
 

 

 

  

Abstract—In this paper the major principles to effectively 

design a parameter-less, multi-objective evolutionary algorithm 

that optimizes a population of probabilistic neural network 

(PNN) classifier models are articulated; PNN is an example of an 

exemplar-based classifier. These design principles are extracted 

from experiences, discussed in this paper, which guided the 

creation of the parameter-less multi-objective evolutionary 

algorithm, named MO-EPNN (multi-objective evolutionary 

probabilistic neural network). Furthermore, these design 

principles are also corroborated by similar principles used for an 

earlier design of a parameter-less, multi-objective genetic 

algorithm used to optimize a population of ART (adaptive 

resonance theory) models, named MO-GART (multi-objective 

genetically optimized ART); the ART classifier model is another 

example of an exemplar-based classifier model. MO-EPNN’s 

performance is compared to other popular classifier models, 

such as SVM (Support Vector Machines) and CART 

(Classification and Regression Trees), as well as to an alternate 

competitive method to genetically optimize the PNN. These 

comparisons indicate that MO-EPNN’s performance 

(generalization on unseen data and size) compares favorably to 

the aforementioned classifier models and to the alternate 

genetically optimized PNN approach. MO-EPPN’s good 

performance, and MO-GART’s earlier reported good 

performance, both of whose design relies on the same principles, 

gives credence to these design principles, delineated in this 

paper.    
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I. INTRODUCTION 

XEMPLAR-based classifiers are pattern recognizers that 

encode their accumulated evidence with the use of 

exemplars. The exemplars in EBC’s (exemplar based 

classifiers) are formulated via clustering of training patterns 

associated with the same class label.  In essence, these 

classifiers use exemplars to summarize training data 

belonging to the same class and then utilize a similarity or 

proximity measure to classify a previously unseen test pattern. 

The aforementioned summarization of input patterns 
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corresponds to a form of local learning, since the information 

regarding a cluster of patterns is represented by a single 

exemplar rather than being distributed. Furthermore, this local 

learning attribute of an EBC extends to the prediction of a 

class label of an unseen input pattern, where the prediction of 

the label of such a pattern relies only on the information that a 

few exemplars (in the vicinity of this input pattern) convey. 

Examples of EBC’s, in the domain of neural network 

classifiers, include ART classifiers (Fuzzy ARTMAP (FAM) 

[1], Ellipsoidal ARTMAP (EAM) [2], Gaussian ARTMAP 

(GAM) [3]), Radial Basis Function Neural Networks 

(RBFNNs) [4], and PNNs [5]. Other examples of EBC's are 

the k-nearest neighbor [6], and the Parzen Window Classifier 

[7].  

A perennial problem in designing an EBC is how to choose 

the number, location, and quite often radius of influence of the 

exemplars from the available training data. For instance, in a 

recent paper [8], Kaylani, et al., used a multi-objective 

evolutionary optimization approach to determine the number, 

location, and radius of influence of the exemplars pertinent to 

three popular ART classifiers, FAM [1], EAM [2], and GAM 

[3]; in their approach they focused on minimizing the 

generalization error and the size of the resulting ART 

classifier. The authors in [8] called their design MO-GART 

(multi-objective genetically optimized ART), explained how 

MO-GART was designed and demonstrated that its 

performance is very competitive compared to other classifier 

models, such as CART [9] and SVMs [10]. This assessment 

relied on experimentations with eleven different classification 

problems.    

Using genetic algorithms to optimize performance has not 

been limited to classifiers, such as ART. Ishibuchi and his 

colleagues have produced a good number of papers, dated 

back in 1994 [11], where genetic algorithms were used for the 

first time to design fuzzy classifiers. In one of their most 

recent publications [12], Ishibuchi and his colleagues examine 

the interpretability-accuracy tradeoff in fuzzy rule-based 

classifiers using a multi-objective fuzzy genetics-based 

machine learning (GBML) algorithm. There is a very rich 

literature on multi-objective optimization of fuzzy classifiers, 

pioneered by Professor Ishibuchi and his colleagues, but a 

literature that has many more contributors as the Evolutionary 

Multi-Objective Optimization of Fuzzy Rule-Based Systems 

Bibliography page by M. Cococcioni demonstrates. 

Furthermore, Gonzalez, et al., [13] have designed a 

multi-objective radial basis function neural network 

(RBF-NN) using a number of specialized genetic operators. In 

their paper they compared the performance of certain 

combinations of these operators in solving function 
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approximation problems. In their comparisons the measures 

of merit was the accuracy of the resulting RBF-NN and its 

complexity which was directly correlated with the number of 

hidden nodes used by the RBF-NN.  

In this paper we demonstrate that the principles that were 

instrumental for the design of MO-GART can also be applied 

for the design of multi-objective, evolutionary algorithms that 

optimize other EBC models, such as the PNN [5]. 

Evolutionary optimization of the PNN has appeared in the 

literature before, such as the work by Mao, et al. [14]. In [14] 

the authors, first use a genetic algorithm to define the 

smoothing parameters of the exemplars (pattern layer 

neurons) used in the PNN design; then a forward regression 

orthogonal algorithm is used to determine suitable pattern 

layer neurons. In [14] the authors, report a small PNN 

structure with good accuracy on a simulated problem, the IRIS 

problem, and a face recognition problem.  

The contributions of this paper are various: First we design 

a multi-objective (generalization error and size are the two 

objectives to be minimized) evolutionary algorithm to 

optimize a population of PNNs; we name the resulting 

algorithm, MO-EPNN (multi-objective evolutionary PNN). 

Secondly, we compare the performance of MO-EPNN with 

the performance of other popular classifier models (CART 

[9], SVM [10], Mao’s PNN [14]) on eight different 

classification problems and show that MO-EPNN’s 

performance is competitive. Thirdly, by identifying the 

similar principles used for the design of MO-GART and 

MO-EPNN we postulate principles that are useful for the 

design of other EBC models.  

The organization of the paper is as follows: In Section II we 

provide background information about the PNN classifier, 

and evolutionary multi-objective optimization approaches to 

solve multi-objective optimization problems. In Section III, 

we introduce the MO-EPNN and its important components. In 

Section IV we describe the datasets (classification problems) 

used, and the experiments conducted that assess MO-EPNN’s 

performance; in the same section we compare MO-EPNN’s 

performance with the performance of other popular classifiers 

and we make pertinent observations.  In Section V, we 

postulate the principles needed for the effective design of a 

multi-objective evolutionary algorithm that optimizes an 

EBC, relying on the experiences with the MO-EPNN (this 

paper) and MO-GART [8]. In Section VI, we provide a 

summary of the paper and point out, once more, the 

contributions of the work.   

II. BACKGROUND INFORMATION 

A. Brief Review of the PNN 

Consider a classification problem where the pattern data, 

designated by the vector x belong to different classes, 

designed by the letters ,...,,, CBA etc. The Bayesian 

classifier is the classifier that minimizes the probability of 

misclassifying the labels of unseen data. The Bayesian 

classifier chooses as the predicted label of an unseen 

patternx the label l that maximizes the following a-posteriori 

probability.  
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In order to calculate the above probabilities for every label 

,...,,, CBAl = one needs to compute the class conditional 

probabilities )|( lp x for every l , and the a-priori 

probabilities )(lP . The a-priori probabilities )(lP can be 

estimated from the available training data. The class 

conditional probabilities )|( lp x  can also be estimated using 

the training data, by using an approximation for the 

probability density function formula, suggested by Parzen [7], 

and depicted below, for the class label Al = .  
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where in the above equation D  is the dimensionality of the 

pattern vector x , )(AN tr is the number of points in the 

training set that are of label A , )(AS tr is the set of indices 

that correspond to the training points that are of label A , 
A

tx is the training pattern of index t , that is of label A , and 

)(dA

tx is the d -th component of this pattern, while 
A

tσ is 

the corresponding spread parameter vector (standard 

deviation vector) associated with training pattern 
A

tx , and 

)(dA

tσ is the d -th component of this spread parameter 

vector. The right hand side (RHS) of (2) is actually an 

approximation of )|( Ap x but for simplicity we still use the 

)|( Ap x notation.  

 The PNN is a neural network implementation that accepts 

an input pattern vector x and produces as an output the label 

l that maximizes the product 

 

)()|( lPlp ⋅x                                                                           (3) 

 

where )|( lp x is approximated by the RHS of (2), and 

)(lP is approximated by the ratio 

tr

tr

N

lN )(
, where trN are the 

number of points in the training set.   

B. Brief Overview of Multi-Objective Optimization 

Many real world problems involve simultaneous 

optimization of conflicting objectives. This is the basic 

challenge of multi-objective optimization research (see [15] 

and [16] for an overview of multi-objective evolutionary 



 

 

 

algorithms (MOEA)). With conflicting multiple objectives, 

there is no single optimal solution, but rather, there are a set of 

good solutions with varying degrees of merit. Evolutionary 

algorithms (EAs) are suitable for solving multi-objective 

optimization problems because EAs are population based 

search algorithms, and as such they can find, in a single run, 

multiple good solutions on the surface defined by the multiple 

objectives that are to be optimized. 

Formally the multi-objective optimization problem can be 

stated as follows: Optimize (without loss of generality, we can 

think of optimization as equivalent with minimization) the 

vector function )(xf of L objectives by finding a solution 

*x from the feasible domain of solutions,F , such that the 

resulting vector function  
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has component values that are acceptable to the user. The set 

of functions ),...(),( 21 xx ff are usually of conflicting 

nature; in other words it is rare to find a solution 
*x that 

minimizes all the components of the function f . Therefore, 

several solutions may exist that optimize one or more 

objectives, but not all of them, resulting in a collection of 

tradeoff solutions. The minimum set of such a collection is 

called the Pareto optimal set. A solution is called 

Pareto-optimal if there is no other solution that would 

decrease one objective without causing a simultaneous 

increase in at least one other objective. The Pareto-optimal set 

is also referred to as the set of non-dominated solutions. 

Formally a solution 
*x is said to be non-dominated if there is 

no other solution F∈x such that 

)()( *
xx ii ffi ≤∀  and )()(: *

xx ii ffi <∃                  (5) 

The main focus in MOEA research is to minimize the 

distance of the generated solutions to the true Pareto set and to 

maximize the diversity of the discovered Pareto set. A good 

Pareto set may be obtained by appropriate guiding of the 

search process through careful design of the selection operator 

and the fitness assignment strategies. Special care is also taken 

to prevent non-dominated solutions from being eliminated in 

the evolutionary process. Multi-objective optimization using 

Evolutionary Algorithms follows the same general procedure 

(as single objective optimization), and it is listed below. 

_______________________________________ 

 

Generate Initial Population ( ) 

Repeat 

 Fitness Evaluation ( ) 

Selection ( ) 

 Reproduction ( ) 

until  stopping criterion is satisfied 

return  Pareto-Optimal solutions 

________________________________________ 

Fig. 1.  Pseudo-code of a Multi-Objective Evolutionary Algorithm (MOEA)  

 

In this paper an MOEA is used to generate the 

Pareto-optimal solutions of a population of PNNs. The two 

objectives that are to be optimized (minimized) are the PNN’s 

generalization error and the PNN’s size (defined as the 

number of training patterns used in its design).  

III. DESIGN OF THE MO-EPNN 

We assume from this point on that when a classification 

problem is provided to us a training set, a validation set and a 

test set are furnished. We use the training set to create the 

initial population of the PNNs that are utilized by the MOEA, 

we use the validation set to reduce the size and error of this 

initial population of the PNNs during their evolution, and we 

finally assess the performance of the final approximate 

Pareto-optimal set of solutions, using the test set.  

A. Encoding of the PNNs in the MO-EPNN 

The first task needed to be accomplished is to encode the 

PNNs as chromosomes to facilitate their evolution from one 

generation to the next. We therefore assume that every PNN is 

represented by collection of categories. Each category 

consists of the pattern vector, its associated spread parameter 

vector, and its corresponding label. For instance, the category  

Att ,,σx is the category associated with t -th training 

pattern tx , whose label is ,A and its spread parameter vector 

is tσ . To simplify the notation we represent the gene 

corresponding to this PNN category as  

 
A

t

A

t σx ,                                                                             (6) 

Consequently the part of the chromosome that encapsulates all 

the training input patterns of label ,A is given below.  
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where
A

tN is the number of training patterns of class ,A used 

by the PNN. A complete PNN chromosome consists of the 

training patterns and their associated spread parameter vectors 

from all the class labels, such as ,...,, CBA  

B. Initial Population of the MO-EPNN 

The MO-EPNN is initialized by using a population of 

PNNs, whose training patterns and associated spread 

parameters are chosen randomly. Assume that the population 

size of PNNs used in the MO-EPNN’s evolution is sizePop . 

Then, the i -th, sizePopi ≤≤1 , PNN in this initial 

population, designated,
0

iPNN , chooses its training patterns 

from the training set as follows: If )(AS tr is the index set of 

training patterns of label ,A then each one of these indices is 

chosen to be used as a training pattern by 
0

iPNN with 



 

 

 

probability ip , where ip is a number uniformly distributed 

in the interval ]1,0[ . Training patterns of labels ,...,CB are 

chosen in a similar fashion. After the training patterns of every 

label are chosen by 
0

iPNN their corresponding spread 

parameter vectors σ are chosen. We use eight schemes to 

choose the parameter vectorsσ , all of which are described 

below; note that Scheme B encompasses 5 sub-schemes.  Each 

one of these schemes is explained below. First, we define the 

discrete set  

{ }2.0,15.0,1.0,075.0,05.0=SS                                   (8) 

Scheme A: Consider that a training pattern 
A

tx has been 

chosen to be one of the categories of
0

iPNN . A maxσ value 

for this category is chosen to be a number uniformly 

distributed over the discrete set SS. Then, each spread 

parameter )(dA

tσ of the training pattern 
A

tx is chosen 

independently to be a value uniformly distributed in the 

interval ),0( maxσ .  

Scheme B: Consider that a training pattern 
A

tx has been 

chosen to be one of the categories of
0

iPNN . A maxσ value 

for this category is chosen to be one (deterministically) of the 

numbers from the set SS. Then, each spread parameter 

)(dA

tσ of the training pattern 
A

tx is chosen independently to 

be a value uniformly distributed in the interval ),0( maxσ . 

This scheme gives rise to 5 distinct sub-schemes, referred to as 

Scheme_B_0.05, Scheme_B_0.075, Scheme_B_0.1, 

Scheme_B_0.15 and Scheme_B_0.2, depending on the 

specific value that maxσ is chosen (deterministically) to be.  

Scheme C: Consider that a training pattern 
A

tx has been 

chosen to be one of the categories of
0

iPNN . A maxσ value 

for this category is chosen to be a number uniformly 

distributed over the set SS. Then, each spread parameter 

)(dA

tσ of the training pattern 
A

tx is chosen to be equal to this 

maxσ value.  

Scheme D: For every class and every dimension find the 

minimum and the maximum values of the training patterns, 

i.e., you find )(min, dA

tx and )(max, dA

tx . Define the range of 

spread values for dimension d of class A data, as shown 

below: 

2
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Then, find the split interval of spread values for dimension 

d of class A data, as shown below:  
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Now, define S spread values for dimension d of 

class A data, as shown below:  

SsdSIsd AA

s ≤≤⋅= 1)()(σ                                         (11) 

The spread parameter )(dA

tσ of the training pattern 
A

tx is 

chosen randomly from the discrete set { }S
s

A

s d
1

)( =σ . In 

Scheme D, we chose 5=S , which allows the spread vector 

across every dimension of patterns of a specific class to 

assume 5 distinct values.  

Each one of the above schemes to initialize the spread 

parameters is not as arbitrary as it seems. For instance, the 

assumption made for Schemes A, B and C is that the input 

patterns are normalized across every dimension, so that their 

values lie in the interval ]1,0[ .  Hence, choosing the spread 

parameters in Schemes A-C by utilizing the discrete set of 

values in SS (see (8)) guarantees that the spread parameter 

values of every PNN category is a portion of the maximum 

range of values over which the input pattern values lie, a 

logical choice for PNN classifiers. Scheme D is attempting to 

do something more elaborate by considering the fact that 

although the range of pattern values could be the entire 

]1,0[ interval, it is plausible that the data of a particular class 

have values that reside over a smaller range that could differ 

from dimension to dimension.  

C. Selection in MO-EPNN; Fitness Function  

As it can be seen in Figure 1, where the MOEA pseudo code 

is presented an important component of the MOEA is the 

selection process and the associated fitness function that 

allows us to select a member of the PNN population over 

another member.  

As mentioned above the MO-EPPN algorithm starts by 

generating an initial population, )0(P of PNNs, each one of 

them trained with a subset of the available training data and 

with randomly chosen spread parameter values.  

Also, MO-EPNN initializes an empty secondary population, 

)0(AR , that will be used to store non-dominated solutions 

found during the evolution. In each generation, each solution 

in the population is evaluated according to each objective 

function. That is, the error rate of each PNN is evaluated by 

running it against the validation set. The second objective, 

complexity, is represented by the number of categories present 

in each network (the categories in the PNN correspond to the 

training patterns used by the PNN in its design, i.e., (7)). Once 

networks in population P are evaluated, the archive AR is 

updated by adding to it the solutions in P  that are 

non-dominated by solutions in AR . Also, solutions in AR  

that are now dominated by solutions just added from P are 

removed from the archive AR . This mechanism ensures 

elitism. The algorithm runs for a maximum number of 



 

 

 

generations, denoted as maxG ; maxG is not fixed a-priori but 

it is determined by how the MO-EPNN fares with each dataset 

that it is applied to (more details about the stopping criterion 

are provided in Section III.E).  

The selection process creates a temporary population 'P , 

where the parent chromosomes used to create the next 

generation are selected. The chromosomes in the archive AR  

and population P are assigned fitness values based on a 

dominance relationship. In this scheme each individual is 

assigned a strength value that is equal to the number of 

solutions it dominates. After that, a raw fitness, )(xR , is 

assigned for each individual to be the sum of the strengths of 

all its dominators in both AR  and P . The raw fitness is then 

adjusted as follows. For each individual, x , the Euclidean 

distance, in objective space, to the k -th nearest neighbor is 

found and denoted as )(xdisk . The objective space is the 

space defined by the “Error” and “Size” of a member of the 

population (PNN). The “Error” is the PNN error on the 

validation set, and the “Size” is the number of training patterns 

used by the PNN. The value of k  is chosen to be the square 

root of the sum of the size of the archive and population. The 

fitness of each individual is then calculated using the 

following equation: 
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                                          (12) 

The parents are then chosen using a deterministic binary 

tournament selection with replacement, as follows: For each 

parent, randomly select two chromosomes from the combined 

set of AR and P , and choose, the chromosome with the 

smallest fitness value. Boundary solutions, which are 

networks with smallest error rate and smallest size, are 

ensured to be copied in the set 'P of parents. The more 

detailed MO-EPNN code is now provided in the following 

figure.  

_______________________________________ 

 

←)0(P Generate initial population of PNNs ( ) 

←)0(AR Initialize initial archive ( ) 

for 1←g to 
maxGen do 

 Evaluation ( ) 

 Update-Archive ))(),(( gARgP ;  

 If stopping criteria met then exit for; 

 ←)(' gP Selection ( ))(),( gARgP ; 

 ←)(gP Reproduction )(' gP ; 

end 

return )(gAR  

_______________________________________ 

  
Fig. 2.  Pseudo-Code of the MO-EPNN Algorithm for one initial population 

corresponding to a specific initialization scheme  

It is worth noting that the MO-EPNN algorithm that we 

described above is the SPEA2 algorithm developed by Zitzler 

[17]. The only difference is that we do not set a limit on the 

size of the archive created by MO-EPNN as the original 

SPEA2 algorithm sets.  

D. Reproduction Operators in MO-EPNN; Prune Operator  

As the MO-EPNN pseudo-code in Figure 2 demonstrates 

after the temporary population of parents 'P is produced 

reproduction operators are applied to the 'P population to 

produce the new and improved population of off-springs. In a 

typical evolutionary optimization process the typical 

reproduction operators are cross-over and mutation. For our 

problem of interest, where our focus is the tandem reduction 

of the PNN’s generalization error and size we introduce a 

unique reproduction operator called the Prune operator. This 

operator was introduced for the first time in the literature in 

the successful design of MO-GART [8]: MO-GART 

outperformed popular classification models, such as SVMs 

and CART.  

The effect that the Prune operator in MO-EPNN has on the 

'P population is to simply prune categories from each 

member of the population, as follows: The category of every 

member of the population has an associated probability of 

being pruned that depends on the category’s confidence 

factor, CF . A category of a member in the MO-EPPN 

population is a training pattern used in the design of this 

member’s classification model. The confidence factor of a 

category in a PNN is calculated at every generation and its 

value ranges in the interval ]1,0[ ; a high value of a category’s 

confidence factor is an indication that this category is very 

valuable for the good performance of the PNN (i.e., its low 

generalization error on the validation set) and it should have a 

low probability of being pruned, while a low value of a 

category’s confidence factor is an indication that this category 

is not very  valuable for the good performance of the PNN and 

it should have a high probability of being pruned.  

Let us now define the CF of category of a PNN in the 

MO-EPPN population. We assume, without loss of generality, 

that this PNN’s category is defined, as (6) has suggested 

earlier, by the vectors
A

t

A

t σx , . In order to define the 

confidence factor of this PNN’s category we first introduce 

four relevant parameters, )(Re v

A

tw x , )( v

A

tCSel x , 

)( v

A

tPen x , )( v

A

tESel x , referred to as Reward, Correct 

Selectivity, Penalty, and Erroneous Selectivity, respectively.  

The reader who wants to omit the details of the definitions 

of the )(Re v

A

tw x , )( v

A

tCSel x , )( v

A

tPen x , )( v

A

tESel x  

parameters can go directly to (19) where the CF of the 

category 
A

t

A

t σx , is defined in terms of its goodness factor 

and its badness factor. The goodness factor of a category is 

expressed as a weighted sum of the normalized reward and 

correct selectivity of a category (see (15) for more details). 

The badness factor of a category is expressed as a weighted 

sum of the normalized penalty and erroneous selectivity of a 



 

 

 

category (see (18) for more details). Reward and Correct 

Selectivity values of a category are expected to be high for 

categories that are immersed in dense clusters of points that 

are of the same label as the category. Penalty and Erroneous 

Selectivity values of a category are expected to be high for 

categories immersed in dense clusters of points that are of 

different label than the label of the category. Hence, the 

calculated category confidence factor seems to favor 

categories that are immersed in clusters that are dense of 

points of the same label and non-dense of points of a different 

label.  

The Reward parameter, A

twRe , is calculated for all the 

class- A validation points vx from the validation set vS  that 

are correctly classified by the PNN to which the category 
A

t

A

t σx , belongs. In particular, the Reward parameter, 

)(Re v

A

tw x , corresponding to a class- A validation point vx , 

correctly classified by the PNN to which this category 

belongs, is a normalized measure of how much this category 

contributes to )|( Ap vx  compared to the other categories of 

class- A of the same PNN. Note that )|( Ap vx is one of the 

factors responsible for the correct classification of a 

class- A point from the validation set. The parameter 

)(Re v

A

tw x is defined by the following equation:  
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The Correct Selectivity parameter,
A

tCSel , is calculated 

for all the class- A   validation points vx from the validation 

set vS . In particular, the Correct Selectivity parameter, 

)( v

A

tCSel x , corresponding to a class- A   validation point 

vx , is a normalized measure of how much category 

A

t

A

t σx , contributes to the value of )|( Ap vx , compared to 

the other categories of class- A of the same PNN. Note that 

)|( Ap vx is one of the factors responsible for the correct 

classification of a class- A point from the validation set.  The 

parameter )( v

A

tCSel x is defined by the following equation: 
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In (13) and (14), )(AS tr are the points in the training set 

trS that are class- A points.  

Now that the Reward and Correct Selectivity parameters 

are defined for a category 
A

t

A

t σx , of a PNN, and a specific 

class- A validation point, it is worth defining a cumulative 

parameter for this category, referred to as the Goodness 

Factor. This parameter takes into consideration this 

category’s Reward and Correct Selectivity parameter values 

for every class- A validation point. The Goodness Factor, of 

category 
A

t

A

t σx ,  is defined below.  
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In the above equation ),( AASv is the set with indices 

from the validation set vS that correspond to validation points 

of class label A that are correctly classified by the PNN in 

which the designated category 
A

t

A

t σx , belongs. Furthermore, 

)(ASv are the set of indices from the validation set vS that 

correspond to class- A points.  

The Penalty parameter,
A

tPen , is calculated for all the 

class- A validation points vx from the validation set vS  that 

are  incorrectly classified by the PNN, to which the category 
A

t

A

t σx , belongs, as class- A points. In particular, the Penalty 

parameter, )( v

A

tPen x , corresponding to a 

class- A validation point vx , incorrectly classified by the 

PNN, to which this category belongs, as a class- A point, is a 

normalized measure of how much this category contributes to 

the value of )|( Ap vx , compared to the other 

class- A categories of the same PNN. Note that )|( Ap vx is 

one of the factors responsible for the incorrect classification of 

a class- A point from the validation set. The parameter 

)( v

A

tPen x is defined by the following equation:  
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The Erroneous Selectivity parameter,
A

tESel , is calculated 

for all the class- A   validation points vx from the validation 

set vS . In particular, the Erroneous Selectivity parameter, 

)( v

A

tESel x , corresponding to a class- A   validation point 

vx , is a normalized measure of how much category 

A

t

A

t σx , contributes to the value of )|( Ap vx , compared to 

the other class- A categories of the same PNN. Note that 

)|( Ap vx is one of the factors responsible for the incorrect 

classification of a class- A point from the validation set.  The 

parameter )( v

A

tESel x is defined by the following equation: 
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In (15) and (17) )(AS tr are the points in the training set 

trS that are class- A points.  

Now that the Penalty and Erroneous Selectivity parameters 

are defined for a category 
A

t

A

t σx , of a PNN, and a specific 

class- A validation point, it is worth defining a cumulative 

parameter for this category, referred to as the Badness Factor. 

This parameter takes into consideration this category’s 

Penalty and Erroneous Selectivity parameter values for every 

class- A validation point. The Badness Factor, of category 
A

t

A

t σx ,  is defined below.  
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In the above equation ),( AASv is the set with indices 

from the validation set vS that correspond to validation points 

of class label A that are incorrectly classified by the PNN in 

which the designated category 
A

t

A

t σx , belongs, as class 

A points. Furthermore, )(ASv are the set of indices from the 

validation set vS that correspond to class- A points.  

Now we are in a position to define the confidence factor of 

a category 
A

t

A

t σx , in terms of the Goodness and Badness 

factors of a category. In particular, the confidence factor of a 

category 
A

t

A

t σx , is defined as follows:  
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We can use this confidence factor to define the probability 

according to which a category in a PNN is pruned during the 

evolution.  In particular, the probability of pruning the 

category 
A

t

A

t σx , during the evolution of the PNNs is defined 

below.  
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In the above equation the highest confidence value gets the 

highest rank and the lowest confidence value gets the lowest 

rank.  Note that the above probability changes from generation 

to generation of the evolutionary process and depends on how 

important this category is for the good performance of the 

PNN in which it belongs. Hence, the user does not need, with 

the above approach, to arbitrarily define a probability of 

pruning a PNN category.  

E. MO-EPNN Stopping Criterion   

It is important to define a good stopping criterion for the 

MO-EPPN’s evolution. This stopping criterion should be such 

that stopping MO-EPNN’s evolution according to this 

criterion would not compromise the quality of the solutions. 

We chose a stopping criterion that relies on the measure of 

coverage, firstly introduced in Zietzler, et al., [18], where in 

comparing two families of solutions BA, we calculate the 

coverage of B by A using a metric denoted as ),( BAC . 

This metric is defined as follows:  

||

|}:{|
),(

B

baAaBb
BAC

≥∈∋∈
=                                 (21) 

 

where in the above equation || S means the size of set S (i.e., 

number of elements in the set S ) and ba ≥ implies that 

solution a dominates solution b . If we assume for a moment 

that A is the archive at generation g and B is the archive at 

generation 1+g , then a ),( BAC value of 1 means that the 

archive in the current generation is covered by the archive in 

the previous generation. Our stopping criterion is to terminate 

the PNN evolution, if and only if 1),( =BAC for 10 

consecutive generations.  



 

 

 

F. The MO-EPNN Algorithm 

We used 10=seedN initial seeds. For each initial seed we 

generated eight populations of PNNs corresponding to each of 

schemes A, C and D and each of the five B schemes. Each such 

population had 30=sizePop members. The eight 

populations corresponding to the same initial seed are 

different because the schemes of choosing the spread 

parameters are different. The diversity of PNN solutions 

provided by this initial collection of PNNs is obvious from the 

following numbers that provide the mean and standard 

deviation of the Error on the validation set and the size of the 

initial population of PNNs: CinS (MeanError 7.08%, StdError 

6.06%, MeanSize 504.95, StdSize 286.33), G4c_25 

(MeanError 28.62%, StdError 3.91%, MeanSize 253.99, 

StdSize 143.17), G6c_15 (MeanError 19.65%, StdError 

4.85%, MeanSize 257.04, StdSize 144.46), IRIS (MeanError 

6.06%, StdError 2.77%, MeanSize 252.93, StdSize 143.17), 

SEG (MeanError 17.27%, StdError 8.38%, MeanSize 406.70, 

StdSize 229.03), WAVE (MeanError 32.24%, StdError 

6.44%, MeanSize 505.45, StdSize 286.37), ABA (MeanError 

44.98%, StdError 2.99%, MeanSize 253.51, StdSize 143.19), 

PAGE (MeanError 14.16%, StdError 7.51%, MeanSize 

258.02, StdSize 145.17).  

Each one of the populations corresponding to a particular 

seed followed the pseudo-code of Figure 2 in order to generate 

an archive of solutions at the completion of the evolution 

(final archive). The solutions of these eight final archives were 

combined to generate a Better-Archive; the Better-Archive 

contains the solutions of the final archives that are 

non-dominated. The Better-Archives of every seed (10 of 

them) are combined to generate a Best-Archive; the 

Best-Archive contains all the solutions of the Better-Archives 

that are non-dominated.  

IV. EXPERIMENTS AND RESULTS 

A. Datasets 

We have experimented with 8 datasets (see Table I), of 

which 3 are simulated databases and 5 are real databases. The 

simulated databases include 2 Gaussian databases: G4c-25 

and G6c-15. These are, 2-dimensional databases with 

4-classes and 6-classes, and 15% and 25% overlap, between 

the classes. The overlap in these Gaussian datasets implies 

that if the optimal (Bayes) classifier were to be used the 

classification error attained (optimal error) would be equal to 

the overlap percentage. The database denoted by CinS is the 

benchmark one circle in a square problem, 2-dimensional, two 

class classification problem. The probability of finding a data 

point within a circle or inside the square of the circle is equal 

to 1/2. The rest of the databases were obtained from the UCI 

repository (see [19]) and they include: Modified Iris (IRIS), 

Image Segmentation (SEG), Waveform (WAV), Abalone 

(ABA), and Page Blocks (PAGE). More details about these 

databases can be found there.  

Each dataset is divided into a training set, a validation test, 

and a test set. The training set is used for the training of PNNs 

under consideration. The validation set is used to estimate the 

classification error during the evolutionary process, as 

explained in the previous section. Finally, the test set is used to 

assess the performance of the optimized networks created. 

The characteristics of the datasets used in our experiments are 

provided in Table I below.  
Table I 

Characteristics of Datasets used in MO-EPNN Experiments 

Data 

Set 

Train 

# 

Val 

# 

Test 

# 

Atr 

# 

Class 

# 
CinS 1000 5000 5000 2 2 

G4c_25 500 5000 5000 2 4 

G6c_15 504 5004 5004 2 6 

IRIS 500 4800 4800 2 2 

SEG 800 810 700 19 7 

WAVE 1000 2000 2000 21 3 

ABA 500 2000 1677 7 3 

PAGE 507 2176 2790 10 5 

B. MO-EPNN Experiments; Comparison with Other 

Classifiers 

We compared the performance of MO-EPNN (best) and 

MO-EPNN (small) with the performance of three other 

classifiers, CART [9], SVM [10], and the genetic PNN in 

Mao, et al., [14].  

The MO-EPPN (best) is the PNN in the Best-Archive that 

produced the lowest error on the validation set. The 

MO-EPNN (small) is the PNN in the Best-Archive whose 

error rate is within 1% of the error rate of MO-EPNN (best) 

and has as many categories as the number of classes of the 

classification problem at hand; if such a PNN does not exist 

MO-EPNN (small) is the one with error rate within 1% of the 

MO-EPNN (best) error rate with the smallest number of 

categories. If there is no PNN with error rate within 1% of the 

error rate of MO-EPNN (best) then the MO-EPNN (small) is 

non-existent. The MO-EPPN (best) and MO-EPPN (small) 

performance (for the eight datasets) is shown in Table II; the 

PCC in Table II is percentage of correct classification on the 

test set. The reported size for the MO-EPNN (best) and 

MO-EPNN (small) of Table II corresponds to the number of 

categories of these PNNs.  

To produce the SVM results of Table II we trained and 

validated the SVM classifier for a number of C and 

γ parameters. Note that C is the regularization parameter of 

the SVM classifier and γ  is the width of the kernel used (in 

our case we used the popular RBF kernel). The results shown 

in Table II correspond to the SVM test performance of the 

SVM model that provided the highest PCC on the validation 

set; the SVM size reported in Table II corresponds to the 

number of support vectors of the SVM classifier. To produce 

the CART results we used the CART algorithm with the Gini 

split criterion and the 1-SE rule (see [9] for more details). The 

results shown in Table II correspond to the test performance 

of the CART model that the 1-SE rule produces; the size of 

this model corresponds to the number of intermediate nodes 

(not leaves) of the CART model. To produce Mao’s results in 

Table II we implemented Mao’s algorithm, discussed in [14]. 

 
 



 

 

 

Table II 

Percentage of Correct Classification (PCC) and Size of the Classifier 
Algorithm\Dataset CinS 

PCC 

CinS 

Size 

G4c_25 

PCC 

G4c_25 

Size 

SVM 99.67 88 75.24 277 

CART 97.57 28 73.5 4 

Mao’s 90.14 10 73.44 4 

MO-EPNN (best) 97.90 84 74.72 5 

MO-EPNN (small) 96.80 10 74.86 4 

 
Algorithm\Dataset G6c_15 

PCC 

G6c_15 

Size 

IRIS 

PCC 

IRIS 

Size 

SVM 84.99 504 95.04 79 

CART 80.42 6 94.02 4 

Mao’s 85.35 6 93.63 2 

MO-EPNN (best) 84.89 45 95.23 54 

MO-EPNN (small) 84.83 6 94.52 2 

     

Algorithm\Dataset SEG 

PCC 

SEG 

Size 

WAVE 

PCC 

WAVE 

Size 

SVM 97.29 230 87.45 574 

CART 93.43 17 75.2 14 

Mao’s 88.00 101 81.45 9 

MO-EPNN (best) 89.57 64 84.40 11 

MO-EPNN (small) 89.29 42 85.10 5 

 
Algorithm\Dataset ABA 

PCC 

ABA 

Size 

PAGE 

PCC 

PAGE 

Size 

SVM 61.66 337 95.3 150 

CART 61.18 17 93.84 7 

Mao’s 57.96 11 85.66 171 

MO-EPNN (best) 60.94 238 95.94 8 

MO-EPNN (small) 60.17 5 96.24 7 

 The results are created by SVM, CART, Mao’s algorithm, and MO-EPPN 

(best and small) for the CinS, G4c_25, G6c_15, IRIS, SEG, WAV, ABA, and 

PAGE datasets. The PCC shown is the performance of each classifier on the 

test set. The gray highlighted table entries correspond to the best PCC and 

smallest size attained by any of these classifiers on the respective dataset. If 

an entry corresponding to size is bold-faced this size is equal to the smallest 

possible size of a classifier that can be attained (equal to the number of 

classes of the classification problem)  

C. Discussion of Results  

A careful look at the results presented in Table II allows us 

to make a few useful observations regarding MO-EPNN’s 

performance. Observation 1: MO-EPNN’s (best or small) 

PCC is competitive compared to SVM since, quite often (in 

five out of the eight datasets), it produces a PCC nearly as 

good (within 1%), and occasionally slightly better, as the 

SVM PCC. Furthermore, MO-EPNN has size that is much 

smaller than SVM (quite often orders of magnitude smaller).  

Observation 2: MO-EPNN’s performance is competitive 

compared to CART. In six datasets MO-EPNN’s PCC is 

better than CART’s, while in the remaining two datasets 

CART’s PCC is better than MO-EPPN’s. In two of the 

datasets (G6c_15, WAVE) MO-EPNN’s PCC is significantly 

better than CART’s, while CART’s performance is 

significantly better than MO-EPNN's PCC in one dataset 

(SEG). In almost all the datasets (except SEG) MO-EPPN 

(small)’s size is either smaller or equal to the CART’s size. 

Observation 3: MO-EPPN’s PCC is competitive compared 

to Mao’s PCC. In all the datasets except one (G6c_15) 

MO-EPPN’s PCC is better than Mao’s, and in some of them 

significantly better (e.g., CinS and PAGE). In all the datasets 

MO-EPNN (small)’s size is smaller than or equal to Mao’s 

size and in a few occasions (SEG, PAGE) a large factor times 

smaller. 

The above observations demonstrate that MO-EPPN 

compares well with other classifier models, such as SVM and 

CART, and Mao’s algorithm ([14]).   

V. DISCUSSION 

Our intent in this paper was not only to design an effective, 

parameter-less, multi-objective evolutionary algorithm to 

optimize a population of PNN classifiers (MO-EPPN) but also 

to identify the principles associated with such a design. We 

single out these design principles below: Design Principle 1:   

An appropriate multi-objective evolutionary optimization 

approach is needed to select the PNNs that are reproduced 

from one generation to the next. In this paper we chose SPEA2 

[17], but other evolutionary multi-objective optimization 

approaches could work as well; SPEA2 worked well for the 

evolution of ART classifiers (MO-GART). Design Principle 

2: An initial population of diverse solutions for the 

classification model needs to be created, so that its subsequent 

evolution through selection and reproduction operators will 

lead to good final solutions. In order to produce this diverse 

initial population the user needs to know what provides the 

diversity of solutions for the classification model under 

consideration (ART, PNN, others), a relatively reasonable 

expectation for the user. Design Principle 3: Appropriate 

evolutionary operators need to be designed to evolve the 

initial population of solutions, such as the Prune operator 

proposed for the PNN in this paper. Most importantly, the 

Prune operator needs to assign appropriate credit to the genes 

of the chromosome (categories in a PNN classifier model or 

ART classifier model) so that good genes are retained while 

bad genes are pruned. The Prune operator was the most 

important operator in the evolution of the PNN in this paper 

and also of ART in [8]. Other operators might be needed, 

besides the Prune operator, such as an appropriate cross-over 

or mutation operator. Cross-over and mutation operators did 

not produce better MO-EPNN results, but cross-over and 

mutation were useful for the evolution of ART networks. 

Design Principle 4: The evolutionary operators need to be 

adaptive, meaning that they should not require the user to 

specify parameters that are hard to choose without costly 

experimentation. For example, the Prune operator in the 

evolution of the PNNs used the adaptive confidence factor of 

a category (calculated automatically) that determined the 

Prune probability. A similar confidence factor was defined in 

the evolution of ART networks in [8]. Design Principle 5: 

The multi-objective evolutionary algorithm needs to use an 

adaptive stopping criterion that determines the termination of 

the evolutionary process. In MO-EPNN this criterion was 

based on the measure of coverage, introduced by Zietzler [18]. 

A similar stopping criterion was used for MO-GART. Design 

Principle 6: Experimentation with the multi-objective 

evolutionary algorithm will determine what affects the 



 

 

 

variability of the answers in the final archive. In order to 

design a parameter-less multi-objective evolutionary 

algorithm to optimize EBC models (such as ART, PNN, 

others) one has to eliminate this variability to the maximum 

possible extent. In the case of the evolution of the PNNs this 

was accomplished by considering multiple initialization 

schemes and multiple random initial seeds. In the case of the 

evolution of ARTs this was accomplished by considering 

multiple random initial seeds.  

VI. SUMMARY AND CONCLUSIONS 

We have designed an effective, parameter-less, 

multi-objective evolutionary algorithm that optimizes a 

population of PNN models. This algorithm was named 

MO-EPNN. The statement that MO-EPNN is parameter-less 

is justified because the user of this algorithm does not have to 

specify any algorithmic parameters, since all the pertinent 

parameters (such as SSNPop seedsize ,, and the different 

initialization schemes) have already been predefined and work 

well for all datasets that we experimented with. MO-EPNN 

not only produces a family of PNN solutions for the 

classification problem at hand but it also produces solutions 

that compare favorably with other popular classification 

models, such as SVM and CART and other evolutionary PNN 

models, such as the one developed by Mao [14].  

The contributions of the paper are many. In the design of 

the MO-EPNN, (a) we chose the multi-objective evolutionary 

algorithm that created future PNN populations from earlier 

PNN populations, (b) we chose novel reproduction operators 

(prune operator) that alter the members of the populations, (c) 

we defined an adaptive probability of pruning PNN categories 

for the prune operator, and (d) we identified what affects the 

variability of the final PNN populations produced by our 

MOEA. All these choices led to a successfully designed and 

competitive MO-EPNN. Furthermore, the similarity of the 

principles that led into the successful design of MO-EPNN 

and MO-GART point into a future research direction where 

these design principles can be illustrated as being universal 

principles for the optimization of any exemplar based 

classifier. 
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