

Abstract—In this paper the major principles to effectively

design a parameter-less, multi-objective evolutionary algorithm

that optimizes a population of probabilistic neural network

(PNN) classifier models are articulated; PNN is an example of an

exemplar-based classifier. These design principles are extracted

from experiences, discussed in this paper, which guided the

creation of the parameter-less multi-objective evolutionary

algorithm, named MO-EPNN (multi-objective evolutionary

probabilistic neural network). Furthermore, these design

principles are also corroborated by similar principles used for an

earlier design of a parameter-less, multi-objective genetic

algorithm used to optimize a population of ART (adaptive

resonance theory) models, named MO-GART (multi-objective

genetically optimized ART); the ART classifier model is another

example of an exemplar-based classifier model. MO-EPNN’s

performance is compared to other popular classifier models,

such as SVM (Support Vector Machines) and CART

(Classification and Regression Trees), as well as to an alternate

competitive method to genetically optimize the PNN. These

comparisons indicate that MO-EPNN’s performance

(generalization on unseen data and size) compares favorably to

the aforementioned classifier models and to the alternate

genetically optimized PNN approach. MO-EPPN’s good

performance, and MO-GART’s earlier reported good

performance, both of whose design relies on the same principles,

gives credence to these design principles, delineated in this

paper.

Keywords: Exemplar Based Classifiers, Neural Networks,

Multi-Objective Optimization, Multi-Objective Evolutionary

Algorithms, Probabilistic Neural Network

I. INTRODUCTION

XEMPLAR-based classifiers are pattern recognizers that

encode their accumulated evidence with the use of

exemplars. The exemplars in EBC’s (exemplar based

classifiers) are formulated via clustering of training patterns

associated with the same class label. In essence, these

classifiers use exemplars to summarize training data

belonging to the same class and then utilize a similarity or

proximity measure to classify a previously unseen test pattern.

The aforementioned summarization of input patterns

Manuscript received February 10, 2011.

T. Rubio is with the Department of EECS at the University of Central

Florida. T. Rubio is supported by NSF grants 0717680, 0647120, 064718.

T. Zhang is with the Department of EECS at the University of Central

Florida. T. Zhang I supported by NSF grants 0717680, 0647120, 0837307.

M. Georgiopoulos is with the Department of EECS at the University of

Central Florida (Phone: 407-823-5338, Fax: 407-823-5835, E-Mail:

michaelg@ucf.edu). M. Georgiopoulos is supported by NSF grants 0917680,

0837332, 0525429 and 0963146.

Assem Kaylani is with InCube, FZCO, Dubai, UAE.

corresponds to a form of local learning, since the information

regarding a cluster of patterns is represented by a single

exemplar rather than being distributed. Furthermore, this local

learning attribute of an EBC extends to the prediction of a

class label of an unseen input pattern, where the prediction of

the label of such a pattern relies only on the information that a

few exemplars (in the vicinity of this input pattern) convey.

Examples of EBC’s, in the domain of neural network

classifiers, include ART classifiers (Fuzzy ARTMAP (FAM)

[1], Ellipsoidal ARTMAP (EAM) [2], Gaussian ARTMAP

(GAM) [3]), Radial Basis Function Neural Networks

(RBFNNs) [4], and PNNs [5]. Other examples of EBC's are

the k-nearest neighbor [6], and the Parzen Window Classifier

[7].

A perennial problem in designing an EBC is how to choose

the number, location, and quite often radius of influence of the

exemplars from the available training data. For instance, in a

recent paper [8], Kaylani, et al., used a multi-objective

evolutionary optimization approach to determine the number,

location, and radius of influence of the exemplars pertinent to

three popular ART classifiers, FAM [1], EAM [2], and GAM

[3]; in their approach they focused on minimizing the

generalization error and the size of the resulting ART

classifier. The authors in [8] called their design MO-GART

(multi-objective genetically optimized ART), explained how

MO-GART was designed and demonstrated that its

performance is very competitive compared to other classifier

models, such as CART [9] and SVMs [10]. This assessment

relied on experimentations with eleven different classification

problems.

Using genetic algorithms to optimize performance has not

been limited to classifiers, such as ART. Ishibuchi and his

colleagues have produced a good number of papers, dated

back in 1994 [11], where genetic algorithms were used for the

first time to design fuzzy classifiers. In one of their most

recent publications [12], Ishibuchi and his colleagues examine

the interpretability-accuracy tradeoff in fuzzy rule-based

classifiers using a multi-objective fuzzy genetics-based

machine learning (GBML) algorithm. There is a very rich

literature on multi-objective optimization of fuzzy classifiers,

pioneered by Professor Ishibuchi and his colleagues, but a

literature that has many more contributors as the Evolutionary

Multi-Objective Optimization of Fuzzy Rule-Based Systems

Bibliography page by M. Cococcioni demonstrates.

Furthermore, Gonzalez, et al., [13] have designed a

multi-objective radial basis function neural network

(RBF-NN) using a number of specialized genetic operators. In

their paper they compared the performance of certain

combinations of these operators in solving function

Multi-Objective Evolutionary Optimization of Exemplar-Based

Classifiers: A PNN Test Case

Talitha Rubio, Tiantian Zhang, Michael Georgiopoulos, Assem Kaylani

E

approximation problems. In their comparisons the measures

of merit was the accuracy of the resulting RBF-NN and its

complexity which was directly correlated with the number of

hidden nodes used by the RBF-NN.

In this paper we demonstrate that the principles that were

instrumental for the design of MO-GART can also be applied

for the design of multi-objective, evolutionary algorithms that

optimize other EBC models, such as the PNN [5].

Evolutionary optimization of the PNN has appeared in the

literature before, such as the work by Mao, et al. [14]. In [14]

the authors, first use a genetic algorithm to define the

smoothing parameters of the exemplars (pattern layer

neurons) used in the PNN design; then a forward regression

orthogonal algorithm is used to determine suitable pattern

layer neurons. In [14] the authors, report a small PNN

structure with good accuracy on a simulated problem, the IRIS

problem, and a face recognition problem.

The contributions of this paper are various: First we design

a multi-objective (generalization error and size are the two

objectives to be minimized) evolutionary algorithm to

optimize a population of PNNs; we name the resulting

algorithm, MO-EPNN (multi-objective evolutionary PNN).

Secondly, we compare the performance of MO-EPNN with

the performance of other popular classifier models (CART

[9], SVM [10], Mao’s PNN [14]) on eight different

classification problems and show that MO-EPNN’s

performance is competitive. Thirdly, by identifying the

similar principles used for the design of MO-GART and

MO-EPNN we postulate principles that are useful for the

design of other EBC models.

The organization of the paper is as follows: In Section II we

provide background information about the PNN classifier,

and evolutionary multi-objective optimization approaches to

solve multi-objective optimization problems. In Section III,

we introduce the MO-EPNN and its important components. In

Section IV we describe the datasets (classification problems)

used, and the experiments conducted that assess MO-EPNN’s

performance; in the same section we compare MO-EPNN’s

performance with the performance of other popular classifiers

and we make pertinent observations. In Section V, we

postulate the principles needed for the effective design of a

multi-objective evolutionary algorithm that optimizes an

EBC, relying on the experiences with the MO-EPNN (this

paper) and MO-GART [8]. In Section VI, we provide a

summary of the paper and point out, once more, the

contributions of the work.

II. BACKGROUND INFORMATION

A. Brief Review of the PNN

Consider a classification problem where the pattern data,

designated by the vector x belong to different classes,

designed by the letters ,...,,, CBA etc. The Bayesian

classifier is the classifier that minimizes the probability of

misclassifying the labels of unseen data. The Bayesian

classifier chooses as the predicted label of an unseen

patternx the label l that maximizes the following a-posteriori

probability.

)(

)()|(
)|(

x

x
x

p

lPlp
lP

⋅
= (1)

In order to calculate the above probabilities for every label

,...,,, CBAl = one needs to compute the class conditional

probabilities)|(lp x for every l , and the a-priori

probabilities)(lP . The a-priori probabilities)(lP can be

estimated from the available training data. The class

conditional probabilities)|(lp x can also be estimated using

the training data, by using an approximation for the

probability density function formula, suggested by Parzen [7],

and depicted below, for the class label Al = .

 −
−

⋅⋅=

∑ ∏
∈ =

2

2

)(1

2/

))((2

))()((
exp

)(

1

)(

1

)2(

1
)|(

d

dd

d

AN
Ap

A

t

A

t

ASt

D

d
A

t

tr

D

tr
σ

xx

σ

x
π

 (2)

where in the above equation D is the dimensionality of the

pattern vector x ,)(AN tr is the number of points in the

training set that are of label A ,)(AS tr is the set of indices

that correspond to the training points that are of label A ,
A

tx is the training pattern of index t , that is of label A , and

)(dA

tx is the d -th component of this pattern, while
A

tσ is

the corresponding spread parameter vector (standard

deviation vector) associated with training pattern
A

tx , and

)(dA

tσ is the d -th component of this spread parameter

vector. The right hand side (RHS) of (2) is actually an

approximation of)|(Ap x but for simplicity we still use the

)|(Ap x notation.

 The PNN is a neural network implementation that accepts

an input pattern vector x and produces as an output the label

l that maximizes the product

)()|(lPlp ⋅x (3)

where)|(lp x is approximated by the RHS of (2), and

)(lP is approximated by the ratio

tr

tr

N

lN)(
, where trN are the

number of points in the training set.

B. Brief Overview of Multi-Objective Optimization

Many real world problems involve simultaneous

optimization of conflicting objectives. This is the basic

challenge of multi-objective optimization research (see [15]

and [16] for an overview of multi-objective evolutionary

algorithms (MOEA)). With conflicting multiple objectives,

there is no single optimal solution, but rather, there are a set of

good solutions with varying degrees of merit. Evolutionary

algorithms (EAs) are suitable for solving multi-objective

optimization problems because EAs are population based

search algorithms, and as such they can find, in a single run,

multiple good solutions on the surface defined by the multiple

objectives that are to be optimized.

Formally the multi-objective optimization problem can be

stated as follows: Optimize (without loss of generality, we can

think of optimization as equivalent with minimization) the

vector function)(xf of L objectives by finding a solution

*x from the feasible domain of solutions,F , such that the

resulting vector function

T

Lffff)](),...,(),([)(
**

2

*

1

*
xxxx = (4)

has component values that are acceptable to the user. The set

of functions),...(),(21 xx ff are usually of conflicting

nature; in other words it is rare to find a solution
*x that

minimizes all the components of the function f . Therefore,

several solutions may exist that optimize one or more

objectives, but not all of them, resulting in a collection of

tradeoff solutions. The minimum set of such a collection is

called the Pareto optimal set. A solution is called

Pareto-optimal if there is no other solution that would

decrease one objective without causing a simultaneous

increase in at least one other objective. The Pareto-optimal set

is also referred to as the set of non-dominated solutions.

Formally a solution
*x is said to be non-dominated if there is

no other solution F∈x such that

)()(*
xx ii ffi ≤∀ and)()(: *

xx ii ffi <∃ (5)

The main focus in MOEA research is to minimize the

distance of the generated solutions to the true Pareto set and to

maximize the diversity of the discovered Pareto set. A good

Pareto set may be obtained by appropriate guiding of the

search process through careful design of the selection operator

and the fitness assignment strategies. Special care is also taken

to prevent non-dominated solutions from being eliminated in

the evolutionary process. Multi-objective optimization using

Evolutionary Algorithms follows the same general procedure

(as single objective optimization), and it is listed below.

Generate Initial Population ()

Repeat

 Fitness Evaluation ()

Selection ()

 Reproduction ()

until stopping criterion is satisfied

return Pareto-Optimal solutions

__

Fig. 1. Pseudo-code of a Multi-Objective Evolutionary Algorithm (MOEA)

In this paper an MOEA is used to generate the

Pareto-optimal solutions of a population of PNNs. The two

objectives that are to be optimized (minimized) are the PNN’s

generalization error and the PNN’s size (defined as the

number of training patterns used in its design).

III. DESIGN OF THE MO-EPNN

We assume from this point on that when a classification

problem is provided to us a training set, a validation set and a

test set are furnished. We use the training set to create the

initial population of the PNNs that are utilized by the MOEA,

we use the validation set to reduce the size and error of this

initial population of the PNNs during their evolution, and we

finally assess the performance of the final approximate

Pareto-optimal set of solutions, using the test set.

A. Encoding of the PNNs in the MO-EPNN

The first task needed to be accomplished is to encode the

PNNs as chromosomes to facilitate their evolution from one

generation to the next. We therefore assume that every PNN is

represented by collection of categories. Each category

consists of the pattern vector, its associated spread parameter

vector, and its corresponding label. For instance, the category

Att ,,σx is the category associated with t -th training

pattern tx , whose label is ,A and its spread parameter vector

is tσ . To simplify the notation we represent the gene

corresponding to this PNN category as

A

t

A

t σx , (6)

Consequently the part of the chromosome that encapsulates all

the training input patterns of label ,A is given below.

A

N

A

N

AAAA
A
t

A
t

σxσxσx ,;...;,;, 2211
 (7)

where
A

tN is the number of training patterns of class ,A used

by the PNN. A complete PNN chromosome consists of the

training patterns and their associated spread parameter vectors

from all the class labels, such as ,...,, CBA

B. Initial Population of the MO-EPNN

The MO-EPNN is initialized by using a population of

PNNs, whose training patterns and associated spread

parameters are chosen randomly. Assume that the population

size of PNNs used in the MO-EPNN’s evolution is sizePop .

Then, the i -th, sizePopi ≤≤1 , PNN in this initial

population, designated,
0

iPNN , chooses its training patterns

from the training set as follows: If)(AS tr is the index set of

training patterns of label ,A then each one of these indices is

chosen to be used as a training pattern by
0

iPNN with

probability ip , where ip is a number uniformly distributed

in the interval]1,0[. Training patterns of labels ,...,CB are

chosen in a similar fashion. After the training patterns of every

label are chosen by
0

iPNN their corresponding spread

parameter vectors σ are chosen. We use eight schemes to

choose the parameter vectorsσ , all of which are described

below; note that Scheme B encompasses 5 sub-schemes. Each

one of these schemes is explained below. First, we define the

discrete set

{ }2.0,15.0,1.0,075.0,05.0=SS (8)

Scheme A: Consider that a training pattern
A

tx has been

chosen to be one of the categories of
0

iPNN . A maxσ value

for this category is chosen to be a number uniformly

distributed over the discrete set SS. Then, each spread

parameter)(dA

tσ of the training pattern
A

tx is chosen

independently to be a value uniformly distributed in the

interval),0(maxσ .

Scheme B: Consider that a training pattern
A

tx has been

chosen to be one of the categories of
0

iPNN . A maxσ value

for this category is chosen to be one (deterministically) of the

numbers from the set SS. Then, each spread parameter

)(dA

tσ of the training pattern
A

tx is chosen independently to

be a value uniformly distributed in the interval),0(maxσ .

This scheme gives rise to 5 distinct sub-schemes, referred to as

Scheme_B_0.05, Scheme_B_0.075, Scheme_B_0.1,

Scheme_B_0.15 and Scheme_B_0.2, depending on the

specific value that maxσ is chosen (deterministically) to be.

Scheme C: Consider that a training pattern
A

tx has been

chosen to be one of the categories of
0

iPNN . A maxσ value

for this category is chosen to be a number uniformly

distributed over the set SS. Then, each spread parameter

)(dA

tσ of the training pattern
A

tx is chosen to be equal to this

maxσ value.

Scheme D: For every class and every dimension find the

minimum and the maximum values of the training patterns,

i.e., you find)(min, dA

tx and)(max, dA

tx . Define the range of

spread values for dimension d of class A data, as shown

below:

2
)(

min,max,

A

t

A

tA

range d
xx

σ
−

= (9)

Then, find the split interval of spread values for dimension

d of class A data, as shown below:

S

d
dSI

A

rangeA
)(

)(
σ

= (10)

Now, define S spread values for dimension d of

class A data, as shown below:

SsdSIsd AA

s ≤≤⋅= 1)()(σ (11)

The spread parameter)(dA

tσ of the training pattern
A

tx is

chosen randomly from the discrete set { }S
s

A

s d
1

)(=σ . In

Scheme D, we chose 5=S , which allows the spread vector

across every dimension of patterns of a specific class to

assume 5 distinct values.

Each one of the above schemes to initialize the spread

parameters is not as arbitrary as it seems. For instance, the

assumption made for Schemes A, B and C is that the input

patterns are normalized across every dimension, so that their

values lie in the interval]1,0[. Hence, choosing the spread

parameters in Schemes A-C by utilizing the discrete set of

values in SS (see (8)) guarantees that the spread parameter

values of every PNN category is a portion of the maximum

range of values over which the input pattern values lie, a

logical choice for PNN classifiers. Scheme D is attempting to

do something more elaborate by considering the fact that

although the range of pattern values could be the entire

]1,0[interval, it is plausible that the data of a particular class

have values that reside over a smaller range that could differ

from dimension to dimension.

C. Selection in MO-EPNN; Fitness Function

As it can be seen in Figure 1, where the MOEA pseudo code

is presented an important component of the MOEA is the

selection process and the associated fitness function that

allows us to select a member of the PNN population over

another member.

As mentioned above the MO-EPPN algorithm starts by

generating an initial population,)0(P of PNNs, each one of

them trained with a subset of the available training data and

with randomly chosen spread parameter values.

Also, MO-EPNN initializes an empty secondary population,

)0(AR , that will be used to store non-dominated solutions

found during the evolution. In each generation, each solution

in the population is evaluated according to each objective

function. That is, the error rate of each PNN is evaluated by

running it against the validation set. The second objective,

complexity, is represented by the number of categories present

in each network (the categories in the PNN correspond to the

training patterns used by the PNN in its design, i.e., (7)). Once

networks in population P are evaluated, the archive AR is

updated by adding to it the solutions in P that are

non-dominated by solutions in AR . Also, solutions in AR

that are now dominated by solutions just added from P are

removed from the archive AR . This mechanism ensures

elitism. The algorithm runs for a maximum number of

generations, denoted as maxG ; maxG is not fixed a-priori but

it is determined by how the MO-EPNN fares with each dataset

that it is applied to (more details about the stopping criterion

are provided in Section III.E).

The selection process creates a temporary population 'P ,

where the parent chromosomes used to create the next

generation are selected. The chromosomes in the archive AR

and population P are assigned fitness values based on a

dominance relationship. In this scheme each individual is

assigned a strength value that is equal to the number of

solutions it dominates. After that, a raw fitness,)(xR , is

assigned for each individual to be the sum of the strengths of

all its dominators in both AR and P . The raw fitness is then

adjusted as follows. For each individual, x , the Euclidean

distance, in objective space, to the k -th nearest neighbor is

found and denoted as)(xdisk . The objective space is the

space defined by the “Error” and “Size” of a member of the

population (PNN). The “Error” is the PNN error on the

validation set, and the “Size” is the number of training patterns

used by the PNN. The value of k is chosen to be the square

root of the sum of the size of the archive and population. The

fitness of each individual is then calculated using the

following equation:

2)(

1
)()(

+
+=

xdis
xRxFit

k

 (12)

The parents are then chosen using a deterministic binary

tournament selection with replacement, as follows: For each

parent, randomly select two chromosomes from the combined

set of AR and P , and choose, the chromosome with the

smallest fitness value. Boundary solutions, which are

networks with smallest error rate and smallest size, are

ensured to be copied in the set 'P of parents. The more

detailed MO-EPNN code is now provided in the following

figure.

←)0(P Generate initial population of PNNs ()

←)0(AR Initialize initial archive ()

for 1←g to
maxGen do

 Evaluation ()

 Update-Archive))(),((gARgP ;

 If stopping criteria met then exit for;

 ←)(' gP Selection ())(),(gARgP ;

 ←)(gP Reproduction)(' gP ;

end

return)(gAR

Fig. 2. Pseudo-Code of the MO-EPNN Algorithm for one initial population

corresponding to a specific initialization scheme

It is worth noting that the MO-EPNN algorithm that we

described above is the SPEA2 algorithm developed by Zitzler

[17]. The only difference is that we do not set a limit on the

size of the archive created by MO-EPNN as the original

SPEA2 algorithm sets.

D. Reproduction Operators in MO-EPNN; Prune Operator

As the MO-EPNN pseudo-code in Figure 2 demonstrates

after the temporary population of parents 'P is produced

reproduction operators are applied to the 'P population to

produce the new and improved population of off-springs. In a

typical evolutionary optimization process the typical

reproduction operators are cross-over and mutation. For our

problem of interest, where our focus is the tandem reduction

of the PNN’s generalization error and size we introduce a

unique reproduction operator called the Prune operator. This

operator was introduced for the first time in the literature in

the successful design of MO-GART [8]: MO-GART

outperformed popular classification models, such as SVMs

and CART.

The effect that the Prune operator in MO-EPNN has on the

'P population is to simply prune categories from each

member of the population, as follows: The category of every

member of the population has an associated probability of

being pruned that depends on the category’s confidence

factor, CF . A category of a member in the MO-EPPN

population is a training pattern used in the design of this

member’s classification model. The confidence factor of a

category in a PNN is calculated at every generation and its

value ranges in the interval]1,0[; a high value of a category’s

confidence factor is an indication that this category is very

valuable for the good performance of the PNN (i.e., its low

generalization error on the validation set) and it should have a

low probability of being pruned, while a low value of a

category’s confidence factor is an indication that this category

is not very valuable for the good performance of the PNN and

it should have a high probability of being pruned.

Let us now define the CF of category of a PNN in the

MO-EPPN population. We assume, without loss of generality,

that this PNN’s category is defined, as (6) has suggested

earlier, by the vectors
A

t

A

t σx , . In order to define the

confidence factor of this PNN’s category we first introduce

four relevant parameters,)(Re v

A

tw x ,)(v

A

tCSel x ,

)(v

A

tPen x ,)(v

A

tESel x , referred to as Reward, Correct

Selectivity, Penalty, and Erroneous Selectivity, respectively.

The reader who wants to omit the details of the definitions

of the)(Re v

A

tw x ,)(v

A

tCSel x ,)(v

A

tPen x ,)(v

A

tESel x

parameters can go directly to (19) where the CF of the

category
A

t

A

t σx , is defined in terms of its goodness factor

and its badness factor. The goodness factor of a category is

expressed as a weighted sum of the normalized reward and

correct selectivity of a category (see (15) for more details).

The badness factor of a category is expressed as a weighted

sum of the normalized penalty and erroneous selectivity of a

category (see (18) for more details). Reward and Correct

Selectivity values of a category are expected to be high for

categories that are immersed in dense clusters of points that

are of the same label as the category. Penalty and Erroneous

Selectivity values of a category are expected to be high for

categories immersed in dense clusters of points that are of

different label than the label of the category. Hence, the

calculated category confidence factor seems to favor

categories that are immersed in clusters that are dense of

points of the same label and non-dense of points of a different

label.

The Reward parameter, A

twRe , is calculated for all the

class- A validation points vx from the validation set vS that

are correctly classified by the PNN to which the category
A

t

A

t σx , belongs. In particular, the Reward parameter,

)(Re v

A

tw x , corresponding to a class- A validation point vx ,

correctly classified by the PNN to which this category

belongs, is a normalized measure of how much this category

contributes to)|(Ap vx compared to the other categories of

class- A of the same PNN. Note that)|(Ap vx is one of the

factors responsible for the correct classification of a

class- A point from the validation set. The parameter

)(Re v

A

tw x is defined by the following equation:

∏

∏

=
∈

=

 −
−

 −
−

=

D

d
A

t

A

tv

A

t
ASt

D

d
A

t

A

tv

A

t

v

A

t

d

dd

d

d

dd

d

w

tr 1
2

'

2

'

'
)('

1
2

2

))((2

))()((
exp

)(

1
max

))((2

))()((
exp

)(

1

)(Re

σσ

σσ

xx

xx

x

 (13)

The Correct Selectivity parameter,
A

tCSel , is calculated

for all the class- A validation points vx from the validation

set vS . In particular, the Correct Selectivity parameter,

)(v

A

tCSel x , corresponding to a class- A validation point

vx , is a normalized measure of how much category

A

t

A

t σx , contributes to the value of)|(Ap vx , compared to

the other categories of class- A of the same PNN. Note that

)|(Ap vx is one of the factors responsible for the correct

classification of a class- A point from the validation set. The

parameter)(v

A

tCSel x is defined by the following equation:

∏

∏

=
∈

=

 −
−

 −
−

=

D

d
A

t

A

tv

A

t
ASt

D

d
A

t

A

tv

A

t

v

A

t

d

dd

d

d

dd

d

CSel

tr 1
2

'

2

'

'
)('

1
2

2

))((2

))()((
exp

)(

1
max

))((2

))()((
exp

)(

1

)(

σσ

σσ

xx

xx

x

 (14)

In (13) and (14),)(AS tr are the points in the training set

trS that are class- A points.

Now that the Reward and Correct Selectivity parameters

are defined for a category
A

t

A

t σx , of a PNN, and a specific

class- A validation point, it is worth defining a cumulative

parameter for this category, referred to as the Goodness

Factor. This parameter takes into consideration this

category’s Reward and Correct Selectivity parameter values

for every class- A validation point. The Goodness Factor, of

category
A

t

A

t σx , is defined below.

∑

∑

∑

∑

∈
∈

∈

∈
∈

∈ +=

)(

')('

)(

),(

')('

),(

)(max

)(

5.0

)(Remax

)(Re

5.0

ASv

v

A

tASt

ASv

v

A

t

AASv

A

v

A

tASt

AASv

v

A

t

A

t

v

tr

v

v

tr

v

CSel

CSel

w

w

GFac

x

x

x

x

 (15)

In the above equation),(AASv is the set with indices

from the validation set vS that correspond to validation points

of class label A that are correctly classified by the PNN in

which the designated category
A

t

A

t σx , belongs. Furthermore,

)(ASv are the set of indices from the validation set vS that

correspond to class- A points.

The Penalty parameter,
A

tPen , is calculated for all the

class- A validation points vx from the validation set vS that

are incorrectly classified by the PNN, to which the category
A

t

A

t σx , belongs, as class- A points. In particular, the Penalty

parameter,)(v

A

tPen x , corresponding to a

class- A validation point vx , incorrectly classified by the

PNN, to which this category belongs, as a class- A point, is a

normalized measure of how much this category contributes to

the value of)|(Ap vx , compared to the other

class- A categories of the same PNN. Note that)|(Ap vx is

one of the factors responsible for the incorrect classification of

a class- A point from the validation set. The parameter

)(v

A

tPen x is defined by the following equation:

2

2
1

2

'

2
' ()

1 ' '

()

(() ())1
exp

() 2(())

(() ())1
max exp

() 2(())tr

A

t v

AD

v t

A A
d t t

AD

v t

A A
t S A

d t t

Pen

d d

d d

d d

d d

σ σ

σ σ

=

∈
=

=

 −
−

 −

−

∏

∏

x

x x

x x

 (16)

The Erroneous Selectivity parameter,
A

tESel , is calculated

for all the class- A validation points vx from the validation

set vS . In particular, the Erroneous Selectivity parameter,

)(v

A

tESel x , corresponding to a class- A validation point

vx , is a normalized measure of how much category

A

t

A

t σx , contributes to the value of)|(Ap vx , compared to

the other class- A categories of the same PNN. Note that

)|(Ap vx is one of the factors responsible for the incorrect

classification of a class- A point from the validation set. The

parameter)(v

A

tESel x is defined by the following equation:

∏

∏

=
∈

=

 −
−

 −
−

=

D

d
A

t

A

tv

A

t
ASt

D

d
A

t

A

tv

A

t

v

A

t

d

dd

d

d

dd

d

ESel

tr 1
2

'

2

'

'
)('

1
2

2

))((2

))()((
exp

)(

1
max

))((2

))()((
exp

)(

1

)(

σσ

σσ

xx

xx

x

 (17)

In (15) and (17))(AS tr are the points in the training set

trS that are class- A points.

Now that the Penalty and Erroneous Selectivity parameters

are defined for a category
A

t

A

t σx , of a PNN, and a specific

class- A validation point, it is worth defining a cumulative

parameter for this category, referred to as the Badness Factor.

This parameter takes into consideration this category’s

Penalty and Erroneous Selectivity parameter values for every

class- A validation point. The Badness Factor, of category
A

t

A

t σx , is defined below.

∑

∑

∑

∑

∈
∈

∈

∈
∈

∈ +=

)(

')('

)(

),(

')('

),(

)(max

)(

5.0

)(max

)(

5.0

ASv

v

A

tASt

ASv

v

A

t

AASv

v

A

tASt

AASv

v

A

t

A

t

v

tr

v

v

tr

v

ESel

ESel

Pen

Pen

BFac

x

x

x

x

 (18)

In the above equation),(AASv is the set with indices

from the validation set vS that correspond to validation points

of class label A that are incorrectly classified by the PNN in

which the designated category
A

t

A

t σx , belongs, as class

A points. Furthermore,)(ASv are the set of indices from the

validation set vS that correspond to class- A points.

Now we are in a position to define the confidence factor of

a category
A

t

A

t σx , in terms of the Goodness and Badness

factors of a category. In particular, the confidence factor of a

category
A

t

A

t σx , is defined as follows:

)1(A

t

A

t

A

t BFGFCF −⋅= (19)

We can use this confidence factor to define the probability

according to which a category in a PNN is pruned during the

evolution. In particular, the probability of pruning the

category
A

t

A

t σx , during the evolution of the PNNs is defined

below.

)(

)(
1

''

A

tPNNt

A

tA

t
CFMaxRank

CFRank
PRune

∈

−= (20)

In the above equation the highest confidence value gets the

highest rank and the lowest confidence value gets the lowest

rank. Note that the above probability changes from generation

to generation of the evolutionary process and depends on how

important this category is for the good performance of the

PNN in which it belongs. Hence, the user does not need, with

the above approach, to arbitrarily define a probability of

pruning a PNN category.

E. MO-EPNN Stopping Criterion

It is important to define a good stopping criterion for the

MO-EPPN’s evolution. This stopping criterion should be such

that stopping MO-EPNN’s evolution according to this

criterion would not compromise the quality of the solutions.

We chose a stopping criterion that relies on the measure of

coverage, firstly introduced in Zietzler, et al., [18], where in

comparing two families of solutions BA, we calculate the

coverage of B by A using a metric denoted as),(BAC .

This metric is defined as follows:

||

|}:{|
),(

B

baAaBb
BAC

≥∈∋∈
= (21)

where in the above equation || S means the size of set S (i.e.,

number of elements in the set S) and ba ≥ implies that

solution a dominates solution b . If we assume for a moment

that A is the archive at generation g and B is the archive at

generation 1+g , then a),(BAC value of 1 means that the

archive in the current generation is covered by the archive in

the previous generation. Our stopping criterion is to terminate

the PNN evolution, if and only if 1),(=BAC for 10

consecutive generations.

F. The MO-EPNN Algorithm

We used 10=seedN initial seeds. For each initial seed we

generated eight populations of PNNs corresponding to each of

schemes A, C and D and each of the five B schemes. Each such

population had 30=sizePop members. The eight

populations corresponding to the same initial seed are

different because the schemes of choosing the spread

parameters are different. The diversity of PNN solutions

provided by this initial collection of PNNs is obvious from the

following numbers that provide the mean and standard

deviation of the Error on the validation set and the size of the

initial population of PNNs: CinS (MeanError 7.08%, StdError

6.06%, MeanSize 504.95, StdSize 286.33), G4c_25

(MeanError 28.62%, StdError 3.91%, MeanSize 253.99,

StdSize 143.17), G6c_15 (MeanError 19.65%, StdError

4.85%, MeanSize 257.04, StdSize 144.46), IRIS (MeanError

6.06%, StdError 2.77%, MeanSize 252.93, StdSize 143.17),

SEG (MeanError 17.27%, StdError 8.38%, MeanSize 406.70,

StdSize 229.03), WAVE (MeanError 32.24%, StdError

6.44%, MeanSize 505.45, StdSize 286.37), ABA (MeanError

44.98%, StdError 2.99%, MeanSize 253.51, StdSize 143.19),

PAGE (MeanError 14.16%, StdError 7.51%, MeanSize

258.02, StdSize 145.17).

Each one of the populations corresponding to a particular

seed followed the pseudo-code of Figure 2 in order to generate

an archive of solutions at the completion of the evolution

(final archive). The solutions of these eight final archives were

combined to generate a Better-Archive; the Better-Archive

contains the solutions of the final archives that are

non-dominated. The Better-Archives of every seed (10 of

them) are combined to generate a Best-Archive; the

Best-Archive contains all the solutions of the Better-Archives

that are non-dominated.

IV. EXPERIMENTS AND RESULTS

A. Datasets

We have experimented with 8 datasets (see Table I), of

which 3 are simulated databases and 5 are real databases. The

simulated databases include 2 Gaussian databases: G4c-25

and G6c-15. These are, 2-dimensional databases with

4-classes and 6-classes, and 15% and 25% overlap, between

the classes. The overlap in these Gaussian datasets implies

that if the optimal (Bayes) classifier were to be used the

classification error attained (optimal error) would be equal to

the overlap percentage. The database denoted by CinS is the

benchmark one circle in a square problem, 2-dimensional, two

class classification problem. The probability of finding a data

point within a circle or inside the square of the circle is equal

to 1/2. The rest of the databases were obtained from the UCI

repository (see [19]) and they include: Modified Iris (IRIS),

Image Segmentation (SEG), Waveform (WAV), Abalone

(ABA), and Page Blocks (PAGE). More details about these

databases can be found there.

Each dataset is divided into a training set, a validation test,

and a test set. The training set is used for the training of PNNs

under consideration. The validation set is used to estimate the

classification error during the evolutionary process, as

explained in the previous section. Finally, the test set is used to

assess the performance of the optimized networks created.

The characteristics of the datasets used in our experiments are

provided in Table I below.
Table I

Characteristics of Datasets used in MO-EPNN Experiments

Data

Set

Train

Val

Test

Atr

Class

CinS 1000 5000 5000 2 2

G4c_25 500 5000 5000 2 4

G6c_15 504 5004 5004 2 6

IRIS 500 4800 4800 2 2

SEG 800 810 700 19 7

WAVE 1000 2000 2000 21 3

ABA 500 2000 1677 7 3

PAGE 507 2176 2790 10 5

B. MO-EPNN Experiments; Comparison with Other

Classifiers

We compared the performance of MO-EPNN (best) and

MO-EPNN (small) with the performance of three other

classifiers, CART [9], SVM [10], and the genetic PNN in

Mao, et al., [14].

The MO-EPPN (best) is the PNN in the Best-Archive that

produced the lowest error on the validation set. The

MO-EPNN (small) is the PNN in the Best-Archive whose

error rate is within 1% of the error rate of MO-EPNN (best)

and has as many categories as the number of classes of the

classification problem at hand; if such a PNN does not exist

MO-EPNN (small) is the one with error rate within 1% of the

MO-EPNN (best) error rate with the smallest number of

categories. If there is no PNN with error rate within 1% of the

error rate of MO-EPNN (best) then the MO-EPNN (small) is

non-existent. The MO-EPPN (best) and MO-EPPN (small)

performance (for the eight datasets) is shown in Table II; the

PCC in Table II is percentage of correct classification on the

test set. The reported size for the MO-EPNN (best) and

MO-EPNN (small) of Table II corresponds to the number of

categories of these PNNs.

To produce the SVM results of Table II we trained and

validated the SVM classifier for a number of C and

γ parameters. Note that C is the regularization parameter of

the SVM classifier and γ is the width of the kernel used (in

our case we used the popular RBF kernel). The results shown

in Table II correspond to the SVM test performance of the

SVM model that provided the highest PCC on the validation

set; the SVM size reported in Table II corresponds to the

number of support vectors of the SVM classifier. To produce

the CART results we used the CART algorithm with the Gini

split criterion and the 1-SE rule (see [9] for more details). The

results shown in Table II correspond to the test performance

of the CART model that the 1-SE rule produces; the size of

this model corresponds to the number of intermediate nodes

(not leaves) of the CART model. To produce Mao’s results in

Table II we implemented Mao’s algorithm, discussed in [14].

Table II

Percentage of Correct Classification (PCC) and Size of the Classifier
Algorithm\Dataset CinS

PCC

CinS

Size

G4c_25

PCC

G4c_25

Size

SVM 99.67 88 75.24 277

CART 97.57 28 73.5 4

Mao’s 90.14 10 73.44 4

MO-EPNN (best) 97.90 84 74.72 5

MO-EPNN (small) 96.80 10 74.86 4

Algorithm\Dataset G6c_15

PCC

G6c_15

Size

IRIS

PCC

IRIS

Size

SVM 84.99 504 95.04 79

CART 80.42 6 94.02 4

Mao’s 85.35 6 93.63 2

MO-EPNN (best) 84.89 45 95.23 54

MO-EPNN (small) 84.83 6 94.52 2

Algorithm\Dataset SEG

PCC

SEG

Size

WAVE

PCC

WAVE

Size

SVM 97.29 230 87.45 574

CART 93.43 17 75.2 14

Mao’s 88.00 101 81.45 9

MO-EPNN (best) 89.57 64 84.40 11

MO-EPNN (small) 89.29 42 85.10 5

Algorithm\Dataset ABA

PCC

ABA

Size

PAGE

PCC

PAGE

Size

SVM 61.66 337 95.3 150

CART 61.18 17 93.84 7

Mao’s 57.96 11 85.66 171

MO-EPNN (best) 60.94 238 95.94 8

MO-EPNN (small) 60.17 5 96.24 7

 The results are created by SVM, CART, Mao’s algorithm, and MO-EPPN

(best and small) for the CinS, G4c_25, G6c_15, IRIS, SEG, WAV, ABA, and

PAGE datasets. The PCC shown is the performance of each classifier on the

test set. The gray highlighted table entries correspond to the best PCC and

smallest size attained by any of these classifiers on the respective dataset. If

an entry corresponding to size is bold-faced this size is equal to the smallest

possible size of a classifier that can be attained (equal to the number of

classes of the classification problem)

C. Discussion of Results

A careful look at the results presented in Table II allows us

to make a few useful observations regarding MO-EPNN’s

performance. Observation 1: MO-EPNN’s (best or small)

PCC is competitive compared to SVM since, quite often (in

five out of the eight datasets), it produces a PCC nearly as

good (within 1%), and occasionally slightly better, as the

SVM PCC. Furthermore, MO-EPNN has size that is much

smaller than SVM (quite often orders of magnitude smaller).

Observation 2: MO-EPNN’s performance is competitive

compared to CART. In six datasets MO-EPNN’s PCC is

better than CART’s, while in the remaining two datasets

CART’s PCC is better than MO-EPPN’s. In two of the

datasets (G6c_15, WAVE) MO-EPNN’s PCC is significantly

better than CART’s, while CART’s performance is

significantly better than MO-EPNN's PCC in one dataset

(SEG). In almost all the datasets (except SEG) MO-EPPN

(small)’s size is either smaller or equal to the CART’s size.

Observation 3: MO-EPPN’s PCC is competitive compared

to Mao’s PCC. In all the datasets except one (G6c_15)

MO-EPPN’s PCC is better than Mao’s, and in some of them

significantly better (e.g., CinS and PAGE). In all the datasets

MO-EPNN (small)’s size is smaller than or equal to Mao’s

size and in a few occasions (SEG, PAGE) a large factor times

smaller.

The above observations demonstrate that MO-EPPN

compares well with other classifier models, such as SVM and

CART, and Mao’s algorithm ([14]).

V. DISCUSSION

Our intent in this paper was not only to design an effective,

parameter-less, multi-objective evolutionary algorithm to

optimize a population of PNN classifiers (MO-EPPN) but also

to identify the principles associated with such a design. We

single out these design principles below: Design Principle 1:

An appropriate multi-objective evolutionary optimization

approach is needed to select the PNNs that are reproduced

from one generation to the next. In this paper we chose SPEA2

[17], but other evolutionary multi-objective optimization

approaches could work as well; SPEA2 worked well for the

evolution of ART classifiers (MO-GART). Design Principle

2: An initial population of diverse solutions for the

classification model needs to be created, so that its subsequent

evolution through selection and reproduction operators will

lead to good final solutions. In order to produce this diverse

initial population the user needs to know what provides the

diversity of solutions for the classification model under

consideration (ART, PNN, others), a relatively reasonable

expectation for the user. Design Principle 3: Appropriate

evolutionary operators need to be designed to evolve the

initial population of solutions, such as the Prune operator

proposed for the PNN in this paper. Most importantly, the

Prune operator needs to assign appropriate credit to the genes

of the chromosome (categories in a PNN classifier model or

ART classifier model) so that good genes are retained while

bad genes are pruned. The Prune operator was the most

important operator in the evolution of the PNN in this paper

and also of ART in [8]. Other operators might be needed,

besides the Prune operator, such as an appropriate cross-over

or mutation operator. Cross-over and mutation operators did

not produce better MO-EPNN results, but cross-over and

mutation were useful for the evolution of ART networks.

Design Principle 4: The evolutionary operators need to be

adaptive, meaning that they should not require the user to

specify parameters that are hard to choose without costly

experimentation. For example, the Prune operator in the

evolution of the PNNs used the adaptive confidence factor of

a category (calculated automatically) that determined the

Prune probability. A similar confidence factor was defined in

the evolution of ART networks in [8]. Design Principle 5:

The multi-objective evolutionary algorithm needs to use an

adaptive stopping criterion that determines the termination of

the evolutionary process. In MO-EPNN this criterion was

based on the measure of coverage, introduced by Zietzler [18].

A similar stopping criterion was used for MO-GART. Design

Principle 6: Experimentation with the multi-objective

evolutionary algorithm will determine what affects the

variability of the answers in the final archive. In order to

design a parameter-less multi-objective evolutionary

algorithm to optimize EBC models (such as ART, PNN,

others) one has to eliminate this variability to the maximum

possible extent. In the case of the evolution of the PNNs this

was accomplished by considering multiple initialization

schemes and multiple random initial seeds. In the case of the

evolution of ARTs this was accomplished by considering

multiple random initial seeds.

VI. SUMMARY AND CONCLUSIONS

We have designed an effective, parameter-less,

multi-objective evolutionary algorithm that optimizes a

population of PNN models. This algorithm was named

MO-EPNN. The statement that MO-EPNN is parameter-less

is justified because the user of this algorithm does not have to

specify any algorithmic parameters, since all the pertinent

parameters (such as SSNPop seedsize ,, and the different

initialization schemes) have already been predefined and work

well for all datasets that we experimented with. MO-EPNN

not only produces a family of PNN solutions for the

classification problem at hand but it also produces solutions

that compare favorably with other popular classification

models, such as SVM and CART and other evolutionary PNN

models, such as the one developed by Mao [14].

The contributions of the paper are many. In the design of

the MO-EPNN, (a) we chose the multi-objective evolutionary

algorithm that created future PNN populations from earlier

PNN populations, (b) we chose novel reproduction operators

(prune operator) that alter the members of the populations, (c)

we defined an adaptive probability of pruning PNN categories

for the prune operator, and (d) we identified what affects the

variability of the final PNN populations produced by our

MOEA. All these choices led to a successfully designed and

competitive MO-EPNN. Furthermore, the similarity of the

principles that led into the successful design of MO-EPNN

and MO-GART point into a future research direction where

these design principles can be illustrated as being universal

principles for the optimization of any exemplar based

classifier.

REFERENCES

[1] G. A. Carpenter, S. Grossberg, N. Markuzon, J. H. Reynolds, and D. B.

Rosen, “Fuzzy ARTMAP: A neural network architecture for

incremental supervised learning of analog multi-dimensional maps,”

IEEE Transactions on Neural Networks, Vol. 3, No. 3, pp. 698-713,

1992.

[2] G. Anagnostopoulos, “Novel approaches in adaptive resonance theory

for machine learning,” Ph.D. dissertation, University of Central

Florida, Orlando, Jan, 2001.

[3] J. R. Williamson, “Gaussian ARTMAP: A neural network for fast

incremental learning of noisy multi-dimensional maps,” Neural

Networks, Vol. 9, No. 5, pp. 881-897, 1996.

[4] J. Moody, C.J. Darken, “Fast learning in networks of locally tuned

processing units,” Neural Computation, Vol. 1, No. 2, pp. 281-294,

1989.

[5] D. F. Specht, “Probabilistic Neural Networks,” Neural Networks, Vol.

3, No. 1, pp. 109-118, 1990.

[6] T. Cover, and P. Hart, “Nearest neighbor pattern classification,”

Proceedings IEEE Transactions on Information Theory, Vol. 13, No. 1,

pp. 21-27, Jan, 1967.

[7] E. Parzen, “On estimation of probability density function and mode,”

Annals of Mathematical Statistics, Vol. 33, No. 3, pp. 1065-1076,

1962.

[8] A. Kaylani. M. Georgiopoulos, M. Mollaghasemi, G. C.

Anagnostopoulos, “An adaptive multi-objective approach to evolving

ART architectures,” IEEE Transactions on Neural Networks, Vol. 21,

No. 4, pp. 529-550, 2010.

[9] L. Breiman, J. Friedman, R. Olshen, C. Stone, Classification and

Regression Trees, Wadsworth, 1984.

[10] V. Vapnik, The Nature of Statistical Learning Theory,

Springer-Verlag, New York, 1995.

[11] H. Ishibuchi, K. Nozaki, N. Yamamoto, H. Tanaka, “Construction of

fuzzy classification systems with rectangular fuzzy rules using genetic

algorithms,” Fuzzy Sets and Systems, Vol. 65, No. 2/3, pp. 237-253,

1994.

[12] H. Ishibuchi and Y. Nojima, “Analysis of interpretability-accuracy

tradeoff of fuzzy systems by multiobjective fuzzy genetics-based

machine learning,” International Journal of Approximate Reasoning,

vol. 44, No. 1, pp. 4–31, 2007.

[13] J. Gonzalez, I. Rojas, J. Ortega, H. Pomares, F. J. Fernandez, A. F. Diaz,

“Multi-objective evolutionary, optimization of the size, shape, and

position parameters of radial basis function networks for function

approximation,” IEEE Transactions on Neural Networks, Vol. 14, No.

6, pp. 1478-1495, November 2003.

[14] K. Z. Mao. K. C. Tan, and W. Ser, “Probabilistic neural network

structure determination for pattern classification,” IEEE Transactions

on Neural Networks, Vol. 11, No. 4, pp. 1009-1016, 2000.

[15] C. A. Coello, “An updated survey of GA-based multiobjective

optimization techniques”, ACM Computing Surveys, Vol. 32, No. 2,

pp. 109-143, 2000.

[16] C. A. Coello, “Evolutionary multi-objective optimization: A historical

view of the field,” IEEE Computational Intelligence Magazine, Vol. 1,

No. 1, pp. 28-36, February 2006.

[17] Eckart Zitzler, Marco Laumanns, and Lothar Thiele, “SPEA2:

Improving the Strength Pareto Evolutionary Algorithm,” Technical

Report 103, Gloriastrasse 35, CH-8092 Zurich, Switzerland, 2001.

[18] E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective

evolutionary algorithms: Empirical results,” Evolutionary

Computation, Vol. 8, No. 2, pp. 173-195, 2000

[19] D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz, “UCI repository

of machine learning databases,” 1998. [Online]. Available:

http://www.ics.uci.edu/»mlearn/MLRepository.html

