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Abstract— Over the last few years, Kernel Principal Compo-
nent Analysis (KPCA) has found several applications in outlier
detection. A relatively recent method uses KPCA to compute
the reconstruction error (RE) of previously unseen samples and,
via thresholding, to identify atypical samples. In this paper
we propose an alternative method, which performs the same
task, but considers Mahalanobis distances in the orthogonal
complement of the subspace that is utilized to compute the
reconstruction error. In order to illustrate its merits, we provide
qualitative and quantitative results on both artificial and real
datasets and we show that it is competitive, if not superior, for
several outlier detection tasks, when compared to the original
RE-based variant and the One-Class SVM detection approach.

I. I NTRODUCTION

OUTLIER detection is also referred to asnovelty detec-
tion or asone-class classification. Within this setting,

the task amounts to designing a useful model to recognize
atypical data (outliers) by using onlynormal data in the
design phase, which are not considered to be outliers. Recent
comprehensive surveys of the relevant field include [1], [2],
[3] and [4].

Furthermore, in the context of machine learning,kernel-
based methods [5] are computational techniques that, con-
ceptually, involve an implicit transformationφ : F → H of
the data from the original input spaceF to a new feature
spaceH as a pre-processing step, such thatx 7→ φ

x
. It is

assumed thatH is a Hilbert space, not necessarily finite-
dimensional, equipped with a suitably defined inner product
〈., .〉

H
: H × H → R. Rather than requiring knowledge of

the precise representations/images of the data inH, these
methods operate solely on the basis of inner products inH,
which are represented and computed by akernel function
k : F × F → R, such thatk (x,y) ≡

〈
φ

x
,φ

y

〉
H

and,
thus, the mappingφ is only used implicitly. Furthermore,
it is typical with kernel-based methods to directly choose
a functionk (., .) that has the kernel property,i.e., given k
there is aφ, so thatk is an inner product inH. Obviously,
the particular choice of kernel determines the underlying
mappingφ, save an (improper, in general) rotation, and,
therefore, the nature of spaceH.
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Many traditional methods, whose computations involve
information about the data only in the form of ordinary inner
product values, have been extended to non-linear, kernel-
based variants via the so calledkernel trick (first utilized
in [6]), which amounts to merely substituting the use of
the ordinary Euclidean inner product in these methods with
arbitrary kernel functions, thus, in effect, pre-transforming
the data through the induced/implicit mapping. Such implicit
transformations can prove desirable in certain cases, as they
may favorably influence the data distributions involved. A
classic example in pattern recognition is, when data, that are
originally not linearly-separable inF, are rendered linearly-
separable in the induced spaceH through a proper choice of
kernel function. Most remarkably, the kernel trick adaptation
also allows these inner product reliant methods to be directly
applied to non-numeric or mixed-type data, once appropriate
kernels have been defined for these data types. As exam-
ples, here we can mention outlier detection techniques for
categorical or mixed-attribute data such as [7] and [8].

Principal Component Analysis(PCA; for example, see
[9]) is one of the methods that has been extended to a
kernel-based PCA variant (KPCA; see [10]) thanks to an
alternative way of computing the principal axes through the
use of inner product evaluations [11]. KPCA has been used
in several applications, such as face detection [12], image
segmentation [13], feature extraction [14], data de-noising
[15] and voice recognition [16], etc. Also recently, KPCA
has found application in novelty detection [17][18]. In [17],
KPCA is applied to the data using a Gaussian kernel and,
subsequently, test data are projected to the resulting principal
subspace, whose dimensionality is found experimentally. Test
samples are identified as outliers, when their reconstruction
error exceeds a certain threshold, which is also established
experimentally. The reconstruction error itself is a measure
of deviation from the principal subspace and, therefore, it
assumes that the principal subspace represents the normal
data. We claim that this assumption may not always be
applicable and we offer some intuitive arguments, as well as
experimental evidence supporting our thesis. Therefore, we
advocate the use of Mahalanobis distance within the principal
subspace as an alternative to the reconstruction error. It is
worth noting that our approach is different with the method in
[18], which detects outliers in the orthogonal complementary
subspace of the principle subspace of our approach. In order
to show the merit of our proposal, we conducted a series of
experiments that considered both artificial and real datasets.
We used the former ones to illustrate qualitative results and
provide some insight into the past and novel approaches. For



the latter ones, which we obtained from the UCI Machine
Learning Repository, we draw comparisons in the form of
tables and figures based on the Area Under the Receiver
Operating Characteristic (ROC) Curve [19].

The remainder of the manuscript is organized as follows:
Section II provides some background material regarding
KPCA and the use of the reconstruction error for outlier
detection. Section III discusses our novel approach, while
Section IV showcases the obtained experimental results.
Finally, Section V summarizes the main outcomes of the
paper.

II. K ERNEL PCA & OUTLIER DETECTION

A. KPCA Fundamentals

Assuming a set ofN training data{xn}n=1,...,N in F and
an appropriately parameterized Mercer kernelk : F × F →
R, the Kernel Principal Component Analysis (Kernel PCA)
computational procedure first entails forming the (symmetric)
kernel matrixK ∈ R

N×N using the available training set
patterns. Its(i, j) element equalsk (xi,xj), wherexi and
xj are theith andjth training pattern respectively. Since the
chosen kernel matrix implies a particular choice of feature
mapping φ : F → H as mentioned earlier, the kernel
matrix K represents the Gram matrix of the training data
{φn}n=1,...,N =̂

{
φ

xn

}
n=1,...,N

as they are embedded into
spaceH via φ. Subsequently, the kernel matrix is centered
to produce

K̃=̂PKP (1)

where the orthogonal projection matrixP is defined as

P=̂IN − 1

N
1N1T

N (2)

In (2), IN ∈ R
N×N is an identity matrix and1N ∈ R

N is an
“all-ones” vector.P is also known as thecentering matrix
in the statistics community. Through (1),̃K represents now
the Gram matrix of the centered set

{
φ̃n

}
n=1,...,N

, where

we define

φ̃n=̂φn − 1

N

N∑

i=1

φi (3)

Next, the eigen-pairs{(γn,un)}n=1,...,N are obtained via the

eigen-value decomposition of the centered kernel matrixK̃.
We assume here thatγ1 ≥ . . . ≥ γN and that all eigenvectors
un are normalized to unitL2 length, i.e.‖un‖2 = 1. Then,
it can be shown that the eigen-pairs of the (biased) sample
covariance matrix of{φn}n=1,...,N are given as

(λn,vn) =

(
γn
N

,± 1√
γn

Φ̃
T
un

)
(4)

wheren = 1, . . . , dim(H) and Φ̃ is the matrix, whosenth

row consists of̃φn. Now, let us assume we have a test pattern
xt, whose Kernel PCA transform we seek to compute. If we
define the following quantities

Ap=̂ [v1 . . .vp]
T (5)

wherep ≤ min {dim(F), N} and

k (xt) =̂ [k (xt,x1) . . . k (xt,xN )]
T (6)

and, finally,

k̃ (xt) =̂P

[
k (xt)−

1

N
K1N

]
(7)

then the Kernel PCA transformyt of xt with respect to the
p principal Kernel PCA eigen-directions in the feature space
H is given as

ỹt = AT
p k̃ (xt) (8)

Obviously, the results of the transformation strongly de-
pend on the particular inner product kernel employed, the
particular values of its parameters and on the dimensionality
p of the principal subspace, on which the data are finally
projected. As mentioned earlier in Section I, Kernel PCA has
been used in a variety of settings and applications including,
of course, outlier detection as a data transformation method.
In the next section we briefly discuss a relatively recent
Kernel PCA-based approach to outlier detection and lay out
the details of our approach.

B. Outlier Detection using Kernel PCA Reconstruction Er-
ror

Recently, in [17] a Kernel PCA-based outlier detection
method was introduced and its performance was showcased
in comparison to other established, kernel-based methods.
The particular approach chooses a training set and a suit-
able projection dimensionalityp, proceeds to compute the
Kernel PCA transform of another set of test patterns and,
finally, computes thereconstruction error(RE) for each of
these test patterns. The squared reconstruction errorr2 (xt)
for a test patternxt is defined as

r2 (xt) =̂
∥∥∥φ̃t

∥∥∥
2

2

− ‖ỹt‖22 (9)

where φ̃t=̂φ̃ (xt). Again, the norms involved in these ex-
pressions are of theL2 (Euclidean) variety and it holds that
‖z‖2

2
= 〈z, z〉H for any vectorz ∈ H. In light of (3) and

noticing that
∥∥∥φ̃t

∥∥∥
2

2

=
〈
φ̃t, φ̃t

〉
H

we obtain that

〈
φ̃n, φ̃n

〉
H

= k(xt,xt)−
2

N
1T
Nkt +

1

N2
1T
NK1N (10)

Thus, (10) and (8) make it possible to calculate the recon-
struction error via (9). Given the projection dimensionality
p, outliers are identified as data points, whose RE exceeds
an appropriately established threshold valuerthres.

In [17], the optimal combination of dimensionality and
threshold are determined simultaneously by trial-and-error
through, essentially, cross-validation: a hold-out set isused
to identify the pair of values that maximize the detection



rate. When using a Gaussian kernel,dimH = ∞ and,
therefore p ∈ 1, 2, . . . , N . Furthermore, ifNt hold-out
set patterns are used to optimize(p, rthres), thenN × Nt

reconstruction errors have to be computed and compared to
different threshold values in order to assess detection rates.
Experimental results on both artificial and real datasets using
this approach have been shown to be very competitive to
other kernel-based outlier detection methods considered in
the same paper. For example, it showed that the method is
more robust to noise than One-Class SVM [20].

III. KPCA M AHALANOBIS DISTANCES FOROUTLIER

DETECTION

It is of particular interest to express the reconstruction
error as a suitably scaled distance of transformed input
patterns from the sample mean of all transformed training
patterns. When we combine (9) and (8), after some algebraic
manipulations we can re-express the squared reconstruction
error as

r2 (xt) =
∥∥∥T⊥

p φ̃t

∥∥∥
2

2

(11)

where T⊥
p is an operator inH that orthogonally projects

onto span{v1, . . .vp}⊥, i.e. the orthogonal complement of
thep-dimensional principal subspace; as a reminder, thevi’s
are the eigen-vectors spanning the principal subspace. Thus,
given a test pattern and assuming a pre-determined dimension
p for the principal subspace, its reconstruction error couldbe
computed by first orthogonally projecting the pattern onto the
orthogonal complement of the principal subspace and then
calculating the distance from the sample mean of all trans-
formed training patterns. Apparently, the intuition behind the
reported success of this particular approach in measuring
deviation from normalcy and, thus, detecting outliers touches
on a simple assumption: normal (non-outlier) data lie on the
principal subspace or, equivalently, the principal subspace
represents normal data, while anything not belonging to it is
deemed to be an outlier. Using a non-zero threshold on the
reconstruction error allows for a relaxation of this condition
and may be used for fine-tuning the detection rates.

Nevertheless, the aforementioned assumption may not
always be suitable for a given distribution of normal data
in H. First of all, the implicit transform toH via a kernel,
obviously, preserves the intrinsic dimensionality of the orig-
inal data. More precisely, the transformed data are going to
be mapped on aq-dimensional manifold embedded inH,
whereq ≤ dim(F). Even samples that in the original feature
space were considered as outliers are going to be mapped
onto the same manifold. Since the role of the Kernel PCA-
derived principal subspace is to approximate this manifold, it
seems as if the usage of the reconstruction error as an outlier
detection device is not appropriate, at least, in most cases.
An example of such a scenario is given in Figure 1, where,
after being transformed viaφ, data points are embedded in
a 3-dimensional feature space, but occupy an almost linear
and almost2-dimensional manifold. The dimensions here

are deliberately chosen small to allow visualization of the
relevant distance concepts. Points with reconstruction error
less thanr fall between the the two outer planes. Points with
Mahalanobis distance less thand are in the interior of the
indicated ellipse. As the data points are mapped very close
to the middle plane, using a threshold-based outlier detection
rule that relies on Mahalanobis distances rather than recon-
struction errors seems to be more appropriate here. Of course,
this example is conceptual, but the approach seems to be the
of merit for other data sets and outlier detection problems,
as is demonstrated in this paper’s experimental findings.

Fig. 1. Conceptual comparison of Reconstruction Error and Mahalanobis
distance in the principal subspace.

In this paper we advocate the use of the Mahalanobis
distance in the principal subspace as a normalcy indicator for
KPCA-transformed data and, of course, as a complementary
method to the use of the associated reconstruction error. As
we show in Section IV, there are outlier detection problems
that benefit from this alternative view. Using the fact that the
squared Mahalanobis distance for ap-dimensional principal
subspace would be defined as

∥∥∥φ̃t

∥∥∥
2

M
=̂

p∑

n=1

1

λn

〈
vn, φ̃t

〉2

H

(12)

and based on (4) and (8), we derive that

∥∥∥φ̃t

∥∥∥
2

M
= NyT

t Γ
−1yt (13)

where Γ=̂diag {γ1, . . . , γp}. In other words, the Maha-
lanobis distance in question can be calculated purely in
terms of kernel evaluations and knowledge of the implicit
mapping is not required. The particular choice of kernel
and/or kernel parameters, as well as the threshold to use for
outlier detection, is again a matter resolved through cross-
validation.



IV. EXPERIMENTAL RESULTS

A. Qualitative Results

In order to qualitatively illustrate the potential merit of
our proposed outlier detection method, we first created an
artificial dataset of150 2-D patterns drawn from the Gaus-
sian distribution with mean[0.5 0.5]

T and 2 × 2 diagonal
covariance matrix with elements 1 and 0.1. The patterns were
subsequently scaled to fit in[0, 1]2. Moreover, we formed a
square grid of test data points in[0, 1]2. The distribution of
the training and test patterns are shown in Figure 2a.

Next, the polynomial kernel of degreed = 2, i.e.
k (x,y) =

(
xTy

)2
, is employed to map both the training

and test data into the feature space. The particular kernel
maps2-dimensional datax = [x1 x2]

T into a3-dimensional
space via the implicit mappingφ(x) =

[
x2

1

√
2x1x2 x2

2

]T
(e.g. see [21]). We show the distribution of both training
patterns and test data in the 3-D feature space in Figure 2b.
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Fig. 2. Artificial dataset and its implicit mapping via a2nd-order
polynomial kernel.

We then compare the use as outlier discriminants of the
Mahalanobis Distance (MD) in the principal subspace as
described by (13) and the Reconstruction Error (RE) in the
principal subspace’s orthogonal complement as described in
(11). In this example, the principal subspace is of dimension
2. In Figure 3a, the contour with RE valueREmax/2 is
shown, whereREmax is the largest RE of the training
points. On the other hand, in Figure 3b, the contour with
MD value MDmax/2 is indicated, whereMDmax is the
largest Mahalanobis distance in the principal subspace of the
training points. This side-by-side comparison reveals that,
under certain circumstances, the RE may not be an effective
measure of deviation from normalcy, when compared to
using the MD. In the case depicted, we see that RE produces
a decision boundary that is overly broad and, thus, one that
does not satisfactorily fit the normal (training) data; many
potential outliers would not be detected. However, the MD-
induced boundary seems to capture much better the overall
structure of the normal data. While this particular example
is not necessarily typical of one encountered in practice, we
believe that it explains the advantages of our proposed MD-
based method over the RE-based method and the outcomes
we have observed in our experiments.
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Fig. 3. Constant RE (left figure) and MD (right figure) contours based on
the first two principle components.

B. Quantitative Results

In this section, we experimentally examine the outlier
detection ability of our proposed MD-based method by
comparing it with the RE-based method and One-class
SVM (OCSVM). The Area Under the Receiver Operating
Characteristic curve (AUC) is employed as a comparison
criterion as in [19]. The Receiver Operating Characteristic
(ROC) curve is a2-D curve, which captures the relationship
between the false positive and the true positive rate. An
ideal outlier detector achieves0 false positive rate and1 true
positive rate, which results to an AUC value equal to1. In
practice though, the AUC lies in the interval[0, 1], and the
larger AUC is achieved, the better the corresponding outlier
detector performs.

For our comparisons, we choose both numerical and
categorical datasets. For the numerical datasets, the Gaussian
kernel is applied, while the Hamming kernel [7] is used for
categorical datasets. For each of the three methods, we used
a variety of parameter settings. In specific, when using MD
and RE, the parameters include the dimension of the principle
subspacep and the kernel parameters (σ for Gaussian kernel
and λ for Hamming kernel). Also, the OCSVM features
the ν parameter from the One-class SVM formulation and
the aformentioned kernel parameters. The dimension of the
principle subspacep is searched from1 to the number of
available training samplesNtr. The Gaussian kernel’s spread
parameterσ is searched from0.2 to 30 with step size of0.2.
The Hamming kernel’sλ parameter is searched from0.02
to 0.98 with a step size of0.02 and, finally, OCSVM’sν
parameter is searched from0.01 to 0.99 with a step size of
0.01.

1) Datasets:Eight datasets are considered in our exper-
iments. Four of them are numerical datasets, and the other
four are categorical datasets.

• SPECTF Heart (SPECTF). The dataset consists of267
instances with45 integer attributes. The attributes de-
scribe the characteristics of different Region of Inter-
est (ROI) of the Single Proton Emission Computed
Tomography (SPECT) images. There are55 abnormal
instances in class0 and 212 normal instances in class
1. In the experiment,100 class1 samples are used for
training as normal data, while the test set consisted of
55 class1 data and55 class0 outliers.



• Thyroid Disease (Thyroid). This dataset features3772
instances, which belong to 3 different classes: hyper-
function, subnormal, and normal. Each instance has
21 real-valued attributes.200 out of 3488 class3 are
considered normal and, therefore, are used for training.
93 class3 data and all the93 class1 (hyperfunction)
samples comprise the test set.

• Wine Quality (Wine). It contains two parts: Red wine
quality and White wine quality. We only use Red wine
samples in our experiment.1599 instances with11 real
attributes are separated into10 levels of quality, which
constitute10 classes. Instances of level5 and6 form the
majority group. Therefore, we use100 out of 681 class
5 instances for training, while the test set consists with
53 class5 instances and all the53 class4 as outliers.

• Yeast. Yeast dataset samples consist of9 real-valued
attributes. Each of the1484 instances comes from one
of 10 different classes, which indicate the different
localization site of a given protein. Most data are from
the3 classes, which represent the majority group, while
the other7 classes have only a few patterns. Therefore,
in our experiment,100 patterns from class3 are treated
as normal data and are used in the training phase, and
50 class3 patterns as well as50 class5 outliers are
used for testing.

• Balance. 4 categorical attributes are recorded for each
of the 625 instances which model psychological exper-
imental results. The dataset consists of288 points of
classL, 288 points of classR, and 49 points of class
B. 100 samples from classR are used in the training
process, while the test set consists of49 classRdata and
49 classB data. Our goal is to detect classB instances,
which are treated as outliers.

• Chess (King-Rook vs. King-Pawn) (Chess). 3196 in-
stances with36 categorical attributes are recorded to de-
scribe the state of a chess board, and two outcomes,i.e.
white-can-win “won” and white-cannot-win “nowin”,
which form 2 classes. In our experiments,300 samples
from class “won” are used in the training process, and
150 samples from class “won” and150 data from class
“nowin” are used for testing. The goal in this particular
problem is to detect the “nowin” patterns in the test set.

• Tic-Tac-Toe Endgame (TTT). This data set has958 in-
stances.9 categorical attributes represent the9 positions
on tic-tac-toe board, and the final configurations of the
board at the end of games are recorded. The two results,
i.e. “positive” and “negative”, indicate2 classes. To
detect the “negative” data,300 “positive” patterns are
used for training, while the test set consists of 150
“positive” and 150 “negative” samples.

• SPECT Heart (SPECT). This data set is similar to
SPECTFdata set. It also contains267 instances. But
unlikeSPECTF, each instance ofSPECTdata set has22
binary attributes, which summarize the original SPECT
image, instead of the numerical attributes contained in
the SPECTFdata set.100 class1 data, which belong

to the normal class, are used in training. On the other
hand, the test set consists of55 class1 and 55 class
0 data points, while class0 samples are considered as
abnormal instances.

2) Observations:We provide the experimental results for
the 4 numerical datasets in Table I and the4 categorical
datasets in Table II. For each dataset and each outlier
detection method, we calculate the AUCs for all parameter
settings,i.e. the combinations of kernel parameter and model
parameter values that are mentioned in the beginning of this
section. Then, we report the best AUC value in the first table
row for each dataset. Also, we report the minimum,25%
percentile, the median, and the75% percentile of the AUC
distributions in the remaining four rows respectively.

TABLE I

EXPERIMENTAL RESULTS FORMD-KPCA, RE-KPCA,AND OCSVM

ON THE NUMERICAL DATASETS.

MD RE OCSVM

SPECTF 0.7782 0.3577 0.7058
0.2322 0.1867 0.1834
0.2575 0.2055 0.4432
0.2686 0.2224 0.5093
0.2859 0.2658 0.6409

Thyroid 0.9820 0.9670 0.9307
0.0435 0.2060 0.6064
0.9027 0.8533 0.6152
0.9651 0.8997 0.6242
0.9760 0.9285 0.6396

Wine 0.7957 0.7818 0.7911
0.2129 0.4978 0.6727
0.7106 0.7246 0.7176
0.7292 0.7376 0.7283
0.7412 0.7462 0.7429

Yeast 0.8966 0.8711 0.9083
0.1183 0.2009 0.4101
0.7669 0.7045 0.8616
0.7957 0.7525 0.9083
0.8183 0.7913 0.8796

In Table I, by observing the first row of each dataset, our
MD-based method achieves the highest AUC onSPECTF,
Thyroid, andWine datasets. For theYeastdataset, OCSVM
achieves the best solution with a small advantage over the
proposed MD-based method. It is interesting to note that in
the other four rows of the results for theSPECTFdataset,
the performances of the MD-based approach are not good for
most parameter settings, since the AUC values are below the
75% percentile, while the best are much higher than most
other AUC values. This can also be seen in Figure 4 for
the SPECTFdataset. In Figure 4a, thex-axis represents the
kernel spread valuesσ, and they-axis is the highest AUC
value that is obtained under all possible model parameter
values (p for MD-KPCA and RE-KPCA andν for OCSVM)
as σ changes. Figure 4b is the Box plot of the AUCs in
Figure 4a. It can be seen from Figure 4b that the midrange,
i.e. from the25% to the75% percentiles, is small for all the
three methods, while the best AUC value of the MD-based



method is identified as an outlier in the Box plot. Figure 4a
shows that our method performs better for mostσ’s.

Unlike the results ofSPECTFdataset, the last three rows
of Thyroid, WineandYeastdatasets show that the AUC values
do not change that much at different percentiles. In other
words, all the three methods have a small AUC range for
varying kernel parameterσ. This can be seen from Figure 5
to Figure 7, which depict the results for theThyroid, Wine
and Yeastdatasets respectively. It can be seen from these
figures that, for these three datasets, the AUC values change
slightly with changes inσ for all the three approaches (except
the result of OCSVM for theThyroiddataset), which implies
detection robustness for numerical datasets, when a Gaussian
kernel is used. By observing these four figures, the minimum
AUC values are all attained, when the parameterσ is very
small, which implies that, in practice, care should be taken
when choosing smallσ values.
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Fig. 4. SPECTFdataset: Maximum AUC value versus kernel parameter
value and corresponding Box plot.
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Fig. 5. Thyroid dataset: Maximum AUC value versus kernel parameter
value and corresponding Box plot.

In Table II, it can be seen that the MD-based method
performs very well on theBalance, Chess, andTTT categor-
ical datasets. Not only does it attain the highest AUC value
among the three methods, but its AUC distribution is su-
perior to the other corresponding distributions, as witnessed
when drawing comparisons among the best25% percentile,
median, and75% percentile outcomes. Figure 8 through
Figure 10 shows the relationship between the AUC and the
kernel parameterλ for the three datasets. Like Figure 4,
the left plots show the highest AUC value obtained with all
possible model parameters asλ changes, while the right plots
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Fig. 6. Winedataset: Maximum AUC value versus kernel parameter value
and corresponding Box plot.
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Fig. 7. Yeastdataset: Maximum AUC value versus kernel parameter value
and corresponding Box plot.

are the Box plots for the corresponding AUC distributions
in the left counterparts. It can be seen that KPCA-based
detection using Mahalanobis Distances outperforms the other
two for mostλ values in the three datasets. Our proposed
approach slightly underperformed for theSPECT dataset
for someλ values, as shown in Figure 11, while the AUC
values obtained via our method are still high in terms of
the 25% percentile and the median comparing to the RE-
based method. Based on these results for the four categorical
datasets, it can be seen that the AUC range for all three
methods is wide, which obviously implies that the three
approaches are sensitive to the specific choice of the kernel
parameterλ and, thus, care needs to be taken, when choosing
values for it.
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Fig. 8. Balancedataset: Maximum AUC value versus kernel parameter
value and corresponding Box plot.



TABLE II

EXPERIMENTAL RESULTS FORMD-KPCA, RE-KPCA,AND OCSVM

ON THE CATEGORICAL DATASETS.

MD RE OCSVM

Balance 0.7807 0.5808 0.6449
0.3320 0.1999 0.4666
0.5342 0.2227 0.5459
0.6568 0.3625 0.5820
0.7091 0.4504 0.5983

Chess 0.8412 0.5709 0.5772
0.2559 0.2028 0.4118
0.4637 0.2809 0.5068
0.6171 0.4110 0.5391
0.7520 0.5217 0.5660

TTT 0.9597 0.8895 0.1966
0.0045 0.0139 0.0341
0.1833 0.0782 0.0538
0.5614 0.2085 0.0721
0.8671 0.8476 0.0849

SPECT 0.7858 0.8402 0.3751
0.1550 0.1778 0.1291
0.1960 0.2004 0.1478
0.5854 0.2539 0.1650
0.7278 0.8119 0.1806
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Fig. 9. Chessdataset: Maximum AUC value versus kernel parameter value
and corresponding Box plot.
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Fig. 10. TTT dataset: Maximum AUC value versus kernel parameter value
and corresponding Box plot.
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Fig. 11. SPECTdataset: Maximum AUC value versus kernel parameter
value and corresponding Box plot.

V. CONCLUSIONS

In this paper we discuss two approaches on using Ker-
nel Principal Component Analysis (KPCA) for detection
of atypical samples. Both methods rely on first mapping
samples, that are considered typical (non-outliers), to a
Hilbert (feature) space reproduced by the specific inner-
product kernel employed by KPCA. Subsequently, they iden-
tify the principal subspace of the aforementioned transformed
dataset. Given a test sample, the first method, which has
been introduced in [17], measures its reconstruction error
(RE) in the feature space and identifies the sample as an
outlier, if the RE exceeds an adjustable threshold. The RE
measured depends on the particular characteristics of the
principal subspace’s orthogonal complement. We provide
arguments implying that, because of the aforementioned fact,
RE may not always be an effective measure of deviation from
normalcy. Based on this motivation, we present an alternative
approach that utilizes the principal subspace Mahalanobis
Distance (MD) of a test sample from the transformed
dataset’s sample average as such a measure instead. We argue
that this approach can be justified by intuition and could be
applicable in practice.

In order to showcase the merits of our proposed approach,
we performed a number of experiments that compared the
capability of detecting outliers in data of the One-Class
SVM, the RE-based, and the MD-based KPCA detection
methods. The experimental results reveal, as expected, that
the performance robustness and detection quality of all
three methods compared varies from one dataset to the
next and, furthermore, depends on the particular choice of
parameterized kernel function that is utilized. Nevertheless,
the outcomes indicate that the MD-based KPCA method is
competitive, if not superior, in detecting true outliers, when
compared to the other two approaches.
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[10] B. Scḧolkopf, A. Smola, and K.-R. M̈uller, “Nonlinear component
analysis as a kernel eigenvalue problem,”Neural Computation, vol. 10,
no. 5, pp. 1299 – 1319, July 1998.

[11] J. McLaughlin and J. Raviv, “Nth-order autocorrelations in pattern
recognition,” Information and Control, vol. 12, pp. 121–142, 1968.

[12] K. I. Kim, K. Jung, and H. J. Kim, “Face recognition using kernel
principal component analysis,”IEEE Signal Processing Letters, vol. 9,
no. 2, pp. 40–42, 2002.

[13] C. Alzate and J. Suykens, “Image segmentation using a weighted
kernel PCA approach to spectral clustering,” inComputational In-
telligence in Image and Signal Processing, 2007. CIISP 2007. IEEE
Symposium on, April 2007, pp. 208–213.

[14] R. Rosipal, M. Girolami, L. J. Trejo, and A. Cichocki, “Kernel PCA
for feature extraction and de-noising in nonlinear regression,” Neural
Computing & Applications, vol. 10, no. 3, pp. 231–243, 2001.
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[20] B. Scḧolkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C.
Williamson, “Estimating the support of a high-dimensional distribu-
tion,” Neural Computation, vol. 13, no. 7, pp. 1443–1471, Jul. 2001.

[21] C. M. Bishop,Pattern Recognition and Machine Learning. Springer,
2006.


