or 1. 

The initial values of the bottom-up LTM 
traces are chosen according to  the rules speci- 
fied in Section 18 of Carpenter and Grossberg [2], 
while top-down LTM traces can be chosen, with- 
out loss of generality, to be equal to one. The 
vector whose components are the top-down LTM 
traces emanating from a node in the Fz layer and 
converging to the nodes in the PI layer is called a 
template. Since the results we only consider con- 
cern the fast learning case, and since we take all 
the initial values of the top-down LTM traces t o  
be equal to one, every template can be thought 
of as a binary vector. We define 111 and lV;l to 



be the size of the binary input pattern I and the 
binary template 5 associated with node vj in 
the F2 layer. The size of a binary vector is equal 
to  the number of its components that have value 
one. Furthermore, if I is a pattern in the input 
list and V is a template in the F2 layer, we de- 
fine I n Vj to  be the binary vector with ones only 
at components where both the I and 5 compo- 
nents are one, and zeroes at ad the other compo- 
nents. The reset of an active Fa node vj, during 
the presentation of an input pattern I, occurs 
if 11 n 51 - 11I-l < p, where p is the vigilance 
parameter in the ARTl network. An active F2 
node vj is said to  code an input pattern I on a 
given trial if no reset of vj occurs after Vj is read 
out at the Fl layer. In this case, the bottom-up 
LTM traces are adjusted according to  

An input pattern I is said to  have direct access 
to an F2 node vj if presentation of I leads at once 
to activation of v j ,  and vj  codes I on that trial. 

A node in the F2 layer is said to be com- 
mitted if it has already coded a pattern from 
the input list; otherwise it is called uncommit- 
ted. The templates corresponding to  commit- 
ted Fz nodes are called learned templates, while 
the templates corresponding to  uncommitted Fa 
nodes are called uncommitted templates. Sub- 
set templates, with respect to  an input pattern 
I, are templates which have value 1 only at a 
subset of the corresponding I components that 
have value 1. We say that learning in ARTl self- 
stabilizes in n list presentations, if subsequent 
presentations of the input list (i.e., list presenta- 
tions n+ 1, n + 2 ,  n+3, . . .) can neither modify al- 
ready existing learned templates, nor create new 
learned templates by committing uncommitted 
templates. 

3 Learning Results 

The following results are valid under the ARTl 
conditions stated in Section 18 of (21. One of 
these conditions is that fast learning occurs. In 
addition, we make the assumption that 1 5 1I1 2 

The first result we present is important be- 
cause it demonstrates that the learning process 
self-stabilizes in response to an arbitrary list of 
binary input patterns. 

M -  1. 
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RESULT 1 (Carpenter & Gross- 
berg [2]): 
In response t o  an arbitrary list of bi- 
nary input patterns, all LTM traces 
approach limits after a finite number 
of learning trials, or equivalently learn- 
ing self-stabilizes in a finite number of 
learning trials. 

The next result demonstrates that once learn- 
ing has self-stabilized, there will be rapid access 
to  learned patterns. 

RESULT 2 (Carpenter & Gross- 
berg [2]): 
After learning has self-stabilized in re- 
sponse to an arbitrary list of binary in- 
put patterns, each input pattern either 
has direct access to  a node in the Fa 
layer that possesses the largest subset 
template with respect to  the input pat- 
tern, or the input pattern cannot be 
coded by any node in the F2 layer. In 
the latter case, the Fa layer contains no 
uncommitted nodes. 

Note that there is the possibility that an input 
pattern cannot be coded by any node in the F2 
layer. This is certainly possible if there are more 
patterns than F2 layer nodes, but leaves open the 
question of whether this may occur if there are 
as many F2 layer nodes as patterns. 

We now present three important properties of 
ARTl templates: 

1. 

2. 

3. 

The 

As a consequence of each pattern presenta- 
tion, any given template will either stay the 
same size, or will be modified so that it has 
a smaller size. 

Equal templates (i.e., identical binary vec- 
tors) cannot be created. 

If no templates are modified during any 
given list presentation, then learning has 
self-st abilized. 

following results follow immediately from 
these properties. 

RESULT 3 (Moore [12]): 
In response to  an arbitrary list of 
binary input patterns, the maximum 
number of learned templates created is 
equal to  P. 



This result is derived by noting that since each 
template is a subset of a t  least one of the input 
patterns, and each must be distinct (template 
property 2), the maximum number of templates 
is bounded by the maximum number of binary 
input patterns, i.e., 2'. 

RESULT 4 (Moore [12]): 
In response to  an arbitrary list of 
binary input patterns, learning self- 
stabilizes (i.e., new templates cannot 
be created and the already existing 
learned templates cannot be modified) 
after at  most M 2 M  list presentations. 

This results also follows via a simple counting 
argument: If no learning on a given list presen- 
tation occurs, then learning has stabilized (tem- 
plate property 3). If, on the other hand, some 
template is altered on a given list presentation, 
then it is reduced in size (template property 1). 
Any template can be reduced a maximum of 
M times, and since there are 2M possible tem- 
plates (Result 3), the maximum number of list 
presentations is ~ 2 ~ .  

If the learning parameter L is chosen appro- 
priately, then a much better bound than the one 
given in Result 4 can be obtained. This leads to 
Result 5. 

RESULT 5 (Georgiopoulos, Heile- 
man, & Hwang [6]): 
If L is small (i.e., 5 !I]-' + 1) and 
the Fz layer has at least N nodes, then 
each member of a list of N binary in- 
put patterns, which is presented at  the 
Fl layer, will have direct access to an 
F2 layer node after at most m list pre- 
sentations, where m is the number of 
distinct size patterns in the input list. 

It is interesting to note that Results 1-5 do 
not require the input list to  be presented cycli- 
cally, i.e., the patterns need not remain in the 
same order on each list presentation. A related 
result (which also makes the assumption that L 
is small) states that any pattern I of size 5 z - 1 
will have direct access to a stable template that 
was created in list presentations 5 z - 1 [ 5 ] .  
Result 5 ,  however, is stronger since it only de- 
pends on the relative sizes of the of the pat- 
terns in the inputs list. More precisely, it was 
shown in [6] that if the members of the input 
list are grouped according to their size into the 
sets SI, Sz, . . . , Sm, with S1 containing the small- 
est size patterns and s,,, the largest, then in list 
presentations 2 2 (2 5 2 5 m t 1): 
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0 Every I E S,-l has access to a subset 
learned template V that can code I ,  and 
V is created in list presentations 5 3: - 1. 

0 The presentation of I E Sz-l can neither 
create new templates, nor modify already 
existing learned templates. 

An immediate consequence of Result 5 follows 
from the fact that we typically know N the num- 
ber of patterns in the input list, as well as M 
the number of nodes in the Fl layer. In these 
cases, we can say that learning in ARTl stabi- 
lizes in at most min(N, M- 1) list presentations. 
Even more interesting is the fact that if the input 
patterns are complement coded, then this result 
guarantees that all patterns can be learned in a 
single list presentation. Because this bound is so 
much better than the one provided in Result 4, 
the question of the feasibility of small L values 
becomes important. The parameter L must be 
chosen in this case less than or equal to IIl-'+ 1. 
The only difficulty arises when the pattern size 
is extremely large. This would lead to  a very 
small value for III-', which in turn may lead to  
difficulties when trying to  accurately represent L 
on a digital computer. 

The following two results were derived after 
studying the N - N - N  conjecture. This con- 
jecture, posed by Carpenter and Grossberg [2], 
states that in the fast learning case, if the F2 
layer in ARTl has at least N nodes, then each 
member of a list of N input patterns presented 
cyclically at the Fl layer will have direct access 
to an Fz layer node after at  most N list presen- 
tations. 

The next result demonstrates that the N - N -  
N conjecture is not valid for certain large L val- 
ues. 

RESULT 6 (Georgiopoulos, Heile- 
man, & Hwang [7]): 
For large L values (> ]Il-'+l), if ARTl 
is presented with an arbitrary list of bi- 
nary input patterns, then after learning 
has self-stabilized: (2) the number of 
learned templates may be greater than 
the number of patterns in the input list, 
and (ii) the number of pattern presen- 
tations may have exceeded N .  

This result is valid independent of whether the 
list is presented cyclically. Thus, it is easy to see 
that this result violates the N-N-N conjecture 
since in case (i) more than N Fz layer nodes may 
be required to  represent the learned templates, 
and in case (ii) more than N list presentations 



may be required for learning to  self-stabilize. We 
emphasize that Result 6 does not apply when L 
assumes small values. Furthermore, Result 5 can 
be used to  show that the N-N-N conjecture is 
valid for small L values. Since the maximum 
number of distinct-size binary patterns cannot 
exceed N ,  the number of patterns in the list, the 
maximum number of list presentations in this 
case will be N .  It is worth noting the even if 
L assumes large values, it is difficult to  come 
up with examples that violate the N-N-N con- 
jecture, unless they are constructed specifically 
with that purpose in mind. Nevertheless, the 
best worst-case bound available in this case is 
M2M list presentations as discussed in Result 4. 

The final result we present is independent of 
the size of L. 

RESULT 7 (Georgiopoulos, Heile- 
man, & Hwang [SI): 
If ARTl is cyclically presented with an 
arbitrary list of binary input patterns, 
then after learning has self-stabilized, 
there may exist committed nodes that 
are not directly accessed by any pattern 
in the input list. 

Thus, there is the possibility of wasted resources 
in the ARTl network. The question of how many 
such “wasted” committed nodes are possible is 
still an open problem. 
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