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For entities to interact meaningfully in a distributed simulation environment, coherence 
among the entities’ states must be maintained.  Because continuous state updates for all 
entities in the simulation normally require large amounts of network bandwidth, motion 
equations (i.e., dead-reckoning models) are frequently used to reduce the number of 
communications updates.  However, even with the use of such dead-reckoning models, 
networking and communications limitations still exist in currently fielded systems.  An 
effective approach to reducing the communications requirements is achieved by replacing 
these predictive dead-reckoning models with neural networks.  This paper presents the 
background and motivation for the research, the architecture and training algorithms of the 
networks, and the integration of the networks into a large-scale simulation environment.  
Quantitative measures from the experiments reveal that the use of neural networks can 
effectively reduce the number of communication updates required to maintain entity-state 
coherence.  However, the neural networks may also be more difficult to scale than the 
currently used dead-reckoning algorithms. 

Keywords: distributed systems, distributed simulation, communications requirements, dead 
reckoning, neural networks 
 

1. Introduction 

The combination of computer simulation and networking technologies has provided an effective 
means for training humans in large scale, collaborative tactical tasks through the use of 
Distributed Interactive Simulation (DIS).  DIS is an architecture for building large-scale 
simulations from a set of independent simulator nodes [1] each representing one or more entities 
(e.g., an automobile, an aircraft, a platoon of soldiers) in the simulation.  By communicating over 
a network via a common protocol, these entities are able to exist simultaneously and interact 
meaningfully in the same virtual environment while running in different simulations, often in 
different hardware.  Coherence is the term used to indicate the ability of each of these distributed 
entities to know the location of all other entities with which it must be able to interact within the 
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simulation environment.  For a successful distributed simulation exercise, coherence among the 
many distributed entities must be maintained at all times.  Currently, however, the ability of live 
vehicles to interact with these virtual forces in mixed-reality embedded training applications is 
constrained by the communication bandwidth requirements needed for real-time interoperability.   

To quantify the bandwidth requirements and deficits, a study [2] assessed the 
communication requirements needed to support embedded training and en-route mission 
rehearsal in a military context.  The study simulates a general scenario of a battalion task force 
that has been rapidly deployed to a distant battlefield on eight aircraft.  These aircraft fly in 
formation, each one carrying up to three ground vehicles.  The aircraft are in communication 
with each other via a satellite link that also connects them to a ground station in the continental 
United States.  This ground station provides core exercise support, including computer generated 
forces (CGFs) used to complement the scenario. In this environment, the available 64 Kbps 
bandwidth in the wireless links available to handle DIS traffic is shown to be insufficient for 
even small scale simulation exercises.   Message latencies of more than 70 seconds were 
observed because of routing delays from simulation traffic.  This traffic involved the ground 
vehicles aboard the aircraft and the satellite link to the ground station.  Clearly, such large delays 
negatively impact the fidelity and, thereby, the feasibility of the embedded training exercises.   

Techniques to actively manage bandwidth to reduce requirements are therefore sought.  In 
distributed simulation, 50% to 80% of the network traffic can originate from updates transmitted 
to ensure coherence among the entities participating in the simulated exercise [3].  Hence, 
bandwidth is a critical resource, especially in embedded distributed simulations using wireless 
channels and ad hoc networks, where bandwidth becomes scarce as more entities participate in 
the distributed exercise [4, 5, 6]. 

Several attempts have been made to overcome bandwidth limitations in DIS.  Approaches 
range from finding new methods or algorithms to reduce the network traffic, either by applying 
some lossless compression algorithms to that of elaborate subscribe/publish models of multicast 
communication [7].  The approach of concatenating logical data packets called Protocol Data 
Units (PDUs) into a larger physical packet that is later deconstructed at the destination into 
individual PDUs has been explored by Calvin et al [8].  Under their technique, a PDU is 
transmitted when either a timer expires or the aggregated packet reaches a maximum size. As a 
consequence, the necessary bit rates are reduced because fewer packet headers are transmitted, 
placing multiple PDUs in one single packet for transport.  Ceranowicz et al [9] describe the Joint 
Experimental Federation and Millennium Challenge 2002, a simulation conducted in July and 
August of 2002 by 13,500 personnel at remote locations across the continental United States, 
where he reports the optimum limit of bytes that can be bundled. In one experiment, up to 4,500 
bytes were bundled in each IP packet. He concludes that the tradeoffs were that bundling more 
data together increased latency and packet loss due to transmission errors, while smaller packets 
increased the transmission of overhead data. Bassiouni et al [10] also describe an approach to 
concatenate consecutive PDUs in a single packet even if their types are different, though 
redundancy in the fields that make up a PDU are not eliminated. 

Other approaches partition PDUs into static and dynamic portions to allow transmission of 
the static data only once while the dynamic information are updated only as needed using delta-
PDUs.  This approach is described in DIS-Lite system which offers packet bundling and latency 
compensation for air vehicles [11].  However, it does not examine, take advantage nor learn from 
the type, timestamp and internal structure of PDUs or adapt to vehicle behaviors over time. 
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The remainder of this paper reviews the factors influencing network bandwidth and explains 
in greater detail how DIS addresses bandwidth constraints.  It furthermore explains how neural 
networks can serve to improve the motion equation predictive models, and presents the results of 
our experiments supporting this claim. 

2.  Network Bandwidth Management 

From the above discussion, mechanisms suitable for reduction of bandwidth requirement for 
distributed simulations include multicast schemes [12], packet bundling and replication strategies 
[13], protocol optimizations for DIS [14] and High-Level Architecture (HLA) [11].  Currently, 
most implementations of DIS employ a predictive model of vehicle movement called dead 
reckoning (DR) to reduce DIS packet traffic. The term "dead reckoning," borrowed from 
maritime navigation, describes the process by which the position of a ship can be estimated from 
an earlier known position, heading, speed, and elapsed time since that known position, assuming 
constant speed and heading.  Dead reckoning has been expanded to include turn rates, but DIS 
currently employs the traditional dead reckoning with constant heading and speed.  DIS dead 
reckoning models build on this concept by applying equations of motion to predict the state 
information of a simulated entity.   Each entity in the environment maintains a dead reckoning 
model of each other entity in the environment with which it must interact.  Therefore, it can 
predict the position, speed and direction of other entities with which it can interact without the 
need to continually receive such indications on the network.  Each entity also internally 
maintains the same model of its own motion and compares its prediction to its true position, 
speed and direction.  If a pre-determined error is exceeded, it proceeds to update all other entities 
in the network with its current true state.  It does this via an Entity State Protocol Data Unit, or 
ESPDU.  Clearly, dead reckoning has been instrumental in managing bandwidth requirements in 
existing DIS applications.   

One DIS dead-reckoning model used to approximate an entity's position is given by the 
following equations of motion: 
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where p   =  current position          
 p0  =  initial position 
 v   =  current velocity           
 v0  =  initial velocity       
 a0  =  initial acceleration 
 Δt  =  elapsed time   
 

More specifically, in DIS dead reckoning, each entity maintains simple, low fidelity dead-
reckoning models such as equation (1) of its own state and of the state of all other entities with 
which it may interact.  At periodic intervals, the predictions made by the models of their own 
state are compared to their own true positions. As illustrated in Figure 1 [15], if the difference 
between the entity’s true position and the dead reckoning model’s prediction exceeds some error 
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threshold, the local simulator will transmit an update of that entity vehicle's true state to the other 
simulators.  This update takes the form of an ESPDU and contains information such as location, 
velocity, time of last update, etc.  Upon the receipt of an ESPDU, the dead reckoning models will 
adjust to reflect the updated data and then continue to predict the near-term position and 
orientation of that entity from these data.  

Because the number of ESPDUs required in a DIS distributed embedded training exercise 
depends directly on the predictive ability of the dead reckoning model, improving the predictive 
ability of an entity’s state will directly result in the reduction of communications updates.  This, 
in turn, will enable more entities to exist on the virtual battlefield for the same amount of 
network bandwidth.   

 

Figure 1 - DIS Dead-Reckoning Process [15] 

Assume, for example, that there are three entities (A, B and C) in the distributed simulation, 
each residing in different simulation nodes linked by the DIS protocol.  Further, assume that 
entities A, B and C need to know each others’ state continuously during the simulation.  Lacking 
any such bandwidth management methods, each entity would have to frequently and continually 
transmit ESPDUs containing its own state information to the other two entities in order to 
maintain coherence.  However, with dead reckoning prediction, each entity (say, for example, 
entity A) communicates its own initial location, velocity and acceleration to the other entities (B 
and C) for use in their local predictive dead reckoning models of entity A.  Entities B and C, 
using their dead reckoning models of entity A, can then predict its unperturbed near-term 
physical location without need for updates from A.  Each entity also maintains a dead reckoning 
model of its own movement, predicting its own future position and speed.  In the event that 
entity A deviates from its own predicted path, it will transmit an update of its new true state 
(location, direction and speed) to entities B and C for them to use in their predictive models of 
entity A.  Entities B and C will do likewise with entity A, as well as with each other.   

While the dead reckoning equations of motion approach has met with some success and it is 
widely used in DIS, it assumes that no external force acts to change the direction and speed of 
the entities involved.  In other words, dead reckoning assumes that an entity moves in one 
direction at one speed constantly through the time period of interest.  This is in fact not an 
accurate assumption, as the human driver (or intelligent program that “drives” the entity) 
represents an external force that can change the speed and direction of the entity in response to 
the environment, objectives and internal condition of the entity.  To accurately predict the 
behavior of the human-controlled entity requires that we model the behavior of the controlling 
human as manifested in the observable actions of the entity. Therefore, a more responsive 
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predictive model that accounts for the presence of the human control of an entity is sought.  The 
research presented in this paper addresses the improvement of the predictive utility of the dead 
reckoning model by using neural networks instead of equations of motion.  Unlike the equations 
of motion in traditional dead reckoning, neural networks are able to predict motion that is not in 
a straight line, such as when vehicles round curves or maneuver to avoid obstacles. It also 
captures the human (external forces) that acts on the entity to change its speed and direction.  
Hence, we are seeking improved accuracy vis-à-vis how the (human) driver decides to control 
the entity.  This is significant in mixed reality exercises when the location of live vehicles must 
be known to the virtual agents or humans in simulators in order to accurately target them.  In this 
context, a difference of a few inches in the location of a live tank being targeted may determine 
whether it is hit and the effect of the hit. 

 
3. Improving Predictive Models to Reduce Bandwidth 
 

As shown in Figure 1, dead reckoning diverges whenever the entity does not follow a straight 
line.  Because real entities rarely remain on a straight heading for very long, the utility of these 
dead reckoning predictive models can be inherently and severely limited.  Neural networks, on 
the other hand, attempt to predict behavior based on past historical examples of similar 
performance.  How accurate these predictions are can depend greatly on how repeatable the 
historical movements will be in the current simulation.  Our approach to improving the 
management of network bandwidth involves replacing the dead-reckoning predictors in a DIS-
based simulation system by a set of neural networks that learn from similar previous exercises.  
We employed past instances of entities performing similar maneuvers to train our networks.  
Furthermore, we experimented with the type and composition of the neural networks to find the 
best combination.  We specifically compared a set of baseline neural networks to the results 
obtained by applying modular decomposition to the problem.  That is, recognizing the situation 
unfolding before the entity and applying the neural network that best addresses that situation.  
This can be referred to as context sensitive neural networks. 

There may be other alternative approaches besides neural networks that can improve the 
performance of dead reckoning models.  In fact, state estimation techniques such as auto-
regression, Kalman filters and others may prove to also be advantageous.  However, the 
objective of this investigation was not to find the optimal replacement for dead reckoning, but 
rather, to evaluate whether neural networks, with their ability to learn from observation of past 
performance by others, could increase the predictive ability of the dead reckoning equations of 
motion.  Moreover, it is true that the context-sensitive enhancements to the neural networks 
could also be extended to the dead reckoning algorithm.  However, dead reckoning is the 
benchmark against which we want to measure our gains.  Furthermore, by its very nature, dead 
reckoning implies straight ahead movement, making context shifting irrelevant. 

The application on which we tested our approach focuses on the near-term movement 
behavior of a battlefield entity in a distributed simulation.  In a mixed initiative, live-virtual 
distributed simulation, it is imperative that entities know the precise location of other entities 
with which they interact (coherence).  This is particularly important for collaborative movement 
and targeting.   In our implementation, we employed the Modular Semi-Automated Forces 
(ModSAF) v5.0 system [16] as the simulation infrastructure for our investigation.  ModSAF is a 
DIS-based constructive simulation system designed to provide Computer-Generated Forces 
(CGF) for military training and research.  Near-term movement behavior was selected because it        151
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is highly observable and provides a direct correspondence to ESPDUs resulting from errors in 
entity position.  This proves useful in finding a way to measure the performance of the approach 
conceived in this study as will be explained in the next section.  However, since movement in the 
battlefield is a highly complex behavior that depends on many factors, the problem was scoped 
to specifically consider how a single entity (i.e., a ModSAF M1A2 tank) performs a Road 
March. A road march is a tactic by which a vehicle or group of vehicles (e.g., tanks, armored 
personnel carriers, trucks) moves on a defined path from waypoint to waypoint (usually on some 
road, although not necessarily paved) with the objective of reaching a pre-determined 
destination.  Movement on a road march is typically done in single column formation and enemy 
presence is not expected (although possible).  Parameters provided are the destination and 
possibly some intermediate waypoints.  In this application, our system predicts the changes in an 
M1A2 entity’s location and orientation given its own previous state as well as that of the 
simulated world, and compares these changes to those predicted by the DIS dead reckoning 
system. 

ModSAF entities possess the capability to carry out some simple maneuvers such as road 
marches.  It is from observation of a ModSAF entity performing this task that our neural 
networks learn the behavior that is later used for prediction.  The ModSAF entities are 
programmed to act non-repeatably within a certain range of variability.  The data logged for 
several runs of these entities were used to train the neural networks (in different ways), and the 
resulting neural networks were executed to measure the predictive effectiveness of our approach 
in subsequent runs.  

 
 

 
 
 
 
 
 
 
 

Figure 2 - Functional Relationship of Entity Control Models in ModSAF: Standard ModSAF with Dead-
Reckoning Code  

Figure 2 displays the standard ModSAF program architecture as it affects its DIS predictive 
feature.  The comparison between the entity’s true position and the position predicted by its 
intrinsic predictive equations (i.e., dead reckoning) occurs in ModSAF’s libentity library, a 
program module that uses the dead reckoning equations of motion to predict the entity’s location 
at any one time.  As such, the neural network models used in this investigation simply replaced 
the dead reckoning code in the libentity library.  The implementation of this functionality in 
ModSAF is illustrated in Figure 3, where the libentity library is replaced by the libNN library 
containing the neural networks and their execution engine.  

The true position of the entity is contained in the ModSAF entity.  This position (location 
and orientation) can be compared with the predictions of the two predictive models – the motion 
equations and our experimental neural networks - to determine when each predictive model’s           152 
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prediction is significantly out of the acceptable error tolerance, and thus require the generation of 
an ESPDU.  We often refer to them as ghost models to suggest their background position, 
unobtrusively keeping track of an entity’s movements and predicting where they would be on the 
next simulation cycle.  This “ghost” process provides indication of when an ESPDU would be 
generated and transmitted by ModSAF.  By keeping count and comparing the number of 
ESPDUs generated by the neural-network-based ghost model with the baseline dead reckoning 
ghost model, relative performance of the two predictive techniques can be compared.  In other 
words, the measure of effectiveness is how many ESPDUs would have been generated with the 
neural network predictive system as compared to the dead reckoning method for the exact same 
circumstances.   This comparison is particularly appropriate because it addresses the need to 
reduce the number of ESPDU transmissions, the reduction of which is the foremost objective of 
our work. 

 
 

 

 

 

 

 

Figure 3 - Functional Relationship of Entity Control Models in ModSAF: Modified ModSAF with Neural 
Network Code 

The neural networks used varied depending on the type of experiment being conducted.  We 
discuss this by characterizing our work into seven different experimental phases.  These are 
described as follows.  

3.1 Phase I – data acquisition and benchmark DIS results 
 
A data acquisition experiment was made to gather the requisite data for training and testing of 
the prototype neural networks of Phase II, as well as to serve as the benchmark DIS results 
against which the neural networks’ performance will be compared.  In this experiment, a 
ModSAF entity was tasked with traveling through an extended road segment on a road march, 
and data on its state were collected throughout.  The route used for this run (see black route in 
Figure 4) can be found in the section of terrain east of Barstow Road and west of Hill 720 in the 
National Training Center (NTC-0101) terrain database. In general, the route is represented by 45 
route points and is approximately seven kilometers long.  It takes the M1A2 tank entity about 15 
minutes of simulation time to travel this route segment at 8 m/s. This included its location, 
speed and orientation.  A total of 13,760 data slices were logged at a rate of 15 HZ during the 
benchmark run.                                                                                                                                      153
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Figure 4 – Route used in Phase I of experiment 

  The benchmark results to which all other results are compared are those obtained from 
ModSAF executing its own DIS predictive model.  The results are characterized by the number 
of ESPDUs ModSAF was forced to generate and transmit as a result of predictive inaccuracies 
by its DIS predictive functions.  This is how ModSAF normally operates.  The results of this 
benchmark experiment are shown in Table 1.  They are segregated between deviations that result 
in the generation and transmission of an ESPDU as a result of a positional (location, or “Loc”) 
discrepancy and those generated because of a directional (rotational, or “Rot”) discrepancy. Note 
that the Loc and Rot deviations in Table 1 do not have to add up to the total number of ESPDUs, 
as one ESPDU may contain information updates for both location and rotation.  In our 
calculations, this actually represents two different deviations from the model and should count as 
two, even if they were coincidentally reported as part of the same ESPDU.  

 
Table 1 – Benchmark results of DIS predictive model 

 Loc Deviations Rot Deviations  Total Deviations Tot. ESPDU 

DIS equations 205 154 359 351 

3.2 Phase II - Baseline neural network model and results in extended route segment 
 
Phase II of this investigation focused on finding an effective modeling strategy for the neural 
network predictive model. Evaluation of this baseline model was done using the same extended 
route segment in the ModSAF virtual terrain used in the benchmark experiment of Phase I.  For 
this Phase II baseline experiment, two sets of two neural networks each were used to predict the 
behavior of the entity traversing the same route.    Of these four neural networks, two predict the 
change in the entity’s speed – one for straight-line sections and the other one for when the entity 
is in the midst of a turn.   The other two neural networks predict the change in the entity’s 
orientation (Rot), one for straight-line road sections and the other for when the entity is in the            154 
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midst of a turn. Each neural network was of the recurrent, feed-forward architecture type with 
two hidden layers and a back-propagation gradient descent procedure in its training. Therefore: 

Network SS – straight road segment, change in entity speed 
Network SH – straight road segment, change in entity heading 
Network TS – turn segment, change in entity speed 
Network TH – turn segment, change in entity heading. 

 The rule used to distinguish between straight and turn segment types was acquired from the 
code used by ModSAF to generate the entity’s behavior and is based on the straight-line distance 
to the next waypoint. Each of these situations can be considered to be different contexts in which 
the entity finds itself.   This rule is valid for a typical series of waypoints that are not in a straight 
line.  It is defined as:  

if distance to next waypoint is <= 25 m,  
        context = turn  
else, context = straight.   

Each neural network used a sigmoid activation function at the hidden nodes and a linear 
activation function at the output nodes.  The inputs were normalized according to equations 2-19 
below.  Distances are in meters, speeds are in m/sec, and directions in degrees from north.  
Fundamentally, the inputs for each of the networks were a function of the M1A2 entity’s state at 
the last simulation clock and how this state related to the road characteristics and Road March 
parameters such as speed.  
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Where  
     )( MDaSRa ttt +=  (4)
     )( MDbSRb ttt +=  (5)
     )( MDcSRc ttt +=  (6)
     MPSRp ttt =  (7)
     MSRs tt /=  (8)
     trt HxyHabHRab ×=  (9)
     trt HxyHbcHRbc ×=  (10)
     tatspeedentitySt =  (11)
     waypointprevioustodistanceDat =  (12)
     waypointcurrenttodistanceDbt = (13)
     waypointnexttodistanceDct =  (14)
     speedordermarchM =  (15)
     roadtodistancelarperpindicuPt =  (16)                                                                  155
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     absegmentroadofdirectionHabt =  (17)
     bcsegmentroadofdirectionHbct =  (18)
     norientatioentityHxyt =  (19) 

 

The architecture for each of the four networks is described in Table 2. 

Table 2 – Neural Network Architecture for Phase I Networks 

 

A diagram of the variables is shown in Figure 5 below. 

 

 

 

 

 

 

Figure 5 – Neural Network Input Variable (Predictor) Description 

The same 13,760 samples gathered for the benchmark experiment were used to train and 
validate the four neural networks.  Of these, we used 568 examples for training the straight-              156
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heading (SH) neural network; 292 examples for training the turn-heading (TH) neural network; 
100 examples for training the turn-speed (TS) neural network; and 760 examples for training the 
straight-speed (SS) neural network. An approximately equal number of examples were used for 
validating the training results of each neural network.  We used the back-propagation gradient 
descent procedure in its training algorithm with momentum to train the various neural network 
models.  The training rate η was selected as 0.01 and the initial momentum parameter α was set 
to 0.9.  The momentum parameter was periodically adjusted to speed the rate of descent along 
the error surface.   

The trained neural networks were then applied as ghost models to another simulation run of 
an entity traveling the same route segment to predict the movement of the simulated M1A2 
entity in ModSAF.  Its predictions were used to evaluate the need to issue ESPDUs to provide 
the correct state of the vehicle.  The resulting ESPDU count was then compared to the 
benchmark DIS predictive results described above.  The neural network predictive results are 
shown in Table 3. 
   
Table 3 – Results of the NN predictive models in comparison to the DIS predictive equations 
 Loc 

Deviations 
Rot 
Deviations  

Total ESPDUs Total 
Deviations 

DIS (from table 1) 205 154 351 359 
Neural Networks 107 151  250  258 

As evidenced in Table 3, approximately 28% fewer ESPDUs were required overall when a 
neural network system was employed compared to the DIS dead reckoning predictive system.  
Given that ESPDUs account for the majority of the network traffic in a distributed simulation 
exercise, our neural network predictive model results in a non-trivial reduction of bandwidth 
requirements. 

It is interesting to note that our first attempt to predict location and rotation through neural 
networks (not described here) was a monolithic approach, consisting of two neural networks – 
one to predict location and the other rotation at all points along the route.  The results for this 
experiment underperformed that of DIS - an ESPDU total of 504 for our neural networks 
compared to 359 for DIS dead reckoning.  This approach was abandoned in favor of the four 
context-sensitive networks (SS, SH, TS, TH) described above. 
 
3.3 Phase III – Applying further contextual sensitivity 

This phase of the experimentation investigated the effectiveness of further decomposing the 
neural network predictive system into several neural networks trained and applied to a specific 
class of behavior.  We compare the results to those obtained using the baseline set of neural 
networks described in Section 3.2. It should be noted that the baseline neural networks of Phase 
II do already employ a measure of contextual decomposition by virtue of having one set (of two 
neural networks) to predict when the entity is in a straight road segment, and another when it is 
in a turn.  However, we take this approach one step further in this phase.  

The use of a contextual approach to a modeling task has been done before ([17] among 
many others). It can be beneficial in a variety of ways, such as for improving performance.  In 
other words, better performance can be achieved when it is decomposed into a number of                157
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context-aware neural network modules.  Once the task is decomposed, it is possible to apply the 
most appropriate network, depending on the current circumstances or context.  Such switching 
has been discussed in the control literature [18, 19] as well as the literature on behavior-based 
robotics [20]. 
 In addition to performance improvement, other motivations for adopting a contextual 
approach to a problem include a reduction in model complexity and construction of the overall 
system such that it is easier to understand, modify, and extend.  Thus, the divide-and-conquer 
principle is used to reduce the complexity of a monolithic system.  This enables the use of 
different neural network architectures to be applied to individual sub-problems, making it 
possible to exploit specialist capabilities.  Sidani [17] used this successfully to represent human 
automobile driving behavior. This justification has been widely noted [21, 22] and is common to 
engineering design in general.  Another motivation for adopting a contextual approach is the 
reduction of neural network training times [23].  Finally, in well-defined domains, the use of a 
priori knowledge can be used to suggest an appropriate decomposition of a task.  This approach 
complements the knowledge acquisition efforts, [24] as it is easier to acquire knowledge for 
separate knowledge modules, rather than for the entire knowledge base at once [25].   

The decomposition of a problem into context-sensitive components may be accomplished 
automatically or explicitly.  Explicit decomposition of a task into contexts implies a strong 
understanding of the problem.  Improved learning and performance can result if this division 
into sub-tasks is known prior to training [26].  An alternative approach is one in which the task 
is automatically decomposed according to the blind application of a data partitioning technique.  
Automatic decomposition is typically applied with the intent to improve performance, whereas 
explicit decomposition could have the aim of either improving performance or accomplishing 
tasks that might not be accomplished as easily or as naturally with the baseline network.  
Automated decomposition requires knowledge about the domain in order to do it effectively.  
Otherwise, a partition that leads to inefficient learning can result.  Explicit partition (by a 
human) can result in effective execution, but human effort is required. 

 

Segment 1

Segment 2

 

Figure 6 - Training and Testing Segments for Phase II 
 

Phase III of our experiments used a short section of the same route used in the Phase I and 
II efforts.  This was done to more carefully focus on the fine-grained details of the neural                  158
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networks’ performance.  Two turn sections found on the same extended route segment of Phase 
I were selected for this experiment - one immediately following the other.  They are called 
Segment 1 and Segment 2.  See the graphical representation of these routes in Figure 6.  Eleven 
scenarios using identical user-supplied parameters were executed for the purposes of training 
and testing the neural networks.  In each of these scenarios, a single ModSAF M1A2 entity was 
placed at position X=22579 and Y=24328 of Segment 1, with an initial heading of 359°.  Each 
entity was tasked with performing a Road March – a known behavior in ModSAF.  The entity in 
each of the 11 scenarios exhibited dissimilar behavior because each was created independently 
in a non-repeatable version of ModSAF.  This variability is attributed to the varying influence of 
the operating system service interrupts on ModSAF’s simulation scheduling queue. 

A preliminary analysis of the graphs of the 11 runs showed that they could be effectively 
categorized into how the ModSAF entity approached the upcoming turn [27].  The Approach 
Category, therefore, describes how far away from the “knee” of the curve (i.e., the intersection 
of the straight road segments, also called the turn waypoint) the entity begins to veer outside the 
road as it approaches the curve to make the turn. Four categories were identified: Normal, Early, 
Late and Double.   The classification of the data according to the approach type is shown in 
Table 4. Figures 7, 8 and 9 respectively depict a normal, an early and a late approach category.  
The straight lines that meet at the turn waypoint (the “knee” of the curve) indicate the road 
surface.  The more free-form line indicates the path taken by the ModSAF entity.  This path was 
recorded and used in training the neural networks of Phase III. 

 

Figure 7 – ModSAF run depicting a Normal approach category (Scenario #1)                                                     159
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Figure 8 – ModSAF run depicting an Early approach category (Scenario #4) 

 

Figure 9 – ModSAF run depicting a Late approach category (Scenario #5) 

Specifically, these categories are defined by the following rules: 

Early:  >= 45 m to reach turn waypoint 
Normal:  < 45 and > 30 m to reach turn waypoint 
Late:  =< 30 m to reach turn waypoint 

This categorization can be expressed as a rule-set that represents an explicit decomposition 
of the problem.  The application of these rules resulted in predictive models for three of the 
categories (the double category was omitted for this experiment because there was only one 
instance of it).  The predictive model for each category consisted of four neural networks, 
respectively representing the change in the M1A2 entity’s speed and the change in the M1A2 
entity’s heading for straight lines and for turns.  This further contextualizes the predictive 
models.                                                                                                                                                   160

  

 at SAGE Publications on July 21, 2009 http://dms.sagepub.comDownloaded from 

 at UNIV OF CENTRAL FLORIDA on June 21, 2011dms.sagepub.comDownloaded from 

http://dms.sagepub.com
http://dms.sagepub.com/


 

 15

Table 4 - Classification of Data According to Approach Type 

Scenario 
Number 

Approach 
Category 

0 N ormal 
1 N ormal 
2 Ear ly 
3 Late 
4 Ear ly 
5 Late 
6 N ormal 
7 Ear ly 
8 D ouble 
9 N ormal 
10 Lat e 

The neural networks used in this phase of the investigation were also of the feed-forward 
recurrent type with back-propagation gradient descent procedure in the training algorithm.  The 
inputs were normalized according to equations 2-19 above.  The architecture has two hidden 
layers as indicated in Table 5. 

 
Table 5 – Neural Network Architectures for Phase II experiments. 

 
NN Arch. Predictors Response 

 
Speed 

 
7-20-5-1 111

1111

−−−

−−−−

ttt

tttt
,HRbc,HRabRs

,,Rp,Rc,RbRa  
tSΔ  

 
Heading 

 
7-20-5-1 111

1111

−−−

−−−−

ttt

tttt

,HRbc,HRabRs
,,Rp,Rc,RbRa   

tθΔ  
 

Specifically, a set of neural networks was trained only with the data from the training 
scenarios classified as being of the same type.  However, not all scenarios classified similarly 
were used in the training of the neural networks.  This resulted in three predictive systems 
(normal, early and late), each consisting of four neural networks (rotation in straight segments, 
rotation in turns, location in straight segments and location in the turns).  In testing, however, 
each of the three predictive systems was applied to all 11 scenarios.  Their results were 
compared to the benchmark DIS dead reckoning (DR) shown in Table 1.  As in Phases I and II, 
the metric of comparison was the number of total deviations that would require an ESPDU to be 
issued by ModSAF to maintain coherence among its distributed entities. The best result is 
shown in (blue) boldface in Table 6 below. 

 
Table 6 - Combined Segment 1 ESPDU Counts Using Networks Trained According to Approach Type 
Classification Scheme                                                                                                                                                      161
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 Scenario by Classification of Segment 1 Approach 

Predictive Model 
(Neural network and DR) 

0 
(N) 

1 
(N) 

2 
(E) 

3 
(L) 

4 
(E) 

5 
(L) 

6 
(N) 

7 
(E) 

8 
(D) 

9 
(N) 

10 
(L) 

N – trained on Scenarios 0 & 1  24 24  45 47  38  41  33 42 56  41 42 
E – trained on Scenarios 2 & 4 44 42  23 39 19 39 38  27 54 58  40  
L – trained on Scenarios 3 & 5 52 45  49  18 36 16 46 42  44  68  17 
DIS Dead Reckoning 40 42  41  31  33  35  42  38  41  45  34  

where classification scheme N – normal, E – early, L – late, D – double, DR – Dead reckoning 

Each row contains the results in number of ESPDUs generated by each of the three neural 
network predictive models and the DIS dead reckoning model when applied to each of the 11 
scenarios.  

The first “context-based” neural network predictive model (N) was trained with data from 
scenarios #0 and #1 only.  Note that both scenarios corresponded to a normal (N) approach type.   
Likewise, the second model (E) was trained only with data from scenarios #2 and #4, which 
corresponded to an early (E) approach.   The third predictive model (L) was trained with data 
from scenarios #3 and #5 – a late approach.  The fourth row describes the results of the 
benchmark dead reckoning predictive model run on this segment, which of course, required no 
training. The Double approach was not implemented, as there was only one of these.  The 
columns labeled 0 through 10 show the 11 ESPDUs test results for the four predictive neural nets 
employed on each scenario. The bold-faced (blue) number indicates the best of the column for 
each test scenario. 

Improvements in performance over dead reckoning were achieved on all scenarios except 
for #8 - the Double approach, which was not implemented.  From these results, it is apparent that 
the neural networks trained on one type of approach perform consistently better in tests on 
scenarios of the same category, whether or not that scenario was used in training or not. 
Prediction using this approach yielded an average ESPDU reduction of slightly over 44% over 
those scenarios involved in training (scenario 0 through scenario 5) and 27% over the same 
category scenarios not used in training (scenario 6 through scenario 10).   Thus, it appears that 
the use of a context-based approach integrated with neural networks is of significant benefit to 
this problem. The relatively poor performance in scenario #8 can be explained by the fact that no 
network was trained on a double approach.  Nevertheless, the Late neural network model (trained 
on 3 & 5) came close to matching the dead reckoning model.  Removing scenario #8, the 
improvement in performance for scenarios #6, 7 and 9 is 33%. 

Table 7 - Combined Segment 2 ESPDU Counts Using Networks Trained According to Approach 
Type Classification Scheme
 
 
 
 
 
 
 
 
162 
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 Scenario by Classification of Segment 2 Approach 

Predictive Model 0 
(N
)

1 
(N
)

2 
(E) 

3 
(L) 

4 
(E) 

5 
(L) 

6 
(N) 

7 
(E) 

8 
(D) 

9 
(N) 

10 
(L) 

N – trained on 0&1 91 95 66 101 110 102 105 121 105 108 101 
E – trained on 2&4 53 53 47 50 70 50 46 56 45 46 49 
L – trained on 3&5 42 43 36 43 72 44 45 51 48 42 44 
DIS Dead 42 43 47 32 58 30 43 43 40 38 30 

where classification scheme N – nominal, E – early, L – late, D - double 

3.4 Phase IV – Extending to another segment: evaluating the generality of the networks 
 
To determine the generality of the same context-based neural network predictive models vis-à-
vis other road segments, the models trained on Segment 1 were evaluated over Segment 2 
without further training.  These results are shown in Table 7. These models did not consistently 
reduce PDU counts across all of the scenarios over Segment 2.  Nevertheless, a pattern of lower 
PDU counts in scenarios whose approach classification correlates with the network classification 
is apparent.  For example, the scenarios in Segment 2 classified as “L” yield consistently lower 
PDU counts with the network trained by Segment 1 Scenarios 3 and 5 (also both classified as 
late).  So, while the total PDU count for Segment 2 is not reduced through this modeling scheme, 
there does appear to be a correlation between the type of approach represented by the trained 
model and the approach classification of the tested segment.  Nevertheless, it is clear that this 
approach does not generalize well to other segments on which it was not trained. 

3.5 Phase V – Evaluating the effectiveness of context-awareness 
 
As a means of determining the relative effectiveness of contextual decomposition in our neural 
network predictive models, we compare these results to those obtained from the baseline neural 
network with the same parameters.  For this comparison, this baseline network is that used for 
Phase II, which was trained with training data from the entire route.  That is, the baseline model 
used all of the same model parameters but did not apply the classification rule to partition the 
training data into the three approach contexts or to control the model execution.  As such, the 
baseline model was trained with roughly three times more data than were any of the models in 
the context-based approach.  Thus, by comparing the two methods (i.e., a context-based 
approach and the baseline neural network approach) on the same curve segment, the utility of the 
context-based approach was evaluated. The results of this experiment may be seen in Tables 8 
and 9, representing the evaluation of the model over Segment 1 and Segment 2, respectively.  
 
Table 8 - Combined Segment 1 Results of Baseline Networks Trained with Scenarios 0-5 Compared with the 
Results of the Best Module. 
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 Scenario by Classification of Segment 1 Approach 
Predictive Model 
(Neural network and DIS 
DR)

0 
(N
)

1 
(N
)

2 
(E) 

3 
(L) 

4 
(E) 

5 
(L) 

6 
(N
)

7 
(E) 

8 
(D
)

9 
(N
)

10 
(L) 

Baseline NN model 32 34 34 32 25 29 36 29 48 55 31 

Best context-based NN 24 24 23 18 19 16 33 27 44 41 17 

DIS Dead Reckoning 40 42 41 31 33 35 42 38 41 45 34 
where classification scheme N – nominal, E – early, L – late, D - double 

The results of this experiment vis-à-vis Segment #1 shown in Table 8 indicate a reduction in 
ESPDUs for all scenarios.  These improvements over the baseline network range from only 7% 
for scenario #7 to the best of over 45% (scenario #10).  It is interesting to note that except for 
scenarios #3, #8 and #9, the baseline NN predictive model also indicates improvement over the 
DIS dead reckoning predictive model.  These improvements of the baseline NN over DIS (not 
counting scenarios 3, 8 and 9) average 20%. 

The results vis-à-vis segment 2 are consistent with what we saw on segment 1 in that the 
context-based neural networks do improve the baseline networks. Table 9 depicts these results.  
Improvements range from a low of 1.5% (scenario #4) to a high of 21% in scenario #3.  
However, it is evident that neither the context-based predictive neural networks nor the baseline 
networks outperform the DIS dead reckoning predictive models for Segment 2. 

 
Table 9 - Combined Segment 2 Results of Monolithic Networks Trained with Scenarios 0-5 
 
 Scenario by Classification of Segment 2 Approach 
Predictive Model 
(Neural network and DIS DR) 

0 
(N
)

1 
(N
)

2 
(E) 

3 
(L) 

4 
(E) 

5 
(L) 

6 
(N
)

7 
(E) 

8 
(D
)

9 
(N
)

10 
(L) 

Baseline NN model 48 47 41 52 71 52 48 55 48 48 52 
Best context-based NN 42 43 36 43 70 44 45 51 45 42 44 
DIS Dead Reckoning  42 43 47 32 58 30 43 43 40 38 30 

where classification scheme N – nominal, E – early, L – late, D - double 

From these experiments, we can conclude that the decomposition of the neural networks into 
context-sensitive application of neural networks depending on some simple rules can be 
effective, often significantly.  We can further conclude that the results do not generalize well to 
entity performance on other segments of the road on which the networks have not been trained.  

3.6 Phase VI – Sensitivity to error thresholds and computational efficiency issues 
 
To further examine the relationship between the predictive power of the dead reckoning models 
and this set of predictive neural network models, we conducted experiments over a range of error 
tolerances.  Whereas the initial results reported earlier in Table 3 were measured according to 
DIS default values for a tank entity (i.e., 0.356 m, 0.734 m, and 3°), follow-on tests doubled                  164
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these error thresholds.  Results are presented in Table 10 and reported only by total number of 
required updates.   
        As evidenced in Table 10, as the error tolerance increases, the predictive advantage that 
neural networks have over dead-reckoning models becomes less significant for this modeling 
task.    Furthermore, in the error tolerance range where the neural network model does predict the 
entity’s path with more accuracy, the improvement comes at a cost in processing time.  This is 
shown in Table 11, which was derived by using the UNIX gettimeofday function.  The 
processing speed was calculated on a Pentium III, 500 MHz machine, running RedHat Linux 6.2.  
The neural network based model required, on average, about a factor of 6 more processing time 
than did the dead-reckoning predictive model.  Since the overall simulation time was 
approximately 15 minutes, the dead reckoning predictive model then, on average, produced 
about 23 updates per minute or rather, 1 update every 2.5 seconds (at a threshold of 0.356 m in 
the X direction and 0.734 m in the Y direction).  Alternatively, the neural network predictive 
model required about 17 updates per minute, or approximately 1 update every 3.5 seconds at the 
same thresholds.  Coupling this information with the information on processing time tradeoffs, it 
becomes clear that for applications where processing time is at a premium, the use of dead 
reckoning-models may be preferred, in spite of their poorer predictive performance.  However, in 
certain applications where processing time is not the primary constraint e.g., entities 
communicating over a wireless network, then the increased processing costs incurred from using 
a neural network can offer a superior option. 

 
Table 10 - Updates Required Over Increasing Error Thresholds 

Fa
ct

or
 

of
 

Error Threshold Updates Required 

X-axis 
(m) 

Y-axis 
(m) 

All-axes 
(deg) 

NN DR 

1 .356 .734 3 258 359 
2 .712 1.468 6 193 237 
3 1.068 2.202 9 157 188 
4 1.424 2.936 12 138 156 
5 1.78 3.67 15 119 137 
7 2.492 5.138 21 98 109 
9 3.204 6.606 27 88 92 
11 3.916 8.074 33 70 79 
13 4.628 9.542 39 69 75 
15 5.34 11.01 45 62 73 
20 7.12 14.68 60 51 60 
25 8.9 18.35 75 48 55 
30 10.68 22.02 90 44 48 

 
 

Table 11 - Execution Time Using Neural Networks and Dead-Reckoning Equations 

 Processing Time (in 10-5 seconds )                                                165
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NN  
Speed 

NN 
Heading 

Total NN Total   
DR 

Min 6.8902
9 

6.1988
8 

13.08981 2.2888 

Mean 7.7769
2 

7.4700
8 

15.24700 2.7974 

Max 20.599
3 

29.799
9 

50.3992 6.3598
1 

3.7 Phase VII – Repeatability of human performance 

In this phase of the investigation, we sought to generate experimental evidence that human 
performance is repeatable in many aspects.  This is important if the entities whose movement is 
to be predicted are human controlled (either live or manned simulator). To accomplish this, we 
employed two human subjects in our research, code named Bunker6 and Seagram7.  Both test 
subjects are experienced, albeit retired, military officers (COL and LTC respectively).  
Bunker6’s experience was specifically in armor operations.  He was experienced in driving and 
commanding battle tanks such as the M1 Abrams.  Seagram7, on the other hand, although 
equally experienced in terms of seniority, was an artillery specialist, with some limited tank 
operation experience.  

Each test subject was put through the same segment 1 turn on a tabletop simulator that 
closely resembled an M1A2 tank driver station.  The simulator was interfaced with ModSAF 5.0, 
the same version used in the prior experimentation.  In this experiment, the human subjects were 
tasked with driving the tank simulator on a road with similar aspects to the one in the National 
Training Center used in Phases I, through VI.  Figure 10 depicts the traces of the tracks made by 
Bunker6 in three separate simulator runs.  Figure 11 shows the variability in speed for the same 
runs. The dark solid line represents the centerline of the road surface. 

              

Figure 10 – Position traces for Bunker6                            Figure 11 – Speed Traces for Bunker6  

Note the consistency in Bunker6’s performance.  This can be contrasted with the lower 
repeatability of a ModSAF entity during a Road March behavior indicated in Figures 12 and 13, 
which display the corresponding traces of speed and position for a ModSAF entity.  It is clear             166 
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that human performance, at least as performed by Bunker6, is significantly more consistent and 
repeatable than that of the ModSAF entity doing a road march.  The performance of the 
ModSAF entity represents the worse case, thus justifying our use of the ModSAF entity as the 
basis of our work.   
       We further evaluated the consistency in performance across human subjects.  In other words, 
given that individual human drivers perform consistently when compared to themselves over 
several repetitions of the same task, how similar are performances of different humans executing 
the same task?  To answer this question, we developed a neural network predictive model and 
trained it with Bunker6’s performance data.  We then proceeded to test it against Bunker6’s data 
used in the training, as well as data not used in training.  Most significantly, we also applied this 
model to predict Seagram7’s performance.   

 

                                       

Figure 12 - Position traces for ModSAF entity          Figure 13 - Speed Traces for ModSAF entity                   

The neural network model selected for this experiment consisted of two networks – one to 
predict position change and the other to predict rotational change.  Each employs five inputs and 
one output, plus five hidden nodes in one hidden layer.  Table 12 displays the architecture of the 
feed-forward recurrent neural networks.  They were trained using the back-propagation gradient 
descent procedure in the training algorithm. 

 
Table 12 - Architecture by Neural Network Type 

NN Architecture Predictors  Response 

Speed 5-5-1 
11

111,

−−

−−−

tt

ttt
,HRbcHRab

,,RsRclRwp  tSΔ  

Heading 5-5-1 
11

111,

−−

−−−

tt

ttt
,HRbcHRab

,,RsRclRwp  tθΔ  

The results of this Phase VII experiment are depicted in table 13.  

 
Table 13 - ESPDUs Generated in Human Controlled Vehicle State Synchronization Experiments                       167
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Source Data Newtonian-based dead-
reckoning 

Neural Network 
predictive model based 

Bunker6 Training Data 3 0 
Bunker6 Testing Data 3 1 
Seagram7 Testing Data 3 3 
 

 The results of Table 13 suggest that the neural network captures the behavior of Bunker6 
very well, but that predictive capability does not translate well to Seagram7.  This suggests that 
human performance, while repeatable for specific human subjects, need not carry over well to 
other humans.  One possible explanation specific to our test subjects is that the relative 
inexperience of Seagram7 resulted in inconsistent performance.  Bunker6’s greater experience 
and skill in tank operation resulted in a more exact and consistent performance.  However, the 
tests are not sufficiently extensive to warrant a general conclusion to that effect, and further 
testing is warranted. 

4. Summary and Conclusions 
 
In summary, a context-based neural-network modeling scheme to improve the predictive ability 
of DIS dead reckoning schemes was proposed and formulated.  It was empirically developed and 
tested in a simulated environment.  As part of this effort, the use of explicit model decomposition 
schemes was considered as a mechanism for improved predictive performance.   The 
performance of the best modeling combination was evaluated in several ways.  The results 
indicated that neural networks can indeed improve the predictive ability of ModSAF entities, 
thereby resulting in decreased network PDU traffic.  Secondly, we determined that 
contextualization of the neural network predictive models can further improve the predictive 
ability of the neural networks.  

Nevertheless, the ability of the neural network predictive models to generalize from entity to 
entity, road section to road section or even from person to person (albeit in limited testing) was 
less encouraging.  As a practical matter, the advantages presented by this approach to predicting 
near term movements could be best realized by performing a rehearsal of the exercise and 
building the models through observation of prior performance in these rehearsals.  In many 
cases, such rehearsals can be quite realistic, while not so in other cases.  Results also indicated 
that the best benefit when cost is included in the decision comes from training the networks over 
the entire route, rather than in a fine-grained fashion as done n Phases II and III.  Lastly, the 
computational cost of using neural networks was steep.  However, as hardware speed and cost 
decrease over time, this will become less of an issue. 

Second order equations of motion are likely to improve the efficiency and effectiveness of 
the traditional dead reckoning equations.  However, they cannot predict the human’s actions.  
The neural networks can do this by learning from the human’s prior actions.  Thus, the objective 
of the study reported herein was not to find the best solution to the problem but rather, to explore 
the feasibility of using neural networks with their ability to learn from historical data as an 
alternative to the dead reckoning process currently used in DIS.  Future work in this aspect of the 
study includes investigating methods of automating the learning of the task decomposition and 
hence, the context-shifting rules.  Also, the improvement of the neural networks’ performance             168
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should be explored further.  This includes considering alternative types of architectures, inputs, 
normalization schemes, and sampling strategies.  For details of this work, see [28]. 
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