1028

Comparison of BCH and Convolutional Codes in a Direct
Sequence Spread Spectrum Multiple Access Packet Radio
Network

B. O. Smith, M. Georgiopoulos and M. A. Belkerdid

University of Central Florida
Electrical Engineering Department
Orlando, FL 32816

Abstract

The most significant indicator of the performance of a multiple access
packet radio network is its packet error probability. Packet errors in a
multiple access system are a result of noisc at the receiver and multiple
access interference.

In this paper we compute an upper bound on the packet error
probability induced in a direct sequence spread spectrum multiple access
packet radio network when convolutional or BCH codes are used for the
encoding of the packets. More specifically, an upper bound on the bit
error probability is first developed. Then, this upper bound is used to
compute upper bounds on the packet error probability for BCH codes.
For convolutional codes, we built a simulator package that aliows us to
compute upper bounds on the packet error probability by utilizing, as in
the case of BCH codes, only the upper bound on the bit error probability.
The simulator permits the user to enter such parameters as constraint
length, bit error probability and decode depth of the utilized Viterbi
decoder. At the end of its run the simulator produces the number and the
specific positions of the bits that remained uncorrected by the Viterbi
decoder from which the packet error probability can be determined.

From our results a fair comparison of the BCH and the
convolutional codes in a direct sequence spread spectrum multiple access
packet radio network is conducted.

1. INTRODUCTION

One of the most important attributes of spread spectrum
signalling is its multiple access capability. The multiple access capability
of a Direct Sequence Spread Spectrum (DS-SS) packet radio network is
examined in this paper. The multiple access capability of a DS-SS packet
radio network is d by puting the induced packet error
probability. The exact evaluation of the packet error probability in direct
sequence spread spectrum systems is a difficult task. The difficulty arises
from the fact that a multiple integral has to be computed and the
complexity of the calculation i exp ially with the ber of
interfering packets. Hence most researchers ({1,{2],[3]) have resorted to
techniques that upper bound the induced packet error probability.

In this paper the upper bounds on the packet error probability
induced in DS-SS systems when BCH or convolutional coding is used for
the encoding of the packets is computed. For BCH coding, an upper
bound on the bit error probability is first evaluated. This upper bound is
then used to calculate an upper bound on the packet error probability.
Several problems arise in attempting to bound the packet error
probability when convolutional coding is used [1]. The main difficulty
arises in evaluating exactly the induced union bound. Most analytical
results are based on bounding the union bound in terms of the transfer
function of the code. For large signal to noise ratios, upper bounds to the
unjon bound require only the first few terms of the transfer function to

be used. For low signal to noise ratios however, such as the case in
multiple access networks, these upper bounds cannot be relied upon. As
a result, in evaluating the packet error probability of a DS-SS system
when convolutional coding & used, we will simulate a convolutional
encoder and Viterbi decoder to determine packet error probabilities
using the same upper bounds on bit error probabilities as those used for
the BCH codes. A comparative performance between BCH and
Convolutional codes is then going to be conducted.

2. THE MODEL - PRELIMINARIES

The direct sequence spread spectrum multiple access system of
interest is shown in Figure 1. The received signal can be written as
follows:

K
) = iz;‘/m"si(t—t,) + n{f) (1))
K
= 3 VBPbt-s)aft-x)oos(04+4) + n)

Where s(t) is the spread spectrum signal of the i transmitter, P; is the
power of the signal of the i* transmitter at the receiver site and n(t) i
additive white Gaussian noise with two sided spectral density of N;/2. The
spread spectrum signal s(t) is the product of the binary data signal, by(t),
the spreading signal of the i transmitter, a;(t), and the term cos(w.t +
©,) where ©, is the phase of the i transmitter while . is the carrier
frequency. The delay b t itter i and is equal to T;
and ¢, = ©, - @, T, The data signal of the i® transmitter can be
expressed as

b0 = f; b P (t-mT) @

Where bS" is the m® bit corresponding to the data signal of the i*
transmitter, The spreading signal of the i* transmitter is given by

af) = ¥ a Pr(e-T) &)
Jjm-
where {af} is the signature seq of the itter i. In expression
(2) and (3)
11 for t<a
PO =0 “otherwise
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Figure 1. Direct Sequence Spread Spectrum Model.

Hence, in (2) T corfesponds to the data bit duration and in (3) T,
corresponds to the chip d . The signature sequence (i.e. sequence
of chips) of every transmitter is assumed to be a sequence of
independent, identically distributed, binary random variables, each equally
likely to be +1 or -1. The sig q igned to every
transmitter in the SS system is d to be independent of the
sequences assigned to other transmitters.

Let us now assume that we have a slotied channel and
transmitters initiate the transmission of a packet of information at the
beginning of siots. Let us ako assume that K (K>1) packet transmissions
occur within a slot and a receiver locks on to packet #1 (ie., the packet
originated from transmitter 1). Arriving packets at the receiver are
indexed #1, #2, ..., #K and originate from transmitters 1, 2, ..., K,
respectively. A packet is exactly one codeword from an (M, L) BCH code
(M = number of cod d bits, L = ber of information bits) or a
convolutional code with L information bits of rate L/M. The bits of the
codeword, in both cases, are indexed from 0 up to M-1. Based on our
DS-SS multiple access model we can write that the received signal is

r(§) = {2Pyby(t)a,(t)cos(w ) @
K
+ ¥ 2P e-v)afe-t)cos(w s + &) + n(?)
2

where
M-1
b = Y, b¥ Pie-mD) @
m=0
and
NM-1)
af) = Y. a Pr(t-iT) ©
j=0

N represents the number of chips per bit. The receiver is assumed to be
a correlation receiver (Figure 2), so in (4), we set 7,=0, ¢,=0 and we
used T, and @; (2<i<K) to designate the relative delay and phase of
packet #i with respect to packet #1, as it is perceived by the receiver.
As we mentioned before, the receiver locks on to packet #1and

we mentioned in the Introduction, exact evaluation of the packet error
probability, P.(K), is putationally i bie we will resort to upper
bounds. Our effort to find upper bounds on P (K) will be accomplished
in two steps. In the first step an expression for the bit error probability
is found, and its upper bounds are derived. In the second step the upper
bounds on the bit error probability are utilized to compute upper bounds
on the packet error probability. The upper bound on the packet error
probability is the measure of performance on which comparison among
BCH and convolutional codes will be based.

3. BIT ERROR PROBABILITY
The output of the correlation receiver (see Figure 2)

corresponding to the m™ bit (0<m<M-1) of packet #1, is the random
variable

K
Z,=n,+(P2)"2T BY + 3 (BIPYRING v 0)
-2
0<ms< M-1 l
™

Each n, is a Gaussian random variable with zero mean and
variance N,T/4. The random variables n,, (0Sm<M-1) are independent.
The variable b{? represents the m™ bit of packet #1; its value is +1 or -
1. The vector b? rep a pair of bits of packet #i. In
particular, b7 = (b,.®, bi?), and each data bit b{" is either +1 or -1.
Each 7, or ¢, is a random variable rep ing the time delay (modulo
T) or the phase angle (modulo 21T), respectively, of packet #i with
respect to packet #1. We take the range of each T, to be the interval [0,
T} and the range of each ¢, 10 be the interval {0, 21]

The function IT ,, which app in (7), rep the
normalized multiple-access interference due to packet #i. This function
is defined by

. 3)
10 <,6) = T BY,R(x) + BPR(x)lcosd

where the functions R? ; and RT ; are given by

RAE) = [T afe-v)ay(iat ©)
R3() = f::::)ra.(t-t)m(t)dt (10)
r(t) (m+1)T

mT

btafcosuLt+6)

X

>0 —> +1
2,<0 — -1

DETECTOR |[4—

tries to decode packet #1 in the p of "‘"_" white C‘
noise and multiple access interference. Our goal is to dete.rmme the
packet error probability, that is the probability that_packet #lis de:coded
incorrectly by the receiver. We denote this probability by P (K). Since as
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Figure 2. Block diagram of correlation receiver.
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The detector decides that the m® bit of packet #1 is +1 or -1 if
Z,,>0 or Z,,<0, respectively (See Figure 2). The m™ bit of packet #1 is
decoded correctly by the above detector if and only if the random
variable

X 1

Xo=ny + [0+ Y 00@ 22 b 0] D
i=2

O<ms<s M1

is positive . In (11), each n,, is a Gaussian random variable with mean 0
and variance N,2E,, where E,=P,T, is the energy per data bit of packet
#1. The random variables n, (0Sm<M-1) are statistically independent

We will now sme two propositions that will be helpful in
deriving a more g pression for the d variable X
(0<m<M-1).

Proposition 1: For the computation of P,(K), the T.s (2<i<K) need be
known only to the nearest chip.

Proposition 2: P.(K) is independent of the values of the data bit
sequences {bg" }¥ 2§ for 1<i<K.

The validity of propositions 1 and 2 is based on the fact that
random signature sequences are utilized. An immediate consequence of
Propositions 1 and 2, is that the random variable X, in (11) assumes the
equivalent form

K 1
Xy=n, + 1+ E(P,IP')z{[a“’ 10T,
[a(i) (1) (1) (0]

"’a.wqa.mt*---amw lamw-tl(" -t/T)

"
+[a8al).y +a8 qaln. o+ valy. 2“uuw-1]‘;/ T)

+ cos,IN
O<m< M-

(12)
Given the phase (¢;) and the delay (T;) of each transferring transmission

(2<i<K), the random variables X, (0Sm<M-1) can be considered
approximately independent [2). Let us now define the random vectors

T = (Ty..Tg) (13)a
= (¢2----¢K)
and the vectors
¢ -Gt (13)b

Let us alo denote by p(?, @) the conditional bit error
probability induced in our spread spectrum system given that T=% and
@=¢. We can write

PEd) = PriX, <0 [t-%,0-4)
x 1 (14)
= Pr(n; + 1 + Y (PJP)*L(3,$)<0)

i=2
with
I?(‘I: ‘) (a(o (ﬂelT

+ aé"a“’+ an-tar(:)ﬂ(" -tJT) (15)

+[adaf" +..+af) a2 /T Joosb/N
2<i<kK

Case 1: Near far ratio = 0dB

The near far ratio equal 1o 0dB corresponds to the situation
where all the spread speclmm signals arrive with equal power at the
receiver (ie. Py= P,= .. = Pg). Under this assumption Pursley et al
showed in {1] that for every 1,@ the conditional bit error probability ,
p(T, ®), is upper bounded by q,, where

ay=QREJNY™] + L[ "u sin(u @1 - ()}

(16)
with
- loos 2 1" )
&4 = [ws( N)r
0, (u) = bt (18)
and
Q) = @m)"?f e Pau 9)

Case 2: Near far ratio » 0dB

The near far ratic » 0dB corresponds to the more realistic
situation where the spread spectrum signals arrive with equal or unequal
powers at the receiver (ie., P; = Py or P; # P, for 1<i,j<K). In this case,
Georgiopoulos has shown in [2] that for every 1, & the conditional bit
error probability, p(?,3), is upper bounded by g,, where

. K
a = min{t 2R [T E{ew""’m"]} (20)
i=2
Z20

with
N-1
=L a’yN ; 2<isk @1
-

and E in (20) denotes the expectation operator.

The reason that we consider the upper bound q, is because, in
the unrealistic case where the signaks arrive with equal power at the
receiver site, q, is a tighter upper bound on p(?,®) than q, is.

Upper bounds on P(K) -BCH Codes

Let us denote by fr ¢(f @) the joint probability density function
of the random vectors T and @; 7,9 and £,@ were defined in (13a) and
(13b) respectively. Let us denote by S a random variable which represents
the number of bits in packet #1 that are in error. S is ako equal to the
number of random variables X,, (0Sm<M-1) that are negative (see
discussion prior to the introduction of equation (11)).

If an (M, L) BCH code with error correcting capability ¢, is used
for the encoding of packet #1 we can write

- aa 22
PAR) - [ [(Prisoels=t,0-d0, b1z

Equation (22) can be written as

M - . AGM a 2\ gd gn
P e(K)= J‘ij“;g\ (Lll}(e u@)“ _p(r’¢))ﬂ ‘ff.b(t'¢)d¢dt
23)
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We can now distinguish two cases
: Nea tio = 0 dB
We know from (16) that the conditional bit error probability
p(%,®) is upper bounded for every £, § by q,. Furthermore, the quantity

> (M-

i=es1

is an increasing function ‘?t P. As a result, from (23) we get that

< 3 (Ml -ap s Flg 09

{=e]

Case 2: Near far ratio ¢« 0dB
We know from (20) that the conditional bit error probability

p(%.9) is upper bounded for every 2, by q,. Hence we can write once
more that

& M| i M- 2 25
P,(K)S 2(, 2(1-q2) AP‘(K) @5)

ine+]

Expressions (24) and (25) give upper bounds on the packet error
probability P(K) for the cases of 0dB and non OdB near far ratios,
respectively. The evalvation of P{K) and P%(K) requires first the
computation of qy, q, via the expressions provided in formulas (16) - (21).

4. THE SIMULATOR

The simulator developed (Figure 3) evaluates upper bounds on
the packet efror probability induced in the DS-SS system when
convolutional codes are used for the encoding of the packets and Viterbj
decoding is used for the decoding of the packets. The program was
written in the C language and used on the UNIX system.

Data Generator

The Data Generator generates the data bits of length L that are
to be transmitted. An all zero bit stream was transmitted. The actual
value of the bit stream does not affect the bit or packet error
probabilities.

2 oo | [BR |

COMPARE

DELAY

Figure 3. Simulation Model.

Encoder

The encoder takes message symbolks from the data generator and
shifts them in the register. Code words for the message bit are then
calculated using the tap registers specified by the user.
Error Generator

The error module introduces errors into the code word using a

random number generator. The probability of an error being introduced
(bit error probability) is specified for each simulation by the user. The
output of the error module represents the received code while the input
at the error module represents the transmitted code.
Decoder

The Decoder generates branches from each state ata given level
to the corresponding states at the next level and calculates the path
metric for each branch. The decoder then determines the branch with the
lowest distance for each state at the next level and labels this branch as
the survivor for this state discarding all other branches entering the state.
For each path that is terminated there will be another path that splits.
If no path has been terminated, then all the paths simply extend
themselves. For each path terminated the decoder has to decide which
one of the other paths will split. The terminated path is now substituted
by the corresponding surviving path that was split. The data symbols
associated with each extended path are then added to the path history.
After a specified decode depth has been reached the decoder starts
producing decoded data. When the decode depth is reached the decod
determines the path with the lowest path metric and selects the oldest
symbol of that path from its path history.
Comparator

The comparator compares the data bit generated with the
decoded data bit. It ako determines the number of data bits that were
decoded incortectly, as well as the position of the bits in error. As a
result, the packet error probability can be determined, as well as the
number of uncorrected bit errors.

Upper Bounds on P (K) - Copvolutiopal Codes

An all zero bit stream was initially produced by the data generator.
Every L bits of the data generator corresponds to the information bits of
the simulated packet #1. The all zero bit data stream generated an all
zero encoded bit stream. The constraint length 7 rate 1/2 binary
convolutional code was used 10 generate the encoded bit stream from the
data bit stream. Every M=2L bits of the encoded bit stream represent
the coded bits of the simulated packet #1.

The desired transmission is distorted by multiple access
interference and additive white Gaussian noise. The cumulative effect of
these noise sources results in the worst case scenario into errors produced
independently with probability q, (see equation 16) for the 0dB near far
ratio, and with probability q, (see equation 20) for the non-0dB near far
ratio. Note that q, and g, depend on N, K, Ey/N, and near far ratio
(P/P,). The error generator produces independent errors on the input
sequence of the encoded bits with probabilities q;, q;. The resulting
output sequence of the error generator enters the Viterbi decoder where
error correction takes place according to the rules specified in the
description of the Viterbi decoder. The output of the Viterbi decoder is
a data stream that corresponds to the transmitted bit sequence as it is
perceived by the Every L bits of the output data stream
corresponds to the information bits of the simulated packet #1. Statistics
were gathered with respect to the et yus data packets in the output
bit sequence of the Viterbi decoder. The resulting packet error
probability was denoted by P}(K).

The upper bounds on the induced packet error probabilities
(PL(K), P3(K) for BCH, P}(K) for convolutional) are based on the same
upper bound for the bit error probability. The above scenario represents
the right framework to compatre the performance of BCH codes (PY(K)
in (24) and P}(K) in (25)) and convolutional codes (P}(K)) in a DS-SS
multiple access environment.

CONCLUSION

In Table I, the performance of the BCH codes (P}(K), P(K))
and the simulated performance of the convolutional codes (PY(K)) s
shown when N=127, Ey/N, = 12 or 15dB, near far ratio 0, 3 or 6dB and
for large values of the multiple access interference K. From Table I, we
observe that for large values of the multiple access interference and small
block lengths (ie., 60) lutiona! codes outperform BCH codes. It is
worth noting that the ical results developed in [3} show that BCH
codes outperform convolutional codes in DS-SS multiple” access
environments for small to moderate values of the multiple access
interference and small block lengths, as well as for all values of the
multiple access interference and larger block lenghts (ie., 512,1023).
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There are specific multiple access environments which seem to
favor convolutional codes. Convolutional codes seem to be preferred in
indirectly routed packet networks where retransmission delay is an
important factor of network performance . The retransmission delay at
repeaters is shorter when convolutional codes are used. Block codes
encounter a complete block length delay during retransmission. For line
of sight packet ications h , the tradeoff p bly favors
a long block code, since the transmissions typically occur in bursts.
Convolutional codes are best suited for channels requiring transmission
of long streams of data. This is b lutional codes are hed
only to blocks of infinite length. For shorter transmission lengths, the
block code can be more closely matched to the required block length.

In this work, we compared two encoding schemes, BCH and
Convolutional codes in the direct sequence multiple access environment.
If the only measure of performance is packet error probability, then it
seems that BCH codes are the right choice. If other factors affect the
designer’s decision as well, such as packet delay or decoding complexity,
then convolutional coding might be the more desirable coding technique.

TABLE I

UPPER BOUNDS ON THE PACKET ERROR PROBABILITY P.(K)

EJN, = 12dB, N = 127)

K=_ P/ min@.q) BCH  CONV(M=60)
(63, 30) rate=12

4 6dB  0.018 Pi= 1.64E4 Pi= 7.8E-5
8 3dB  0.029 Pi= 2.32E-3 P}= 6.4E4

33 0dB 0026 Pi= 143E-3 Pi=3.1E4

EJN, = 15dB, N = 127)

K=_ P/, min(q.q;) BCH €O =60
63,30)  rate=172

5 6dB 0028  P2=220E-3 Pi=4.7E4
9 3dB 0029 Pi=232E-3 Pi=64E4

34 0dB 0028 Pl=205E-3 Pi=47E4

FEREN

{1] M. B. Pursley and D. J. Taipale, "Error probabilities for spread
spectrum packet radio with convolutional codes and Viterbi decoding.”
IEEE Trans. on Comm., Vol. Com-35: pp. 1-12, Jan. 1987.

2] M. Georgiopoulos, "Packet error probabilities in direct sequence
spread spectrum packet radio networks, with BCH codes", IEEE Trans.
on Comm., Vol. 38, No. 9, pp. 1599-1606, Sept. 1990.

[3] H. T. Owens, M. Georgiopoulos and M. Belkerdid "Performance of
BCH and Convolutional Codes in Direct Sequence Spread Spectrum
Packet Radio Networks", Proceedings MILCOM 89, Boston MA, pp.
10.4.1 - 104.5.

43.5.5.
1032



