
Accelerated Learning of Generalized Sammon Mappings

Yinjie Huang, Michael Georgiopoulos and Georgios C. Anagnostopoulos

Abstract— The Sammon Mapping (SM) has established it-
self as a valuable tool in dimensionality reduction, manifold
learning, exploratory data analysis and, particularly, in data
visualization. The SM is capable of projecting high-dimensional
data into a low-dimensional space, so that they can be visualized
and interpreted. This is accomplished by representing inter-
sample dissimilarities in the original space by Euclidean inter-
sample distances in the projection space. Recently, Kernel
Sammon Mapping (KSM) has been shown to subsume the
SM and a few other related extensions to SM. Both of the
aforementioned models feature a set of linear weights that
are estimated via Iterative Majorization (IM). While IM is
significantly faster than other standard gradient-based methods,
tackling data sets of larger than moderate sizes becomes a
challenging learning task, as IM’s convergence significantly
slows down with increasing data set cardinality. In this paper we
derive two improved training algorithms based on Successive
Over-Relaxation (SOR) and Parallel Tangents (PARTAN) accel-
eration, that, while still being first-order methods, exhibit faster
convergence than IM. Both algorithms are relatively easy to
understand, straightforward to implement and, performance-
wise, are as robust as IM. We also present comparative results
that illustrate their computational advantages on a set of
benchmark problems.

I. INTRODUCTION

THE Sammon Mapping (SM) is a multi-dimensional
scaling technique that was introduced in [1]. Using the

available data, SM learns an implicit non-linear projection
from the data’s original high-dimensional space to, typically,
a 2- or 3-dimensional projection space. The location of the
SM images of the data are determined, so that the inter-
point dissimilarities in the high-dimensional are represented
as Euclidean distances in the projection space as faithfully
as possible. In the case, where the aforementioned dissimi-
larities are also Euclidean distances, then the SM learns an
approximate isometry from one space to the other. However,
it is the fact that it can use almost arbitrarily defined
dissimilarities that made SM a very useful and broadly-
applicable method in dimensionality reduction, manifold
learning, exploratory data analysis and, in particular, data
visualization.

The SM has found many applications. For example, it
was used in the context of chromosome classification in
[2]. It was also applied for visualization of reconstructed
phase space trajectories of chaotic systems in [3]. Moreover,
it was used for visualizing multi-listener room response

Yinjie Huang is with the Department of EE & CS, University of Central
Florida, Orlando, Florida , US (email: darrenhuang22@knights.ucf.edu).

Michael Georgiopoulos is with the Department of EE & CS, University
of Central Florida, Orlando, Florida , US (phone: +1 407 8235338; email:
michaelg@mail.ucf.edu).

Georgios C. Anagnostopoulos is with the Electrical & Computer Engi-
neering Department, Florida Institute of Technology, Melbourne, Florida ,
US (phone: +1 321 6747125; email: georgio@fit.edu).

equalization in [4], [5]. It was also used in electricity
customer classification [6]. Besides, SM was also adopted
in city models mapping [7], visualization of web usage
patterns [8], classification of protein profiles [9] and visu-
alization of transitions of hepatitis [10]. On balance, as long
as the inter-point distances in the projected space lead to
a meaningful interpretation, the SM can be an invaluable
exploratory/visualization tool.

The original SM lacks the ability to interpolate and
extrapolate data, that have not been used for its design.
This is because its adjustable parameters are directly the
data’s projections. Methods were developed to overcome this
drawback by assuming that the projections are generated
by specific parameterized models. Notable efforts along this
path are SAMMAN [11] and the work of deRidder and
Duin [12], both of which utilize a Multi-layer Perceptron
(MLP) to learn the embedding map. Additionally, generating
the projections via a Radial Basis Function (RBF) Neural
Network was explored in [13]. More recently, [14] introduced
the Kernel Sammon Mapping (KSM), which employs a linear
combination of kernel bases to implement the embedding and
subsumes the SM and the previously introduced MLP- and
RBF-based approaches.

A common element for most of these aforementioned
methods to learn the embedding function is a set of lin-
ear weights that finally produce the data’s images in the
projection space. An efficient algorithm based on Iterative
Majorization (IM) for estimating these weights has been
devised by [15] for the SM and has been extended for
what we will refer to in Section II as the Generalized
Sammon Mapping (GSM) by [13] and [14]. While IM is
significantly faster than gradient descent-based methods, IM
is still a linearly convergent method that slows down as
the number of weights increases. Note that the number of
weights is typically proportional to the number of samples
to be projected. This characteristic limits the application of
SM and related methods to quite small sample sizes.

The aim of this paper is to explore acceleration methods to
the general IM scheme, which will render the SM projection
of larger data sets more practical. This can be accomplished
by regarding IM as an iterative, differentiable map and
applying acceleration procedures specifically designed for
fixed-point maps. In this work we explore acceleration of IM
based on Successive Over-Relaxation (SOR) and the Parallel
Tangents (PARTAN). In specific, we adapt these methods to
the original IM scheme and derive two algorithms, namely
SOR Accelerated IM (SOR-IM) and PARTAN Accelerated
IM (PARTAN-IM), that are relatively easy to understand
and to implement. We tested these acceleration schemes on
benchmark problems and provide experimental results that

show, indeed, that they can achieve significant speedup over
the original IM algorithm and that, performance-wise, are
equally robust.

The rest of the paper is organized as follows. In Section II
we provide some important background regarding the SM,
KSM and GSM and describe the IM fixed-point map. In
Section III we describe the SOR and PARTAN acceleration
methods and show how they can be applied to the IM
procedure. Then, in Section IV we provide comparative
results for the original IM algorithm and its two accelerated
variants on a collection of benchmark problems. Finally,
in Section V we end this paper with a summary of our
conclusions.

II. THE GENERALIZED SAMMON MAPPING

Let us assume the availability of N samples {xn ∈ F}Nn=1,
where F is an arbitrary feature space. Let δij denote the
dissimilarity between the ith and jth samples. It is assumed
that these dissimilarities are symmetric in their indices and
that δii = 0 i = 1, . . . , N . Note, that any metric on F can
be used as a dissimilarity measure.

Given the aforementioned data set, both the original SM
and its extension, the KSM [14], produce a configuration
of N points

{
yn ∈ RP

}N
n=1

, where P << dimF (typi-
cally P = 2, 3). Each original point xn is thought to be
corresponding to its image yn. (K)SM’s goal is to position
these projections in such a manner, so that dij=̂ ‖yi − yj‖2
reflects the dissimilarity δij as faithfully as possible. The
images of the original points are generated as follows

y = W Tk(x) (1)

where W ∈ RH×P is an oblique projection matrix that maps
the vector k onto the low-dimensional space RP . Note that,
typically, H ≤ N . Also, k ∈ RH is, in general, a non-linear
mapping that may or may not be parameterized. The weights
W are estimated so that the stress function, shown below, is
minimized.

σ(W) =
∑

1≤i<j≤N

uij (dij − δij)2 (2)

where U ∈ RN×N is a hollow symmetric, real-valued matrix
with non-negative entries (i.e. uij = uji ≥ 0, uii =
0 i, j = 1, . . . , N), that determines the importance of in-
dividual discrepancies between dissimilarities and distances
in the projection space. Typically, U is an all-ones matrix,
save its diagonal, which is assumed to contain entries equal
to zero.

We will refer to models that perform the projection ac-
cording to (1) in order to minimize the stress function in (2)
as Generalized Sammon Mappings (GSMs). The SM utilizes
a mapping k with H = N that is defined as

kh(x) = [x = xh] h = 1, . . . ,H (3)

where [·] denotes the Iversonian bracket; it equals 1, if its
enclosed predicate is true, otherwise it equals 0. Because of

(3), the SM is unable to produce projections for samples
that do not belong to its training set and, thus, is incapable
of interpolation and/or extrapolation. On the other hand, the
KSM uses a mapping defined as

kh(x) = k (x, ch|ψ) h = 1, . . . ,H (4)

where k : F×F→ R is a Mercer (inner-product) kernel (e.g.
see [16]). In this capacity, the KSM employs an implicit,
bounded L2-norm mapping φx : F → H to a (possibly,
infinite-dimensional) Hilbert space H, such that k(x, c) =
〈φx, φc〉H, where 〈·, ·〉H : H × H → R is the inner product
that equips H. We assume that the kernels are parameterized
by their second arguments via the vectors ch ∈ F, which
we will be referring to as prototype vectors. These vectors
can be treated as model parameters or can be appropriately
chosen from the training set. Optionally, all kernel functions
may have a common scalar parameter ψ ∈ R+. The role
of these kernels is to measure the similarity between a test
sample and the prototype vectors.

For the KSM, the use of appropriate kernels accom-
modates a variety of data, including data that have cate-
gorical or mixed-type attributes, and allow for interpola-
tion/extrapolation in a natural manner. Furthermore, many
Mercer kernels are also RBFs. This opens up the possibility
of using kernels that solely depend on the dissimilarities
between test and prototype patterns, provided that they can
be somehow computed.

Nevertheless, in the sequel we’ll assume that k is a fixed
mapping that only features x as its free argument. As a matter
of fact, in our experimental setup in Section IV, when we
use the KSM we pick prototype vectors by sub-sampling the
training set and fix ψ to a convenient value. Instead, we’ll
focus on the GSM, whose only model parameter is the weight
matrix W , regardless of how k is being produced. This way
the results we report in this paper apply to all possible SM-
based methods and allows us to isolate the process and effects
of efficiently estimating W , as it will be shown shortly.

For the GSM, estimation of W can be accomplished via
the following fixed-point iteration scheme:

W t+1 = M(W t) = A†B (W t)W t (5)

A† denotes the Moore-Penrose (pseudo)inverse of A. The
auxiliary matrices A and B are defined as follows:

A=̂
∑

1≤i<j≤N

uij∆kij∆kTij (6)

B(W)=̂
∑

1≤i<j≤N

uijδijd
†
ij(W)∆kij∆kTij (7)

In (6) and (7), we define ∆kij=̂k(xi)− k(xj). Also, for a
real-valued scalar d we define d† as 1

d , if d 6= 0, and as 0,
if d = 0. We’ll refer to (5) as the IM iteration. It is derived
in [13] via majorization of the stress function depicted in
(2). Application of (5) for the SM produces the SMACOFF

Algorithm 1 Iterative Majorization (IM)
Input: W 0 6= O, tmax ≥ 1, τ > 0
Output: W final

1: for t = 0 to tmax do
2: // Compute gradient matrix
3: Gt ← [A−B(W t)]W t

4: // Check for convergence
5: if ‖vec(Gt))‖∞ ≤ τ then
6: W final ←W t

7: break
8: end if
9: // Compute IM’s search matrix

10: DIM ← −A†Gt

11: // Update weights
12: W t+1 ←W t + DIM

13: end for
14: W final ←W tmax

15: return W final

algorithm presented in [15]. Furthermore, the KSM uses the
same rule for updating its weight matrix.

A practical implementation of the estimation process in-
volving IM is provided in Algorithm 1. vec(G) denotes the
vector obtained by orderly concatenating the columns of
G into a single-column vector. Note that A† needs to be
computed only once before commencing the iterations. Very
often, especially in the case when KSM is used as the model
to generate the projections, A is full-rank, and, therefore,
the Moore-Penrose inverse simplifies to the ordinary matrix
inverse. Moreover, IM always produces descent directions.
This is because the gradient matrix G=̂ ∂σ

∂W of the stress
function σ of (2) is given as

G = [A−B(W)]W (8)

and it can be shown that the IM search direction matrix DIM

can be expressed as

DIM =̂M(W)−W = −A†G (9)

Since A can be shown to be positive semi-definite, (9)
illustrates that DIM corresponds to a descent direction in
the weight-space. Another conclusion that can be drawn from
(9) is the fact that a fixed point of M (i.e. a W ∗, such that
M(W ∗) = W ∗) is also a stationary point of σ.

Overall, IM’s popularity stems from the fact that it encom-
passes several desirable characteristics. Due to its very nature
(by design), IM is guaranteed to monotonically converge
to a local minimum of the stress function, unless started
at a stationary point of σ; curiously enough, such a point
is W ∗ = O. Furthermore, there is no specific need to
control its step length via a line search method. Hence, it
is very straightforward to implement, as one can witness by
inspecting Algorithm 1. Finally, it has proven to converge
much faster than other algorithms that utilize the gradient

of the stress function, such as gradient descent, (non-linear)
conjugate gradient and other related methods.

III. ACCELERATION METHODS

Despite its speed advantages, IM can slow down signifi-
cantly, when the number of weights (i.e. the product HP)
increases. This typically occurs, when the training set size N
increases and, at the same time, high representation fidelity
(i.e. low σ values) are desired, in which case H needs to be
a significant fraction of N . This fact motivates us to seek
avenues for devising iterative schemes, that are based on
IM, but whose converge speed scales more favorably, as the
number of projection weights increases. Since the IM is a
fixed-point map, a natural choice is to investigate acceleration
methods that are specifically designed for such maps.

An obvious approach is to move further, thus, extrapo-
lating along the IM search direction in the hope that lower
values of the stress function are encountered and, longterm,
the total number of iterations necessary to reach the vicinity
of a local minimum are reduced. At the same time, the
computational complexity of the new scheme needs to be
controlled, so iterations still remain relatively inexpensive.
Such a scheme is offered by a non-linear version of the SOR
method, which amounts to employing the following weight
update rule

W t+1 = W t + αDIM (10)

with α ≥ 1 as large as possible (notice that α = 1
reduces (10) to an IM update). In other words, the SOR
update is given as DSOR = αDIM . The pseudo-code for
this acceleration technique is provided in Algorithm 2. The
linesearch procedure, as its name implies, performs a line
search along the given direction and will be discussed later
in this section.

The second acceleration technique we investigated is the
PARTAN method (e.g. see [17]). It was originally devised for
accelerating gradient descent methods, in specific, to ame-
liorate the hallmark “zig-zag” sequence pattern of gradient-
based updates, thus speeding up convergence. In our context,
instead of applying it to gradients of σ, we use PARTAN
directly on IM search directions given by (9). We illustrate
the inner working of the PARTAN-accelerated IM update via
Figure 1.

Fig. 1
PARTAN-IM UPDATE.

Algorithm 2 Successive Over-Relaxation acceleration of IM
(SOR-IM)
Input: W 0 6= O, tmax ≥ 1, τ > 0, smax ≤ 1,

αinit > 0, ηAT > 1, ηBT ∈ (0, 1), c ∈ (0, 1)
Output: W final

1: for t = 0 to tmax do
2: // Compute gradient matrix
3: Gt ← [A−B(W t)]W t

4: // Check for convergence
5: if ‖vec(Gt))‖∞ ≤ τ then
6: W final ←W t

7: break
8: end if
9: // Compute IM’s search matrix

10: DIM ← −A†Gt

11: // Perform line search and update weights
12: W t+1 ← linesearch(W t,DIM ,Gt,

αinit, smax, ηAT , ηBT , c)
13: end for
14: W final ←W tmax

15: return W final

Assume that W t−1 and W t are generated by PARTAN-IM
at iterations t − 1 and t respectively. Next, our version of
PARTAN seeks to find an intermediate point W interm along
the IM search direction originating from W t. We choose this
update to coincide with an SOR update and, therefore, the
step length will, in general, be greater than the one produced
by IM. The PARTAN search direction for iteration t + 1 is
given as W interm −W t−1, which is equivalent to

DP (t+ 1) = DP (t) + DSOR (11)

In other words, PARTAN-IM modifies its previous search
direction with an intermediate SOR step. Finally, the new
iterate W t+1 is found by the same line search procedure
along PARTAN’s search direction. As long as two consec-
utive iterates of PARTAN-IM monotonically minimize the
stress function (i.e. σ(W t−1) < σ(W t)), then it can be seen
that the new iterate W t+1 is guaranteed to produce an even
lower stress function value. In the case, where PARTAN’s
search direction is an ascent direction, one could revert to
an SOR-IM update. However, we noticed in our experiments
that this is rarely the case. Pseudo-code for PARTAN-IM is
depicted in Algorithm 3.

In both SOR-IM and PARTAN-IM algorithms we used a
specialized line search method, which consists of two parts.
It starts with an initial step length of αinit. If the update
along search direction D with the initial step length results
in reduction of the stress function, then ahead-tracking is
engaged to maximize this step-length. For every successful
stress function value decrease, the step length is increased
by a factor ηAT until it is no more possible. On the other
hand, if the update αinitD leads to an increase in stress
function value, then back-tracking is employed in order to
find a step length that satisfies Armijo’s condition [18] of

Algorithm 3 PARTAN acceleration of IM (PARTAN-IM)
Input: W 0 6= O, tmax ≥ 1, τ > 0, smax ≤ 1,

αinit > 0, ηAT > 1, ηBT ∈ (0, 1), c ∈ (0, 1)
Output: W final

1: // Compute initial gradient matrix
2: G0 ← [A−B(W 0)]W 0

3: // Compute first iterate via IM
4: W 1 ← A†B(W 0)W 0

5: for t = 1 to tmax do
6: // Compute gradient matrix, if it is unavailable
7: Gt ← [A−B(W t)]W t

8: // Check for convergence
9: if ‖vec(Gt))‖∞ ≤ τ then

10: W final ←W t

11: break
12: end if
13: // Compute IM’s search matrix
14: DIM ← −A†Gt

15: // Perform line search and compute intermediate ma-
trix

16: W interm ← linesearch(W t,DIM ,Gt,
αinit, smax, ηAT , ηBT , c)

17: // Compute PARTAN-IM’s search matrix
18: DP ←W interm −W t−1
19: if trace{DT

PGt−1} < 0 then
20: // The search matrix corresponds to a descent

direction; perform a PARTAN-IM step
21: W t+1 ← linesearch(W t−1,DP ,Gt−1,

αinit, smax, ηAT , ηBT , c)
22: else
23: // The search matrix corresponds to an ascent

direction; perform an SOR-IM step
24: Ginterm ← [A−B(W interm)]W interm

25: DIM ← −A†Ginterm

26: W t+1 ← linesearch(W interm,DIM ,Ginterm,
αinit, smax, ηAT , ηBT , c)

27: Gt+1 ← Ginterm

28: end if
29: end for
30: W final ←W tmax

31: return W final

sufficient decrease. For each unsuccessful step taken, the step
length is decreased by a factor of ηBT . According to our
experience, back-tracking is rarely employed in practice, but,
still, it is necessary, so that the two acceleration techniques
remain robust. Pseudo-code for our line search procedure is
given in Algorithm 4.

Finally, we should note that ainit = 1, ηAT = 1.95,
ηBT = 0.9 and c = 0.99 are good, more or less, empirical
values for the line search. We adopted these values to perform
all of our experiments, that are presented in the next section,
except for the Swiss Roll dataset, for which we obtained
better results by using ηAT = 2.0.

Algorithm 4 linesearch() procedure employed by Algo-
rithm 2 and Algorithm 3
Input: W 0 6= O, D 6= O, G0 6= O, αinit > 0,

smax ≥ 1, ηAT > 1, ηBT ∈ (0, 1), c ∈ (0, 1),
D must correspond to a descent direction

Output: W next

1: α← αinit
2: σ0 ← σ(W 0)
3: W 1 ←W 0 + αD
4: σ1 ← σ(W 1)
5: if σ1 < σ0 then
6: // Perform Ahead-Tracking
7: α← ηATα
8: for s = 1 to smax do
9: W s+1 ←W s + αD

10: σs+1 ← σ(W s)
11: if σs+1 < σs then
12: α← ηATα
13: else
14: break
15: end if
16: end for
17: else
18: // Perform Back-Tracking
19: ∆σ ← c vecT (G0) vec (D)
20: α← ηBTα
21: for s = 1 to smax do
22: W s+1 ←W s + αD
23: σs+1 ← σ(W s)
24: // Check sufficient decrease condition
25: if σs+1 > σs + α∆σ then
26: α← ηATα
27: else
28: break
29: end if
30: end for
31: end if
32: W next ←W s

33: return W next

IV. EXPERIMENTAL RESULTS

A. Datasets

In order to evaluate the two acceleration schemes, we
compare their convergence speed to the one of the original
IM algorithm on five different data sets: 1) Open Box, 2)
Teapots, 3) Swiss Roll, 4) Federalist Papers, 5) ORL Faces.
For all experiments we used KSM with Gaussian kernels and
H = N

2 prototype vectors, that were randomly chosen from
each data set. Inter-point Euclidean distances in the original
space were used in place of dissimilarities. Furthermore, all
data sets were projected onto the 2-dimensional plane, i.e.
P = 2. The description of each data set follows, while their
characteristics are summarized in Table I.
• Open Box dataset. It is an artificially-created data set

that consists of points delineating an open box in 3

−1
0

1
2

3
4

−1
0

1
2

3
−1

0

1

2

3

(a)

−35.5 −35 −34.5 −34 −33.5 −33 −32.5 −32 −31.5
−140

−139

−138

−137

−136

−135

−134

(b)

Fig. 2
THE OPEN BOX DATASET AND ITS PROJECTION IN 2D

 !"! !#$!#! ! $! ! !%$!%! !!$!!! !&$!&! !'$
&$!

&"$

&"!

&#$

&#!

& $

& !

&%$

&%!

&!$

"$ #$ $ %$!$ &$ '$ ($)$ "$$

"$

#$

 $

%$

!$

&$

'$

"$ #$ $ %$!$ &$ '$ ($)$ "$$

"$

#$

 $

%$

!$

&$

'$

"$ #$ $ %$!$ &$ '$ ($)$ "$$

"$

#$

 $

%$

!$

&$

'$

"$ #$ $ %$!$ &$ '$ ($)$ "$$

"$

#$

 $

%$

!$

&$

'$

"$ #$ $ %$!$ &$ '$ ($)$ "$$

"$

#$

 $

%$

!$

&$

'$

"$ #$ $ %$!$ &$ '$ ($)$ "$$

"$

#$

 $

%$

!$

&$

'$

Fig. 3
RESULT OF PROJECTION OF THE TEAPOTS DATASET.

dimensions as shown in Figure 2a. KSM is used to
project its samples onto the plane as demonstrated in
Figure 2b. In order to test the scalability of the original
IM algorithm and its two accelerated methods, we
generated six versions of the data set with 10, 31, 64,
109, 166 and 235 training samples respectively.

• Teapots dataset. This dataset contains 100 different
color images of the same artificially-rendered teapot
under rotation every 3.6◦ [19], [20]. Each image consists
of 560×420 pixels. After conversion to 8-bit grayscale,
each image is represented as a 235200−dimensional
vector. Since each image represents a 3.6◦ increment
and, thus, only one degree of freedom is involved in
this phenomenon, we attempted to project the images
onto the plane as shown in Figure 3.

• Swiss Roll dataset. This artificially-generated data set
contains samples of a rolled sheet in 3D space, as
depicted in Figure 4a. The sheet’s surface is described
by the θ-parameterized equations x1 = θ cos(θ), x2 =
θ sin(θ) and z is arbitrary. Since the intrinsic dimen-
sionality of the manifold at hand is 2, we used KSM to
project it onto the plane as shown in Figure 4b.

• Federalist Papers dataset. The Federalist Papers were
written in 1787 and 1788 and published in many New

−20
−10

0
10

20

−20

−10

0

10

20
4

6

8

10

12

14

16

(a)

1.3111 1.3111 1.3111 1.3111 1.3112 1.3112 1.3112 1.3112 1.3112 1.3113

x 10
6

2.8213

2.8213

2.8213

2.8213

2.8213

2.8214

2.8214

2.8214

2.8214

2.8214
x 10

6

(b)
Fig. 4

THE SWISSROLL DATASET AND ITS PROJECTION IN 2D.

York newspapers to persuade the voters to ratify the
US Constitution. Of all the collected papers, Alexander
Hamilton wrote 56, James Madison wrote 50 and John
Jay wrote 5 papers. There are 12 unidentified papers
and most of people believe they are from Madison [21].
From this dataset we chose 14 training patterns from
Hamilton, 14 from Madison and 12 unidentified papers.
Each sample consists of a variety of features that try
to capture information that could potentially identify a
paper’s author, such as the writing style, vocabulary, etc.
KSM was used to project these patterns onto to the plane
to depict (dis)similarities between papers from different
authors. The result of this projection is given in Figure 5.

 !!"! !!"# !!$% !!$& !!$' !!$(!!$)
 !*%#+)

 !*%#

 !*&%+)

 !*&%

 !*&&+)

 !*&&

 !*&'+)

 !*&'

 !*&(+)

 !*&(

 !*&)+)

,

,

-./01234

5.60734

8493:4,;.<=>7

Fig. 5
RESULT OF PROJECTION OF THE FEDERALIST PAPERS DATASET.

• ORL Faces dataset. This data set contains images of
human faces taken between April 1992 and April 1994
at the Cambridge University Computer Laboratory [22].
There are 40 distinct subjects with each containing
10 different images at various poses, varying lighting
conditions, facial expressions and facial details. Each
image consists of 119×92 pixels. Again, we used KSM
to visualize the relationships between the images of 3
different individuals by representing them as points in
the plane. The projection result is illustrated in Figure 6.

 !" #$ #" $ " $ #" #$!"
!"

!$

%"

%$

&"

&$

$"

$$

'"

(

(

)*(+,-.)

)!"(+,-.)

)!'(+,-.)

Fig. 6
RESULT OF PROJECTION OF THE ORL FACES DATASET.

TABLE I
DATASET CHARACTERISTICS.

Dataset Number of training patterns Dimensionality

Open Box I 10 3
Open Box II 31 3
Open Box III 64 3
Open Box IV 109 3
Open Box V 166 3
Open Box VI 235 3
Teapots 100 235200
Swiss Roll 120 3
Federalist Papers 40 18
ORL Faces 20 10304

In order to compare the three algorithms in terms of
convergence speed, we ran each algorithm 100 times for
each dataset using each time a different random initial weight
matrix. Furthermore, for each run we recorded the number
of iterations needed and the time (in seconds) it took for
each algorithm to converge to a local minimum. We declared
convergence, once the L∞ norm of the gradient reached or
became lower than τ = 10−4. Finally, the values of the
spread parameter ψ employed for the Gaussian kernels were
1.2 for Open Box, 50, 000 for Teapots, 12, 000 for Swiss
Roll, 8, 000 for Federalist Papers and 800 for ORL Faces.

B. Discussion

Our experimental results for the various versions of Open
Box and the remaining datasets are summarized in Table II
and Table III respectively. For Open Box I, in terms of
median speed, SOR-IM is 57.52% faster than IM, while
PARTAN-IM is 74.3% faster than IM. Next, for Open Box II,
SOR-IM needs 38.07% less than IM, while PARTAN-IM is
50.01% faster than IM. For Open Box III, the relative differ-
ence in medians with respect to IM are 5.35% and 23.64%
for SOR-IM and PARTAN-IM respectively. For Open Box
IV, the differences are 9.06% between IM and SOR-IM and
34.14% between IM and PARTAN-IM. SOR-IM is 1.72%
and PARTAN-IM is 13.49% faster than IM for Open Box

TABLE II
EXPERIMENTAL RESULTS FOR THE OPEN BOX DATASETS.

IM SOR-IM PARTAN-IM
time(sec) Iterations time(sec) Iterations time(sec) Iterations

Open Box I Max 1.406 168 0.453 60 0.219 32
Up 25 0.703 97.5 0.2965 40 0.156 22
Median 0.5155 71.5 0.219 31 0.1325 19
Low 25 0.375 53 0.172 23 0.109 16.5

Min 0.281 40 0.094 15 0.078 14

Open Box II Max 3.063 573 1.719 149 0.859 52
Up 25 0.945 153.5 0.594 56 0.461 33
Median 0.7815 131.5 0.484 47 0.39 29
Low 25 0.688 122 0.437 41 0.344 26.5

Min 0.438 86 0.312 30 0.282 23

Open Box III Max 9.781 850 8.843 260 4.203 82
Up 25 2.812 244.5 2.64 79.5 2.1955 45
Median 2.4765 217.5 2.344 72 1.891 39
Low 25 1.9295 168 1.969 60.5 1.7185 36

Min 1.438 128 1.453 46 1.344 29

Open Box IV Max 20.6870 695 20.4210 232 13.2040 97
Up 25 15.2180 518.5 14.1250 158.5 9.6090 71.5
Median 12.5160 420 11.3825 130.5 8.2425 63.5
Low 25 10.6565 370.5 9.6175 110.5 6.7895 52.5

Min 7.4370 264 6.8130 82 5.0000 40

Open Box V Max 28.5620 472 27.5780 142 22.7190 77
Up 25 20.3750 335.5 19.8200 103.5 16.5630 57.5
Median 15.8670 258.5 15.5940 84 13.7265 48
Low 25 13.7340 227 13.5705 72.5 12.0630 43

Min 11.3130 186 10.8120 58 10.2970 37

Open Box VI Max 91.9380 720 74.4840 187 57.3440 96
Up 25 56.0240 438 54.7500 137 41.7500 71
Median 50.1645 391.5 48.9840 123 37.0395 63
Low 25 37.9525 298 38.3435 97 31.5155 55

Min 24.0780 189 27.5630 71 22.6410 40

TABLE III
EXPERIMENTAL RESULTS ON THE REMAINING DATASETS.

IM SOR-IM PARTAN-IM
time(sec) Iterations time(sec) Iterations time(sec) Iterations

Teapots Max 101.609 4270 39.015 475 31.656 278
Up 25 44.43 1844.5 21.0075 249 16.8125 148
Median 30.25 1265.5 16.3515 195 13.4685 118.5
Low 25 20.1015 1001.5 12.4375 149.5 10.8205 97.5

Min 11.828 502 7.469 92 6.656 59

Swiss Max 52.5530 1602 27.0010 187 19.3100 104
Roll Up 25 16.6300 402 15.5495 125.5 12.2615 71

Median 12.8095 321 12.3500 103.5 9.8580 62.5
Low 25 10.1860 249.5 9.8535 84 8.3155 55

Min 4.3780 137 6.3830 59 5.6740 35

Federalist Max 9.406 1482 3.484 226 2.172 100
Papers Up 25 2.3905 439.5 1.906 125 1.407 66.5

Median 1.906 361.5 1.6015 105 1.1955 56
Low 25 1.492 272.5 1.266 82 1 48

Min 0.844 176 0.813 55 0.703 36

ORL Max 3.359 1222 0.75 97 0.515 72
Faces Up 25 1.4295 231 0.391 54 0.25 35.5

Median 0.6485 153 0.297 44 0.203 28.5
Low 25 0.4455 84 0.204 36 0.1485 23

Min 0.094 53 0.109 21 0.079 17

V. Finally, for Open Box VI, SOR-IM and PARTAN-IM
are 2.35% and 26.16% faster respectively than IM. These
results, which are also summarized in Figure 8, indicate
that SOR-IM’s performance advantage in comparison to IM
is probably eroding, as the number of weights increase. A
similar conclusion can probably be drawn for PARTAN-IM
as well. However, the performance deterioration is much
slower for the latter algorithm. Box plots of the execution
time distributions for each algorithm on selected Open Box
datasets are given in Figure 7.

IM SOR Partan

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

T
he

 T
im

e(
se

c)

Column Number

(a)

IM SOR−IM PARTAN−IM
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

T
he

 T
im

e(
se

c)
(lo

g1
0)

Column Number

(b)

Fig. 7
THE BOX PLOTS OF OPEN BOX I AND OPEN BOX VI.

1 1.5 2 2.5
0

10

20

30

40

50

60

70

80

Number of Training Patterns (log
10

)

%
 M

ed
ia

n
C

on
ve

rg
en

ce
 R

el
at

iv
e

S
pe

ed
up

SOR−IM over IM
PARTAN−IM over IM

Fig. 8
MEDIAN CONVERGENCE TIME VS. TRAINING SET SIZE FOR THE OPEN

BOX DATASETS.

For the Teapots data set, Table III reflects that median
SOR-IM speed performance is 45.95% faster than the corre-
sponding IM performance. On the other hand, PARTAN-IM
has 55.48% faster median performance than IM. For Swiss
Roll, the SOR-IM median slightly outperforms IM’s by
3.72%, but PARTAN-IM is still 23.04% faster than IM.
Next, for the Federalist Papers dataset, median SOR-IM
performance is 15.98% less than the one of IM, while
PARTAN-IM is faster by 37.28%. As for ORL Faces, median
speedups for SOR-IM and PARTAN-IM are 54.2% and

68.7% respectively faster than IM’s median performance.
Box plots of the execution time distributions for the Teapots
and Swiss Roll data sets are given in Figure 9. Similar Box
plots are obtained for the other two remaining data sets as
well, but are not shown here.

IM SOR−IM PARTAN−IM

0.8

1

1.2

1.4

1.6

1.8

2

T
he

 T
im

e(
se

c)
(lo

g1
0)

Column Number

(a)

IM SOR−IM PARTAN−IM
0.6

0.8

1

1.2

1.4

1.6

T
he

 T
im

e(
lo

g1
0)

(b)

Fig. 9
THE BOX PLOTS FOR THE TEAPOTS AND SWISS ROLL DATASETS.

V. CONCLUSIONS

We explored 2 acceleration methods, namely SOR Ac-
celerated IM (SOR-IM) and PARTAN Accelerated IM
(PARTAN-IM), to improve the convergence speed of the
Iterative Majorization (IM) algorithm, which is used to
estimate the projection weights of a Generalized Sammon
Mapping (GSM) model. Both methods are relatively easy
to understand and to implement. Based on our experiences,
we can conclude that both methods indeed accelerate the
original algorithm and exhibit robust behavior. We have
shown experimentally, that PARTAN-IM always converges
faster than SOR-IM, which, in turn, is typically faster than
IM. This is despite the relatively increased complexity of
these algorithms over IM. However, it seems that their
speedup advantage over plain IM seems to decrease as the
number of weights increase, a fact that is more or less
expected. Nevertheless, they may still retain an advantage,
albeit much smaller, even as the size of the dataset to be
projected increases.

ACKNOWLEDGMENT

Yinjie Huang acknowledges partial support from NSF
grants No. 0647120 and No. 0717680 and partial support
from a UCF Graduate College Presidential Fellowship. More-
over, Michael Georgiopoulos acknowledges partial support
from NSF grants No. 0525429, No. 0837332 and No.
0717680. Finally, Georgios C. Anagnostopoulos acknowl-
edges partial support from NSF grants No. 0717674 and
No. 0647018. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author and do not necessarily reflect the views of the National
Science Foundation. Finally, the authors would like to thank
the anonymous reviewers of this manuscript for their time
and helpful comments.

REFERENCES

[1] J. Sammon, “A nonlinear mapping algorithm for data structure
analysis,” IEEE Transactions on Computers, vol. 18(5), p. 401409,
1969. [Online]. Available: http://dx.doi.org/10.1109/T-C.1969.222678

[2] H. G. Boaz Lerner and M. Aladjem, “On Pattern Classification
with Sammon’s Nonlinear Mapping: An Experimental Study,” Pattern
Recognition, vol. 31, no. 371-381, 1998. [Online]. Available:
http://dx.doi.org/10.1016/S0031-3203(97)00064-2

[3] B. B. Balazs Feil and J. Abonyi, “Visualization of fuzzy clusters
by fuzzy Sammon mapping projection: application to the analysis of
phase space trajectories,” Soft Computing - A Fusion of Foundations,
Methodologies and Applications, vol. 14, no. 11, 2006. [Online].
Available: http://dx.doi.org/10.1007/s00500-006-0111-5

[4] C. Bharitkar, S.; Kyriakakis, “Visualization of multiple listener
room response equalization using Sammon map,” in Multimedia
and Expo, 2002. ICME ’02. Proceedings. 2002 IEEE International
Conference on, vol. 2, 2002, pp. 277 – 280 vol.2. [Online]. Available:
http://dx.doi.org/10.1109/ICME.2002.1035575

[5] S. Bharitkar and C. Kyriakakis, “Visualization of Multiple Listener
Room Acoustic Equalization With the Sammon map,” Audio,
Speech, and Language Processing, IEEE Transactions on, vol. 15,
no. 2, pp. 542 –551, February 2007. [Online]. Available: http:
//dx.doi.org/10.1109/TASL.2006.881683

[6] G. Chicco, R. Napoli, and F. Piglione, “Comparisons among clustering
techniques for electricity customer classification,” Power Systems,
IEEE Transactions on, vol. 21, no. 2, pp. 933 – 940, May 2006.
[Online]. Available: http://dx.doi.org/10.1109/TPWRS.2006.873122

[7] C. Frueh, R. Sammon, and A. Zakhor, “Automated texture mapping of
3d city models with oblique aerial imagery,” in 3D Data Processing,
Visualization and Transmission, 2004. 3DPVT 2004. Proceedings.
2nd International Symposium on, September 2004, pp. 396 – 403.
[Online]. Available: http://dx.doi.org/10.1109/TDPVT.2004.1335266

[8] S. Kannappady, S. P. Mudur, and N. Shiri, “Visualization of
Web Usage Patterns,” in Database Engineering and Applications
Symposium, 2006. IDEAS ’06. 10th International, December 2006,
pp. 220 –227. [Online]. Available: http://dx.doi.org/10.1109/IDEAS.
2006.52

[9] G. Karemore, J. Mullick, R. Sujatha, M. Nielsen, and C. Santhosh,
“Classification of protein profiles using fuzzy clustering techniques:
An application in early diagnosis of oral, cervical and ovarian
cancer,” in Engineering in Medicine and Biology Society (EMBC),
2010 Annual International Conference of the IEEE, 312010-sept.4
2010, pp. 6361 –6364. [Online]. Available: http://dx.doi.org/10.1109/
IEMBS.2010.5627292

[10] T. Miyamoto, Y. Fujita, S. Uchimura, Y. Hamamoto, N. Iizuka, and
M. Oka, “Visualization of transitions of developing of hepatitis C
virus-associated hepatocellular carcinoma,” in Pattern Recognition,
2008. ICPR 2008. 19th International Conference on, December 2008,

pp. 1 –4. [Online]. Available: http://dx.doi.org/10.1109/ICPR.2008.
4761751

[11] J. Mao and A. K. Jain, “Artificial neural networks for feature
extraction and multivariate data projection,” IEEE Transactions on
Neural Networks, vol. 6, no. 2, p. 296317, 1995. [Online]. Available:
http://dx.doi.org/10.1109/72.363467

[12] D. de Ridder and R. P. W. Duin, “Sammon’s mapping using
neural networks: A comparison,” Pattern Recognition Letters,
vol. 18, no. 1113, p. 13071316, 1997. [Online]. Available:
http://dx.doi.org/10.1016/S0167-8655(97)00093-7

[13] A. R. Webb, “Multidimensional Scaling by Iterative Majorization
Using Radial Basis Functions,” Pattern Recognition, vol. 28, no. 5,
1995. [Online]. Available: http://dx.doi.org/10.1016/0031-3203(94)
00135-9

[14] M. Ma, R. Gonet, R. Yu, and G. Anagnostopoulos, “Metric
representations of data via the Kernel-based Sammon Mapping,” in
Neural Networks (IJCNN), The 2010 International Joint Conference
on, July 2010, pp. 1 –7. [Online]. Available: http://dx.doi.org/10.
1109/IJCNN.2010.5596662

[15] J. de Leeuw, “Applications of convex analysis to multidimensional
scaling,” in Recent Developments in Statistics, J. R. B. et al., Ed.
Amsterdam, Netherlands: North-Holland, 1977, pp. 133–145.

[16] B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond, ser. Adaptive
Computation and Machine Learning, T. Dietterich, Ed. Cambridge,
Massachusetts, US: The MIT Press, 2002.

[17] D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming,
3rd ed., ser. International Series in Operations Research and Manage-
ment Science, F. S. Hillier, Ed. Springer Science+Business Media,
LLC, 2008, vol. 116.

[18] L. Armijo, “Minimization of Functions Having Lipschitz Continuous
First-Partial Derivatives,” Pacific Journal of Mathematics, vol. 16,
no. 1, pp. 1–3, 1966. [Online]. Available: http://projecteuclid.org/
euclid.pjm/1102995080

[19] J. B. Tenenbaum, “Mapping a manifold of perceptual observations,” in
Advances in Neural Information Processing Systems 10. MIT Press,
1998, pp. 682–688.

[20] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A Global
Geometric Framework for Nonlinear Dimensionality Reduction,”
Science, vol. 290, pp. 2319 – 2323, 2000. [Online]. Available:
http://dx.doi.org/10.1126/science.290.5500.2319

[21] G. Fung, O. Mangasarian, and J. Jay, “The Disputed Federalist Papers:
SVM Feature Selection via Concave Minimization,” in in Proc. 2003
Conf. on Diversity in Computing, ACM. ACM Press, 2003, pp.
42–46. [Online]. Available: http://dx.doi.org/10.1145/948542.948551

[22] F. Samaria and A. Harter, “Parameterisation of a stochastic model
for human face identification,” in Applications of Computer Vision,
1994., Proceedings of the Second IEEE Workshop on, December
1994, pp. 138 –142. [Online]. Available: http://dx.doi.org/10.1109/
ACV.1994.341300

http://dx.doi.org/10.1109/T-C.1969.222678
http://dx.doi.org/10.1016/S0031-3203(97)00064-2
http://dx.doi.org/10.1007/s00500-006-0111-5
http://dx.doi.org/10.1109/ICME.2002.1035575
http://dx.doi.org/10.1109/TASL.2006.881683
http://dx.doi.org/10.1109/TASL.2006.881683
http://dx.doi.org/10.1109/TPWRS.2006.873122
http://dx.doi.org/10.1109/TDPVT.2004.1335266
http://dx.doi.org/10.1109/IDEAS.2006.52
http://dx.doi.org/10.1109/IDEAS.2006.52
http://dx.doi.org/10.1109/IEMBS.2010.5627292
http://dx.doi.org/10.1109/IEMBS.2010.5627292
http://dx.doi.org/10.1109/ICPR.2008.4761751
http://dx.doi.org/10.1109/ICPR.2008.4761751
http://dx.doi.org/10.1109/72.363467
http://dx.doi.org/10.1016/S0167-8655(97)00093-7
http://dx.doi.org/10.1016/0031-3203(94)00135-9
http://dx.doi.org/10.1016/0031-3203(94)00135-9
http://dx.doi.org/10.1109/IJCNN.2010.5596662
http://dx.doi.org/10.1109/IJCNN.2010.5596662
http://projecteuclid.org/euclid.pjm/1102995080
http://projecteuclid.org/euclid.pjm/1102995080
http://dx.doi.org/10.1126/science.290.5500.2319
http://dx.doi.org/10.1145/948542.948551
http://dx.doi.org/10.1109/ACV.1994.341300
http://dx.doi.org/10.1109/ACV.1994.341300

	Introduction
	The Generalized Sammon Mapping
	Acceleration Methods
	Experimental Results
	Datasets
	Discussion

	Conclusions
	References

