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ABSTRACT 

 
In this paper we present an automatic algorithm for the removal of echoes that are caused due to anomalous propagation (AP) 

from the lower radar elevation. The algorithm uses textural information as well as intensity characteristics of reflectivity 

maps that are obtained from the two lower radar elevations. The texture of the reflectivity maps is analyzed with the help of 

multifractals. We present examples that illustrate the efficiency of our algorithm. We compare our algorithm with a manual 

algorithm that was developed by NASA/TRMM for AP removal, in terms of total rain accumulation and in terms of the 

number of pixels removed. 
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1. INTRODUCTION 

 
Geophysical systems are usually complex due to their non-linear dynamics. Several attempts to analyze these signals 

by their statistical properties have been made in the literature
1,2,3

. Traditional approaches include histogram analysis, 

examination of autocorrelation functions and energy spectra. In many cases the signal representation is in the form of an 

image. For instance, the images can be radar reflectivity maps, or satellite images. 

 

Weather radars are designed to detect precipitation in the atmosphere, and echoes resulting from other sources are 

usually undesired. Examples of such targets are man-made structures, radar-chaff ejected by military aircraft, birds, insects, 

and even the earth's surface. Scattering resulting from antenna sidelobes striking the earth close-in to the radar are referred to 

as ground clutter. Because these objectionable echoes are at short ranges, they are easily removed in the signal processing. 

However, other more objectionable ground clutter may result in cases of strong vertical gradient of temperature and humidity. 

Here the radar beam undergoes unusual refraction and may strike the earth repeatedly for distances of hundreds of kilometers 

producing so called anomalous propagation (AP) while it travels. 

 

Since AP echo intensities can exceed 60dBZ, this may create serious problems for geophysical algorithms, such as 

estimation of rain rate. Therefore, it is important to study the characteristics of AP so that it can be suppressed. AP 

suppression is the process of removing these spurious echoes from the data. This is often referred to as Quality Control (QC). 

Several algorithms for AP removal and rain classification have been proposed in the literature
4,5,6,7

. These algorithms are 

mainly based on the analysis of radar reflectivity, radial velocity as well as multifractal analysis
8,9,10,11

. 

 

Multifractals
12,13

 have been proved to be useful in the analysis of complex geophysical systems
14,15

. They are based 

on the concept of scale invariance. Scale invariance analysis is a framework for developing statistical tools that account for 

all available scales at once. Scale invariance is a symmetry that is respected by systems whose large and small scales are 

related by a scale changing operation involving only the scale ratio. This leads to the fact that these systems do not have a 

characteristic scale. In multifractal analysis we seek for a power-law behavior of a partition function that is constructed from 

a measure, with respect to the scale parameter under consideration. If a single power-law exponent is sufficient to 

characterize all the statistics within a whole family, then we refer to the model as monofractal and we talk about monoscaling 

behavior. If more than one exponent is needed to characterize the statistical behavior of the signal then we refer to the model 

as multifractal and we talk about multiscaling behavior. Multifractals can be generated by different physical processes such 

as multiplicative cascade processes and turbulence. Self-similarity (and hence isotropy) is often assumed in scale invariant 

models and in analysis techniques.  



In this paper we have developed an algorithm for the removal of AP from NEXRAD (Next Generation Weather 

Radar) images. Radar reflectivity is used for detection of AP. More specifically, reflectivity obtained from the two lower 

radar elevations is utilized. Rainfall and AP can not be separated using only the reflectivity intensity, since it can vary for 

both from negative dBz values to values greater than 60 dBZ. Since AP possesses larger variability than rainfall, the textural 

characteristics of reflectivity can be used in order to separate AP from useful rainfall. Even though AP echo intensities can 

exceed 60dBz, average rain intensities are usually stronger in a relatively large area. Our algorithm combines textural 

characteristics that are extracted with the help of multifractals and intensity characteristics of reflectivity in order to achieve 

efficient AP removal. 

 

In cases where the goal is estimation of total accumulation, it would be sufficient for an algorithm to provide 

accurate information about the percentages of AP and rainfall. In such cases, specific classification of each pixel as AP or 

not, is not so important. In this paper we are interested in the more difficult task of detecting AP in a pixel basis which is 

useful in cases where the goal is radar/rain-gauge calibration, radar/satellite calibration, or even radar/radar calibration. 

 

 This paper is organized as follows: In section 2 an introduction to multifractals is presented, followed by the 

description of our algorithm in section 3. In section 4 we present some results and examples of AP removal. Finally in section 

5 we conclude with some closing remarks. 

 

 

 

2. MULTIFRACTAL ANALYSIS 

 
As it was mentioned in the introduction, the scaling behavior of signals can be expressed by different scale-

independent relationships. In multifractal analysis one looks for a power-law relation between a partition function that is 

constructed from a measure and the scale parameter under consideration. Assume that the signal studied is N-dimensional: 

f(x1, x2,... xN). One power-law relation describes the variation of the statistical moments of the measure µq(s, x1, x2,... xN) with 

scale s. The measure µq(s, x1, x2,... xN) at scale s at the location (x1, x2,... xN) of the N-dimensional signal is defined as:  

 

 

µq(s, x1, x2,... xN) = εs

q

 (x1, x2,... xN)                                      (1) 

 

 

where 
                                                                 x1 –s/2            xN –s/2 

εs

 

 (x1, x2,... xN)   = ∑ . . .∑  f(x1’, x2’,... xN’)                                                                (2) 

                                                                             x1’=x1 –s/2     xN’ = xN –s/2 

 

 

is the sum of the function f inside a “box” of size s × s × ... × s. The partition function is defined as the ensemble average 

<εs

q

> q-th moment of the signal studied. Then the power law relation is defined as: 

  

 

< εs

q

 > ∼ s
K(q)                                                                                                                                                         

(3) 

 

 

The function K(q) is the so called moment scaling function and characterizes the multifractal behavior of the signal f. If the 

function K(q) is a straight line then a single power-law exponent (for instance K(2)) is sufficient to characterize all the 

statistics within a whole family and then we talk about monofractality. If the function K(q) is not a straight line then more 

than one exponent is needed to characterize the statistical behavior of the signal and we talk about multifractality.  

 

Practically the ensemble average < εs

q

 > is approximated by the spatial average of εs

q

 under the assumption of 

temporal stationarity of the function f. If we consider applying the log at both sides of (3), then the function K(q) is estimated 



from the slope of the line that best fits the points (log s,  log <εs

q

>) s = s1, s2,...sL where s1 is the smallest available scale and sL 

is the largest available scale. 

 
 It is common instead of the function K(q) to use the function C(q) which is defined as: 

 

C(q) = K(q)/q                                                                                    (4) 

 

 

 

3. THE AP REMOVAL ALGORITHM 

 
 The algorithm for AP removal uses the reflectivity images obtained from the two lower radar elevations. The images 

as they are obtained from the radar in polar coordinates but in order to simplify our analysis we transform them in Cartesian 

coordinates, with the radar being at the center of the image. We concentrate in AP removal for the lower elevation. Each 

pixel corresponds to 1 × 1 km. As it was mentioned earlier, the algorithm utilizes both textural and intensity information. 

Next, the algorithmic steps are presented. 

 

 

3.1. Step 1: Usage of Multifractal Exponents  

 
 In the first step of the algorithm the exponents K(q) or C(q) are computed. We consider the reflectivity images 

obtained from the two lower elevations of the radar. For this step reflectivity is not considered in dBZ but in linear terms. 

According to the discussion in section 2, the signal under consideration is 3-dimensional. We define the measure at scale 1as:  

 

µq (scale 1,x,y,z) = [f(x,y,z)]
q
                                                                             (5)   

 

We define the measure at scale 2 as:                                                                        
           x+1         y+1        2

 

                                                                µq (scale 2,x,y) =[∑   ∑  ∑ f(x’,y’,z’)]
q

                                                      (6) 

               x’=x-1   y’= y-1    z’= 1 

 

The coordinates (x,y,z) correspond to the pixel that exists in the (x,y) position of the z-th elevation. In order to be accurate 

with the definition of the measure as it is defined in (1) and (2), we should consider the fact that the radar beam widens as it 

travels away from the radar. The measure at each scale s is computed in a 3-dimensional “box” whose volume we need to 

relate with the scale s: 

s = 
3

√

V                                                                                            (7) 

 

where V is the volume of the “box”. For scale 1 the measure µq(scale 1,x,y,z) as it is defined in equation (5) is nothing more 

but the reflectivity value that corresponds to the pixel with coordinates (x,y,z) raised to a power equal to q. The volume of the 

“box” in this case is V = 1 × 1 × A⋅R = A⋅R where R is the distance from the radar and A is a constant. Here we have 

assumed that the beam widens linearly with respect to R. According to equation (7) we can agree that s = 
3

√

 A⋅


R . For scale 2, 

the volume of the “box” is 3 × 3 × 2A⋅R = 18 A⋅R. According to (7) the scale is s = 
3

√

 18


A


 R. 

 

The power-law relation is the same as in equation (3). It was mentioned earlier that the function K(q) is estimated 

from the slope of the line that best fits the points (log s, log <εs

q

>). In our case s = scale 1, scale 2. According to our previous 

discussion the scale seems to be dependent on the distance from the radar. It is easy to show that the exponents K(q) (or 

consecutively C(q)) are not. The term log (scale 1) can be written as log (scale 1) = 1/3 [log 1] + 1/3 [log A⋅R] and the term 

log (scale 2) can be written as log (scale 2) = 1/3 [log 18] + 1/3 [log A⋅R]. The slope of the line that best fits the points (log s, 

log <εs

q

>) is equal to the slope of the line that best fits the points (log s + B, log <εs

q

>) where B is a constant. In our case B = 

1/3 [log A⋅R]. As a result, scale 1 can be equivalently selected equal to 1 and scale 2 equal to 
3

√

 18 which are both 

independent of the distance from the radar. 



In order to be able to separate AP from rain we need to compute the exponents K(q) or C(q) in small windows of the 

images. More specifically, the ensemble average in equation (3) is approximated with the spatial average of the measures in 

small 3-dimensional windows of size w × w × 2: 

 

                                                                  x+w/2        y+w/2        2   

 

< εs

q

 >x,y =  (1/2w
2
)  ∑    ∑   ∑ µq(s,x’,y’,z’)                                                                           (8) 

                                                                                   x’=x-w/2   y’= y-w/2    z = 1 
 

for scale 1 and: 

                                                                            x+w/2        y+w/2         

 

< εs

q

 >x,y =  (1/w
2
)  ∑    ∑ µq(s,x’,y’)                                                                                   (9) 

                                                                                           x’=x-w/2   y’= y-w/2     
 

for scale 2. In equations (8) and (9) w is the length of the averaging window in the x and y directions.  For instance, in Figure 

1, w = 5. 

 

 From equations (3), (8) and (9), the exponents Kx,y(q) are computed. Figure 1 illustrates how this step of the 

algorithm is implemented. A 5 × 5 portion of the first elevation and the corresponding 5 × 5 portion of the second elevation 

centered at locations (x, y,1) and (x, y,2) respectively are shown. The measures µq (scale 1,x’,y’,z’) are computed as the 

reflectivity values corresponding to the pixels with coordinates  (x’,y’,z’) raised to the q-th power. Then, the approximate 

ensemble average at location  (x,y) is the average of the measure µq(scale 1,x’,y’,z’) over all pixels for both portions. The 

measure µq (scale 2,x’,y’) is computed as the reflectivity averaged in a “box” located at (x’,y’) which is then raised to the q-th 

power. One such “box” located at (x+1,y+1) consists of the group of “dark gray” pixels (including the “white” pixels) as it is 

shown in Figure 1. Then, the approximate ensemble average at location  (x,y) is the average of the measure µq(scale 2,x’,y’) 

over all (x’,y’).        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 1: Computation of the measures and the approximate ensemble average using the corresponding portions of the reflectivity images 

obtained from the two radar elevations. The “white” squares represent single pixels at locations (x+1,y+1,1) and (x+1,y+1,2) 

respectively. The group of “dark gray” squares (including the “white” squares) define a “box” at scale 2 and at location 

(x+1,y+1).  
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 AP is characterized by larger variability than rain. It can be shown than larger variability, generally leads to larger 

K(q) or C(q) exponents. We have used two exponents: Cx,y(2) and Cx,y(8). For the computation of the approximate ensemble 

average we used 3-dimensional averaging windows of size w × w × 2 = 8 × 8 × 2. In order to reduce the variability of the two 

measures and to increase their robustness, we convolve each one with a two-dimensional moving average filter of size 8 × 8. 

For each of the exponents Cx,y(2) and Cx,y(8) we have specified a threshold (TH1 and TH2 respectively). If at least one of the 

two exponents at a location (x,y) exceeds the corresponding threshold the pixel (x,y) is characterized as an AP pixel. 

 

 

3.2. Step 2: Pixel Reactivation Based on Reflectivity Intensity and Multifractal Exponents 

 

 The second step of the algorithm is applied in order to fix the problem of removing pixels that correspond to actual 

rainfall that occurred because of the previous step. This problem occurred because the thresholds that where applied in step 1 

where relatively large, to make sure that most of the AP is removed. In this part of the algorithm we reactivate a pixel located 

at (x,y) of the first elevation, if the following properties hold:  

 

1. The average intensity in dBZ in a window of size p1 × p1 of the first elevation centered at (x,y) is larger than a specific 

threshold TH1

int

 or the average intensity in dBZ in windows of size p2 × p2 of the second elevation centered at (x,y) is 

larger than a specific threshold TH2

int

. 

 

AND 

 

2. The exponent Cx,y(2) is smaller than a threshold TH1’ < TH1 and Cx,y(8) is smaller than a threshold TH2’ < TH2 at the 

same location (x,y).  

 

Basically, this step considers that AP has been removed, so that less strict thresholds than TH1 and TH2, namely 

TH1’ and TH2’ can be applied to the multifractal exponents. At the same time we take in account that it is not common for 

reflectivity corresponding to rain to have very sharp transitions. For instance it is not common to have an area with 

reflectivity larger than 30-40 dBZ that suddenly changes to 0dBZ. For that reason if the average intensity in dBZ in a window 

of size p1 × p1 centered at pixel (x,y) of the first elevation is larger than a threshold TH1

int

, we reactivate this pixel (if it not 

already active), since it is possible that the edge of the rain has been erroneously removed in step 1. If the edges of the rain 

were not erroneously removed then the average in the p1 × p1 window would be relatively small (hopefully smaller than the 

threshold TH1

int  

) so that no action is taking place. Also, if p1 is relatively large, then the probability of reactivating pixels that 

correspond to AP is small since it is not common for AP to have a large average reflectivity value in a relatively large area. 

We have selected p1 = 20 and TH1

int

 = 25dBZ. A similar approach is taken for the second elevation. In this case it is even less 

probable for AP to have large reflectivity values so that an averaging window of smaller size can be used. We have used p2 = 

5 and TH2

int

 = 20dBZ.  

 

We apply step 2 iteratively (three iterations) to make sure that the all pixels that correspond to rain edges are 

reactivated. We must note that for the averages that are mentioned in property 1 only dBZ values larger than 0 are considered.  

  

 

3.3. Step 3: Final Intensity Threshold 

 

 The last step is removal of pixels located at (x,y) for which the average in dBZ in a window of size p3 × p3 around 

them is smaller than a noise threshold TH3

int

. This step is applied to the reflectivity image obtained from the lower radar 

elevation. We have selected p3 = 3 and TH3

int

 = 4 dBZ. 

 

 

4. RESULTS AND EXAMPLES 

 
 In this section we compare our algorithm with an algorithm provided by NASA/TRMM called Gvbox, in terms of 

rain accumulation, and in terms of the number of pixels removed. It is important to mention that it is not easy to acquire 

accurate information about the status of an echo (AP or rain). Even a manual algorithm such as Gvbox does not eliminate 



100% of AP and does not retain 100% of rain. Sometimes this is due to the fact that the information provided is not sufficient 

so that it is nearly impossible even for an expert observer to distinguish AP from rain. Another reason is that the AP removal 

algorithm has to be applied to an enormously large number of cases so that erroneous removal of light rain or incorrect 

preservation of small AP areas due to overlooking is a common event.  

 

 We have selected 24 hours of NEXRAD data obtained from radar located at Melbourne Florida. We selected data 

from the 11
th

 of June 99, 11 AM up to the 12
th

 of June 99, 11 AM. This was a rainy day that included many interesting cases 

of AP mixed with rain. It is fairer to test our algorithm on such a day than on a day where no AP or rain occurred because the 

results would have been misleading. The radar performs a complete volume scan every 5 minutes so that we have 12 volume 

scans per hour. We are interested in the two lower elevations. The vertical angles for the two lower elevations are 

approximately 0.48
o
 and 1.4

o
 respectively. The reflectivity data are provided in polar coordinates (r,θ) where r is the distance 

from the radar and θ is the horizontal angle. The distance resolution is ∆r = 1 km and the horizontal angle resolution is 

approximately ∆θ = 0.96
o
. We consider a maximum distance from the radar rmax = 200 km. We transform the reflectivity 

maps into Cartesian coordinates, so that the reflectivity maps are in the form of images of size 400 × 400 pixels, where each 

pixel corresponds to an area of 1 km
2
. 

 

 The results of the comparison between Gvbox and our algorithm are shown in Tables 1, 2, 3 and 4. In Table 1 we 

present the total number of pixels with corresponding reflectivity higher than specific dB levels, namely 0dB, 10dB, 20dB, 

30dB, 40dB and 50dB for the unprocessed reflectivity images, the images processed with Gvbox, and the images processed 

with our algorithm. Table 2 presents the number of pixels with corresponding reflectivity higher than specific dB levels, that 

where identified as AP pixels by our algorithm and rain by Gvbox, rain by our algorithm and AP by Gvbox and rain or AP by 

both algorithms (agreement). In Table 3 we present the results of Table 2 but in terms of percentages with respect to the total 

number of pixels of the unprocessed images with corresponding reflectivity higher than specific dB levels. Finally, in Table 4 

we show the total rain accumulation as it is estimated using the unprocessed images, the processed images using Gvbox and 

the processed images using our algorithm, for areas of 400 × 400 km
2 

and 200 × 200 km
2
 around the radar.  For estimating 

the total rainfall the standard Z-R relationship Z = 300 R
1.5

 was used. Using this relationship the reflectivity Z corresponding 

to each pixel is transformed into rainrate R. 

 

 

 

 Corresponding Reflectivity Larger Than:  

Number of pixels in: 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 

The unprocessed images: 6417191 3742036 2385433 1180567 368183 26106 

Images processed by Gvbox: 4068025 3431370 2353456 1177063 367764 26100 

Images processed by our algorithm: 4291970 3462763 2355676 1176836 367677 26091 

       

Table 1: Total number of pixels: unprocessed images, images processed by Gvbox and images processed by our algorithm 

       

 Corresponding Reflectivity Larger Than:   

Number of pixels classified as: 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 

Rain by our algorithm and as AP by Gvbox: 296431 65962 16472 6194 1794 127 

AP by our algorithm and as rain by Gvbox: 71265 33396 13633 6143 1822 136 

AP or Rain by both algorithms: 6049495 3642678 2355328 1168230 364567 25843 

       

Table 2: Total number of pixels classified as: rain by our algorithm and AP by Gvbox, AP by our algorithm and rain 

               by Gvbox, and AP or rain by both algorithms      

 

 

 

 

 

 



 

 

 
 Corresponding Reflectivity Larger Than:  

Percentage of pixels classified as: 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 

Rain by our algorithm and as AP by Gvbox: 4.6 1.8 0.7 0.5 0.5 0.5 

AP by our algorithm and as rain by Gvbox: 1.1 0.9 0.6 0.5 0.5 0.5 

AP or Rain by both algorithms: 94.3 97.3 98.7 99.0 99.0 99.0 

       

Table 3: Percentage of pixels classified as: rain by our algorithm and AP by Gvbox, AP by our algorithm and rain 

               by Gvbox, and AP or rain by both algorithms      

       

Total Rain Accum. per km
2 
(in 400××××400 km

2
): mm/day % (of rain with respect to the unproc. images) 

Before processing: 1.98  100.0    

After processing with Gvbox: 1.93  97.5    

After processing with our algorithm: 1.94  97.8    

       

Total Rain Accum. per km
2 
(in 200××××200 km

2
):       

Before processing: 1.21  100.0    

After processing with Gvbox: 1.09  90.4    

After processing with our algorithm: 1.10  90.9    

       
Table 4: Total accumulation estimated from the unprocessed images, from images  processed     
              By Gvbox and from the images processed by our algorithm  

 
 

 

 From the results presented in Tables 1, 2 and 3, we see that the two algorithms (Gvbox and ours) agree nicely in 

terms of pixels removed or retained. The two algorithms have agreed in classifying 94.3% of all pixels corresponding to 

positive reflectivity as either AP or rain. For pixels corresponding to reflectivity larger than 30dB, which is more important 

since it indicates stronger rain, the two algorithms agree by 99%.  

 

 Table 4, shows the importance of the application of an AP removal algorithm. In an area of 400 × 400 km
2
 around 

the radar the rainfall percentage with respect to rainfall that was estimated from the unprocessed images, was 97.5% using 

Gvbox and 97.8% using our algorithm. In an area of 200 × 200 km
2
 around the radar the rainfall percentage with respect to 

rainfall that was estimated from the unprocessed images, was only 90.4% using Gvbox and only 90.9% using our algorithm. 

These results verify that most of AP appears close to the radar.  

 
 Next, we present some examples of AP removal. In Figures 2 and 3 we present the reflectivity images obtained by 

the first radar elevation, the second radar elevation, the processed image using Gvbox and the image processed by our 

algorithm. The coordinates x=0, y=0 is where the radar is located. Figure 2 (a) illustrates an unprocessed image where AP 

and rain are mixed close to the radar. The region with a large density of minute spots (region approximately within 

coordinates x = -100 to 0 and y = -50 to 50 in Figure 2 (a)) represents AP. We notice the large variability of AP. The area of 

corresponding region in the second elevation is smaller, and the reflectivity values are lower as it is shown in Figure 2 (b). 

We notice then that the vertical reflectivity gradient is large. Figure 2 (c) shows the image processed by Gvbox and Figure 2 

(d) shows the image processed by our algorithm. The processed images are similar for both algorithms. Most of the 

differences are related to lower reflectivity values, which indicate light rain. Furthermore, these pixels hold high uncertainty 

as to whether they represent rain or AP. 

 

 



 

5. CONCLUSIONS 

 
 The proposed automated algorithm has a similar performance to the manual algorithm Gvbox provided by 

NASA/TRMM. Considering the labor hours that need to be dedicated to the quality control of radar images and the closeness 

of the results produced by Gvbox and our algorithm, we believe that the proposed algorithm is an excellent alternative for 

quality control. For the results presented in this paper only radar reflectivity was used. Therefore the algorithm can be used 

for images obtained by different types of radar as well as satellite images.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2: (a) Unprocessed image, first elevation, (b) Unprocessed image, second elevation, (c) Processed image using Gvbox, first 

elevation, (d) Processed images using our algorithm, first elevation. 
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Figure 3: (a) Unprocessed image, first elevation, (b) Unprocessed image, second elevation, (c) Processed image using Gvbox, first 

elevation, (d) Processed images using our algorithm, first elevation. 
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