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ABSTRACT 

This paper is concerned with the multiple ac- 
ces capability of an asynchronous, frequency-hopped 
spread-spectrum communication system employing 
error correcting codes. Many current frequency hop- 
ped spread spectrum systems employ error correct- 
ing codes with more than one code symbol per dwell 
interval. In this paper we present a method to com- 
pute the codeword error probability induced in such 
spread spectrum systems. Furthermore, compar- 
isons with spread spectrum systems utilizing one 
code symbol per dwell interval are conducted, and 
useful conclusions are drawn. 

1 Introduction 
Many current frequency hopped spread spectrum 
systems employ error correcting codes with more 
than one code symbol per dwell interval. This paper 
examines the multiple access capability of these sys- 
tems. In particular, we present a method to compute 
the induced codeword error probability. Further- 
more, some useful conclusions are drawn by com- 
paring the codeword error probabilities induced in 
spread spectrum systems utilizing more than one 
versus one (see [1],[2],[3]) code symbols per dwell 
interval. 

2 The Model 
We adopt the model in [4]. The only difference be- 
tween our model and the model in [4] is that our 
spread spectrum system employs s(s > 1) instead of 
one (s = 1) code symbols per dwell interval. The 
ith(1 5 i 5 s) symbol of a dwell intefval is called 

symbol i. We assume, as in [4], that a packet con- 
sists of only one codeword. Hence, we can use the 
words packet and codeword interchangeably. 

We introduce some notation with the aid of Fig- 
ure 1, where s = 2. Each user employs a random 
frequency hopping pattern with frequencies chosen 
uniformly from the set Q = { 1 ,2 , .  . . , q }  and in- 
dependently of the frequencies chosen by the other 
users. We denote the frequency hopping pattern for 
user k as {F:;j = ..., -2,-1,0,1, . . .  }. Suppose 
that K users are transmitting packets and a receiver 
locks on to the packet of user 1. We assume that 
user 1’s packet consists of symbols transmitted us- 
ing frequencies F:, Fl, . . . , Fh ,where N corresponds 
to the the number of dwell intervals per packet. It 
is worth noting that N is equal to r M / s ] ,  where M 
is the number of code symbols per packet. We as- 
sign indices to the I( - 1 interfering packets (i.e., 
user 1,user 2,. . .,user IC). Index k (k E (2,. . . , IC}) 
belongs to the index set JI, 1 5 i 5 s, if user IC 
changes carrier frequency during the reception of 
symbol i of user 1’s packet by the receiver. Obvi- 
ously, U:=, J ,  = (2, .  . . , IC}. Two dwell intervals of 
user k ( k  E (2 , .  . . ,I<}) overlap with the j t h  dwell 
interval of user 1 (see also Figure 1). We define the 
frequency utilized by the dwell interval on the left 
as F:. We also define the collection of frequencies 
Tk, k E J,, as 4,,, and the collection of frequencies 
F3,, , l  _< z 5 s ,  as FJ, 

3 A Method to compute the 
packet error probability 

Suppose that IC users are transmitting packets and a 
receiver locks on to the packet of user 1. Let us also 
assume that the cardinality of the set Ji( 1 _< i 5 s) is 
equal to K,. We define by Pe(IC1,. . . , KS) the prob- 
ability that user 1’s packet (i.e., the desired trans- 
mission) is decoded incorrectly by the receiver. Let 
us denote by S,“, 1 5 n 5 N ;  1 5 n, the number of 
code symbols of user 1’s packet, from dwell interval 
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* I  t n s  1 to  dwell interval n, that are in error. Then, 

M 
Pe(K1, ..., K6)= Pr(S,N=m) (1) 

where e is the error correction capability of the code. 
Let us define random vectrors Tj, their realizations 
tj, and binary valued functions gi(s, yi) as follows: 

m=e+l 

Tj = (qFjF;+lF;+l) tj = (f;fif;+lfi+l) 
; j  = 1,2, ... 

where z takes values from the set Q (Q = 
{1,2,. . . , q } )  and 'y; is a collection of K; variables, 
each one of which as_sumes values from the set Q. 
For example, gl(ql, Fj,l) is a random variable whose 
value indicates whether the j t h  dwell interval of user 
1's packet is hit from the left by some user with in- 
dex in the set 51, or not hit from the left by any user 
with index in the index set J1 (see also Figure 1). 

Let us use the symbols @ and E to denote the 
s u m  of two and the sum of an arbitrary number of 
binary (0,l)  variables, respectively. We define the 
s u m  of an arbitrary number of binary variables to be 
equal to one if at least one of the variables is equal 
to one, and zero otherwise. We finally denote by 
Hi,  1 5 i 5 s; 1 5 I 5 N, binary random variables 
such that Hi is equal to one if the ith symbol in the 
lth dwell interval of user 1's packet is hit, and zero 
otherwise. 

Our objective is to describe a method which en- 
ables us to compute the probabilities Pr[SF = m] 
in (1). We first present a useful Lemma. 
Lemma 1 For every n 2 2, for all m such that 0 5 
m 5 ~ ( n - l ) ,  and all tl E Q Z K ,  the conditional prob- 
ability Pr[S; = m(T1 = tl] depends on tl through 
the values of the functions g;(fi,f2,i), 1 L. i 5 s. 
Proof We assume that tl is such that g(fi,&,;) = 
wi(w; = 0, I) ,  1 5 i 5 s. We can write 

I 1  

i=l U=; o=l 

1=3 k l  

ml = ~ ~ [ ~ [ ~ w u ~ ~ g . ( ~ l , ~ 3 , u ~ l + C C ~ ~  k 3  i=l = ml 

(2) 
i=l o=i u s 1  

Now because of the assumption that each of the 
frequencies utilized in a dwell interval were chosen 
uniformly over Q = {1,2,. . . , q }  and independently 
of the other frequencies, it can be shown that the 
probability in (2) is independent of fi. Thus, Pr[S," = 
mlT1 = tl] depends on tl only through the valu? of 
the functions gi(1 5 i 5 s) at the points (fi,fz,;), 
respectively. One of the ways of showing that the 
probability in (2) is independent of fi is induction 
(i.e., we prove that this statement is true for n=2 
and m=0,1,2, we assume that it is true for n - 1 and 
all possible m choices and then we prove that it is 
true for n and all possible m choices). The details 
are ommitted due to  lack of space. 0 

Lemma 1 states an almost obvious fact (see also 
Figure 1). Given tl the number of erroneous code 
symbols of user 1's packet, from dwell interval two 
and beyond, depend on whether each one of the 
groups of users with indices in the index sets Ji, 1 5 
i 5 s, hits or not the second dwell interval of user 
1's packet from the left. Due to Lemma 1 we can 
write 

Pr[S," =mlT'=tl] =s(n,m;vi,...,w6) 

if g(fl,X,,> = w; for 1 5 i 5 s 

abilities s(n, m; wl, . . . ,we)  satisfy certain recursive 
expressions 
Theorem 1 
The conditional probabilities s(n, m; V I , .  . . , v,) (n 2 
3,O 5 m 5 s(n - I), w l , .  . . , ws = 0 , l )  satisfy the fol- 
lowing recursive expressions. 

The next theorem shows that the conditional prob- 

s(n, m; w 1 , .  . . ,v6) = 

6 s  t 

with initial conditions 
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where 

c , ( j t ,  IC,) = (1 - 2q-'IKt if l e  = k, = o 

~ , ( j , ,  IC,) = (1 - q-l)K* - (1 - 2q-1)K' (6) 
if j ,  = 0, k, = 1 or j ,  = 1, k, = 0 

ct(j:, k> = 1 - [Ct(O, 0) + c:(1,0) + c,(0,1)] 
if j ,  = k, = 1 

and S denotes the delta function.0 
The proof of Theorem 1 can be found in [7] .  The 

find step in our effort to compute pr[S,N = m] is to 
express this probability in terms of the conditional 
probabilities s(n,  m; V I , .  . . , u s ) ,  which can be evalu- 
ated recursively with the help of formula (3). It can 
be shown that 

PT[S;IT = rn] = 

s s  I 

S 

m1,. . . , ms>(l - 9-7 a i ( j i ) C t ( k ,  m,) (7) 
i=l 

The proof of formula (7) can also be found in 
[7].Equations (3) -(7) give us a recursive algorithm, 
capable of computing Pr[Sy  = m] for all possible m 
choices. As a result, Pe(I<l, . . . , IC,) can be readily 
determined from (1). 

4 Numerical Results 
In an effort to obtain numerical results in a compact 
form we assume that the arrivals of the interfering 
users (i.e., users 2 , 3 , .  . . , K ) ,  at the receiver, are uni- 
formly distributed within a dwell interval of user 1's 

packet (i.e., the desired transmission). Then, we de- 
fine the average packet error probability Pe(K) as 
follows: 

Pe(J<l,. . . ,  Ks) 
The average packet error probability is chosen to 

be the measure of performance of our spread spec- 
trum system. It is an indicator of the multiple ac- 
cess capability of the system. In Table 1, we include 
the values of the average packet error probability 
induced, when the (32,16), (64,32) extended Reed- 
Solomon codes are used for the encoding of the pack- 
ets, while s = 2 and q = 50 or 100. Similar results 
are obtained when s=4 (see [7]). 

5 Comments-Conclusions 
The employment of Reed-Solomon (RS) error cor- 
recting codes is justified by the fact that RS codes 
are most successful in correcting bursts of errors. 
Error bursts are most frequent in frequency hopped 
spread spectrum (FH-SS) systems. It is also worth 
noting, that C. D. Frank et al showed in [5] that RS 
codes outperform convolutional codes in a frequency 
hopping system utilizing one code symbol per dwell 
interval. Furthermore, numerical results quantifying 
the performance of any block code can be obtained 
readily, since the analysis, presented in section 3, is 
valid for any member of the class of block codes. 

The assumption that a symbol hit results in a 
symbol error was made for analytical simplicity. If 
we were to abolish this assumption, we would have to 
compute the symbol error probability and take into 
consideration the interdependence of symbol errors, 
both of which are difficult tasks, beyond the scope 
of this work. Note that in this paper we considered 
only the interdependence of symbol hits. The com- 
putational complexity involved in the evaluation of 
the symbol error probability for a frequency hopped 
system utilizing BFSK modulation is addressed in 
[6]. Finally, it is worth mentioning that this assump- 
tion leads us to upper bounds on the induced packet 
error probabilities. 

Most researchers in the field ([1],[2],[3]) have con- 
centrated on evaluating codeword error probabili- 
ties for frequency hopped spread spectrum systems 
employing one code symbol per dwell interval. We 
present these results in Table 2. A comparison of 
the results in Tables 1 and 2, reveals that RS codes 
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are most efficient for s = 1 and small K values or for 
s > 1 and large K values. It can be shown that this 
behavior is exhibited by any member of the class of 
block codes. Since for most packet error probabili- 
ties of interest (i.e., packet error probabilities smaller 
than lo-’) the entries in Table 2 are smaller than the 
entries in Table 1, we conclude that FH-SS systems 
with one code symbol per dwell interval are more 
efficient in combatting multiple access interference 
than FH-SS systems with s(s > 1) code symbols per 
dwell interval, when block codes (e.g., RS codes) are 
used for the encoding of the packets. For FH-SS sys- 
tems with s(s > 1) code symbols per dwell interval, 
it is worth examining whether interleaving the RS 
codes to degree s improves the performance of the 
system. 

In this paper, we have computed the average 
packet(codeword) error probability induced in a fre- 
quency hopped spread spectrum system, when more 
than one code symbols are contained per dwell in- 
terval, and when the (32,16),(64,32) or extended RS 
codes are used for the encoding of the packets. Fur- 
thermore, some comparisons with already existing 
results for FH-SS systems employing one code sym- 
bol per dwell interval were conducted, and useful 
conclusions were drawn. 
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Table 1 
Exact Average Packet Error Probabilities, when 

s=2 

RS-( 32,16),e=8,q=50 
K Pe(K) 
2 0.67800528D-04 
3 0.11612402D-02 
4 0.95090789D-02 
5 0.29878090D-01 
6 0.674808481)-01 
7 0.12367458 
8 0.19636776 
9 0.28102519 
10 0.37202369 

RS-( 32,16) ,e=8 ,q= 100 
K Pe(K) 
2 0.23636125D-05 
3 0.66687872D-04 
4 0.44409735D-03 
5 0.16338776D-02 
6 0.43371069D-02 
7 0.93578479D-02 
8 0.17491890D-01 
9 0.29428593D-01 
10 0.45679092D-01 

RS-(64,32),e=16,q=50 RS-(64,32),e=16,q=lOO 
K Pe(K) K PXK) 
2 0.11299282D-06 3 0.10977481D-06 
3 0.37129789D-04 4 0.34243895D-05 
4 0.84250091D-03 5 0.36051325D-04 
5 0.62876883D-02 6 0.20811685D-03 
6 0.25375313D-01 7 0.81902921D-03 
7 0.69370159D-01 8 0.24700688D-02 

9 0.61248515D-02 
10 0.13071485D-01 

8 0.14520923 
9 0.25083862 
10 0.37579355 
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Table 2 
Packet Error Probabilities,when s=l 

RS-(32,16),e=8,q=50 
K Pe(K) 
2 0.29258205D-05 
3 0.55244200D-03 
4 0.79367870D-02 
5 0.40181555D-01 
6 0.11609753 
7 0.23771936 
8 0.38780563 
9 0.54129833 
10 0.67758863 

RS-(32,16),e=8,q=100 
K Pe(K) 
2 0.90666D-08 
3 0.281282071)-05 
4 0.65672672D-04 

6 0.24280649D-02 

8 0.18989771D-01 

10 0.70294109D-01 

5 0.53292023D-03 

7 0.76916175D-02 

9 0.39122298D-01 

RS-(64,32),e=Wq=50 RS-(64,32),e=16,q=lOO 
K Pe(K) K Pe(K) 
2 0.3347D-09 3 0.3111D-09 
3 0.53409047D-05 4 0.1070926D-06 
4 0.65358664D-03 5 0.50014987D-05 
5 0.11112115D-01 6 0.78417104D-04 
6 0.65402557D-01 7 0.61816346D-03 
7 0.20134859 8 0.30402676D-02 

9 0.62152310 10 0.28616755D-01 
10 0.79127206 

8 0.40677557 9 0.10615931D-01 

USER 1 

t 

i t 1 I 
I 

I USER 1 kl € J1 I 
I 1 

t 
USER k2 J2 

Figure 1: Users 1 ,  kl J l ,  

k2 J2 a t  the receiver s i t e  
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