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Abstract—In this paper, we present the evolution of adaptive
resonance theory (ART) neural network architectures (classifiers)
using a multiobjective optimization approach. In particular,
we propose the use of a multiobjective evolutionary approach
to simultaneously evolve the weights and the topology of three
well-known ART architectures; fuzzy ARTMAP (FAM), ellip-
soidal ARTMAP (EAM), and Gaussian ARTMAP (GAM). We
refer to the resulting architectures as MO-GFAM, MO-GEAM,
and MO-GGAM, and collectively as MO-GART. The major
advantage of MO-GART is that it produces a number of solu-
tions for the classification problem at hand that have different
levels of merit [accuracy on unseen data (generalization) and size
(number of categories created)]. MO-GART is shown to be more
elegant (does not require user intervention to define the network
parameters), more effective (of better accuracy and smaller size),
and more efficient (faster to produce the solution networks) than
other ART neural network architectures that have appeared in the
literature. Furthermore, MO-GART is shown to be competitive
with other popular classifiers, such as classification and regression
tree (CART) and support vector machines (SVMs).

Index Terms—ARTMAP, category proliferation, classification,
genetic algorithms (GAs), genetic operators, machine learning.

I. INTRODUCTION

A DAPTIVE RESONANCE THEORY (ART) was devel-
oped by Grossberg [1]. Some of the ART architectures

that have appeared in the literature include fuzzy ARTMAP
(FAM) [2], ellipsoidal ARTMAP (EAM) [3], and Gaussian
ARTMAP (GAM) [4]. All of these ART architectures pos-
sess a number of desirable properties, such as they can solve
arbitrarily complex classification problems, they converge
quickly to a solution (within a few presentations of the list of
input/output patterns belonging to the training set), they have
the ability to recognize novelty in the input patterns presented
to them, they can operate in an online fashion (new input
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patterns can be learned by the ART system without retraining
with the old input/output patterns), and they produce answers
that can be explained with relative ease.

One of the limitations of these ART architectures, which has
been repeatedly reported in the literature, is the category prolif-
eration problem, where a relatively large number of categories
are needed to represent the training data. Another limitation
is their performance dependence on the parameters chosen for
training the data. The choice of these parameters requires good
knowledge of these architectures and often requires some ex-
perimentation to get the best results using these architectures, a
computationally intensive proposition.

To alleviate these problems, we introduced genetic fuzzy
ARTMAP (GFAM) in [5] and [6]. GFAM uses a genetic al-
gorithm (GA) (see [7]) to evolve simultaneously the weights,
as well as the topology of ART neural networks. In [6], we
extended the ideas of genetically engineering FAM (GFAM, in
[5]) to EAM and GAM, and introduced several improvements,
which resulted in significant gains in terms of efficiency.

Genetic ART (GART) starts with a population of trained ART
networks, with the number of hidden-layer nodes and the in-
terconnection weights to these nodes fully determined (at the
beginning of the evolution) by ART’s training rules. To this ini-
tial population of ART networks, GA operators are applied to
modify these trained ART architectures (i.e., number of nodes
in the hidden layer, and values of the interconnection weights) in
a way that encourages better generalization and smaller size ar-
chitectures. The optimization problem in GART has two objec-
tives: maximize classification accuracy on a validation set, and
minimize network complexity (size of the network), measured
in terms of the number of hidden nodes (categories). In GART,
these two objectives were combined using a weighted sum fit-
ness function. A problem with this approach is that the user
has to a priori specify their preference of accuracy and com-
plexity, by choosing the weights in this fitness function. How-
ever, choosing good weights for the fitness function is a data-de-
pendent problem. To overcome this, the user should run the al-
gorithm for different settings of the weights in the fitness func-
tion, an expensive proposition. Furthermore, the basic weighted
sum approach, used in GART, might not be able to reproduce
all possible solutions that might be of interest to the user. Al-
though this is generally true for a weighted sum approach that
uses constant weights, in defining a single-objective function
from multiple objectives, Jin et al. [8] have eloquently demon-
strated that a dynamic weight aggregation approach overcomes
this limitation and have used this approach in a multiobjective
training of multilayer perceptrons [9], maximizing accuracy and
minimizing complexity. However, another way of alleviating
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GART’s limitation, and the focus in this paper, is to use an ap-
propriate multiobjective evolutionary algorithm (MOEA) to find
multiple solutions to the multiobjective problem at hand.

In particular, in this paper, we propose an improved GA for
the evolution of ART architectures. The proposed GA relies on
adaptive parameter control. This has the advantage of avoiding
the reliance of the performance on genetic parameters that were
introduced in GFAM such as the probability of mutation and
probability of deletion of a FAM category. Therefore, the pro-
posed approach avoids the need for experimentation to achieve
the best possible performing ART network. Furthermore, it
alleviates the need to tweak the GA algorithm parameters in
order to achieve good results. The GA algorithm parameters are
automatically adapted to fit the classification problem at hand,
resulting in a classifier that does not require any user interven-
tion. Furthermore, the proposed improved GA approach relies
on multiobjective optimization techniques (thus overcoming the
issues associated with framing a multiobjective optimization
problem as a single-objective optimization problem, mentioned
above), while it chooses the best GA parameters in an adaptive,
problem-dependent, fashion. We named this improved GA
approach as MO-GART, and more selectively, MO-GFAM,
MO-GEAM, and MO-GGAM.

Using genetic algorithms to optimize performance has not
been limited to classifiers, such as ART. Ishibuchi et al. have
produced a good number of papers, dated back in 1994 [10],
where genetic algorithms were used to design fuzzy classifiers.
In particular, in 1995, Ischibuchi et al. [11] used a genetic
approach with a single-objective fitness function to design
a fuzzy classifier that maximized the classification accuracy
(one of the objectives) and minimized the number of square
fuzzy rules (the other objective); a very similar paper [10]
designed a fuzzy classifier with rectangular fuzzy rules instead
of square fuzzy rules, resulting in a fuzzy classifier with a
reduced fuzzy rule size. In 1997, Ishibuchi et al. [12] compared
a number of genetic-based single-objective approaches and
a multiobjective approach to design a fuzzy classifier that
maximizes classification accuracy and minimizes the number
of produced linguistic rules. The multiobjective method selects
half of the population from one generation to the next using a
single-objective function with random weights (not constant
weights); this way it drives the population in many different
directions in the objective space. In one of the variations of
the multiobjective approach, the confidence of a fuzzy rule is
taken into consideration in making classification decisions. It
turned out that the multiobjective approach that incorporates
the confidence of the fuzzy rule produced the best results. In
[13], Ishibuchi et al. consider a three-objective optimization
problem where the objective is to maximize classification, min-
imize the number of fuzzy rules, and minimize the number of
antecedent rules; in their effort, they consider two approaches
of generating the fuzzy rules (a rule-based approach and a
GA-based approach) and they report good results on the Wine
classification problem, a problem that has a large number of
attributes (13 attributes). In a companion paper [14] Ishibuchi
et al. consider, once more, the three-objective optimization
problem of maximizing the correctly classified training pat-

terns, minimizing the number of fuzzy rules, and minimizing
the total number of antecedent conditions. In their work, they
consider a rule selection approach where a small number of
rules is extracted from a larger number of candidate rules,
and a fuzzy-genetic-based machine learning approach where
the candidate rules are produced by the genetic algorithm.
Through a number of simulations, the authors demonstrated
that a small number of interpretable rules can be produced,
through both of these approaches, on a number of select clas-
sification problems. In one of their most recent publications
[15], Ishibuchi et al. examine the interpretability-accuracy
tradeoff in fuzzy-rule-based classifiers using a multiobjective
fuzzy-genetics-based machine learning (GBML) algorithm.
This analysis revealed that each data set has a different relation
between complexity of fuzzy-rule-based classifiers and their
generalization ability for test patterns. Another interesting
result from this paper is that in some cases lower error rates
were obtained by the single-objective formulation than by the
multiobjective formulation, suggesting the need to improve
the search ability of evolutionary multiobjective optimization
(EMO) algorithms.

This short review indicates that there is a very rich literature
on multiobjective optimization of fuzzy classifiers, pioneered
by Ishibuchi et al. , but a literature that has many more con-
tributors as the evolutionary multiobjective optimization of
fuzzy-rule-based systems bibliography page by Cococcioni
demonstrates.1 The literature is also rich in contributions re-
lated to multiobjective optimization of neural networks. For
instance, Everson and Fieldsend [16] have provided a mul-
ticlass receiver operating characteristic (ROC) analysis for a
three-class problem using a -nearest neighbor and a multilayer
classifier. Jin et al. [17] optimize classification accuracy and
connectivity within the framework of spiking neural networks.
Graning et al. [18] show on a few benchmark problems that
multiobjective optimization of the structure and the weights of
multilayer neural networks, solving binary classification prob-
lems, results in networks that better generalize compared to the
case where the objectives are optimized through a single-ob-
jective optimization approach. Jin and Sendhoff provide a very
comprehensive review of Pareto-based multiobjective machine
learning approaches in [19]. There they illustrate that three
benchmark problems (generating interpretable models, model
selection for generalization, and ensemble generation) can
benefit from a Pareto-based multiobjective approach.

The aforementioned references provide an incomplete review
of the work that has been conducted in the literature to design
classifiers or fuzzy classifiers, using an evolutionary multiobjec-
tive optimization approach. Despite that fact that the review is
not complete, our specific focus on the multiobjective optimiza-
tion of ART classifiers revealed no prior work in the literature
beyond the research mentioned in the beginning paragraphs of
the Introduction, all of which used a single-objective function
approach to optimize the two objectives of maximizing classifi-
cation accuracy and reducing the classifier’s size. This paper’s
intent is to design an ART classifier using a genetic-based mul-
tiobjective optimization approach. Multiobjective optimization

1http://www2.ing.unipi.it/~g000502/emofrbss.html
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approaches have been generally reported as being superior to
single-objective optimization approaches in solving problems
with multiple objectives. Our approach is a Pareto-based ap-
proach, and as Jin and Sendhoff emphasize [19], Pareto-based
approaches offer a deeper insight into the learning problem by
analyzing the Pareto front. Furthermore, our approach frees the
user from the difficult task of a priori choosing the ART net-
work parameters to optimize ART’s performance (classification
accuracy and size); on the contrary, it requires no a priori set-
ting of ART network parameters by the user, quite often a time
consuming task.

In our work, the MO-GART family of proposed classifiers
is compared to other ART classifiers, and non-ART classifiers.
In particular, we compare MO-GART with GART, ssFAM,
ssEAM, ssGAM (see [20]), and a few other non-ART-based
classifiers. This comparison is based on the accuracy, size, and
computational complexity of the classifiers. Our results show
that MO-GFAM, MO-GEAM, and MO-GGAM perform well
on a number of classification problems, and optimally on some
of these problems. For instance, MO-GART attained a better
generalization performance and required a smaller than, or
equal, sized network (in almost all problems tested), compared
to ssFAM, ssEAM, and ssGAM networks, while also requiring
reduced (sometimes significantly reduced) computational effort
to achieve these advantages. Furthermore, MO-GART attained
a better generalization performance (in a number of problems),
and was smaller than or equal in size compared to GART (in
most problems), while needing reduced computational efforts
to achieve these advantages (in all problems). Also, we found
that MO-GART was less computationally demanding, and
of smaller size, while achieving an accuracy as competitive
as its counterpart support vector machine (SVM) classifier.
Finally, we discovered that MO-GART produces more accu-
rate classifiers, of competitive sizes, than classification and
regression tree (CART) [21], at the expected expense of more
computational effort. It is worth noting that neither GART nor
MO-GART require a priori setting of the ART network pa-
rameters, an important advantage from the user’s perspective.
It is also worth noting that the only GA parameters that need
to be defined by GART or MO-GART user are the population
size, a mutation constant, and an upper limit on the number of
evolutions all of which are set to default values that work well
for all the data sets that we have experimented with. Finally,
as mentioned earlier, to the best of our knowledge, this is the
first attempt to design ART networks, using a multiobjective
optimization approach.

The organization of this paper is as follows. In Section II,
we present a rather lengthy, but needed (in our opinion), ex-
position of the basics of ART architectures (only the elements
needed for this paper are presented in Section II). Furthermore,
in Section II, we provide the associated literature related to
adaptation of the GA parameters and multiobjective optimiza-
tion techniques that motivate the choices made in our proposed
GA method, delineated in Section III. In Section III, we de-
scribe all the important elements pertinent to the multiobjec-
tive evolution of the ARTMAP architectures that correlate with
the choices suggested by the literature and our prior experi-
ences with GART [6]. In Section IV, we discuss the experiments

conducted, the data sets used in the experimentation, and we
provide the performance comparisons between the MO-GART
and other ART-based classifiers (ssART, GART), as well as
non-ART-based classifiers (SVM and CART). In Section V, we
analyze, in extensive detail, some of the pairwise comparisons
of the MO-GART results with ssART, GART, SVM, and CART.
Furthermore, the sensitivity of the MO-GART results to the seed
parameter for all the data sets that we experimented with, as well
as visualization of the Pareto fronts of MO-GART, GART, and
ssART on select data sets are also contained in Section V. In
Section VI, we summarize our contributions and findings.

II. PRELIMINARIES

A. The ARTMAP Architectures

Grossberg [1] introduced the foundation of ART in 1976.
Later, based on that work, ART1 was developed to perform clus-
tering (self-organizing) of binary patterns [22]. ART1 was then
extended to ART2 to handle real-valued patterns [23]. In 1991,
Carpenter and Grossberg introduced ARTMAP [24], which
was capable of performing classification of binary patterns.
They then simplified the ART2 architecture and introduced
an improved version called fuzzy ART [25]. Furthermore, in
1992, Carpenter and Grossberg extended ARTMAP to fuzzy
ARTMAP, which is capable of classifying real-valued input
patterns [2].

Since the introduction of fuzzy ARTMAP, other ART archi-
tectures have been introduced into the literature. The focus of
this effort is on fuzzy ARTMAP and two other ART architec-
tures: ellipsoidal ARTMAP (see [3]) and Gaussian ARTMAP
(see [4]). The objective in this effort is to illustrate how geneti-
cally engineered ART architectures can be designed from a pop-
ulation of fuzzy ARTMAPs, ellipsoidal ARTMAPs, or Gaussian
ARTMAPs. It is assumed that the reader is familiar with these
ART architectures. This section only describes the specifics of
ART architectures needed to understand the genetically engi-
neered ART structures. For simplicity, these ART architectures
are referred to as ART and their specific name is used (FAM or
EAM or GAM) only when there is a need to differentiate one
from the other.

1) Operation of ART: An ART architecture consists of
an input layer, where the inputs are applied, a category
representation layer, where categories (compressed repre-
sentations of the input patterns are formed), and an output
layer where the correct mapping between the input pat-
terns and their associated labels are established. Training
in ART is achieved by presenting a training set to the ART
network. Given a set of inputs and associated label pairs

(called the
training set), we want to train ART to map every input pattern
of the training set to its corresponding label. To achieve the
aforementioned goal, we present the training set to the ART ar-
chitecture repeatedly, as many times as it is necessary for ART
to correctly classify these input patterns. The task is considered
accomplished (i.e., learning is complete) when the weights in
ART do not change during a training set presentation, or after a
specific number of list presentations is reached.
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Fig. 1. FAM learning (2-D example). (a) Category with 0 size. (b) Introducing a new pattern � , represented by � . (c) Category expands to include � . (d) Since
new pattern � , represented by � is inside the category, it does not change its size. (e) New pattern � , represented by � is presented. (f) Since � is outside the
category, the category is expanded to include � , within its boundaries.

Fig. 2. EAM learning (2-D example). (a) Category with 0 size. (b) Introducing
a new pattern � ; the category expands to include � . (c) Introducing a new pat-
tern � ; since the category includes � , it does not change its size. (d) Pattern �

is presented; since this pattern is outside the category, the category is expanded
to include � within its boundaries.

Fig. 3. GAM learning (1-D example). (a) Category with 0 size. (b) Introducing
a new pattern � ; the category characteristics (mean, standard deviation, of the
Gaussian curve, as well as number of points encoded by the Gaussian curve)
change to include the new knowledge that the new input pattern brings.

The weights in ART correspond to compressed representa-
tions of the input patterns presented to the ART network during
its training phase. These compressed representations have a ge-
ometrical interpretation. In particular, every node (category) in
the category representation layer of FAM has weights that com-
pletely define the lower and upper endpoints of a hyperbox. At
the beginning of training, every category of FAM starts as a
trivial hyperbox (equal to a point), and subsequently, it expands
to incorporate within its boundaries all the input patterns that in
the training phase choose this hyperbox as their representative
hyperbox, and are encoded by it (see Fig. 1, where the category
expansion of FAM is shown for an example data set). The size
of hyperbox is measured as the sum of the lengths of its sides.

Also, every node (category) in the category representation
layer of EAM has template weights that completely define an
ellipsoid, through its center, direction of major axis, length of
the major axis, and ratio of lengths of minor axes to major axis
in the ellipsoid. At the beginning of training, every EAM cat-
egory starts as a trivial ellipsoid (equal to a point), and subse-
quently, it expands to incorporate within its boundaries all the
input patterns that in the training phase chose this ellipsoid as
their representative ellipsoid, and are encoded by it (see Fig. 2,
where the category expansion of EAM is shown for an example
data set). The size of the ellipsoid is measured as the length of
the major axis.

Finally, every node (category) in the category representation
layer of GAM has template weights that define the mean vector,
the standard deviation vector of a multidimensional Gaussian

distribution, and the number of points that are associated with
this Gaussian distribution. At the beginning of training, every
category of GAM starts as a collection of Gaussian distribu-
tions in every dimension, with mean equal to the input pattern
that was first encoded by this category, and a small standard de-
viation vector [Fig. 3(a)]; as training progresses in GAM, this
GAM category is modified to incorporate the information of the
additional input patterns that are encoded by it [see Fig. 3(b) for
an illustration of how the GAM category is modified for an ex-
ample data set]. At any point in time, the mean vector of this
Gaussian distribution, corresponding to a category, is equal to
the mean vector of all the input patterns encoded by the category,
and the variance vector of the Gaussian distribution is equal to
the variance vector corresponding to the input patterns that were
encoded by the category, while the number of the points associ-
ated with this Gaussian distribution is the number of points that
chose this category as their representative category.

It is also worth mentioning that the categories in FAM, EAM
and GAM are allowed to expand up to a point allowed by a
threshold, controlled by a network parameter denoted as the
baseline vigilance parameter . This parameter assumes
values in the interval . Small values of this parameter
allow the creation of large categories, while large values of
this parameter allow the creation of small categories. In the
one extreme when is equal to 0, a FAM or EAM category,
equal to the whole input space, could be created, while at the
other extreme when is equal to 1 only point categories are
formed. In GAM, small values of this parameter allow more
and more patterns to be encoded by a GAM category, while
large values of this parameter allow only a few patterns to be
encoded by a GAM category. It turns out that this parameter
has a significant effect on the number and type of categories
formed, and consequently, it affects the performance of these
networks.

The performance of ART networks is measured in terms of
the number of categories created in its training phase (small
number of categories is good), and how well it generalizes on
unseen data (high generalization accuracy is good). The perfor-
mance of an ART architecture depends on the choice of the vig-
ilance parameter. It has been a known fact that performance in
ART is also affected by the order according to which training
data are presented to an ART architecture.

2) ART Category Proliferation Problem: One of the limita-
tions of these ART architectures that has been repeatedly re-
ported in the literature is the category proliferation problem.
This refers to the creation of a relatively large number of cat-
egories to represent the training data. The creation of a large
number of categories means poor compression of the training
data. Quite often, the category proliferation problem, observed
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in ART, is connected with the issue of overtraining. Overtraining
occurs when ART is trying to learn the training data perfectly at
the expense of degraded generalization performance (i.e., clas-
sification accuracy on unseen data) and also at the expense of
creating many categories to represent the training data (leading
to the category proliferation problem). Also, it has been related
to several limitations of ART, such as the representative ineffi-
ciency of the categories or the excessive triggering of the match
tracking mechanism due to existence of noise.

Since the early 1990s, a number of ART modifications and
improvements have been published in the literature. Authors
tried to improve the ART learning properties, speed up ART’s
training, and address the ART category proliferation problem.
A variety of innovations have been introduced to combat the
category proliferation problem in ART. For instance, PRO-
BART [26] eliminates the match tracking mechanism and
instead stores probability information in the map field. In 1996,
GAM was introduced [4]. The authors attribute the category
proliferation to two causes: sensitivity to noise and inefficiency
of FAM categories. GAM operates in a similar fashion as
FAM but it relies on a Gaussian-based measure of similarity
in its operation, therefore eliminating the reliance on the in-
efficient category shapes of FAM and reducing the sensitivity
to noise. Micro-ARTMAP [27] suppresses the match tracking
mechanism and employs a probabilistic map to encourage
creation of large categories, and hence reduce their number.
Safe micro-ARTMAP [28], introduced later, adds a mechanism
to limit the growth of a category in response to a single pattern.
Semisupervised learning of ART was introduced [20] in 2003,
where it allows, with a certain tolerance, categories to encode
patterns that are not mapped to the same label. This reduces
the sensitivity to noise and hence the number of categories
created. Three semisupervised architectures were introduced
in [20]: ssFAM, ssGAM, and ssEAM. In [29], Koufakou et
al. suggest the use of cross validation to prevent overtraining,
and therefore, avoid the creation of unnecessary categories. In
addition, the work by Carpenter et al.[30], Williamson [31], and
Parrado-Hernadez et al. [32] proposes that the ART structure
is changed from a winner-take-all to a distributed version and
slow learning is employed with the intent of creating fewer ART
categories and reducing the effects of noisy patterns. To address
the inefficiency of FAM categories in data representation, EAM
was introduced in 2001 [3]. EAM was similar to FAM except
that it relied on category regions defined as hyper-ellipsoids
rather than FAM’s original hyper-rectangles.

B. Adaptation in Genetic Algorithms

When applying a GA to solve an optimization problem, we
not only need to choose the algorithm, representation, and op-
erators for the problem, but we also need to choose param-
eter values and operator probabilities for the GA so that it will
not only find the solution, but also find the solution efficiently.
In many cases, researchers choose these parameter values and
operator probabilities based on experience or experimentation
on a specific problem. The ways to choose the GA parame-
ters and operator probabilities has attracted a lot of interest. A
number of researchers suggested good parameter values as a
result of extensive experimentation on a range of optimization

problems. For example, Jong [33] proposed to set
and , where and stand for the probability of
mutation and crossover, respectively. In [34], Muhlenbein and
Schlierkamp-Voosen proposed , and in [35], Back
proposed , where represents the popula-
tion size and represents the bit length of a chromosome.

Finding good GA parameter values for a certain optimization
problem is a time consuming process. It is prone to human error,
which may lead to suboptimal results. Moreover, what might be
initially considered as a good parameter setting could, in the
progress of evolution, prove not to be as good, since the search
may move to different regions of the solution space. As a result,
an emphasis was placed on designing GAs where the parameters
automatically adapt to the problem at hand.

The GA parameters that affect its performance include envi-
ronmental parameters such as population size and the objective
(fitness) function. The adaptation can be applied to global pa-
rameters such as mutation rate, mutation strength, or crossover
rate that are affecting all individuals in the population, or applied
to local parameters where the parameter value is customized for
each individual. Also, some of the research proposes the cus-
tomization of the parameter setting at the component level (part
of the individual).

The majority of research, though, focuses on adapting the mu-
tation rate or mutation strength. For real-valued representations,
the term mutation strength, sometimes called mutation step size,
refers to the magnitude of change in each mutated variable. This
is different in binary representation schemes, where the term
mutation rate is used to express how probable it is for a certain
binary variable to be changed (inverted).

The adaptation approaches can be distinguished in three
groups, in order of increasing complexity: deterministic,
adaptive, and self-adaptive [36]. Each of these approaches is
described below.

• Deterministic: Deterministic adaptation refers to the dy-
namic adjustment of a GA parameter using a deterministic
rule, and without feedback from the quality of the solu-
tion achieved by the evolutionary process. This rule can
be based on a schedule (similar to simulated annealing) or
number of generations (see [37]). In general, the objective
in this approach is to alter the GA parameters in such a
way that result in a widespread search at the beginning of
the optimization, and increasingly localized search at later
stages. An example of this approach can be found in [38],
where the mutation step sizes are discounted by a constant
factor each time an offspring is produced.

• Adaptive: This approach uses some form of feedback from
the GA that is used to determine the direction and/or mag-
nitude of the change to the GA parameter. In [39], the stan-
dard deviation of the Gaussian mutation was varied based
on a temperature parameter. The temperature parameter
was defined as , where is
the maximum fitness for a given task. Thus, the tempera-
ture of a solution is determined by how close the solution
is to being an optimal solution for the task under consid-
eration. Solutions with a high temperature are mutated se-
verely, and those with a low temperature are mutated only
slightly. This allows a coarse-grained search initially, and
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a progressively finer grained search as the GA approaches
a solution for the assigned task.
In [40], the authors suggest the use of a feedback signal that
is defined by the difference , where

is the maximum fitness and is the av-
erage fitness of solutions in population at generation
. This difference is used as an indication of closeness to

convergence. This difference is likely to be less for a pop-
ulation that has converged to an optimal solution than that
for a random population, scattered in the solution space.
The authors define the adaptive rates of crossover and
mutation for all chromosomes to be inversely proportional
to this difference. To make this mechanism less disruptive
for good solutions, the mechanism is adjusted to have low
values of parameters for high-fitness values and high values
of parameters for low-fitness values, as follows:

, and
.

Therefore, in this case, the parameters are controlled at the
individual level.

• Self-Adaptive: In this approach, the GA parameters un-
dergo evolution. The GA parameters are encoded in the
chromosomes and evolved as part of the solution. The en-
coded parameters will lead to better fitness for individuals
with better parameter values; and since these individuals
are more likely to survive and reproduce, this mechanism
will propagate these better parameter values.

In our implementation of genetic ARTMAP, we chose to use
an adaptive approach, where a feedback signal is used to deter-
mine the operator probability at the component level.

C. Multiobjective Evolutionary Algorithms

Many real-world problems involve simultaneous optimiza-
tion of conflicting objectives. This is the basic challenge of
multiobjective optimization research. Evolutionary algorithms
have been used extensively to solve multiobjective optimization
problems, resulting in a body of knowledge known as MOEAs.
A number of authors have published surveys of MOEA, such as
[41], and the reader can find more details about MOEAs there.

With conflicting multiple objectives, there is no single op-
timal solution, but rather, there are a set of good solutions. It is
often desirable to find these good solutions as they provide alter-
native solutions to the problem at hand. Evolutionary algorithms
(EAs) are suitable for solving multiobjective optimization prob-
lems because EAs are population-based search algorithms, and,
as such, they can find, in a single run, multiple good solutions
on the surface defined by the multiple objectives that are to be
optimized.

A Pareto-optimal solution is a solution that is not dominated
by any other solution in the search space. The entire set of such
optimal solutions is often referred to as the Pareto front. The
main focus of most MOEA research is to minimize the distance
of the generated solutions to the true Pareto front and to max-
imize the coverage (diversity) of the discovered Pareto set. A
good Pareto set may be obtained by appropriate guiding of the
search process through careful design of the selection and fitness
assignment strategies, which is the main challenge concerning
multiobjective optimization using GAs. The selection operator

(in single-objective and multiobjective optimization problems)
determines the solutions that will be selected for the reproduc-
tion of the next generation. The selection operation emphasizes
fit individuals in the population by giving them a higher chance
to breed. The selection scheme should emphasize the character-
istics of good solutions in order for the evolutionary process to
produce better solutions in successive generations. In the pres-
ence of multiple objectives, the determination of ”better solu-
tions” is not as straightforward as it is in the single-objective
case. In review, the objective of the selection operation in a mul-
tiobjective problem is to lead the evolutionary process to a set
of optimal solutions, rather than one optimal solution as in the
case of single-objective problems.

One of the simplest approaches for dealing with a multiob-
jective problem is to convert the problem into a single-objective
problem. This is done by implementing a mechanism that com-
bines the multiple objectives into a single objective. These ap-
proaches try to converge to a specific point on the Pareto front.
Therefore, the combining mechanism determines the relative
importance of the objectives. In these methods, to generate the
entire Pareto front, the analyst must perform multiple runs and
vary the conditions of the combining mechanism. The simplest
method for combining the objective is the weighted sum ap-
proach. This can be expressed as where

denotes the number of objectives and denotes the th ob-
jective function. This is the approach that was adopted in GART
[42] and a number of other evolutionary neural networks such
as [43]. It follows immediately that the solution that optimizes

is a Pareto optimal point, since if not, then there must exist
a feasible which improves on at least one of the objectives
without compromising the others and hence produces a smaller
value of the weighted sum. It is necessary to scale or normalize
the objectives to avoid having one objective dominate the others.
This requires knowledge of the range of each objective, which
might not be available for many real-world applications.

The weighted sum of the objectives fitness function approach
has a number of drawbacks. The first drawback is that this
scheme is not able to generate the nonconvex regions of the
Pareto front for any combination of the weights. This has
been pointed out by a number of researchers, such as [44].
The second drawback is that the solutions, selected by evenly
varying the weights, are not guaranteed to be evenly distributed
on the Pareto front. This results in a poor diversity of the Pareto
solutions found. As these drawbacks were identified in GART
[6], in this paper, we look for a multiobjective approaches that
overcome these drawbacks. Some of the drawbacks of the single
objective with constant weights function have been addressed
by the dynamic weight aggregation approach introduced in [8],
however the focus in this paper is to address the aforementioned
issues by emphasizing a multiobjective optimization to tackle
them.

The more recent research in multiobjective optimization
avoids combining the objectives into a single objective. Rather,
they treat objectives separately, and solutions are evaluated
with respect to each one of the objectives at every genera-
tion. Therefore, these approaches are more suited for finding
multiple Pareto solutions. These approaches do not normally
require a mechanism that determines the relative importance of
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objectives. The aggregation methods of selection, mentioned
above, are often referred to as a priori methods because they
normally incorporate preference beforehand. Alternatively, the
methods that attempt to produce the whole Pareto front and give
the option to the user to decide from a set of optimal solutions
are referred to as a posteriori methods.

One early example of the a posteriori method is the pio-
neering work of Schaffer [45] where vector evaluated genetic
algorithm (VEGA) was introduced. In VEGA, the selection step
generates a number of subpopulations by performing propor-
tional selection according to each objective in turn. Then, these
subpopulations are combined to obtain a new population, on
which the genetic operators, crossover and mutation, are ap-
plied. VEGA has a major drawback in that its selection scheme
is biased towards some Pareto optimal solutions. To overcome
problems identified in VEGA, Goldberg [7] suggested ranking
of solutions based on their Pareto optimality. In this scheme,
Pareto optimal solutions are equally assigned the highest fit-
ness, and therefore, they have increased chance of survival and
breeding. The rest of the population is assigned fitness values
that depend on their closeness to the Pareto front. A number of
authors proposed algorithms based on this ranking scheme, such
as Srinivas [46] who introduced the nondominated sorting ge-
netic algorithm (NSGA) and Fonseca [47] who introduced the
multiobjective genetic algorithm (MOGA). The niched-Pareto
genetic algorithm (NPGA; see [48]) uses a tournament selec-
tion scheme based on Pareto dominance. In a similar fashion,
as a successor to NPGA, a revised version was introduced and
referred to as NPGA2 (see [49]).

Elitism is a selection mechanism that aims at preserving
good performance through successive generations. In multiob-
jective optimization, elitism refers to preserving nondominated
solutions found along the evolutionary process. Elitism has
been adopted in the more recent MOEA research. For example,
Ishibuchi [50] uses a random weighted sum approach, with
elitism, to produce the Pareto front. The weights are generated
randomly each time an individual is selected. The nondomi-
nated set of solutions is stored externally and updated every
generation. The nondominated sorting genetic algorithm II
(NSGA-II) [51], [52] was introduced as a revised successor
to the original NSGA [46]. In NSGA-II, elitism is ensured by
combining the best parents with the best offspring obtained in
every generation.

Strength Pareto evolutionary algorithm (SPEA) introduced
by Zitzler and Thiele [53] use the Pareto elitism by storing non-
dominated solutions in an externally maintained archive. The
fitness of an individual depends on the number of solutions that
dominates it. For each individual in the external set, a strength
value is computed. This strength is proportional to the number
of solutions a certain individual dominates. The fitness of each
member of the current population is then computed as the sum of
the strengths of all external nondominated solutions that domi-
nate it. The mechanism of such a fitness assignment mechanism
automatically penalizes crowded solution regions and serves as
a mechanism of encouraging diversity in the Pareto set without
the need to specifying other parameters (such as those related
to the fitness sharing mechanism). A revised version of SPEA
is also introduced, referred to as SPEA2 (see [54]). The revised

version incorporates a fine-grained fitness assignment strategy,
which takes into account, for each individual, the number of in-
dividuals that it dominates and the number of individuals by
which it is dominated. It uses a nearest neighbor density esti-
mation technique, which guides the search more efficiently, and
it has an enhanced archive truncation method that guarantees the
preservation of boundary solutions.

In [55], Fieldsend et al. point out a problem with using an
elite archive of fixed size. It is shown that limiting the size of
the elite archive can produce “retreating” or “oscillating” esti-
mates of the Pareto front. This happens as the archive is trun-
cated when its size exceeds the limit and then new solutions are
added which would have been dominated by solutions elimi-
nated during the truncation process. Therefore, the authors rec-
ommend keeping all nondominated solutions found during the
evolutionary search. To speedup processing of a large number
of nondominated individuals, a tree data structure is introduced
for fast searches, additions, and deletions to the archive.

In this paper, we adopt a fitness assignment that is similar
to the one introduced in SPEA2 [54]. Also, as is the case for a
number of previously proposed multiobjective evolutionary ap-
proaches, we maintain an external elitist archive of continuously
updated Pareto solutions. The size of the external archive is not
fixed and the truncation procedure suggested in SPEA2 is not
used. In our implementation, we use a mechanism that ensures
that boundary solutions (best solutions in each objective) are al-
ways selected as parents for the next generation. This technique
was suggested by Fieldsend et al. [55] and was found to be ef-
fective in improving the efficiency of MO-GART.

III. MULTIOBJECTIVE EVOLUTIONARY ART ARCHITECTURES

MO-GART uses a multiobjective evolutionary approach
to find networks that achieve Pareto-optimal performance in
terms of two objectives: maximizing classification accuracy
and minimizing complexity (size) of ARTMAP classifier.
Formally, MO-GART tries to find a set of networks (solutions)
that optimizes of two objectives, where

(1)

where represents the classification error of the network,
represents the complexity of the network, and represents a
feasible solution or network in the space of all possible feasible
networks that can be applied to a specific classification task.
MO-GART therefore tries to find the set of Pareto-optimal so-
lutions (networks) that minimizes the two objectives, and .

Solution is said to be nondominated if there exist no
other solution such that

(2)

A Pareto-optimal solution in our case is a network such that
there is no other network that has a smaller classification error
using a smaller number of categories. The entire set of such
optimal tradeoff solutions is the Pareto front of ART networks.
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Fig. 4. Pseudocode of MO-GART algorithm.

Fig. 5. MO-GFAM chromosome structure. At level 2, the category’s weight
� contains the information about the lower endpoint � and the upper end-
point � of the hyperbox corresponding to the category, as well as the label �
of the category.

Fig. 6. MO-GEAM chromosome structure. At level 2, the category’s weight
� contains the information of the center� , the direction vector of the major
axis � , the radius (half length) of the major axis � , and the ratio of the lengths
of the minor axes over the length of the major axis � of the ellipsoid corre-
sponding to this category, as well as the label � of the category.

MO-GART operates by applying, repeatedly, genetic opera-
tors on an initial population of trained ART networks. The fol-
lowing pseudocode shows the basic steps of MO-GART.

The algorithm starts by generating an initial population
of ARTMAP networks (FAM, EAM, or GAM), each one of
them trained with a different value of the baseline vigilance pa-
rameter , and order of training pattern presentation. We varied
the baseline vigilance parameter between the values of 0.1 and
0.95 for FAM and EAM, and between 0 and 0.5 for GAM. The
choice parameter in a FAM network was chosen to be equal to
0.01. The choice parameter in EAM network was chosen to be
equal to 0.001. The initial value of the standard deviation in
a GAM network was chosen to be equal to 0.6. The training is
performed using a random subset of the available data, referred
to as the training set. In our implementation, we fixed the popu-
lation size . The networks are encoded into chro-
mosomes, where each component (gene) represents a category
(hidden node) of an ART network. Each component contains
the weight information for the category. The chromosomes in
MO-GART are variable length, where the length is equal to the
number of categories in the network represented by the chromo-
some (see Figs. 5–7).

Also, MO-GART initializes an empty secondary population
that will be used to store nondominated solutions found

Fig. 7. MO-GGAM chromosome structure. At level 2, the category’s weight
� contains the information of the center of the Gaussian curve� , the stan-
dard deviation vector of the Gaussian curve � , and the number of points rep-
resented by the Gaussian curve � as well as the label � of the category.

during the evolution. In each generation, each solution in the
population is evaluated according to each objective function.
That is, the error rate of each ARTMAP network is evaluated
by running it against a subset of the available data, referred to
as the validation set. The second objective, complexity, is rep-
resented by the number of categories present in each network.
Once networks in population are evaluated, the archive is
updated by adding to it the solutions in that are nondominated
by solutions in . Also, solutions in that are now dominated
by solutions just added from are removed from the archive

. This mechanism ensures elitism. We do not impose an upper
limit for the size of since in our case (optimization of ART
networks in terms of accuracy and size) the number of nondom-
inated solutions is not expected to be too large, as the different
network sizes are not that many for the problems that we exper-
imented with.

The algorithm runs for a maximum number of generations
defined by . In our implementation, we set

. However, to avoid running MO-GART for unnecessarily
large number of generations, the evolution is also stopped when
the archive is not updated for ten consecutive generations.

The selection process creates a temporary population ,
where the parent chromosomes used to create the next gen-
eration are selected. The chromosomes in the archive and
population are assigned fitness values based on dominance
relationship, as suggested in SPEA2 [54]. In this scheme, each
individual is assigned a strength value equal to the number
of solutions it dominates. After that, a raw fitness is
assigned for each individual as the sum of the strengths of all its
dominators in both and . The raw fitness is then adjusted as
follows. For each individual , the distance, in objective space,
to the th nearest neighbor is found and denoted as . The
value of is chosen to be the square root of the sum of the size
of the archive and population. The fitness of each individual is
then calculated using the following equation:

(3)

The parents are then chosen using a deterministic binary tour-
nament selection with replacement, as follows. For each parent,
randomly select two chromosomes from the combined set of
and , and choose the chromosome with the smallest fitness
value. Boundary solutions, which are networks with smallest
error rate and smallest size, are ensured to be copied in the set
of parents.

Once the selection step determines the parents, reproduction
operators are used to create individuals for the next genera-
tion. The two well-known operators for reproduction in GAs are
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TABLE I
DATABASES USED IN EXPERIMENTATION

crossover and mutation. In this work, in addition to crossover,
two mutation-based operators are proposed. The first is referred
to as the mutation operator, and it performs Gaussian muta-
tions on the weights of the categories of the ARTMAP network.
The second operator, referred to as the prune operator, prunes
a network by deleting a number of categories from that network
(structural mutation).

To avoid the need for finding proper values for the mutation
and pruning probabilities, or setting default values that might
result in suboptimal operation, an adaptation mechanism was
employed to automatically adjust, based on performance, the
invocation of reproduction operators. This performance-based
adaptation is implemented at the gene (category) level. More
specifically, adaptive, performance-based, parameters are com-
puted for each component in the individual. The performance
feedback relies on a metric defined for each category, referred
to as the confidence factor (CF; see [56]). The confidence factor
is a metric that measures the performance at the category level.
The performance of a category is defined in terms of its accu-
racy and relative frequency of selection

CF (4)

where is the accuracy of classification achieved by cat-
egory , in the th network, that is mapped to label , relative
to the best accuracy achieved by any category in the same net-
work that is mapped to the same label. Furthermore, is
the probability of selection of category in the th network that
is mapped to label , relative to the maximally selected cate-
gory in the same network that is mapped to the same label. In
other words, is the ratio of the number of times that cat-
egory is chosen over the number of times that the maximally
selected category that mapped to the same label was chosen.
The scaling ensures that , , and
therefore, CF .

Once CF is calculated for each category, we delete categories
from every chromosome in the temporary generation , with
probability of CF . Also, the weights of every category
are mutated using a Gaussian distribution that has a mean of
0 and a small standard deviation that is proportional to

CF . Therefore, categories with low CF are more likely to
be eliminated or more severely mutated. The applied mutation
is described below.

• In MO-GFAM, for each category, either its or endpoint
is selected randomly (with 50% probability) and then every
component of this selected vector gets mutated by adding
to it a small number drawn from a Gaussian distribution
with zero mean. If the component of the selected vector
becomes smaller than 0 or greater than 1 (after mutation),
it is set back to 0 or 1, respectively.

• In MO-GEAM, for each category, every component of the
ellipsoidal center gets mutated by adding to it a small
number. This number is drawn from a Gaussian distribu-
tion with zero mean. Furthermore, the mutated category’s
axis ratio or radius is selected with 50% probability
and mutated by adding to it a number from a Gaussian dis-
tribution with zero mean. If the component of the selected
vector becomes smaller than 0 or greater than 1 (after mu-
tation), it is set back to 0 or 1, respectively.

• In MO-GAM, for each category, either its mean vector
or standard deviation vector is selected randomly (50%
probability) and mutated by adding to it a number drawn
from a Gaussian distribution with zero mean. If the com-
ponent of the selected vector becomes smaller than 0 or
greater than 1 (after mutation), it is set back to 0 or 1, re-
spectively.

The standard deviation of the Gaussian distribution used for
the mutation of the vector components described above is pro-
portional to CF . It is clear that CF .
Also the mutated vectors components described above are in
the range . Since about 99% of the samples drawn from
Gaussian distribution will be in the range of three standard de-
viation, we multiply it by a small factor to ensure mutations
are not destructive. Based on our experimentation a range of
values work well. We choose to set the standard deviation to be

CF . It should be noted that categories with smaller
CF are mutated more severely than categories with higher CF.

The chromosomes in are then replaced by chromosomes
created by crossing over pairs of parents in . For each
parent , , a random crossover point is chosen, designated as
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TABLE II
C-METRIC VALUES FOR MO-GART VERSUS ssART

TABLE III
TOTAL RUNTIME FOR MO-GFAM, MO-GEAM, AND MO-GGAM COMPARED TO TOTAL RUNTIME FOR ssFAM, ssEAM, AND ssGAM

, , respectively. Then, all the categories with index greater
than in the chromosome and all the categories with index
less than or equal to index in the chromosome with index are
moved into an empty chromosome within the new generation.

As mentioned above, the evolutionary process continues until
one (of the two) stopping criterion is triggered. MO-GART does
not return a single trained ART classifier, but rather, a number
of ART classifiers that were present in the archive at the last
generation of the evolutionary process. These classifiers have
achieved varying levels of accuracy and complexity. These al-
ternatives are then presented to the user to make a final decision
of choosing one (or more) of these classifiers. For example, if
the user is mostly interested in accuracy, then the network that
produced the best accuracy is chosen.

Based on our exposition above, in MO-GART, three GA pa-
rameters are set to default values and used for every data set
that we experimented with: 1) the population size ; 2) an
upper limit on the number of evolutions allowed ; and
3) a constant value used in defining the mutation prob-
ability. As a result, with MO-GART, the user is freed from the
task of experimenting with parameter values that are difficult to
prespecify, and quite often problem dependent.

IV. EXPERIMENTAL RESULTS

A. Preliminaries

In this section, we compare MO-GART’s performance to that
of other competitive ART architectures, as well as two other
popular classifiers: SVM [57] and CART [21]. The measures of
comparison are accuracy of the classifier, size of the classifier,
and complexity of the classifier. It is worth pointing out that in
the comparison of MO-GART’s performance with other ART
classifiers and SVM, CART is fair since we have used the same
data to design, validate, and test all of these models.

We have experimented with 11 databases (see Table I),
of which three are simulated databases and eight are real
databases. Each database was randomly divided into three sub-
sets: training, validation, and testing. The simulated databases
include two Gaussian databases: G4C-25 and G6C-15. These
are 2-D databases with four classes and six classes, and 15%
and 25% overlap, between the classes. The overlap in these
Gaussian data sets implies that if the optimal (Bayes) classifier
were to be used the classification error attained (optimal error)
would be equal to the overlap percentage. The database denoted
by 1Ci/Sq is the benchmark one circle in a square problem,
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TABLE IV
C-METRIC VALUES FOR MO-GART VERSUS GART [42]

TABLE V
TOTAL RUNTIME FOR MO-GFAM, MO-GEAM, AND MO-GGAM COMPARED TO TOTAL RUNTIME FOR GFAM, GEAM, AND GGAM

2-D, and two-class classification problem. The probability of
finding a data point within a circle or inside the square of the
circle is equal to 1/2. The rest of the databases were obtained
from the University of California at Irvine (UCI) repository
(see [58]) and they include: Modified Iris, Page Blocks (PAGE),
Pendigits, Satellite Image (SAT), Image Segmentation (SEG),
Waveform (WAV), Abalone, and Optdigits. More details about
these databases can be found there.

Each database is randomly divided into a training set, a vali-
dation test, and a test set. The training set is used for the training
of ART architectures under consideration. The validation set is
used to estimate the classification error during the evolutionary
process as explained above. Finally, the test set is used to assess
the performance of the optimized networks created.

B. Comparison With Other ART Architectures

In this section, we compare MO-GART’s performance to that
of other competitive ART architectures, which have been pro-
posed in the literature with the intent of addressing the category
proliferation problem, such as ssFAM, ssEAM, and ssGAM.
These approaches are based on the principle of semisupervi-
sion [20]. Semisupervision is a term attributed to learning in

an ART architecture (FAM, EAM, or GAM), where categories
in ART are allowed to encode patterns of different labels pro-
vided that the percentage of patterns that belong to the plurality
label exceed a certain threshold. We also compare the perfor-
mance of MO-GART to the previously introduced [42] GART
architectures that did not employ a multiobjective evolutionary
approach. In the GART case, the Pareto front is produced by
varying the weight in the fitness function.

Since, in this work, we are not only focusing on generaliza-
tion performance, but also on the size (complexity) of the net-
work produced, it becomes more complicated to compare and
rank networks. To provide a fair comparison, we resort to a com-
parison approach that considers the two objectives simultane-
ously. Since the existence of the two, sometimes competing, ob-
jectives result in multiple good solutions rather than one ”best”
solution, in our comparison, we assess multiple solutions (sets
of solutions) produced by the different algorithms, under con-
sideration. In other words, for each classification algorithm, we
produce a number of classifiers that have attained the two objec-
tives (good generalization and small size) at different levels of
success. Then, we choose the nondominated solutions. A non-
dominated solution is defined to be a network, where no other
network achieves better generalization utilizing and equal or
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TABLE VI
MOST ACCURATE NETWORKS AND THEIR SIZES: FAM

TABLE VII
MOST ACCURATE NETWORKS AND THEIR SIZES: EAM

smaller number of categories. Our comparison between algo-
rithms is then based on the quality of the nondominated set pro-
duced by each algorithm. We also compare the time it takes
each algorithm to produce the nondominated set of solution net-
works.

C. Comparison With ssART

For each algorithm, ssFAM, ssEAM, and ssGAM, and for
each of the 11 databases, we performed a number of experi-
ments with different network parameter settings. In particular,
the parameter settings that we experimented with ssFAM were:
baseline vigilance values ranging from 0.1 to 0.9 with step size
of 0.1, choice parameter values of 0.01 and 0.1, maximum al-
lowable mixture threshold values ranging from 0 to 0.9 with step
size of 0.1, and ten different orders of pattern presentations of
the training data (resulting in 1800 different parameter settings).
Furthermore, the settings for ssEAM were: baseline vigilance

values ranging from 0.1 to 0.9 with step size of 0.1, choice pa-
rameter values of 0.001 and 0.01, maximum allowable mixture
threshold values ranging from 0 to 0.5 with step size of 0.1, min-
imum-axes-to-maximum-axis ratio values ranging from 0.5 to 1
with step size of 0.1, and ten different orders of pattern presenta-
tions of the training data (resulting in 6480 different parameter
settings). Also, the settings for ssGAM were: baseline vigilance
values ranging from 0 to 0.9 with step size of 0.1, initial stan-
dard deviation parameter ranging from 0.5 to 1 with step size of
0.1, maximum allowable mixture threshold values ranging from
0 to 0.9 with step size of 0.1, and ten different orders of pat-
tern presentations of the training data (resulting in 6000 different
parameter settings). All networks are trained using the training
set for ten epochs. It should be emphasized that the parameter
ranges used were determined by the authors of this paper and
they reflect their experience of what are good parameter settings
for these ART networks. The parameter settings were chosen to
provide varying levels of accuracy and complexity in these net-
works. Solutions that are Pareto optimal with respect to these
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TABLE VIII
MOST ACCURATE NETWORKS AND THEIR SIZES: GAM

TABLE IX
PERFORMANCE OF SVM AND MO-GART ON SOME DATA SETS

two objective were finally chosen. Pareto optimality is deter-
mined using the validation set. The total computation time re-
quired to obtain these network solutions for each database and
each method, which is the sum of training and validation times
in seconds for all the parameter settings, is reported in Table III,
and referred to as the total runtime.

A one-to-one comparison of the results reported in Table III
reveals that the total runtime of the MO-GART networks is, in
all cases, between one and two orders of magnitude smaller than
the total runtime of their corresponding counterparts, ssART
networks. To compare the quality of the solutions produced
by MO-GFAM versus ssFAM, MO-GEAM versus ssEAM,
and finally, MO-GGAM versus ssGAM, we use a metric that
compares the network solutions obtained by the semisupervised
ART network (for all different parameter settings) and the ones
obtained by the MO-GART architectures. This metric has been
used before in similar situations (see [53]) for multiobjective
optimization problems, and is defined as follows:

(5)

This metric measures the fraction of members in set that
are dominated by at least one member in set . Therefore,

means all members in are dominated by
members in . In this case, the approach that produced set
is a clear winner. It is obvious that we need to consider also

in order to properly compare the two sets.
Since the calculated values of and are

dependent on the random seed used to evolve the population of
FAMs, EAMs, and GAMs in the MO-GART approach, we pro-
duced network solutions by changing the seed ten times. Con-
sequently, ten different values of the metric were produced
for each comparison pair. In Table II, we compare the average
values (over the ten replications) of C(MO-GFAM, ssFAM)
versus C(ssFAM, MO-GFAM), C(MO-GEAM, ssEAM) versus
C(ssEAM, MO-GEAM), and C(MO-GGAM, ssGAM) versus
C(ssGAM, MO-GGAM) . It is obvious from the table that
the average values of C(MO-GFAM, ssFAM) are larger than
C(ssFAM, MO-GFAM) values, which indicates that networks
produced by MO-GFAM are more likely to dominate networks
produced by ssFAM, and therefore, the networks produced
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TABLE X
PERFORMANCE OF CART AND MO-GART ON SOME DATA SETS

TABLE XI
SSART RESULT STATISTICS

by MO-GFAM are expected to be of higher quality. Similar
conclusions can be drawn for MO-GEAM versus ssEAM
and MO-GGAM versus ssGAM. This result is expected since
MO-GART uses a multiobjective approach that is designed to
produce a high-quality Pareto front networks, compared to the
grid search employed for ssART. To provide a fair comparison,
the performance of the most accurate networks (PCC values)
is shown in Tables VI–VIII. In the same 95% confidence
intervals for the attained PCC values are also depicted; the
PCC value reported in these tables is the probability of correct
classification on the test set produced by the network with the
best PCC value attained on the validation set. As it can be
easily seen, the MO-GART networks were able to consistently
find more accurate networks using, in most instances, smaller
network sizes. For instance, in Table VI, for the Abalone data
set, MO-GFAM achieved a classification accuracy of 66.50%
compared to a 56.89% classification accuracy, achieved by
ssFAM, utilizing five instead of 34 categories.

D. Comparison With GART

For GART, it is not possible to produce the nondominated
solutions in one run. Rather, it is necessary to run the algorithm
multiple times to produce the different nondominated solutions.
We chose to run GART using five different settings for the
fitness weight. The weights used were 0.01, 0.05, 0.1, 0.2,
and 0.5. We repeated this process ten times to account for
the stochasticity of the genetic algorithm. The average time it
took to produce one set of nondominated solutions is reported
in Table V, and referred to as the total runtime. The results
in Table IV show an advantage of MO-GART over GART in
terms of solution quality. Also, a one-to-one comparison of the
results reported in Table V reveals that the total runtime of the
MO-GART networks is smaller than the total runtime of their
corresponding counterparts, GART networks, and quite often an
order of magnitude smaller. Tables VI–VIII compare the most
accurate network (PCC values) obtained from MO-GART and
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TABLE XII
PERFORMANCE OF SVM AND MO-GART ON SOME DATA SETS WITH CONFIDENCE INTERVALS

TABLE XIII
SVM RESULTS STATISTICS

GART; in these tables, the confidence intervals of these PCC
values are depicted. The network with lowest classification
error on the validation set is chosen and referred to as the most
accurate network, and then the error rate using the test set is
reported. As it can be seen from these tables, MO-GART was,
in some cases, able to find a better solution than GART, while
the reverse situation was never true. Therefore, achieving a
better quality solution at a lower computational cost, in addition
to producing multiple optimal solutions at once, justifies the
proposed approach of using a multiobjective approach to evolve
ART architectures.

E. Comparison With Other Classifiers

In this section, we compare MO-GART’s performance to
that of other popular classifiers. One classifier we compared
MO-GART with was the SVM. This is a state-of-the-art
classifier known for its excellent generalization performance,
and strong theoretical foundation. For SVM training, we used
LIBSVM (v. 2.8, see [59]), which is an implementation of

the sequential minimal optimization (SMO) algorithm first
developed by Platt [60]. As far as we are aware, this is the
best-known implementation of SMO available. The SVM
classifier has several adjustable parameters including , a
regularization parameter, and parameters associated with the
kernel. For this test, we employed the radial basis function
(RBF) kernel [or Gaussian kernel ]. The
linear kernel may be more suitable in some cases where the
data are known to be linearly separable and can produce fewer
support vectors. However, the RBF kernel is more applicable
to a wider variety of instances including linearly separable
data. In general, it is not known, a priori, which are the best
parameter settings for a particular data set for providing the
best generalization performance. For this reason, it is not
uncommon to train the classifier for a wide range of settings to
find the optimal generalization performance. For this test, we
trained the SVM classifier across a grid of and parameters.
The range of values used is as follows: was varied
between 5 and 15, with step size of and was varied
between 3 and 15 with step size of , resulting in a total
number of 110 and parameter values.

Another classifier we compared with was CART. CART (see
[21]) is a classical methodology for training decision trees. It
provides systematic and complete solutions to the key prob-
lems in training, including the selection of splits, the separation
of training into growing and pruning phases to prevent over-
training, the handling of missing values, and the cross validation
of trees. It also provides theoretical support for speedup algo-
rithms and the performance evaluation of trees. During training,
CART offers options and parameters to tune its performance, but
it also provides default settings, such as the usage of Gini index
as the impurity measure in growing the tree and the 1-SE rule
(see [21] for more details) in selecting the best pruned tree; these
choices usually produce good results. We applied these default
settings in our experiments.

Tables IX and X show the results obtained using the most
accurate SVM classifier, the CART classifier, as well as the
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TABLE XIV
PERFORMANCE OF CART AND MO-GART ON SOME DATA SETS WITH CONFIDENCE INTERVALS

most accurate MO-GART classifiers. Comparing the results in
Tables IX and X, one can make the following observations.

• The accuracy of the most accurate MO-GART classifier is
very competitive with the accuracy of the most accurate
SVM classifier.

• The size of the most accurate MO-GART classifier is
smaller, in all instances, than the size of the most accurate
SVM network, and at times, significantly smaller (e.g.,
MO-GFAM has three categories for the waveform data
set, while SVM has 574 support vectors).

• The total runtime required to produce the most accurate
MO-GART classifier is, at almost all instances, smaller
than the total runtime needed to produce the most accurate
SVM classifier, and at times, an order of magnitude smaller
(e.g., MO-GFAM needed 1.42 s for the Iris data set, while
SVM needed 20.04 s of total runtime).

• The accuracy of the most accurate MO-GART classifier is
better, in all instances, than the accuracy of the most ac-
curate CART classifier, and in some instances, a lot better
(e.g., MO-GGAM accuracy for the waveform data set is
87.15%, while the CART accuracy is 75.20%).

• The size of the most accurate MO-GART classifier is com-
petitive with the size of the most accurate CART classifier,
in some instances larger, but quite often very close to the
size of the most accurate CART classifier.

• The total runtime required to produce the most accurate
MO-GART classifier is significantly larger than the total
runtime needed to produce the most accurate CART net-
work; an expected result.

As we mentioned earlier, the comparison of MO-GART,
SVM, and CART provided above used the same databases
and data sets per database for training, validation, and testing
of these architectures. This comparison illustrates that the
family of MO-GART classifiers, presented in this paper, is
competitive in comparison with other, popular, state-of-the-art
classifiers.

V. DISCUSSION OF RESULTS

A. Remarks About MO-GART and ssART Comparisons

In Table II, the quality of nondominated solutions pro-
duced by MO-GFAM is compared with the quality of the
nondominated solutions produced by the ssFAM classifier on
11 different data sets, based on the metric. In Table III, the
total runtime required to train a MO-GFAM classifier and an
ssFAM classifier for all the ssFAM parameter settings, reported
in Section IV-C, is also shown. Furthermore, in Table VI, the
most accurate MO-GFAM and ssFAM classifiers are reported
(PCC values), as well as the confidence intervals associated
with the reported PCC values. The obvious observation that
comes out of the comparisons shown in Tables II, III, and VII
is that MO-GFAM is, for most data sets, more accurate than
ssFAM, and it attains this accuracy requiring less computational
resources.

In Table II, the quality of nondominated solutions pro-
duced by MO-GEAM is compared with the quality of the
nondominated solutions produced by the ssEAM classifier on
11 different data sets, based on the metric. In Table III, the
total runtime required to train a MO-GEAM classifier and an
ssEAM classifier for all the ssEAM parameter settings, reported
in Section IV-C, is also shown. Furthermore, in Table VI, the
most accurate MO-GEAM and ssEAM classifiers are reported
(PCC values), as well as the confidence intervals associated
with the reported PCC values. The obvious observation that
comes out of the comparisons shown in Tables II, III, and VI
is that MO-GEAM is, for most data sets, more accurate than
ssEAM, and it attains this accuracy requiring less computa-
tional resources.

In Table II, the quality of nondominated solutions produced
by MO-GGAM is compared with the quality of the nondom-
inated solutions produced by the ssGAM classifier on 11
different data sets, based on the metric. In Table III, the total
runtime required to train a MO-GGAM classifier and an ssGAM
classifier for all the ssGAM parameter settings, reported in
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TABLE XV
GART MOST ACCURATE NETWORK SENSITIVITY TO SEED (TEN REPLICATIONS)

TABLE XVI
MO-GART MOST ACCURATE NETWORK SENSITIVITY TO SEED (TEN REPLICATIONS)

Section IV-C , is also shown. Furthermore, in Table VIII, the
most accurate MO-GGAM and ssGAM classifiers are reported
(PCC values), as well as the confidence intervals associated
with the reported PCC values. The obvious observation that
comes out of the comparisons shown in Tables II, III, and
VIII is that MO-GGAM is, for a number of data sets, more
accurate than ssGAM, and it attains this accuracy requiring less
computational resources.

One could argue we do not need to experiment with as many
ssFAM parameters as the ones that we have experimented with.
To counteract this argument, we show in Table XI the maximum,
mean, and standard deviation of the accuracy attained by ssFAM
(PCC on the test set) for all the different parameter values (1800
of them) that ssFAM was trained and validated with. It is obvious
from Table XI that there is a difference in all of these table
entries between the average and maximum performances of an
ssFAM network for a particular data set, as the ssFAM network
parameters change. For instance, for the Pendigits data set, we
observe an average, maximum, and standard deviation of the
generalization performance (over the 1800 ssFAM parameter
values that we experimented with) of 63.86, 97.14, and 27.89,

respectively. As we have mentioned earlier, unless the ssFAM
user has a lot of experience experimenting with ssFAM, it is
hard to limit the amount of parameter experimentation needed
to produce an accurate ssFAM network for a specific data
set. MO-GFAM releases the user from the arduous task of
guessing and experimenting with a variety of ssFAM parameter
values to discover a good network; with MO-GFAM, the user
does not need to specify any of the ssFAM parameter values
but instead the user only specifies default parameter values
for the initial GA population (20), number of generations
(500), and a constant parameter (0.05) that affects the mutation
probability.

Similar results as the ones provided in Table IX about the
dependence of ssFAM generalization performance on the
network parameter values are also depicted, in the same table,
for ssEAM, as well as for ssGAM. Similar observations as the
ones that we derived for ssFAM hold for the dependence of
ssEAM’s and ssGAM’s generalization performances on the
network parameter values. In a nutshell, ssFAM’s, ssEAM’s,
and ssGAM’s generalization performances are strongly depen-
dent on the choice of the network parameter values, and as a
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result, extensive experimentation is most often needed to pro-
duce good performing ssFAM, ssEAM, or ssGAM classifiers.

B. Remarks About MO-GART and GART Comparisons

In Table IV, the quality of nondominated solutions produced
by MO-GFAM is compared with the quality of the nondomi-
nated solutions produced by the GFAM classifier on 11 different
data sets, based on the metric. In Table IV, the total runtimes
required to train a MO-GFAM classifier and a GFAM classifier
(for all the different sets of weights of the GFAM fitness func-
tion, reported in Section IV-D) are also shown. Furthermore, in
Table V, the most accurate MO-GFAM and GFAM classifiers
are reported (PCC values), as well as the confidence intervals
associated with the reported PCC values. The obvious observa-
tion that comes out of the comparisons shown in Tables IV–VI
is that in a couple of data sets MO-GFAM is more accurate than
GFAM (the reverse statement is never true), and it attains this
accuracy requiring less computational resources.

In Table IV, the quality of nondominated solutions produced
by MO-GEAM is compared with the quality of the nondomi-
nated solutions produced by the GEAM classifier on 11 different
data sets, based on the metric. In Table V, the total runtimes
required to train a MO-GEAM classifier and a GEAM classifier
(for all the different sets of weights of the GFAM fitness func-
tion, reported in Section IV-D) are also shown. Furthermore, in
Table VII, the most accurate MO-GEAM and GEAM classifiers
are reported (PCC values), as well as the confidence intervals as-
sociated with the reported PCC values. The obvious observation
that comes out of the comparisons shown in Tables IV–VI is that
in a few data sets MO-GEAM is more accurate than GEAM (the
reverse statement is never true), and it attains this accuracy re-
quiring less computational resources.

In Table IV, the quality of nondominated solutions pro-
duced by MO-GGAM is compared with the quality of the
nondominated solutions produced by the GGAM classifier
on 11 different data sets, based on the metric. In Table V,
the total runtimes required to train a MO-GGAM classifier
and a GGAM classifier (for all the different sets of weights
of the GFAM fitness function, reported in Section IV-D) are
also shown. Furthermore, in Table VIII, the most accurate
MO-GGAM and GGAM classifiers are reported (PCC values),
as well as the confidence intervals associated with the reported
PCC values. The obvious observation that comes out of the
comparisons shown in Tables IV, V, and VIII is that in some
data sets MO-GGAM is more accurate than GGAM (the reverse
statement is never true), and it attains this accuracy requiring
less computational resources.

C. Remarks About MO-GART and SVM Comparisons

In Table IX, the performance of MO-GART is compared with
the performance of SVM classifiers on 11 different data sets.
The results depicted in Table IX show the performance (PCC
on the test set) of the most accurate (PCC on the validation set)
SVM and MO-GART classifiers. Furthermore, they show the
size of this most accurate SVM and MO-GART classifier, as
well as the time required to produce such accurate SVM and
MO-GART classifiers. From the results in Table IX, we observe
that MO-GART has 1) produced a classifier of accuracy (PCC)

slightly less than the accuracy of the SVM classifier (in most
instances), 2) produced a classifier whose size is in all instances
smaller than the corresponding size of the SVM classifier, and 3)
produced a classifier by requiring computational resources that
are less (sometimes much less) than the computational resources
required to produce the corresponding SVM classifier.

In Table XII, we are showing the accuracy comparisons (PCC
on the test set) between MO-GART and SVM for the 11 data
sets, but for each such comparison, we are also including the
confidence interval associated with the PCC numbers, reported
in Table IX. These confidence intervals validate our claim that
the SVM generalization performance is slightly higher than
the MO-GART performance on a couple of the 11 data sets,
MO-GART performance is higher on a couple of other data
sets, and in most cases, it cannot be determined which classifier
is best.

To produce the SVM PCC number of Table IX, we trained
and validated the SVM classifier for a number of the and pa-
rameters (the specific and parameter values are mentioned
in Section IV-E). Table XIII shows the maximum, mean, and
standard deviation of the SVM PCC values obtained by exper-
imenting with all these different values of and . The pur-
pose of Table XIII is to provide a snapshot for the reader of
how important it is to train and validate the SVM classifier on
a number of parameter values in order to attain the maximum
SVM PCC performance (depicted in Table XIII). It is obvious
from Table XIII that this experimentation with the different
and values is needed. For instance, the average, maximum, and
standard deviation of the PCC values pertaining to the Optdigits
data set are 71.06, 97.38, and 36.24, respectively, indicating the
large variability of the Optdigits data set’s generalization perfor-
mance with respect to the change of the parameter values ( and

); a number of other data sets in Table XI also exhibit wide vari-
ability of generalization performance with respect to the change
of the and parameter values.

Given an arbitrary data set, and having chosen a kernel (in
our SVM experiments, we chose the very popular RBF kernel),
the optimal parameter values ( and ) are usually unknown
a priori. As a result, a grid search across a range of parameter
values is required. Furthermore, without prior knowledge or ex-
perience with a particular type of data set, it can be difficult to
attempt to narrow the range of search values. In this work, we
chose a range of values for our grid search based upon that re-
ported in the literature [61], for the RBF kernel, which is also re-
ported in much of the SVM literature. In particular, the
value changed from 15 to 2 with step size of , and the
value changed from 3 to 15 with step size of . As it can be
seen from Table XI, there can be a significant amount of perfor-
mance variation across the range of parameter values, and each
data set responds differently, justifying the need for such an ex-
tensive experimentation.

D. Remarks About the MO-GART and CART Comparisons

In Table X, we have provided comparisons between the most
accurate MO-GART and CART classifiers on 11 data sets. One
obvious observation from these comparisons is that the training
time required by the CART classifier is negligible, and much
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Fig. 8. Pareto fronts for the satellite database.

Fig. 9. Pareto front for the segmentation database.

smaller than the training time required by the MO-GART clas-
sifier. Another observation is that the size needed by the CART
classifier is comparable with the size needed by the MO-GART
classifier that attains the highest accuracy (although differences
exist for some of the data sets). The last observation is that the
most accurate MO-GART classifier is more accurate (in all in-
stances) than the corresponding CART classifier.

In Table XIV, we are showing the accuracy comparisons be-
tween MO-GART and CART for the 11 data sets, but for each
such comparison, we are also including the confidence interval
associated with the PCC numbers, reported in Table X. These
confidence intervals validate our claim that the MO-GART gen-
eralization performance is superior to the CART performance
on all of the 11 data sets, except one.

E. Remarks About the Sensitivity of MO-GART
to the Seed Value

We have emphasized above that the performance of ssART
and SVM classifiers is sensitive to the choice of their respec-

tive parameter values. On the contrary, in MO-GART, we start
with certain default parameter values (population size of 20,
number of generations needed of 500, and a mutation proba-
bility parameter constant of 0.05) that stay fixed as experimenta-
tion moves from one data set to the next. Also, with MO-GART,
we do not require the user to specify the ART parameter values,
or the SVM parameter values, a tough task for someone who
is a novice with these types of classifiers. The only value that
changes in MO-GART is the seed value that specifies the ini-
tial population of trained ART architectures that is subsequently
evolved to produce a nondominated archive of solutions at the
time when MO-GART convergence is achieved. In Table XIV,
the average, maximum, and standard deviation of the PCC (on
the test set) corresponding to the best performing PCC (on the
validation set) MO-GART network from the archive at the last
generation of the evolutionary process, are shown. The results
illustrate a good feature of the MO-GART classifier that is the
low variability of its generalization performance with respect to
the initial seed value, in defining contrast of the high variability
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of the ssART and SVM classifiers with respect to the param-
eter values needed to be specified for each one of these clas-
sifier paradigms. Actually, this advantage of MO-GART (low
variability of its generalization performance with respect to the
seed value) is also shared by GART, as well (see illustrative re-
sults in Table XV).

F. Pareto Fronts for Some Data Sets

In Section IV, we compared the quality of the solutions pro-
vided by MO-GART, GART, and ssART using a popular metric,
referred to as the metric. Other metrics of comparison exist
between the sets of solutions provided by MO-GART, GART,
and ssART, as reported in [53], such as the metric. Due to the
extensive volume of the results provided so far in Sections IV
and V and the strong conclusions, derived from these results re-
garding the merits of MO-GART, compared to other competitive
ART classifiers, as well as other popular classifier models (e.g.,
SVM and CART), we refrain from comparing the solutions sets,
obtained by MO-GART, GART, and ssART, using other than the

metric. However, it is instructive to provide a sample of the
Pareto fronts, produced by MO-GART, GART, and ssART on
the data sets that we experimented with in this effort (e.g., see
Figs. 8 and 9 where the Pareto fronts produced by MO-GFAM,
GFAM, and ssFAM for the Satellite, and Segmentation data sets
are depicted). These figures provide a visual reaffirmation of the
advantages of the MO-GART approach compared to the GART
and ssART approaches of producing a good classifier model.

The better generalization results produced by MO-GART
(see Figs. 8 and 9) for an illustration of this fact) compared to
the single-objective approach of GART could be attributed to
the fact that using fixed weights for the two objectives is not
enough of producing as good and/or as diverse solutions as
MO-GART, despite the fact that multiple sets of fixed weights
were used with GART. It is possible that the single-objective
GART approach could produce better family of solutions, if the
weights of the single-objective approach are allowed to change
during the evolution (see [8]), but this investigation was beyond
the scope of our paper.

VI. SUMMARY AND CONCLUSION

In this paper, we introduce, for the first time, a multiobjective
evolutionary approach to optimize ARTMAP neural networks
in terms of two objectives: classification accuracy (higher is
better) and classifier complexity (smaller is better). In partic-
ular, we apply a MOEA to optimize the performance of three
well-known ART architectures: fuzzy ARTMAP, ellipsoidal
ARTMAP, and Gaussian ARTMAP. The resulting architectures
are referred to as MO-GFAM, MO-GEAM, and MO-GGAM,
and collectively as MO-GART.

The MO-GART approach presents a solution to the cat-
egory proliferation problem in ART. Other approaches to
solve the category proliferation problem in ART have been
proposed before, such as the semisupervised ART (ss-ART)
approach (ssFAM, ssEAM, and ssGAM). An extensive com-
parison of MO-GART and the ss-ART approach concluded
that the MO-GART approach is more elegant (does not require
tweaking of the ART network parameters), more effective

(produces higher accuracy and smaller size network solutions),
and more efficient (faster) than the ss-ART approach. The
results, presented in Tables II and III, indicate that MO-GART
offers clear advantages compared to ss-ART; it is worth noting
that ss-ART is a class of well-performing ART classifiers
that compares very favorably with other ART and non-ART
classifiers. The advantage of MO-GART compared to GART (a
related approach to evolve ART networks) is that MO-GART
focuses on two objectives at once. Consequently, MO-GART
does not require multiple GA runs to produce multiple good
solutions to the classification problem, under consideration,
and hence it is more efficient than the GART approach (as
Table V reveals). Finally, MO-GART is more elegant than
GART because it does not require user intervention to specify
a priori the preference towards one objective (accuracy) versus
the other (size). In closing, it was also shown that the family
of MO-GART classifiers is competitive compared to other
popular, state-of-the-art classifiers that have appeared in the
literature, such as SVM and CART.
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