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Abstract— Over the last few years, Kernel Principal Compo-
nent Analysis (KPCA) has found several applications in outlier
detection. A relatively recent method uses KPCA to compute
the reconstruction error (RE) of previously unseen samples and,
via thresholding, to identify atypical samples. In this paper
we propose an alternative method, which performs the same
task, but considers Mahalanobis distances in the orthogonal
complement of the subspace that is utilized to compute the
reconstruction error. In order to illustrate its merits, we provide
qualitative and quantitative results on both artificial and real
datasets and we show that it is competitive, if not superior, for
several outlier detection tasks, when compared to the original
RE-based variant and the One-Class SVM detection approach.

I. INTRODUCTION

UTLIER detection is also referred to asvelty detec-
tion or asone-class classificationWithin this setting,

Many traditional methods, whose computations involve
information about the data only in the form of ordinary inner
product values, have been extended to non-linear, kernel-
based variants via the so callé@rnel trick (first utilized
in [6]), which amounts to merely substituting the use of
the ordinary Euclidean inner product in these methods with
arbitrary kernel functions, thus, in effect, pre-transfarg
the data through the induced/implicit mapping. Such iniplic
transformations can prove desirable in certain cases,es th
may favorably influence the data distributions involved. A
classic example in pattern recognition is, when data, tteat a
originally not linearly-separable iff, are rendered linearly-
separable in the induced spadethrough a proper choice of
kernel function. Most remarkably, the kernel trick adaiptat
also allows these inner product reliant methods to be dyjrect
applied to non-numeric or mixed-type data, once appraopriat
kernels have been defined for these data types. As exam-

the task amounts to designing a useful model to recognigfes here we can mention outlier detection techniques for
atypical data (outliers) by using onlgormal data in the c5teqorical or mixed-attribute data such as [7] and [8].

design phase, which are not considered to be outliers. Rece”Principal Component Analysi¢PCA: for example, see
comprehensive surveys of the relevant field include [1], [2]{9]) is one of the methods that has been extended to a

[3] and [4].
Furthermore, in the context of machine learnikgrnet

kernel-based PCA variant (KPCA; see [10]) thanks to an
alternative way of computing the principal axes through the

based methods [5] are computational techniques that, cqfse of inner product evaluations [11]. KPCA has been used

ceptually, involve an implicit transformatiog : F — H of
the data from the original input spad&to a new feature
spaceH as a pre-processing step, such that> ¢_,. It is

in several applications, such as face detection [12], image
segmentation [13], feature extraction [14], data de-ngisi
[15] and voice recognition [16], etc. Also recently, KPCA

assumed thaH is a Hilbert space, not necessarily finite-has found application in novelty detection [17][18]. In [17
dimensional, equipped with a suitably defined inner produg@pca is applied to the data using a Gaussian kernel and,
(- )m  Hx H — R. Rather than requiring knowledge of sypsequently, test data are projected to the resultingipgh

the precise representations/images of the datél,irthese
methods operate solely on the basis of inner producid,in
which are represented and computed byeanel function
k: FxF — R, such thatk (z,y) (s Py)y and,
thus, the mappingp is only used implicitly. Furthermore,

subspace, whose dimensionality is found experimentadigt T
samples are identified as outliers, when their reconstmcti
error exceeds a certain threshold, which is also estallishe
experimentally. The reconstruction error itself is a measu
of deviation from the principal subspace and, therefore, it

it is typical with kernel-based methods to directly choosgssumes that the principal subspace represents the normal

a functionk (.,.) that has the kernel propertye. given k
there is a¢, so thatk is an inner product irfHl. Obviously,

data. We claim that this assumption may not always be
applicable and we offer some intuitive arguments, as well as

the particular choice of kernel determines the underlyingyperimental evidence supporting our thesis. Therefore, w
mapping ¢, save an (improper, in general) rotation, andagyocate the use of Mahalanobis distance within the prétcip

therefore, the nature of spaék

subspace as an alternative to the reconstruction erros. It i
worth noting that our approach is different with the method i
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subspace of the principle subspace of our approach. In order
to show the merit of our proposal, we conducted a series of
experiments that considered both artificial and real d&tase
We used the former ones to illustrate qualitative results an
provide some insight into the past and novel approaches. For



the latter ones, which we obtained from the UCI Machine
Learning Repository, we draw comparisons in the form of Ap=vy. ..vp]T (5)
tables and figures based on the Area Under the ReceiveF] . .
Operating Characteristic (ROC) Curve [19]. wherep < min {dim(F), N} and

The remainder of the manuscript is organized as follows: N T
Section Il provides some background material regarding ke (xe) = [k (e, %1) . K (0, %)) ©6)
KPCA and the use of the reconstruction error for outliegnd, finally,
detection. Section Ill discusses our novel approach, while
Section IV showcases the obtained experimental results. E(Xt)ﬁp {k (x:) — 1K1N] @
Finally, Section V summarizes the main outcomes of the N

paper. then the Kernel PCA transform, of x, with respect to the
Il. KERNEL PCA & OUTLIER DETECTION p principal Kernel PCA eigen-directions in the feature space

A. KPCA Fundamentals His given as

Assuming a set ofV' training data{x,},_, _ inF and v = A?E (xt) (8)
an appropriately parameterized Mercer kerhelF x F — . _
R, the Kernel Principal Component Analysis (Kernel PCA) Obviously, the _results_ of the transformation strongly de-
computational procedure first entails forming the (symioptr Pend on the particular inner product kernel employed, the
kernel matrixK € R¥N*N ysing the available training set particular values of its parameters and on the dimensignali
patterns. Its(i, j) element equald: (x;,x;), wherex; and P of the principal subspace, on which the data are finally
x; are theith and j*" training pattern respectively. Since theProjected. As mentioned earlier in Section |, Kernel PCA has

chosen kernel matrix implies a particular choice of featurB®en used in a variety of settings and applications incydin
mapping¢ : F — H as mentioned earlier, the kernel©f course, outlier detection as a data transformation neetho

matrix K represents the Gram matrix of the training datd" the next section we briefly discuss a relatively recent
{bpdoer N=10x ) as they are embedded into Kernel PCA-based approach to outlier detection and lay out
nfin=1,.., Xn Sn=1,...,.N

spaceH via ¢. Subsequently, the kernel matrix is centeredh® details of our approach.

to produce B. Outlier Detection using Kernel PCA Reconstruction Er-
~ ror
K=PKP @) Recently, in [17] a Kernel PCA-based outlier detection
where the orthogonal projection matiX is defined as method was introduced and its performance was showcased
in comparison to other established, kernel-based methods.
P=Iy — i1N1% (2) The particular approach chooses a training set and a suit-
N able projection dimensionality, proceeds to compute the

In (2), Iy € R¥*Y is an identity matrix and y € R isan Kernel PCA transform of another set of test patterns and,
“all-ones” vector. P is also known as theentering matrix finally, computes theeconstruction error(RE) for each of
in the statistics community. Through (IK represents now these test patterns. The squared reconstruction efrot;)

the Gram matrix of the centered s{atz)n » Where for a test patternx, is defined as
n=1,...,
we define 9 N a2
12 (x) = ]| - 1923 ©)
— 1 & 2
bn=0, — Nz(ﬁi (3)  where ¢,=¢ (x;). Again, the norms involved in these ex-
=1

pressions are of thé, (Euclidean) variety and it holds that
_y are obtained via the HzHg = (z,z) for any vectorz € H. In light of (3) and

Next, the eigen-pair§(yn, un)},—; 2 vect
, = <¢“¢f'>H we obtain that

eigen-value decomposition of the centered kernel marix noticing thatHgt
We assume here that > ... > vy and that all eigenvectors

u,, are normalized to unil, length, i.e.|u,||, = 1. Then, - 9 1

it can be shown that the eigen-pairs of the (biased) sample<¢m ¢n>H = k(x¢, %) — leTvkt + ﬁlvaKlN (10)
covariance matrix of¢, },_, , are given as

Thus, (10) and (8) make it possible to calculate the recon-

Yn 1 ~7T struction error via (9). Given the projection dimensiotyali
(Ans Vi) = (N,j:ﬁ@ un> (4) p, outliers are identified as data points, whose RE exceeds
_ " an appropriately established threshold valyg....
wheren = 1,...,dim(H) and ® is the matrix, whose:'" In [17], the optimal combination of dimensionality and

row consists ofp,,. Now, let us assume we have a test patterthreshold are determined simultaneously by trial-andrerr
x;, whose Kernel PCA transform we seek to compute. If wéhrough, essentially, cross-validation: a hold-out setised
define the following quantities to identify the pair of values that maximize the detection



rate. When using a Gaussian kernéimH = oo and, are deliberately chosen small to allow visualization of the
thereforep € 1,2,...,N. Furthermore, if N; hold-out relevant distance concepts. Points with reconstructioor er
set patterns are used to optimige rin.res), then N x N,  less than- fall between the the two outer planes. Points with
reconstruction errors have to be computed and comparedMahalanobis distance less thanare in the interior of the
different threshold values in order to assess detecti@sratindicated ellipse. As the data points are mapped very close
Experimental results on both artificial and real datasetsggus to the middle plane, using a threshold-based outlier detect
this approach have been shown to be very competitive tale that relies on Mahalanobis distances rather than recon
other kernel-based outlier detection methods considared struction errors seems to be more appropriate here. Ofeours
the same paper. For example, it showed that the methodtigs example is conceptual, but the approach seems to be the
more robust to noise than One-Class SVM [20]. of merit for other data sets and outlier detection problems,

as is demonstrated in this paper’'s experimental findings.
Il. KPCA M AHALANOBIS DISTANCES FOROUTLIER

DETECTION

It is of particular interest to express the reconstruction
error as a suitably scaled distance of transformed input
patterns from the sample mean of all transformed training
patterns. When we combine (9) and (8), after some algebraic
manipulations we can re-express the squared reconstuctio
error as

4= e )
2 L1P A -
1 (xi) = |55 (12) e B

where 3:1% is an operator inH that orthogonally projects v
onto spafvy,.. .vp}L, i.e. the orthogonal complement of
the p-dimensional principal subspace; as a reminderytfe [
are the eigen-vectors spanning the principal subspaces, Thu
given a test pattern and assuming a pre-determined dimensio v
p for the principal subspace, its reconstruction error cdied
computed by first orthogonally projecting the pattern ohto t
orthogonal complement of the principal subspace and then
calculating the distance from the sample mean of all trans-
formed training patterns. Apparently, the intuition behthe Fig. 1. Conceptual comparison of Reconstruction Error andia¥anobis
reported success of this particular approach in measurifif§i@nce in the principal subspace.

deviation from normalcy and, thus, detecting outliers tmsc

on a simple assumption: normal (non-outlier) data lie on the, . o -
P P ( ) glstance in the principal subspace as a normalcy indicator f

principal subspace or, equivalently, the principal subspa

represents normal data, while anything not belonging ts it iKPCA—transformed data and, of_course, asa cor_nplementary

deemed to be an outlier. Using a non-zero threshold on t ethod to the use of the associated reconstruction error. As

reconstruction error allows for a relaxation of this coidit V¢ show in Section IV, there are outlier detection problems
that benefit from this alternative view. Using the fact the t

and may be used for fine-tuning the detection rates. N . ‘ o
Nevertheless, the aforementioned assumption may 3 uared Mahalanobis distance fop-aimensional principal
' gubspace would be defined as

always be suitable for a given distribution of normal dat

i
e -

In this paper we advocate the use of the Mahalanobis

in H. First of all, the implicit transform tdl via a kernel, 2 P 2
obviously, preserves the intrinsic dimensionality of thigo H¢t = T <vn, ¢t> (12)
inal data. More precisely, the transformed data are going to Mo A i

be mapped on g-dimensional manifold embedded i, and based on (4) and (8), we derive that
whereq < dim(F). Even samples that in the original feature

space were considered as outliers are going to be mapped H(E*HQ — NyTTly, (13)
onto the same manifold. Since the role of the Kernel PCA- R
derived principal subspace is to approximate this manjfbld where I'=diag {v1,...,7,}. In other words, the Maha-

seems as if the usage of the reconstruction error as anroutli@nobis distance in question can be calculated purely in
detection device is not appropriate, at least, in most casesrms of kernel evaluations and knowledge of the implicit
An example of such a scenario is given in Figure 1, wherenapping is not required. The particular choice of kernel
after being transformed vig, data points are embedded inand/or kernel parameters, as well as the threshold to use for
a 3-dimensional feature space, but occupy an almost lineautlier detection, is again a matter resolved through eross
and almost2-dimensional manifold. The dimensions herevalidation.



IV. EXPERIMENTAL RESULTS

A. Qualitative Results

In order to qualitatively illustrate the potential merit of
our proposed outlier detection method, we first created ¢
artificial dataset ofl50 2-D patterns drawn from the Gaus-
sian distribution with mearf0.5 0.5]” and2 x 2 diagonal
covariance matrix with elements 1 and 0.1. The patterns we
subsequently scaled to fit {i0, 1]>. Moreover, we formed a (@) (b)

square grid of test data points j0, 1]>. The distribution of Fig. 3. Constant RE (left figure) and MD (right figure) contisased on
the training and test patterns are shown in Figure 2a. the first two principle components.
Next, the polynomial kernel of degreé = 2, i.e.

k(xz,y) = (a:Ty)Q, is employed to map both the training Quantitative Results
and test data into the feature space. The particular kernel ) ] ) . )
maps2-dimensional data: = [z, xQ]T into a3-dimensional In th|s segt_lon, we experimentally examine the outlier

. L , 9 o177  detection ability of our proposed MD-based method by
space via the implicit mapping(z) = [2% V2212, o] comparing it with the RE-based method and One-class
(e.g. see [21]). We show the distribution of both training paring

patterns and test data in the 3-D feature space in Figure \./M (OC.S\./M)' The Area L_Jnder the Receiver Operat_mg
aracteristic curve (AUC) is employed as a comparison

criterion as in [19]. The Receiver Operating Characteristi
(ROC) curve is &-D curve, which captures the relationship
between the false positive and the true positive rate. An
ideal outlier detector achievésfalse positive rate antl true
positive rate, which results to an AUC value equalltdn
practice though, the AUC lies in the interv@l, 1], and the
larger AUC is achieved, the better the corresponding autlie
detector performs.

For our comparisons, we choose both numerical and
categorical datasets. For the numerical datasets, thes(aaus

@) (b) kernel is applied, while the Hamming kernel [7] is used for
Fig. 2.  Artificial dataset and its implicit mapping via 2*¢-order ~Categorical datasets. For each of the three methods, we used
polynomial kernel. a variety of parameter settings. In specific, when using MD

and RE, the parameters include the dimension of the priacipl

We then compare the use as outlier discriminants of tibspace and the kernel parameters {or Gaussian kernel
Mahalanobis Distance (MD) in the principal subspace a&nd A for Hamming kernel). Also, the OCSVM features
described by (13) and the Reconstruction Error (RE) in thiée v parameter from the One-class SVM formulation and
principal subspace’s orthogonal complement as describedthe aformentioned kernel parameters. The dimension of the
(11). In this example, the principal subspace is of dimensiaPrinciple subspace is searched from to the number of
2. In Figure 3a, the contour with RE valuBE,,,,/2 is available training sampled’;,.. The Gaussian kernel's spread
shown, whereRE,,,, is the largest RE of the training parameter is searched from.2 to 30 with step size of).2.
points. On the other hand, in Figure 3b, the contour witfhe Hamming kernel's\ parameter is searched frot02
MD value M D,,../2 is indicated, whereM D,,,, is the t0 0.98 with a step size 0f).02 and, finally, OCSVM'sv
largest Mahalanobis distance in the principal subspackeof tparameter is searched from01 to 0.99 with a step size of
training points. This side-by-side comparison reveald, tha0.01.
under certain circumstances, the RE may not be an effectivel) Datasets:Eight datasets are considered in our exper-
measure of deviation from normalcy, when compared ttnents. Four of them are numerical datasets, and the other
using the MD. In the case depicted, we see that RE produck@ir are categorical datasets.
a decision boundary that is overly broad and, thus, one thate SPECTF Heart (SPECTF)he dataset consists 867
does not satisfactorily fit the normal (training) data; many  instances withd5 integer attributes. The attributes de-
potential outliers would not be detected. However, the MD-  scribe the characteristics of different Region of Inter-
induced boundary seems to capture much better the overall est (ROI) of the Single Proton Emission Computed
structure of the normal data. While this particular example  Tomography (SPECT) images. There &feabnormal
is not necessarily typical of one encountered in practiee, w  instances in clasé and 212 normal instances in class
believe that it explains the advantages of our proposed MD- 1. In the experiment]00 class1 samples are used for
based method over the RE-based method and the outcomes training as normal data, while the test set consisted of
we have observed in our experiments. 55 classl data ands5 class0 outliers.



« Thyroid Disease (Thyroid)This dataset feature$772 to the normal class, are used in training. On the other
instances, which belong to 3 different classes: hyper- hand, the test set consists & class1 and 55 class
function, subnormal, and normal. Each instance has 0 data points, while clas8 samples are considered as
21 real-valued attributes200 out of 3488 class3 are abnormal instances.

considered normal and, therefore, are used for training. 7y opservations:We provide the experimental results for
93 class3 data and all the)3 class1 (hyperfunction) he 4 numerical datasets in Table | and tHecategorical
samples comprise the test set. _datasets in Table Il. For each dataset and each outlier
« Wine Quality (Wine)lt contains two parts: Red wine getection method, we calculate the AUCs for all parameter
quality and White wine quality. We only use Red winegeingsj.e. the combinations of kernel parameter and model
samples in our experiment599 instances withil real  ,aameter values that are mentioned in the beginning of this
attributes are separated int0 levels of quality, which  gection. Then, we report the best AUC value in the first table
constitutel0 classes. Instances of leveand6 formthe o for each dataset. Also, we report the minimuzi%

majority group. Therefore, we usé0 out of 681 class  percentile, the median, and t6% percentile of the AUC
5 instances for training, while the test set consists Withistributions in the remaining four rows respectively.
53 classh instances and all the3 class4 as outliers.

o Yeast Yeastdataset samples consist 6freal-valued TABLE |
attributes. Each of th@484 instances comes from One ExperiMENTAL RESULTS FORMD-KPCA, RE-KPCA,AND OCSVM
of 10 different classes, which indicate the different ON THE NUMERICAL DATASETS.
localization site of a given protein. Most data are from
the 3 classes, which represent the majority group, while MD RE  OCSVM
the other7 classes have only a few patterns. Therefore, SPECTF 0.7782 0.3577  0.7058
in our experiment]00 patterns from clas8 are treated 0.2322 0.1867  0.1834
as normal data and are used in the training phase, and 02575 02055  0.4432
. ' 0.2686 0.2224 0.5093
50 class3 patterns as well as0 class5 outliers are 0.2859 0.2658 0.6409
used for testing. _ Thyroid  0.9820 0.9670  0.9307
» Balance 4 categorical attributes are recorded for each 0.0435 0.2060 0.6064
of the 625 instances which model psychological exper- 0.9027 0.8533  0.6152

0.9651 0.8997 0.6242
0.9760 0.9285 0.6396

Wine 0.7957 0.7818 0.7911

imental results. The dataset consists288 points of
classL, 288 points of classR, and 49 points of class

B. 100 samples from clas® are used in the training 02129 04978 06797
process, while the test set consisteldftlassk data and 0.7106 0.7246 0.7176
49 classB data. Our goal is to detect claBsinstances, 8-;322 8-;‘3“732 8-;‘2133
which are treated as outliers. : : :

« Chess (King-Rook vs. King-Pawn) (Ches3)96 in- Yeast 00-18198636 00-28070191 8-3;’3?
stances witl86 categorical attributes are recorded. to de- 0.7669 07045 0.8616
scribe the state of a chess board, and two outcoirees, 0.7957 0.7525 0.9083
white-can-win “won” and white-cannot-win “nowin”, 0.8183 0.7913 0.8796

which form 2 classes. In our experiment¥)0 samples

from class “won” are used in the training process, and . i
150 samples from class “won” anti0 data from class In Table I, by observing the first row of each dataset, our
“nowin” are used for testing. The goal in this particularMP-Pased method achieves the highest AUC SIRECTE

problem is to detect the “nowin” patterns in the test set! 'Yroid andWine datasets. For th¥eastdataset, OCSVM

« Tic-Tac-Toe Endgame (TTTJhis data set hag58 in- achieves the best solution with a small advantage over the
stances9 categorical attributes represent thpositions proposed MD-based method. It is interesting to note that in
on tic-tac-toe board, and the final configurations of th'e other four rows of the results for t®PECTFdataset,
board at the end of games are recorded. The two resultd€ Performances of the MD-based approach are not good for
i.e. “positive” and “negative”, indicate2 classes. To most parameter settings, since the AUC values are below the
detect the “negative” datESOO,“positive" patterns are 75% percentile, while the best are much higher than most
used for training, while the test set consists of 15@ther AUC values. This can also be seen in Figure 4 for
“positive” and 150 “negative” samples. the SPECTFdataset. In Figure 4a, the-axis represents the

« SPECT Heart (SPECT)This data set is similar to Kernel spread values, and they-axis is the highest AUC
SPECTFdata set. It also contair®7 instances. But value that is obtained under all possible model parameter
unlike SPECTF each instance BPECTdata set hagz ~ Values f for MD-KPCA and RE-KPCA and for OCSVM)
binary attributes, which summarize the original SPECPS @ changes. Figure 4b is the Box plot of the AUCs in
image, instead of the numerical attributes contained iii9Ure 4a. It can be seen from Figure 4b that the midrange,

the SPECTFdata set.100 class1 data, which belong & from the25% to the 75% percentiles, is small for all the
three methods, while the best AUC value of the MD-based



method is identified as an outlier in the Box plot. Figure 4:
shows that our method performs better for mest

Unlike the results oSPECTFdataset, the last three rows
of Thyroid WineandYeastdatasets show that the AUC values
do not change that much at different percentiles. In othe
words, all the three methods have a small AUC range fc
varying kernel parameter. This can be seen from Figure 5
to Figure 7, which depict the results for tAdyroid Wine

and Yeastdatasets respectively. It can be seen from thesc
figures that, for these three datasets, the AUC values change

o= N -
| N =
0.65 *
% o6
e
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slightly with changes i for all the three approaches (exceptig: 6. Winedataset: Maximum AUC value versus kemnel parameter value

the result of OCSVM for thdhyroid dataset), which implies

and corresponding Box plot.

detection robustness for numerical datasets, when a Gaussi

kernel is used. By observing these four figures, the minimui
AUC values are all attained, when the parametds very

small, which implies that, in practice, care should be take

when choosing smalr values.
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Fig. 7. Yeastdataset: Maximum AUC value versus kernel parameter value
and corresponding Box plot.

are the Box plots for the corresponding AUC distributions
in the left counterparts. It can be seen that KPCA-based
detection using Mahalanobis Distances outperforms theroth

Fig. 4. SPECTFdataset: Maximum AUC value versus kernel parametetwo for most A values in the three datasets. Our proposed

value and corresponding Box plot.

AUC-Best

o1 D RE ocsvM

(@ (b)

Fig. 5. Thyroid dataset: Maximum AUC value versus kernel paramete

value and corresponding Box plot.

In Table Il, it can be seen that the MD-based metho

performs very well on th&alance ChessandTTT categor-

ical datasets. Not only does it attain the highest AUC valu
among the three methods, but its AUC distribution is su )

perior to the other corresponding distributions, as witeds
when drawing comparisons among the b#&si percentile,

approach slightly underperformed for tHf®PECT dataset

for some\ values, as shown in Figure 11, while the AUC
values obtained via our method are still high in terms of
the 25% percentile and the median comparing to the RE-
based method. Based on these results for the four catelyorica
datasets, it can be seen that the AUC range for all three
methods is wide, which obviously implies that the three
approaches are sensitive to the specific choice of the kernel
parameten and, thus, care needs to be taken, when choosing
values for it.
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Fig. 8. Balancedataset: Maximum AUC value versus kernel parameter

median, and75% percentile outcomes. Figure 8 throughvalue and corresponding Box plot.
Figure 10 shows the relationship between the AUC and the

kernel parameten\ for the three datasets. Like Figure 4,

the left plots show the highest AUC value obtained with all

possible model parameters aghanges, while the right plots



EXPERIMENTAL RESULTS FORMD-KPCA, RE-KPCA,AND OCSVM

TABLE Il

ON THE CATEGORICAL DATASETS

MD RE OCSVM
Balance 0.7807 0.5808 0.6449
0.3320 0.1999 0.4666
0.5342 0.2227 0.5459
0.6568 0.3625 0.5820
0.7091 0.4504 0.5983
Chess 0.8412 0.5709 0.5772
0.2559 0.2028 0.4118
0.4637 0.2809 0.5068
0.6171 0.4110 0.5391
0.7520 0.5217 0.5660
TTT 0.9597 0.8895 0.1966
0.0045 0.0139 0.0341
0.1833 0.0782 0.0538
0.5614 0.2085 0.0721
0.8671 0.8476 0.0849
SPECT 0.7858 0.8402 0.3751
0.1550 0.1778 0.1291
0.1960 0.2004 0.1478
0.5854 0.2539 0.1650
0.7278 0.8119 0.1806
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Fig. 11. SPECTdataset: Maximum AUC value versus kernel parameter
value and corresponding Box plot.

V. CONCLUSIONS

In this paper we discuss two approaches on using Ker-
nel Principal Component Analysis (KPCA) for detection
of atypical samples. Both methods rely on first mapping
samples, that are considered typical (non-outliers), to a
Hilbert (feature) space reproduced by the specific inner-
product kernel employed by KPCA. Subsequently, they iden-
tify the principal subspace of the aforementioned tramséat
dataset. Given a test sample, the first method, which has
been introduced in [17], measures its reconstruction error
(RE) in the feature space and identifies the sample as an
outlier, if the RE exceeds an adjustable threshold. The RE
measured depends on the particular characteristics of the
principal subspace’s orthogonal complement. We provide
arguments implying that, because of the aforementionéd fac
RE may not always be an effective measure of deviation from
normalcy. Based on this motivation, we present an altareati
approach that utilizes the principal subspace Mahalanobis
Distance (MD) of a test sample from the transformed
dataset’'s sample average as such a measure instead. We argue
that this approach can be justified by intuition and could be
applicable in practice.

In order to showcase the merits of our proposed approach,

Fig. 9. Chesgdataset: Maximum AUC value versus kernel parameter valudVe performed a number of experiments that compared the
and corresponding Box plot.

Fig. 10. TTT dataset: Maximum AUC value versus kernel parameter valu

@

and corresponding Box plot.

(b)

OCSVM

capability of detecting outliers in data of the One-Class
SVM, the RE-based, and the MD-based KPCA detection
methods. The experimental results reveal, as expectet, tha
the performance robustness and detection quality of all
three methods compared varies from one dataset to the
next and, furthermore, depends on the particular choice of
parameterized kernel function that is utilized. Neverks|

the outcomes indicate that the MD-based KPCA method is
competitive, if not superior, in detecting true outliershem
compared to the other two approaches.
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