
Communicated by David S. Touretzky

A Neural Net Associative Memory for Real-Time
Applications

Gregory L. Heileman
Department of Computer Engineering,
University of Central Florida, Orlando, FL 32816 USA

George M. Papadourakis
Department of Computer Science,
University of Crete, h k l i o n , Crete, Greece

Michael Georgiopoulos
Department of Electrical Engineering,
University of Central Florida, Orlando, FL 32816 USA

A parallel hardware implementation of the associative memory neu-
ral network introduced by Hopfield is described. The design utilizes
the Geometric Arithmetic Parallel Processor (GAPP), a commercially
available single-chip VLSI general-purpose array processor consisting
of 72 processing elements. The ability to cascade these chips allows
large arrays of processors to be easily constructed and used to imple-
ment the Hopfield network. The memory requirements and processing
times of such arrays are analyzed based on the number of nodes in the
network and the number of exemplar patterns. Compared with other
digital implementations, this design yields significant improvements
in runtime performance and offers the capability of using large neural
network associative memories in real-time applications.

1 Introduction

Data stored in an associative memory are accessed by their contents. This
is in contrast to random-access memory (RAM) in which data items are
accessed according to their address. The ability to retrieve data by asso-
ciation is a very powerful technique required in many high-volume in-
formation processing applications. For example, associative memory has
been used to perform real-time radar tracking in an antiballistic missile
environment. They have also been proposed for use in database appli-
cations, image processing, and computer vision. A major advantage that
associative memory offers over RAM is the capability of rapidly retriev-
ing data through the use of parallel search and comparison operations;
however, this is achieved at some cost. The ability to search the contents

Neural Computation 2, 107-115 (1990) @ 1990 Massachusetts Institute of Technology

108 G.L. Heileman, G.M. Papadourakis, and M. Georgiopoulos

of a traditional associative memory in a fully parallel fashion requires
the use of a substantial amount of hardware for control logic. Until re-
cently, the high cost of implementing associative processors has mainly
limited their use to special purpose military applications (Hwang and
Briggs 1984). However, advances in VLSI technology have improved the
feasibility of associative memory systems.

The Hopfield neural network has demonstrated its potential as an
associative memory (Hopfield 1982). The error correction capabilities of
this network are quite powerful in that it is able to retrieve patterns from
memory using noisy or partially complete input patterns. Koml6s and
Paturi (1988), among others, have recently performed an extensive anal-
ysis of this behavior as well as the convergence properties and memory
capacity of the Hopfield network.

Due to the massive number of nodes and interconnections in large
neural networks, real-time systems will require computational facilities
capable of exploiting the inherent parallelism of neural network mod-
els. Two approaches to the parallel hardware implementation of neu-
ral networks have been utilized. The first involves the development of
special-purpose hardware designed to specifically implement neural net-
work models or certain classes of neural network models (Alspector et al.
1989; Kung and Hwang 1988). Although this approach has been shown
to yield tremendous speedups when compared to sequential implemen-
tations, the specialized design limits the use of such computers to neural
network applications and consequently limits their commercial availabil-
ity. This is in contrast to the second approach to parallel hardware im-
plementation, general-purpose parallel computers, which are designed to
execute a variety of different applications. The fact that these computers
are viable for solving a wide range of problems tends to increase their
availability while decreasing their cost.

In this paper a direct, parallel, digital implementation of a Hopfield
associative memory neural network is presented. The design utilizes
the first general-purpose commercially produced array processor chip,
the Geometric Arithmetic Parallel Processor (GAPP) developed by the
NCR Corporation in conjunction with Martin Marietta Aerospace. Using
these low-cost VLSI components, it is possible to build arbitrarily sized
Hopfield networks with the capability of operating in real-time.

2 The GAPP Architecture

The GAPP chip is an inexpensive two-dimensional VLSI array processor
that has been utilized in such applications as pattern recognition, image
processing, and database management. Current versions of the GAPP
operate at a 10-MHz clock cycle; however, future versions will utilize
a 20-MHz clock cycle (Brown and Tomassi 1989). A single GAPP chip
contains a mesh-connected 6 by 12 arrangement of processing elements

A Neural Net Associative Memory for Real-Time Applications 109

(PEs). Each PE contains a bit-serial ALU, 128 x 1 bits of RAM, 4 single-
bit latches and is able to communicate with each of its four neighbors.
GAPP chips can be cascaded to implement arbitrarily sized arrays of
PEs (in multiples of 6 x 12). This capability can be used to eliminate
bandwidth limitations inherent in von Neumann machines. For example,
a 48 x 48 PE array (32 GAPP chips) can read a 48-bit-wide word every
100 nsec, yielding an effective array bandwidth of 480 Mbits/sec (Davis
and Thomas 1988; NCR Corp. 1984).

Information can be shifted into the GAPP chip from any edge. There-
fore, the ability to shift external data into large GAPP arrays is limited
only by the number of data bus lines available from the host proces-
sor. For example, Martin Marietta Aerospace is currently utilizing a
126,720 PE array (1760 GAPP chips) in image processing applications.
This system is connected to a Motorola MC68020 host system via a stan-
dard 32-bit Multibus (Brown and Tomassi 1989).

3 The Hopfield Neural Network

The Hopfield neural network implemented here utilizes binary input
patterns - example inputs are black and white images (where the input
elements are pixel values), or ASCII text (where the input patterns are bits
in the 8-bit ASCII representation). This network is capable of recalling
one of A4 exemplar patterns when presented with an unknown N element
binary input pattern. Typically, the unknown input pattern is one of the
M exemplar patterns corrupted with noise (Lippmann 1987).

The recollection process, presented in Figure 1, can be separated into
two distinct phases. In the initialization phase, the M exemplar patterns
are used to establish the N 2 deterministic connection weights, t i j . In the
search phase, an unknown N element input pattern is presented to the
N nodes of the network. The node values are then multiplied by the
connection weights to produce the new node values. These node values
are then considered as the new input and altered again. This process
continues to iterate until the input pattern converges.

4 Hopfield Network Implementation on the GAPP

Our design maps each node in the Hopfield network to a single PE on
GAPP chips. Thus, an additional GAPP chip must be incorporated into
the design for every 72 nodes in the Hopfield network. The ease with
which these chips are cascaded allows such an approach to be used.
When implementing the Hopfield network, the assumption is made that
all M exemplar patterns are known a priori. Therefore, the initializa-
tion phase of the recollection process is performed off-line on the host
computer. The resulting connection weights are downloaded, in signed
magnitude format, to the PEs’ local memory as bit planes. The local

110 G.L. Heileman, G.M. Papadourakis, and M. Georgiopoulos

Let
M
N
z,"
ya
u,(k) = output of node i after k iterations
t i j

= number of exemplar patterns
= number of elements in each exemplar pattern
= element i of exemplar for pattern s = fl
= element i of unknown input pattern = *1

= interconnection weight from node i to node J'

Initialization:
M
C X ~ ~ X ~ ~ , if i + j

if i = j

~ j (0) = yi, 1 5 i 5 N

, N
Search:

where

iterate until u3(k + 1) = U j (k) , 1 5 j 5 N

Figure 1: The recollection process in a Hopfield neural network.

memory of the PEs is used to store the operands of the sum of products
operations required in the search phase. The memory organization of
a PE (node j) is illustrated in Figure 2. For practical applications, the
GAPP memory is insufficient for storing all weights concurrently, thus
segmentation is required.

The Hopfield network is implemented in parallel with each PE per-
forming N multiplications and (N - 1) additions per iteration. However,
in practice no actual multiplications need occur since the node values
are either +1 or -1. Therefore, multiplications are implemented by per-
forming an exclusive-OR operation on the node bit plane and the sign
bit plane of the weights. The result replaces the weights' sign bit plane.
These results are then summed and stored in the GAPP memory. The
sign bit plane of the summations represents the new node values.

A Neural Net Associative Memory for Real-Time Applications 111

tlj

U 1

t 2 j

212

t k j

u k

C t i j u i
1

After an iteration has been completed, the input pattern is tested for
convergence utilizing the global OR function of the GAPP chips. If the
result of the global OR is 1, another iteration is required; thus, it is neces-
sary to transfer the new node values (i.e., the sign bit of the summation)
to the host machine. These node values are then downloaded, along
with the connection weights, to the GAPP chips in the manner described
previously and another iteration is performed.

w bits -4 1 bit

p bits

5 Memory Requirements and Processing Time

The number of bits required to store each weight value and the summa-
tion in the search phase are w = rlog2(M+1)1 +1 and p = [log2(NM+1)1 +1,
respectively, where N is the number of nodes in the network and M rep-
resents the number of exemplar patterns. Therefore, each PE in the GAPP
array has a total memory requirement of N (w + 1) + p (see Fig. 2).

Figure 2: Organization of a single PEs memory in the Hopfield neural network
implementation on the GAPP.

112 G.L. Heileman, G.M. Papadourakis, and M. Georgiopoulos

If we let B denote the size of a single PEs memory, then each PE has
(B - p) bits available for storing weight and node values. If N(w + 1) >
B -p, there is not enough GAPP memory to store all of the weights at one
time, and weights must be shifted into the GAPP memory in segments.
The number of weights in each of these segments is given by

while the total number of segments is given by

Letting C represent the number of clock cycles needed to shift a bit
plane into GAPP memory, then the number of clock cycles required to
download weight and node vaiues to GAPP memory, and to upload new
node values to the host is

L = [SD(w +1) +2lC - 1

Furthermore, C depends on the number of data bus lines available from
the host and the number of GAPP chips, n. In particular, C can be
expressed as

C = 12 6n/# data lines + 1 1 1
The processing time required to implement the search phase of the

Hopfield network on the GAPP chips is formulated below. The imple-
mentation involves four separate steps. First, the D weights stored in
GAPP memory are multiplied by the appropriate node values. As dis-
cussed previously, this is performed using an exclusive-OR operation;
such an operation requires 3 0 GAPP clock cycles. The second step in-
volves converting the modified weight values into two's complement
format; this processing requires D(4w - 1) clock cycles. Next, the D
summations required by the search phase are implemented; this can be
accomplished in 3Dp clock cycles. Finally, 4 clock cycles are required
to test for input convergence. The total processing time can now be
expressed as

P = S[3D + D(4w - 1) + 3Dp + 41 clock cycles

and the total time required to perform a single iteration of the search
phase of the Hopfield network is

T = L + P = SD[C(W + 1) +3(p+ 1) + (4 ~ - 111
+ 4 s + 2C - 1 clock cycles

A Neural Net Associative Memory for Real-Time Applications 113

6 Comparisons and Experimental Results

A comparison of the results obtained in the previous section with other
digital implementations of the Hopfield network (Na and Glinski 1988)
is illustrated in Figure 3. The curve for the DEC PDP-11/70 can be
considered a close approximation for the number of clock cycles required
by other sequential processing (von Neumann) architectures. Also, the
curve for the GAPP PEs assumes the use of a standard 32-bit bus. All
of the curves in the figure are plotted with the assumption that 111 =
10.15N1. As more nodes are added, the number of clock cycles required
to process the data on the PDP-11/70 and Graph Search Machine (GSM)
increases much more rapidly than it does on the GAPP PEs; this can be
attributed to the high degree of fine-grained parallelism employed by the
GAPP processors when executing the Hopfield algorithm. For example,
when implementing a 360 node network, this design requires 7 msec to
perform a single iteration.

Extrapolation of the curves in Figure 3 also indicates that for large
networks, the ability to implement the network in parallel will easily
outstrip any gains achieved by using a faster clock cycle on a sequential
processing computer. For example, executing Hopfield networks on the
order of 100,000 nodes yields an approximate 132-fold speedup over
a sequential implementation. Therefore, a sequential computer with a
clock frequency twice as fast as that of the GAPP will still be 66 times
slower than the Hopfield network implementation on GAPP processors.

In terms of connections per second (CPS), the 126,720 PE GAPP ar-
ray discussed earlier can deliver approximately 19 million CPS while
running at 10 MHz. The same array running at 20 MHz would yield
nearly 38 million CPS, where CPS is defined as the number of multiply-
and-accumulate operations that can be performed in a second. In this
case, the CPS is determined by dividing the total number of connections
by the time required to perform a single iteration of the Hopfield al-
gorithm (the time required to shift in weight values from the host, and
the time required to perform the symmetric hard limiting function, f h ,

are also included). These results compare favorably to other more costly
general-purpose parallel processing computers such as a Connection Ma-
chine, CM-2, with 64 thousand processors (13 million CPS), a 10-processor
WARP systolic array (17 million CPS), and a 64-processor Butterfly com-
puter (8 million CPS). It should be noted, however, that the CPS measure
is dependent on the neural network algorithm being executed. There-
fore, in terms of comparison, these figures should be considered only as
rough estimates of performance (Darpa study 1988).

To verify the implementation of the Hopfield network presented in
Section 4, and the analysis presented in Section 5, a 12 x 10 node Hop-
field network was successfully implemented on a GAPP PC development
system using the GAL (GAPP algorithm language) compiler. The exem-
plar patterns chosen were those used by Lippmann et al. (1987) in their

114 G.L. Heileman, G.M. Papadourakis, and M. Georgiopoulos

t
I

I-
n
"0 50 loo 150 200 250 m 350 4co

Figure 3: Number of clock cycles required to implement a single iteration of the
Hopfield network (search phase) on a PDP-11/70, the Graph Search Machine
and GAPP processors. Because of the explosive growth rates of the PDP-11/70
and GSM curves, this graph displays GAPP results for only a relatively small
number of nodes. However, the analysis presented here is valid for arbitrarily
large networks.

character recognition experiments. The implementation of these experi-
ments in fact corroborated the predicted results.

Acknowledgments

This research was supported by a grant from the Division of Sponsored
Research at the University of Central Florida.

References

Alspector, J., Gupta, B., and Allen, R. B. 1989. Performance of a stochastic
learning microchip. In Advances in Neural Information Processing Systems 1,
D. S. Touretzky, ed. Morgan Kaufmann, San Mateo, CA.

A Neural Net Associative Memory for Real-Time Applications 115

Brown, J. R. and Tommasi, M. 1989. Martin Marietta Electronic Systems, Or-
lando, FL. Personal communication.

Darpa neural network study. 1988. B. Widrow, Study Director. AFCEA Inter-
national Press.

Davis, R. and Thomas, D. 1988. Systolic array chip matches the pace of high-
speed processing. Electronic Design, October.

Hopfield, J. J. 1982. Neural networks and physical systems with emergent
collective computational abilities. Proc. Natl. Acad. Sci. U.S.A. 79, 2554-2558.

Hwang, K. and Briggs, F. 1984. Computer Architecture and Parallel Processing.
McGraw-Hill, New York.

Komlos, J. and Paturi, R. 1988. Convergence results in an associative memory
model. Neural Networks 1, 239-250.

Kung, S. Y. and Hwang, J. N. 1988. Parallel architectures for artificial neural
nets. In Proceedings of the IEEE International Conference on Neural Networks,
Vol. 11, San Diego, CA, pp. 165-172.

Lippmann, R. P. 1987. An introduction to computing with neural nets. I E E E
Acoustics Speech Signal Proc. Mag. 4(2), 4-22.

Lippmann, R. P., Gold, B., and Malpass, M. L. 1987. A Comparison of Hamming
and Hopfield Neural Nets for Pattern Classification. Tech. Rep. 769, M.I.T.,
Lincoln Laboratory, Lexington, MA.

Na, H. and Glinski, S. 1988. Neural net based pattern recognition on the graph
search machine. In Proceedings of the IEEE International Conference on Acoustics
Speech and Signal Processing, New York.

NCR Corp., Dayton, Ohio. 1984. Geometric arithmetic parallel processor (GAPP)
data sheet.

Received 5 June 1989; accepted 2 October 1989.

