Brokering Algorithms for Composing Low Cost
Distributed Storage Resources

Jimmy Secretan, Malachi Lawson and Ladislau Boloni
School of Electrical Engineering and Computer Science
University of Central Florida
Orlando, FL 32816

Abstract In this paper we investigate the composi-
tion of cheap network storage resources to meet spe-
cific availability and capacity requirements. We show
that the problem of finding the optimal composition for
availability and price requirements can be reduced to the
knapsack problem, and propose three techniques for ef-
ficiently finding approximate solutions. These include
a dynamic programming algorithm, a heuristic and an
genetic algorithm. The algorithms can be implemented
on a broker that intermediates between buyers and sell-
ers of storage resources. Finally, we show that a broker
in an open storage market, using the combination of the
three algorithms can more frequently meet user requests
and lower the cost of requests that are met compared
to a broker that simply matches single resources to re-
quests.

Keywords: Distributed Storage, Grid Computing

1 Introduction

Currently there is an abundance of idle storage re-
sources, connected to the Internet. To make use of
these idle resources, and to create opportunity for
commercial providers to bring new storage services
online, an open marketplace is needed to help con-
nect buyers to sellers as well as to establish prices.
This market approach to grid computing is begin-
ning to emerge as a popular paradigm in the lit-
erature. A buyer in this economy would like to
meet his availability and capacity requirements at
the lowest cost. However, there might not be an
exact match for the requirements of the users in
the pool of available resources. To solve this prob-
lem, we propose a model in which the user assem-
bles a resource of desired capacity and availability
by combining resources which, individually, do not
satisfy the user’s requirements.

Note that a similar technique is used in local re-

sources such as RAID arrays. The various RAID
levels such as RAIDO (striping), RAID1 (mirror-
ing), and so on are just different ways of combining
storage resources to meet the storage, reliability,
performance and cost demands. Our approach ex-
tends this model to a dynamic networked environ-
ment.

Our objective is to design a broker-based archi-
tecture for the efficient allocation of the resources.
As the optimal composition problem has a non-
polynomial complexity, we are interested in find-
ing efficient approximate algorithms, with modest
computational requirements.

This paper is organized as follows. In section
2, we discuss current work related to architectures
and economics for distributed storage. In section
3, we introduce a notation to express composition
of storage resources based on availability, capacity
and cost. In section 4, we analyze the complexity
involved in these resource optimization problems.
In section 5, we setup various resource allocation
experiments to test our algorithms. In section 6, we
present the results of these experiments and discuss
the significance of these results. Finally, in section
7, we discuss future enhancements to our work.

2 Related Work

Economic models for grid resource allocation will
be beneficial or even necessary for data and pro-
cessing grids to become common place. In [1], and
[2], the authors present two complementary systems
for economic resource allocation on the grid. The
CPM (Compute Power Market) is intended to ap-
ply to low-end systems, while GRACE (Grid Archi-
tecture for Computational Economy), is intended
for high end grid computing. Oceanstore [3] aims
to build a data storage infrastructure on untrusted
servers, using both redundancy and cryptography.
It is built around a market concept whereby users

would pay a monthly fee for persistent and reliable
storage, supported by various storage providers.
The prototype implementation of Oceanstore em-
ploys both Reed-Solomon and Tornado algorithms
for encoding redundancy. Finally, the SX (Storage
eXchange) system in [4] acts as a storage broker,
allowing storage to be a tradeable resource. SX
uses a double auction market model for open mar-
ket trading and also allows storage to be exchanged.
The system brokers storage requests by taking into
account capacity, upload/download rate, and time
frame of the storage reservation. The authors cite
many other criteria that should be taken into ac-
count, including security, high-availability, fault-
tolerance, reputation, consistency and operating
environment.

3 Resource Composition

In the following, we define an algebra for resource
composition. The two main attributes of a (sim-
ple or composed) storage resource are the capacity
and availability. We define availability as the prob-
ability of a successful resource access. We assume
that the availability of the individual resources is
known to the broker (for instance, by counting the
ratio of successful accesses to the total number of
accesses). After some threshold time of unavail-
ability, the user’s storage system will be forced to
re-allocate. For a storage resource request R,¢q, the
brokering system aims to use the distinct storage re-
sources of which it keeps track, R; where 1 <1i < n,
to meet the request. The broker may meet the re-
quest R,¢q either with one of the resources R;, or
with Rcomp, & new resource composed from d dis-
tinct R;’s. The user specifies a capacity C(Rreq)
and an availability A(Ryeq) which he requires for
his particular application. The broker suggests one
of four ways to satisfy the user’s request. First,
it may suggest a specific resource R;, that suits
the user’s needs. The other three approaches are
based on combining several resources through addi-
tive composition (AC(R;...R;)), redundant compo-
sition (RC(R;...R;)) or distributed error correction
(DEC(R4...R;)) to produce an Reopmp. We summa-
rize the notations in table 1.

Additive composition combines two or more
smaller resources into one larger one. All of the
involved resources are required to be available for
the full storage resource to be considered available.
The capacity and availability of an additively com-
posed resource Reomp = AC(R;...R;) is given by
the following formulas:

Table 1: Notations for Analysis

Notation Description

R Set of storage resources, each la-
beled R; where 1 < ¢ < n. Each
R; storage resource includes a ca-
pacity, an availability and a price.
There is only one resource per net-
work entity even though it may be
divisible.

C(R;) Gives the storage capacity of the re-
source R.

A(R;) Gives the availability probability of
resource R, 0 < A(R) <1

P(R;): Price per unit of storage for a stor-
age resource.

Ryeq A description of the resource re-
quired by the user.

Reomp The resource being composed by
the broker for the requesting user.

d Number of resources chosen to be
part of Reomp.

n Number of resources accounted for

in the broker.

The result of additive composition

of resources R; through R;.

The result of redundant composi-

tion of resources R; through R;.

DEC(R:1...R;) The result of distributed error com-
position of Ry through R;.

AC(Ry...R;)

RC(Ry...R;)

C(Reomp) C(Ri) = C(Rreq)

[
Me

Q
Il
-

|
e

s
I
—

A(Rcomp) A(Ri) > A(Rreq)

If we wish to additively compose a resource, the
sum of the storage in the resources must be greater
than or equal to our desired storage, and the avail-
abilities multiplied together must be greater than
or equal to our required availability.

Redundant composition allows us to take two or
more resources that are sufficiently large, and put
them together redundantly. This is used whenever
the user requires higher availability than is offered
by the currently available storage resources. There-
fore, if we have N-modular redundancy, only one of
the resources is required to work for a user to be
able to access his data. When composing a redun-
dant storage resource, Reomp = RC(R;...R;), The
capacity is constrained and the availability is given
by

C(Ri) > C(Rreq) = C(Rcomp)
A(Rcomp) =1- ﬁ (1 - A(Ri)) > A(Rv'eq)
=1

It should be noted that the only the needed storage
portion can be separated from Rj...R;, leaving the
rest for other allocations.

Finally, Distributed Error Correction (DEC)
based storage can be used. This is analogous to
the RAID5 disk drive composition method. For
this model, we must have at least 3 resources. All
but the last resource stores some portion of the
data. The last resource stores the XOR of all
of the other stores. In this way, the system can
lose any one resource and still maintain the user’s
data. For availability, we only allow the possi-
bilities of all or all but one of the resources be-
ing unavailable. Therefore, composing a DEC re-
source, Reomp = DEC(R;...R;), with d individual

resources, we require that

C(Ri) = C(Rreq)/(d—1)
A(Reomp) =

d n,j#i
[TAR) + 22 (1 - A(R:)) [T A(R;) = A(Rreq)
i=1 i=1 j=1
Suppose a user is looking for a storage resource of
arbitrary size and availability, for the lowest possi-
ble price. This, then, becomes the central challenge
of the proposed system.

We show that the problem of finding the opti-
mally priced additively and redundantly composed
storage resources, can be reduced to the classical
knapsack problem. The classical problem is cast as
follows. There are several items 7, numbered from 1
to n to be placed in a knapsack of capacity c. Each
item has an associated price, p; and an associated
weight, w;. We intend to maximize the value of
the knapsack contents while staying within the ca-
pacity. If we assume that an item must be taken or
not taken, the problem is then referred to as the 0-1
Knapsack problem. For integer knapsack capacity,
a pseudo-polynomial approach does exist that uses
dynamic programming, taking O(nc) time.

However, suppose that, in addition to not ex-
ceeding the capacity of the sack, one must not
exceed the a dimension of length either. This is
referred to as the 2 dimensional knapsack prob-
lem. This can also be extended to an arbitrary
dimensionality, becoming the d-dimensional knap-
sack problem.

Redundant composition is the easiest to reduce
to the knapsack problem. The items are the storage
resources, R;, and the price p; is instead P(R;).
The capacity c is represented by C(R,eq) and the
weights are represented by A(R;).

First, we select all sellers that have C'(R;) >
C(Ryeq). First, we rewrite the equation of avail-
ability for redundant composition as:

U

- 1(1 - A(Ri)) < (1 - A(Rreq))

For reasons that will become clear later, we need
both sides to be greater than 1. A good way to
guarantee this is by multiplying by W

This yields:

d
1_A(R7) 1_A(R7‘eq)
il;ll(l—A(Rmm))d < (I—A(Rmin))?

Now, we intend to turn this into a linear weight
function. We do this by taking the natural loga-
rithm. Then we add a term x; either equal to 0 or
1, depending on whether the resource is included,
and sum over all n instead of d. This gives:

n 1-A(R;) 1—A(Rreq)
Z;_:C,Lln((liA(Rmi"))d) S ln((17A(Rmin))d)

Now this has become the 0/1 knapsack prob-
lem, with a weight function where w; = In((1 —
A(R;))/(1 — A(Rpin))?) and ¢ = In(((1 -
A(Rreg))/(1 = A(Rpmin))D).

If we try sufficient numbers of d from 2 to n,
and use the aforementioned dynamic programming
method, this is solvable in pseudo-polynomial time,
O(n?log %).

We find an analogous problem for the case of
additive composition. In this case, the resources
that are selected, when put together, must meet
or exceed C(Ryeq). We also must not exceed the
availability constraints. As stated before, the avail-
ability that must be met is

[TAR) > A(Ryey)

i=1

By taking the reciprocal and the natural loga-
rithm, we yield an arrangement that is compatible
with the knapsack weight equation, as before:

d
> In(amy) <)

i=1

However, we must add the additional constraint
that

S O(Ry) > C(Ryey)

i=1
Again, this yields a 2-dimensional knapsack prob-
lem, which is not easily solvable.

Finally, the most difficult problem is the DEC ar-

rangement, which is complex integer programming
problem, not easily tractable.

4 Allocation Algorithms

The system is designed around a centralized broker
that serves as the marketplace for buyers and sellers
to meet. As nodes with resources to sell first come
online, they register themselves with the broker ac-
cording to a unique, persistent ID. This node’s ID
is used by the broker to keep track of whether or
not it is currently online, how much its resource
asking price is, how much of a resource it currently
has, its history of uptime, and its transaction his-
tory. A buyer, also with a unique account ID, then
approaches the broker, looking for a resource with
specific capacity and availability. The broker then
searches its list of available sellers.

Buyers Sellers
Database of Resources

Service Requests

|

Centralized Broker
Server -
- °

w - /
Resource Usage >Iﬁ

Figure 1: Design of the system. The sellers may be
home PC users, companies/organizations or dedi-
cated storage providers. Solid lines represent com-
munication related to the brokering process, be-
tween buyers, sellers and the broker. The inter-
rupted lines represent the peer to peer usage of the
storage resources.

.-

In

The pseudo-code for the general broker’s algo-
rithms is presented in figure 2. The kth user sub-
mits a request R’feq. By executing the appropri-
ate functions, the broker returns Single Resource,
RC Resource, AC Resource, DEC Resource, which
are total allocations, made with their respective al-
gorithms, with prices Psingie; Pac, Prc, Ppec re-
spectively. These total allocations are composed
of several individual resource allocations. An in-
dividual resource allocation is represented by a
two-tuple, I; = (R;, Ci;), with R; represent-
ing the seller resource from which it comes, and
C! .. representing a storage amount actually al-
located from R;. To find the cheapest single
resource, SingleResource, the FINDLOWESTSIN-
GLE function is used. It simply does a linear
search through the list of sellers to find the seller
with the lowest price that still meets the mini-

mum requirements. FINDLOWESTRC implements

the standard dynamic programming solution for
solving the 0/1 knapsack problem, in order to
solve the transformed redundant composition prob-
lem. SORTBYDIFFICULTY sorts the list of currently
queued requests by the difficulty criterion, that is
C(Rf,,)/(1 — A(RF,,)) with easiest requests first.
The final lowest cost resource found is referred to
as LowestCost Resource with price Pjoyest-

SortByDifficulty(Rreq);

foreach R’,“m do
SingleResource, Pinear = FindLowestSingle(R;, Rffs,,):
ACResource, Pac = FindLowestAC(R;, Rff,]):
RCResource, Prc = FindLowestRC(R;, R’r‘cq);
DEC Resource, Pppc = FindLowestDEC(R;, RE,,);

LowestCostResource, Piowest = FindLowest (SingleResource, Princar,
ACResource, Pac, RCResource, Prc,DEC Resource, Ppec);
end

Figure 2: Pseudocode for the broker’s general algo-
rithm.

The broker’s algorithm searches through the
available resources, as well as the possible com-
posed resources, that optimally meet the users re-
quirements. We now present each of the search
functions in turn.

As mentioned before, finding the optimal low-
est cost additively composed configuration is a very
hard two dimensional knapsack problem. There-
fore, we design a heuristic that takes into account
knowledge of the domain. It is known that all
sellers with A(R;) < A(R,q) can be automat-
ically excluded, because they would immediately
cause the availability of the allocation to drop be-
low A(R,¢q). After that, resources are added with
regard to the AC-criterion, which gives priority to
sellers that would likely be more favorable. Because
the availability quickly drops as resources are ad-
ditively composed, priority needs to be given to re-
sources that have a high availability per unit price.
Also, priority should be given to larger stores, be-
cause fewer of them are needed, resulting in less
decrease in availability. However, this is only im-
portant insofar as it is as large as the space re-
quired. The AC criterion is therefore defined to be:

A(Ri)min(C(R:),C(Ry.,))
o(Ri, Ryy) = Cihoy i) Tn the fol-

lowing pseudocode, FINDALLGREATEROREQUAL
simply returns a list of sellers with availability
greater than or equal to the specified availability
and SORTBYSTRIPINGCRITERION sorts the list de-
scending by the calculated o. currentAllocation is
a temporary variable for a set of individual resource
allocations.

The loop through each of the R; is an O(n) pro-
cess, while the sort is an O(nlogn) process, making

Procedure: FindLowestAC
(Re. RE,,)
sellersWithMinA = FindAllGreaterOrEqual (Ri, A(Rreq));
SortByStripingCriterion(sellersWithMinA, C(RF.,));
real accumulatedSpace = 0;
real accumulatedAvailability = 1;
boolean done = false;
boolean valid = true;
currentAllocation = 0;
while 3R; € R and done != true do

if accumulatedSpace + C(R:) > C(RY.,) then

done = true;

end
if accumulated Availability * A(R;) < A(RF.,) then
done = true;

valid = false;

end

if valid then
currentAllocation = currentAllocation U I;
accumulatedSpace += C(R;);
accumulated Availability *= A(R;);

end

end

return currentAllocation;

Figure 3: Heuristic algorithm for finding an addi-
tively composed set of resources.

this algorithm work in O(nlogn).
As stated before, finding the optimal distributed
error composition configuration a complex integer
programming problem. However, there are a num-
ber of meta-heuristics to which we can turn. Tabu
search and genetic algorithms have both been suc-
cessfully applied to knapsack problems [5]. While
this is a harder problem to solve than the tradi-
tional knapsack problem, it is relatively easy to
frame in terms of a genetic algorithm. We form
our chromosome with a binary gene for each avail-
able seller. The GA then tries to maximize a fit-
ness function which we have engineered to reward
solutions that meet the minimum size, whose sell-
ers have the minimum required space and solutions
that meet the requested availability. The fitness
function is as follows:
Fitness(DEC) = A(gijcq)(minA(DEC), A(Ryeq)+
Dy(1 - d’T") + Ds(Proper Number(d)) + %

where Dy, Do, D3 and D, are positive constants,
P is the price per unit of the entire allocation, d is
the number of total sellers in the allocation and d;,,
is the number of resources with insufficient space
to be part of the allocation.

We also introduce two functions:

1 3<d<DEC.MAX

Proper Number(d) = { 0 otherwise

Where Proper Number rewards solutions that are
within a probably range of valid DEC solutions.
DEC_MAX (in our case 10) is a parameter of the
broker. It is chosen as a practical limit of the num-

ber of different R; resources that can be part of
Rrcq. The the number of storage resources d that
are part of R,., could conceivably be as large as
n, but we use DEC_M AX to find practical solu-
tions and computationally simplify the task. Be-
cause this GA can produce individuals that are not
valid solutions, they are checked for validity before
being added to the list of possible solutions.

5 Experimental Setup

The clearing of a broker with both the standard
allocation algorithm (linear search of single re-
sources to meet requests) and our improved algo-
rithm (standard allocation search plus the three im-
proved searches) was evaluated using a Java simu-
lation. It was assumed that several requests as well
as several producers were queued up by the broker,
and cleared all at once. This evaluates not only the
ability of the algorithms to make a single alloca-
tion more efficient, but also their ability to make
the whole set of allocations more efficient. Each
clearing included 200 sellers and 50 buyers.

The parameters that were swept in the simula-
tion included the average storage and availability
requested. These parameters allowed the simula-
tion to generate a set of requests whose requested
storage and requested availabilities were normally
distributed around the provided average storage
and availability.

Data for the storage providers were taken from
the research done in [6]. In this paper, the au-
thors provided some statistical summaries of the
host attributes for hosts that participate in the
SETI@QHome project. In order to generate the list
of sellers to be used in the simulation, 50,000 ran-
dom values of free disk space on the hosts (re-
ferred to as d_free in the host database) were se-
lected from the database of SETIQHome hosts.
Unfortunately, there is no host availability data
provided on per-host basis by the publicly avail-
able host database. Therefore, using summary
statistics provided in [6], we attempted to gener-
ate some reasonable values. The aforementioned
paper gives three important variables to calculate
the overall availability of the host. The first vari-
able is on_fraction. This is the fraction of time
that the SETIQHome client runs. The next vari-
able of interest is connected_fraction. This is the
amount of time that the client program has ac-
cess to an Internet connection. Finally, there is
active_fraction which indicates how much of the
time that the client is allowed to run. This is

because the client is set to stay inactive when
the host PC is otherwise busy. For our ap-
plication we consider the average availability to
be the product of these three variables: A =
(on_fraction)(connected_fraction)(active_fraction)
= (0.81)(0.83)(0.84) = 0.5647 Using this average as
the average of a Gaussian random distribution with
a standard deviation of 0.1, availability values were
generated to paired with randomly selected disk
space values from the SETI@Home host database.
Finally, prices per Gigabyte of space were gener-
ated for each resource pair R;. We assume that
the pricing per unit of storage space is dictated
by the availability, which becomes asymptotically
more expensive as availability approaches one:

P~ 1/(1 - A(Ry))

To provide random variations in pricing, this
calculated price is multiplied by a normally gen-
erated random price factor with average of 1.0 and
standard deviation of 0.1. For each clearing iter-
ation within a run with particular values for the
two parameters, 200 producers were randomly se-
lected from the loaded seller pool, and 50 con-
sumers were randomly generated. For each set of
parameters, this clearing iteration was performed
10 times and averaged. The consumers were ran-
domly generated with average requested availabil-
ities (A(Ryeq)) in the range of 0.3 to 0.99 and av-
erage requested capacity (C(Rye,)) of 1GB, 10GB,
100GB and 300GB. With these parameters, con-
sumer requests were generated by Gaussian ran-
dom generators, with the given averages and stan-
dard deviations of 2Urea) anq CWred) g4 the re-

8 2

quired availability and capacity respectively. These
were chosen under the assumption that the avail-
ability required by users would not vary as widely as
the space required (most users want “pretty good”
availability). The GA responsible for finding Dis-
tributed Error Compositions run for a 100 gener-
ations with a population size of 100. The default
JGAP mutation rate of 0.1 was used. The constants
for the fitness function were, D; = 25.0,Dy =
25.0, D3 = 200.0, D, = 50.0.

6 Results

The percentage of allocation successes are shown
in Figure 4. Both the original search and the new
composition method are overlaid. A similar graph
is shown for pricing in Figure 5. Figure 6 shows the
percentage of the time the specified allocation type

was chosen as the lowest cost allocation fulfilling
the user’s needs.

Successful Requests for Standard versus Improved Broker

100 - = iz

1GB, Standard
10GB, Standard ------
100GB, Standard -------1
300GB, Standard A
1GB, Improved ----
10GB, Improved -~
100GB, Improved -------|
300GB, Improved -

40 +

Percentage of Requests Met

0 L L L L L L I
0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

Availability

Figure 4: Percentage of successful allocations, using
single resources and multiple resources.

Pricing for Standard versus Improved Broker
1400

168, Standard — i T : .
10GB, Standard -------
10065 Sandird -
L 300G8; Standar |
1200 1GB, Improved -~)

10GB, Improved -------
100GB, Improved -~
300GB, Improved -------

1000 - v

800

600 -

Price Per Gigabyte

200

.
0.2 0.3 0.4 05 0.6 0.7 08 0.9 1
Availability

Figure 5: Prices for allocations with single and mul-
tiple resources.

We find that giving the broker the ability to com-
pose new resources based on multiple available ones
increases its ability to serve user demands, as seen
in Figure 4. The way the experiments are, the new
method must perform at least as well as the old
method, because the new method subsumes the old
one. As A(RF,,) becomes larger, the new method
has a distinct advantage, as the prospect of finding
a single resource to meet the user’s requirements
becomes less and less likely.

Figure 5, shows that the pricing benefit of the al-
gorithm improves as availability required increases.
When the broker has the ability to compose re-
sources with high availability from resources with

o

<
5
:‘g W S S S S SN SEEENENE
£
8
g 8- [DEC Composition
5 B Additive Composition
§ Redundant Composition
« [Standard
P §
5
g wr
S
g =R
= L = %
20
T 2 SNNERNNAR
g
]
2

03
035
04
045
05

B 88 5 R 3883 Q8
B S S S s o

Requested Availability

Figure 6: Percentage of compositions for C(Ry.c,) =
300.0GB

lower availability, it allows the broker to satisfy the
users’ request with cheaper resources. Again, the
lowest cost resource is chosen, so we must at least
meet the standard method.

These algorithms are also effective at dispatch-
ing a queue of requests to be cleared, because on
average, the requests are still dealt with more effi-
ciently.

As expected, the percentage of a particular re-
source composition is greater on certain parameters
than others. Figure 6 shows, an example 300GB al-
locations. Standard allocations at low availability
can be cheaper, and both DEC and standard alloca-
tions require less redundancy (and therefore, poten-
tially less cost) than redundant composition. This
makes them dominant at low required availabili-
ties. As availability requirements are more strin-
gent, anything but redundant composition has less
and less chance of meeting it. Mostly absent from
Figure 6 are additive compositions. Most of the
time, additive compositions were not chosen at all,
and they were chosen a maximum of a few percent
of the time (not shown). This is because the avail-
ability of an additively composed resource declines
rapidly, and the average availability of the seller
host pool is already somewhat low.

7 Conclusions/Future Work

In this paper we proposed an approach to combine
cheap network storage resources to achieve the de-
sired availability and capacity requirements of con-
sumers. We found that although the optimal al-
location problem is complex, the combination of
several approximation techniques can be used by
the storage brokers improve the service provided to
the users. Our future work involves both improving

the performance of the proposed solutions, as well
as extending them to a more general problem. An
immediate extension, but on that is considerably
more difficult, is to consider the network bandwidth
through which the storage is available.

Acknowledgment

This work was supported in part by a National Sci-
ence Foundation Graduate Research Fellowship as
well as National Science Foundation grants CRCD:
0203446, CCLI: 0341601, DUE: 05254209, and IIS:
0647120. The authors would also like to thank Ad-
vanced Micro Devices, Inc. (AMD) for their gener-
ous donation of equipment used in this research.

References

[1] R. Buyya and S. Vazhkudai, “Computer power
market: Towards a market-oriented grid,” in
The 1st IEEE/ACM International Symposium
on Cluster Computing and the Grid (CCGrid
2001), May 2001, pp. 574-581.

[2] R. Buyya, D. Abramson, and J. Giddy, “An
economy driven resource management architec-
ture for global computational power grids,” in
The 2000 International Conference on Parallel
and Distributed Processing Techniques and Ap-
plications (PDPTA 2000), June 2000.

[3] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwin-
ski, P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, and
B. Zhao, “Oceanstore: An architecture for
global-scale persistent storage,” in Proceedings
of the 9th International Conference on Architec-
tural Support for Programming Languages and
Operating Systems (ASPLOS 2000), November
2000, pp. 190-201.

[4] M. Placek and R. Buyya, “Storage exchange:
A global trading platform for storage services,”
in Proceedings of the 12th International Furo-
pean Parallel Computing Conference (EuroPar
2006). Springer-Verlag, August 2006.

[6] P. Chu and J. Beasley, “A genetic algorithm for
the multidimensional knapsack problem,” Jour-
nal of Heuristics, vol. 4, no. 1, pp. 63-86, June
1998.

[6] D. P. Anderson and G. Fedak, “The computa-
tional and storage potential of volunteer com-
puting,” in Siazth IEEE International Sympo-
sium on Cluster Computing and the Grid (CC-
GRID’06), May 16-19 2006, pp. 73-80.

