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Abstmct 

The most significant indicator of the performance of a multiple access 
packet radio network is its packet error probability. Packet errors in a 
multiple access system are a result of noise at the receiver and multiple 
a w s s  interference. 

In this paper we compute an upper bound on the packet error 
probability induced in a direct sequence spread spectrum multiple access 
packet radio network when convolutional or BCH codes are used for the 
encoding of the packets. More specifically, an upper bound on the bit 
error probability is first developed. Then, this upper bound is used to 
compute upper bounds on the packet error probability for BCH codes. 
For convolutional codes, we built a simulator package that aUows us to 
compute upper bounds on the packet error probability by utilizing, as in 
the case of BCH coda, onb the upper bound on the bit error probability. 
The simulator permits the user to enter such parameters as constraint 
length, bit error probability and decode depth of the utilized Viterbi 
decoder. At the end of its run the simulator produces the number and the 
specifii positions of the hits that remained uncorrected by the Viterbi 
decoder from which the packet error probability can be determined. 

From our results a fair comparbn of the BCH and the 
convolutional codes in a direct sequence spread spectrum multiple access 
packet radio network b conducted. 

1. INTRODUCTION 

One of the most important attributes of spread spectrum 
signalling is its multiple access capability. The multiple a m s s  capability 
of a Direct Sequence Spread Spectrum (DSSS) packet radio network is 
examined in this paper. The multiple acta capability of a DSSS packet 
radio network is measured by computing the induced packet error 
probability. The exact evaluation of the packet error probability in direct 
sequence spread spectrum systems is a diffiiult task. The diffiiulty arises 
from the fact that a multiple integral bas to be computed and the 
complexity of the cakuhtion increases exponentiaUy with the number of 
interfering packets. Hence most researchers ([1],[2],[3]) have resorted to 
techniques that upper bound the induced packet error probability. 

In this paper the upper bounds on the packet error probability 
induced in DSSS systems when BCH or convolutional coding is used for 
the encoding of the packets is computed. For BCH coding, an upper 
bound on the bit error probability is first evaluated. This upper bound b 
then used to cakuhte an upper bound on the packet error probability. 
Several problems arise in attempting to bound the packet error 
probability when convolutional coding is used [l]. The main diffculty 
arbes in evaluating exactly the induced union bound. Most analytical 
results are based on bounding the union bound in terms of the transfer 
function of the code. For large signal to noise ratios, upper bounds to the 
union bound require only the fmt few terms of the transfer function to 

be used. For low signal to noise ratios however, such as the case in 
multiple accesS networks, these upper bounds cannot be relied upon. As 
a result, in evaluating the packet error probability of a DSSS system 
when convohtional coding is used, we win simulate a convolutional 
encoder and Viterbi decoder to determine packet error probabilitks 
using the same upper bounds on bE error probabiWRs as those used for 
the BCH codes. A comparative performance between BCH and 
Convolutional codes is then going to be conducted. 

2. THE MODEL - PRELIMINARIES 
The direct sequence spread spectrum multiple access system of 

interest is shown in Figure 1. The received signal can be written as 
fouows: 

K 

- 
1.1 

i-1 

Where si(t) is the spread spectrum signal of the P transmitter, Pi is the 
power of the signal of the P transmitter at the receiver site and n(t) k 
additive white Gaussian nobe with two sided spectral density of Nfl. The 
spread spectrum signal si(t) is the product of the binary data signal, bi(t), 
the spreading signal of the P transmitter, a,(t), and the term cos(o.t + 
0;) where ei is the phase of the P transmitter while a, h the carrier 
frequency. The delay between transmitter i and receiver is equal to 7 ;  
and I#J; = ei - O,?~. The data signal of the P transmitter can be 
expressed as - 

b,(r) = b! PAt-mq (2) 
m r - r  

Where bg) is the mlL bit corresponding to the data signal of the P 
transmitter, The spreading signal of the P transmitter given by 

" 

(3) 
j - 4  

where {a$)) is the signature sequence of the transmitter i In expressions 

r tSA P,(t) = [' 0 fo otherwise 
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Figure 1. Direct Sequence Spread Spectrum Model. 

Hence, in (2) T corresponds to the data bit duration and in (3) T, 
corresponds to the chip duration. The signature sequence (ie. sequence 
of chips) of every transmitter is assumed to be a sequence of 
independent, identiclUydistnbuted,binary random variables, each equally 
likely to be +1 or -1. The signature sequence assigned to every 
transmitter in the SS system b assumed to be independent of the 
sequences assigned to other transmitters. 

Let us now assume that we have a slotted channel and 
transmitters initiate the transmission of a packet of information at the 
beginning of slots. Let us ako assume that K (K>l) packet transmbions 
occur within a slot and a receiver locks on to packet #1 (i.e., the packet 
originated from transmitter 1). Arriving packets at the receiver are 
indexed #1, #2, ..., #K and originate from transmitters 1, 2, ..., K, 
respectively. A packet iE exactly one codeword from an (M, L) BCH code 
(M = number of codeword bits, L = number of information bits) or a 
convolutional code with L information bits of rate UM. The bits of the 
codeword,'in both cases, are indexed from 0 up to M-1. Based on our 
DS-SS multiple access model we can write that the received signal is 

where 

and 

N represents the number of chips per bit. The receiver b assumed to be 
a correlation receiver (Figure 2), so in (4), we set 7,=0, #,=O and we 
used 7i and ei (21iSK) to designate the relative delay and phase of 
packet #i with respect to packet #1, as it b perceived by the receiver. 

As we mentioned before, the receiver locks on to packet #l and 
tries to decode packet #I in the presence of additive white Gaussian 
noise and multiple access interference. Our goal is to determine the 
packet error probability, that is the probability that packet R1 h decoded 
incorrectly by the receiver. We denote thh probability by P@). Since as 

we mentioned in the Introduction, exact evaluation of the packet error 
probability, P@), is computationally intractable we will resort to upper 
bounds. Our effort to find upper bounds on P,(K) will be accomplished 
in two steps. In the fvst step an expression for the bit error probability 
is found, and its upper bounds are derived. In the second step the upper 
bounds on the bit error probability are utilized to compute upper bounds 
on the packet error probability. The upper bound on the packet error 
probability is the measure of performance on which comparison among 
BCH and convolutional codes will be based. 

3. BIT ERROR PROBABlWTY 
The output of the correlation receiver (see Figure 2) 

corresponding to the m' bit (OlmSM-1) of packet #I, b the random 
variable 

K 
Z, =nr + ( P ~ / ~ ) ~ @ T  bt) + 

0 i m i M-1 

(P,/P,)'Er,";(b,", ri,4,)} 
1.2 

(7) 
Each n, is a Gaussian random variable with zero mean and 

variance NdT/4. The random variables n, (OSmSM-1) are independent. 
The variable bA1) represents the ma bit of packet #1; its value is +1 or - 
1. The vector b? represents a pair of consecutive bits of pPcket ti In 
particular, by = (II,,,.~~), bg)), and each data bit bAi) is either +1 or -1. 
Each 7 ,  or #, is a random variable representing the time delay (modub 
T) or the phase angle (modulo 2T), respe&vely, of packet Wi with 
respect to packet #l. We take the range of each T i  to be the interval [0, 
71 and the range of each e, to be the interval [0,2T] 

The function 17 ,,, which appears in (7), represents the 
normalized multiple-access interference due to packet #i. Thh function 
is defined by 

where the functions RT . I  and RT ,, are given by 

I 4 

- I 
- 

Figure 2. Block diagram of correlation receiver. 
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The detector decides that the m" bit of packet #l is +1 or -1 if 
Z > O  or Z,,,<O, respectively (See Figure 2). The m" bit of packet #1 is 
decoded correctly by the above detector if and only if the random 
variable 

1 
x,=n: + (1 + 5 ~ ~ ) ( P i / P l ) ~ ~ , ~ ( ~ ~ , T i , + , ) 1  (11) 

1-2 
0 i m s M-1 

is positive . In (ll), each & is a Gaussian random variable with mean 0 
and variance NJZE,,,, where &=PIT, is the energy per data bit of packet 
#l. The random variables & (OlmlM-1) are StatStiCSUy independent. 

We will now state two propositions that will be helpful in 
deriving a more manageable expression for the random variable X,  
(OlmSM-1). 
promition 1: For the computation of Paw), the r:s (21iIK) need be 
known only to the nearest chip. 

Pew) is independent of the values of the data bit 
sequences {b$) }f : 4 for 1 l i l K .  

The validity of propositions 1 and 2 is based on the fact that 
random signatnre sequences are utilized. An immediate consequence of 
Propositions 1 and 2, is that the random variable X,  in (11) assumes the 
equivalent form 

1-2 

Case 1: Near far ratio = OdB 
The near far ratio equal to OdB corresponds to the situation 

where all the spread spectrum signak arrive with equal power at the 
receiver (i.e. PI= P,= .. = Pr). Under this assumption Pursley et a1 
showed in [I] that for every t,@ the conditional bit error probability , 
p(?, @), is upper bounded by ql, where 

with 

and 

Given the phase (q$) and the delay (ri) of each transferring transmission 
(25i<K), the random variables X ,  (OlmSM-I) can be considered 
approximately independent [2]. Let us now define the random vectors with 

Case 2: Near far ratio f OdB 
The near far ratio f OdB corresponds to the more realistic 

situation where the spread spectrum signak arrive with equal or unequal 
powers at the receiver (i.e., Pi = P, or P, c PI for lSi,jlK). In this case, 
Georgiopoulos has shown in [2] that for every t ,@ the conditional bit 
error probability, p ( t  ,@), is upper bounded by q2, where 

and the vectors 
and E in (20) denotes the expectation operator. 

The reason that we consider the upper bound q,  is because, in 
the unrealistic case where the signak arrive with equal power at the 
receiver site, q, is a tighter upper bound on p(Z ,@) than q, is. 

Uowr bounds on P.M) -BCH Codes 
Let us denote by fT,#(t,#) the pint probability density function 

of the random vectors T and Cp; 7,Cp and f,# were defined in (13a) and 
(13b) respectively. Let us denote by S a random variable which represents 
the number of bits in packet #1 that are in error. S is ako equal to the 
number of random variables X, (OlmlM-1) that are negative (see 
discussion prior to the introduction of equation (11)). 

If an (M, L) BCH code with error correcting capability e, is used 
for the encoding of packet #l we can write 

(13)b 
r̂  = (;2,...:K) 

4 = (&,...&J 

Let us ako denote by p(?, @) the conditional bit error 
probability induced in our spread spectrum system given that 7 =Q and 
#=$. We can write 

1 (14) 
At,&) = Pr(X, < 0 IT=;,+=&) 

= wn: + 1 + ~ ( P , / P , ) ? ~ , o ( ~ , , ~ J < o )  (22) 
1 -2 P , Q  = jJ4Pr(ne  IT=;,~=&K,,(;,~M&: 

with 
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We can now distinguish two cases 
Q- 

We know hom (16) that the conditional bit error probability 
p(f,$) b upper bounded for every f ,  4 by qv Furthermore, the quantity 

Case 2 Near far ratio + OdB 
We know from (20) that the conditional bit error probability 

p(f,#) is upper bounded for every f.4 by ql. Hence we can write once 
more that 

Expressions (24) and (25) give upper bounds on the packet error 
probability P e p )  for the cases of OdB and non OdB near far ratios, 
respectively. The evaluation of P:(K) and P@) requires first the 
computation of 9,. q2 via the expressions provided in formulas (16) - (21). 

4. THE SIMULATOR 

The simulator developed (Figure 3) evaluates upper bounds on 
the packet error probability induced in the DSSS system when 
convolutional codes are used for the encoding of the packets and Viterbi 
decoding is used for the decoding of the packets. The program was 
written in the C language and used on the UNIX system. 

The Data Generator generates the data bits of length L that are 
to be transmitted. An all zero bit stream was transmitted. The actual 
value of the bit stream does not affect the bit or packet error 
probabilities. 

Figure 3. Simulation Model. 

Encoder 
The encoder takes message symbok from the data generator and 

shifts them in the register. Code words for the message bit are then 
calculated using the tap registers specified by the user. 

The error module introduces errors into the code word using a 

random number generator. The probability of an error being introduced 
(bit error probability) b specifEd for each simulation by the user. The 
output of the error module represents the received code while the input 
at the error module represents the transmitted code. 
Decoder 

The Decoder generates branches from each state at a given level 
to the corresponding states at the next level and calculates the path 
metric for each branch. The decoder then determines the branch with the 
lowest distance for each state at the next level and labek this branch as 
the survivor for this state discarding all other branches entering the state. 
For each path that is terminated there win be another path that splits. 
If no path has been terminated, then all the paths simply extend 
themselves. For each path terminated the decoder has to decide which 
one of the other paths will split. The terminated path is now substituted 
by the corresponding sucviving path that was split. The data symbok 
associated with each extended path are then added to the path history. 
After a specified decode depth has been reached the decoder starts 
producing decoded data. M e n  the decode depth E reached the decoder 
determines the path with the lowest path metric and sekcts the oldest 
symbol of that path from its path hitory. 
ComDarator 

The comparator compares the data bit generated with the 
decoded data bit. It a b  determines the number of data bits that were 
decoded incorrectly, as well as the position of the bits in error. As a 
result, the packet error probability can be determined, as well as the 
number of uncorrected bit errors. 

Unaer Bounds on P.W\ - Convolutional Codes 
An all zero bit stream was initially produced by the data generator. 

Every L bits of the data generator corresponds to the mformation bits of 
the simulated packet tl. The aU zero bit data stream generated an all 
zero encoded bit stream. The constraint length 7 rate lL? binary 
convolutional code was used to generate the encoded bit stream from the 
data bit stream. Every M=2L bits of the encoded bit stream represent 
the coded bits of the simulated packet tl. 

The desired transmkion is distorted by multiple access 
interference and additive white Gaussian noise. The cumulative effect of 
these noke sources results in the worst case scenario into errors produced 
independently with probahilily q1 (see equation 16) for the OdB near far 
ratio, and with probability q2 (see equation 20) for the non-0dB near far 
ratio. Note that q1 and q2 depend on N, K, m, and near far ratio 
(PJP,). The error generator produces independent errors on the input 
sequence of the encoded bits with probabilities ql, q,. The resulting 
output sequence of the error generator enters the Viterbi decoder where 
error correction takes place according to the rules specified in the 
description of the Viterbi decoder. The output of the Viterbi decoder 
a data stream that corresponds to the transmitted bit sequence as it b 
perceived by the receiver. Every L bits of the output data stream 
corresponds to the information bits of the simulated packet 61. Sta tb tb  
were gathered with respect to the erroneous data packets in the output 
bit sequence of the V i r b i  decoder. The resulting packet error 
probability was denoted by P:(K). 

The upper bounds on the induced packet error probabilities 
(P:(K), Pi@) for BCH, P@C) for convolutional) are based on the same 
upper bound for the bit error probability. The above scenario represents 
the right framework to compare the performance of BCH codes (P:(K) 
in (24) and P@) in (25)) and convolutional codes (P:(K)) in a DS-SS 
multiple access environment. 

CO" 
In Table I, the performance of the BCH codes (P:(K), P:(K)) 

and the simulated performance of the COIWOIUI~OMI codes (P:(K)) 
shown when N=127, EiJN. = 12 or 15dB, near far ratio 0,3 or 6dB and 
for hrge values of the multiple access interference K. From Table I, we 
observe that for large values of the multiple access interference and small 
block lengths (ie., 60) convolutional codes outperform BCH codes. It is 
worth noting that the numerical results dmloped in 131 show that BCH 
codes outperform wnvohtional codes in DS-SS multiple access 
environments for smaU to moderate values of the multiple access 
interference and small block lengths, as well as for aU values of the 
multiple access interference. and larger block lenghts (Le., 512,1023). 
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There are specific multiple access environments which seem to 
favor convolutional codes. Convolutional codes seem to be preferred in 
indirectly routed packet networks where retransmission delay is an 
important factor of network performance . The retransmission delay at 
repeaters is shorter when convolutional codes are used. Block codes 
encounter a complete block length delay during retransmission. For Line 
of sight packet communications however, the tradeoff presumably favors 
a long block code, since the transmissions typically occur in bursts. 
Convolutional codes are best suited for channek requiring transmission 
of long streams of data. This Is because convolutional codes are matched 
only to blocks of intinite length. For shorter transmission lengths, the 
block code can be more cbsely matched to the required block length. 

In ths work, we compared two encoding schemes, BCH and 
Convolutional codes in the direct sequence multiple acccss environment. 
If the only measure of performance is packet error probability, then it 
seems that BCH codes are the right choice. If other factors affect the 
designer's decision as weU, such as packet delay or decoding complexity, 
then convolutional coding might be the more desirable coding technique. 

TABLE I 

UPPER BOUNDS ON THE PACKET ERROR PROBABILITY P@) 

(EdN, = 12dB. N = 127) 

K= P l p l  min(ag3 BCH CONVM=60] 
(63,30) rate=l/2 

4 6dB 0.018 P:= 1.64E-4 Pi= 7.8E-5 

8 3dB 0.029 Pi= 2.32E-3 Pi= 6.4E-4 

33 OdB 0.026 Pi= 1.438-3 Pi= 3.1E-4 

(EdN, = 15dB, N = 127) 

K= P P I  min(a,.qJ CONV(M=60) 
(63, 30) rate=lR 

5 6dB 0.028 Pi= 2.20E-3 P:= 4.7E-4 

9 3dB 0.029 Pi= 2.32E-3 Pi= 6.4E-4 

34 OdB 0.028 P:= 2.058-3 Pi= 4.78-4 
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