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ABSTRACT 
Adaptive Resonance Theory (ART) neural networks are a popular class of 
neural network classifiers, and they are based on the adaptive resonance theory, 
developed by Grossberg. ART neural networks have a number of desirable 
features, such as guaranteed convergence to a solution, on-line learning 
capabilities, identification of novel inputs, offering an explanation for the 
answers that they produce, and finally, achieving good performance on a 
number of classification problems in a variety of application areas. Two 
members of the class of ART classifiers that have been introduced into the 
literature are Gaussian ARTMAP (GAM) and Distributed Gaussian ARTMAP 
(dGAM). The difference between dGAM and GAM is that in its learning phase, 
dGAM allows more than one ART node to learn the input pattern, contrary to 
GAM which allows only one ART node to learn the input pattern (winner-take-
all ART network.  The inventors of dGAM claimed that dGAM addresses the 
category proliferation problem, observed by many winner-take-all ART 
networks, such as Gaussian ARTMAP, Fuzzy ARTMAP, Ellipsoidal 
ARTMAP, amongst others. The category proliferation problem is the problem 
where an ART network, in the process of learning the required classification 
task, creates more than necessary ART nodes. This category proliferation 
problem is more acute when the ART networks are faced with noisy and or 
significantly overlapping data. However the claim, that dGAM outperforms 
GAM by creating smaller ART networks, has not been substantiated in the 
literature. In this paper, a thorough experimentation and comparison of the 
performance of Gaussian ARTMAP (GAM) and distributed Gaussian 
ARTMAP (dGAM) is provided. In the process of doing so, a new measure of 
performance for a neural network is introduced. This measure relies on two 
factors of goodness of the neural network: the network’s size, and the 
network’s generalization performance (i.e., performance of the trained ART 
classifier on unseen data). Obviously, a small size ART network of good 
generalization performance is desired. Previous comparisons of ART-like 
classifiers relied on a trial and error procedure (that is a time consuming and 
occasionally unreliable procedure) to produce a good performing ART 
network. The proposed measure of performance allows one to come up with a 
good ART network through an automated and reliable process.  
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INTRODUCTION 
The Adaptive Resonance Theory (ART) was developed by Grossberg 

(1976). One of the most celebrated ART architectures is Fuzzy ARTMAP 
(Carpenter et al, 1992), which has been successfully used in the literature for 
solving a variety of classification problems. Some of the advantages that Fuzzy 
ARTMAP possesses is that it can solve arbitrarily complex classification 
problems, it converges quickly to a solution (within a few presentations of the 
list of the input/output patterns belonging to the training set), it has the ability to 
recognize novelty in the input patterns presented to it, it can operate in an on-
line fashion (new input/output patterns can be learned by the system without re-
training with the old input/output patterns), and it produces answers that can be 
explained with relative ease. One of the limitations of Fuzzy ARTMAP that has 
been extensively reported in the literature is the category proliferation problem. 
That is Fuzzy ARTMAP has the tendency of increasing its network size, as it is 
confronted with more and more data, especially if the data are noisy and/or 
contain a lot of overlap. This limitation of Fuzzy ARTMAP has been observed 
by other ART architectures, introduced later on in the ART literature, such as 
Ellipsoidal ARTMAP (Anagnostopoulos et al., 2001) and Gaussian ARTMAP 
(Williamson, 1996). The major difference between Fuzzy ARTMAP, Ellipsoidal 
ARTMAP and Gaussian ARTMAP is the way that these architectures choose to 
compress the input data. Fuzzy ARTMAP compresses the data by representing 
them through their minimum and maximum values across every dimension, 
resulting in a boxed structure that contains all the data coded by an ART node. 
Ellipsoidal ARTMAP compresses the data by representing them by the mean, 
direction of the major axis and ratio of the major to minor axis length of an 
ellipsoidal structure that contains all the data coded by an ART node. Finally, 
Gaussian ARTMAP compresses the data by representing them as the mean and 
variances of Gaussian curves corresponding to each ART node; the means and 
variances of these Gaussian curves are computed using the data that an ART 
node has encoded.  

A number of authors have tried to address the category proliferation 
problem in ART. Amongst them we refer to the work by Marriott and Harrisson 
(1995), where the authors eliminate the match tracking mechanism of Fuzzy 
ARTMAP when dealing with noisy data, the work by Charalampidis, et al. 
(2001), where the  ART equations are appropriately modified to compensate for 
noisy data, the work by Verzi, et al. (2001), Anagnostopoulos, et al. (2001, 
2003), and Gomez-Sanchez, et al. (2001, 2002), where different ways are 
introduced of allowing the ART categories to encode patterns that are not 
necessarily mapped to the same label, the work by Koufakou, et al., (2001), 
where cross-validation is employed to avoid the category proliferation problem 
in ART, and the work by Carpenter (1998), Williamson (1997), Parrado-
Hernandez, et al. (2003), where the ART structure is changed from a winner-
take-all to a distributed version and simultaneously slow learning is employed 
with the intent of creating fewer ART categories and reducing the effects of 
noisy patterns. 

In this paper we focus our attention on comparing two ART networks, 
Gaussian ARTMAP and distributed Gaussian ARTMAP. The purpose of this 
comparison is to determine whether distributed learning is indeed helping us in 
solving the category proliferation problem in ART. Despite the fact that such a 
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comparison of winner-take-all and distributed learning ART networks has been 
conducted before (see Carpenter, 1998; Parrado-Hernandez, 2003), the 
distributed ART network introduced in (Carpenter, 1998) was complex and the 
benefits from introducing it, in terms of reducing the number of categories 
created by ART networks, was not very clear from the results. On the contrary, 
distributed Gaussian ARTMAP is a natural distributed extension of the winner-
take-all Gaussian ARTMAP and if experimentation proves that it improves the 
category proliferation problem observed by Gaussian ARTMAP then this 
distributed network can be extended to other ART networks, with similarly 
beneficial conclusions. Furthermore, in the process of comparing two ART 
networks (i.e., GAM and dGAM) we have introduced an appropriate fitness 
function that takes into consideration both the network size and the network’s 
generalization performance. This fitness function, whose usefulness is 
demonstrated in the paper, is needed because otherwise the comparison of ART 
networks because cumbersome, and error prone.  

GAUSSIAN ARTMAP ARCHITECTURES 
In this section, we briefly explain the Gaussian ARTMAP (GAM) and 

distributed GAM (dGAM) architectures. For more details about these 
architectures the reader is referred to the papers by Williamson (Williamson, 
1996, 1997).  

The block diagram of a Gaussian ARTMAP (GAM or dGAM) architecture 
is shown in Figure 1. The Gaussian ARTMAP architecture, depicted in Figure 1, 
has three major layers. The input layer ( ) where the input patterns 
(designated by I) are presented, the category representation layer ( ), where 
compressed representations of these input patterns are formed, and the output 
layer ( ) that holds the labels of the categories formed in the category 
representation layer. 
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Figure 1: Block Diagram of Gaussian ARTMAP 
 
GAM can operate in two distinct phases: the training phase and the 

performance (test) phase. The training phase of GAM can be described as 
follows: Given a set of inputs and associated label pairs,  
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called the training set), we want to train Gaussian ARTMAP to map every input 
pattern of the training set to its corresponding label. To achieve the 
aforementioned goal we present the training set to the GAM architecture 
repeatedly. That is, we present 1I  to , to ,  to , to , 
and finally,  to ,  to . We present the training set to GAM up 
to designated number of times. After the training phase of Gaussian ARTMAP 
is completed we can enter the performance phase of GAM, which works as 
follows: Given a set of input patterns 

aF1 )( 1Ilabel bF2
2I aF1 )( 2Ilabel bF2

PTI aF1 )( PTlabel I bF2

PSIII ~...,,~,~ 21  (referred to as the test set), 
we want to find the Gaussian ARTMAP output (label) produced when each one 
of the aforementioned test patterns is presented at its  layer. In order to 
achieve this goal, we present the test set to the trained Gaussian ARTMAP 
architecture and we observe the network’s output.  

aF1

What is worth emphasizing is that Gaussian ARTMAP creates compressed 
representations of the input patterns that chose node j in the category 
representation layer as their representative node. Actually, the weight values 
corresponding to a node j in are:  (mean of the data that have activated 
and were encoded by node j),  (the standard deviation vector of the data that 
have activated and were encoded by node j),  (the number of training input 

patterns that were encoded by node j in ), and the inter-ART weights  

(with components ).  For conciseness, the GAM 

architecture of Figure 1 uses the vector to represent all three 
weight values , at once. The compression of the data at every 
representation layer node happens because GAM chooses to represent the data 
that are coded by a single representation layer node by their mean vector, and 
their standard deviation across every dimension. Furthermore, GAM keeps track 
of another parameter ( ) that corresponds to the number of data-points that 
chose and were coded by this node, during GAM’s training phase. Finally, the 
vector  corresponding to a committed representation layer node has one of 
its components equal to 1 (representing the label that this committed node is 
mapped to) and the other components equal to zero. 
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GAM’s performance depends on two parameters. One of them, designated 
as γ is the initial value of the standard deviation (across every dimension) of a 
representation layer node, the first time that this node becomes committed and 
encodes an input pattern. In most Gaussian ARTMAP simulations this 
parameter is chosen to be value within the interval (0, 1]. The other parameter, 
designated as aρ , and referred to as the baseline vigilance parameter assumes 
also values in the interval [0, 1] and controls the amount of similarity that input 
patterns should have before they are allowed to be encoded by the same 
representation layer node. In particular, as the value of aρ  increases from 0 to 1, 
the more similar two input patterns should be in order to be encoded by the same 
representation layer node in Gaussian ARTMAP.  
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The distributed Gaussian ARTMAP training differs from the Gaussian 
ARTMAP training in two distinct ways. For one, during the presentation of an 
input pattern to distributed Gaussian ARTMAP more than one representation 
layer nodes are activated, in contrast to Gaussian ARTMAP, where only one 
node (the one that receives the highest bottom-up input is activated). Also, if a 
group of nodes are activated during the presentation of an input pattern to 
distributed Gaussian ARTMAP and these nodes, collectively, do not predict the 
correct label, all the nodes are de-activated and a new set of nodes is searched, 
whose vigilance ratio exceeds a weighted average vigilance ratio of the nodes 
that were previously active. The vigilance ratio of a node is a measure of 
similarity between the node’s compressed representation of previously coded 
inputs and the currently presented input pattern. 

EXPERIMENTS 
We have performed a number of experiments to compare the performance of 

Gaussian ARTMAP and distributed Gaussian ARTMAP. The performance comparison is 
based on two measures of performance, the generalization performance of the network, as 
well as the size of the network created. The performance comparison was based on a 
fitness function, discussed below. The comparisons were conducted on a number of 
artificial as well as real databases. For each one of these databases we had a training set 
(to train the Gaussian ARTMAP networks), a validation set (to optimize the Gaussian 
ARTMAP network parameters) and a test set on which the generalization performance of 
the optimal Gaussian ARTMAP networks was tested. The parameters that we 
experimented with, to optimize Gaussian ARTMAP’s performance were: baseline 
vigilance ( aρ ), initial value of the standard deviation (γ ) and the order of training 
pattern presentation presented to GAM. More details about the specific parameter settings 
are emphasized in Section c.  

a. Fitness Function 
To achieve this goal we relied on a fitness function that was first introduced 

in (Al-Daraiseh, et al., 2006). This fitness function depends on a network’s 
generalization performance, as well as on a network’s size. The specific form of 
the fitness function is presented below:  
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where  is the maximum number of categories that a Gaussian ARTMAP 
network can have (set equal to the number of patterns in the training set), and 

 is the minimum number of categories that a Gaussian ARTMAP network 
can have. The parameter  is chosen to be equal to 1. It seems that a more 
natural choice would have been to choose  equal to the number of different 
classes in the problem at hand, but our experiments have shown that the setting 

gives us good results. The parameter PCC is the percentage of correct 
classification of a trained Gaussian ARTMAP network on the validation set, and 

maxC

minC

minC

minC

minC



 6 

Na is the actual number of categories of a trained Gaussian ARTMAP network. 
Finally, ε is a small positive number. 

The chosen fitness function has a number of good properties. First, it 
depends on both measures of performance: the size of the Gaussian ARTMAP 
network and the accuracy of the Gaussian ARTMAP network on the validation 
set. Higher accuracy leads to larger fitness values, with all other factors fixed. 
Note that if the size decreases, the numerator of the fitness increases and the 
denominator decreases, provided that everything else is kept fixed. Similarly, if 
the accuracy increases, the numerator of the fitness increases and the 
denominator decreases provided that everything else is kept fixed. It is also 
worth noting that when the size is equal to the minimum size and the accuracy is 
equal to the highest accuracy, the denominator of the fitness function practically 
approaches zero and the fitness function assumes a very high value. Hence, the 
fitness function shows a strong preference towards the creation of minimum size 
and highest accuracy networks, as it should. It is worth noting that other values 
choices for the fitness function were examined (including the obvious one 
PCC/Na), but none of them gave as good results as the fitness function defined 
above. 

b. Databases 
We experimented with both artificial and real databases. The specifics of 

these databases are given in Table 1. 
1. Gaussian Databases (G#c-##) 

These are artificial databases, where we created 2-dimensional data, 
Gaussianly distributed, belonging to 2-class, 4-class, and 6-class problems. In 
each one of these databases we varied the amount of overlap of data belonging 
to different classes. In particular, we considered 5%, 15%, 25%, and 40% 
overlap. Note that 5% overlap means the optimal Bayesian Classifier would 
have 5% misclassification rate on the Gaussianly distributed data. There are a 
total of 3×4=12 Gaussian databases. We name the databases as “G#c-##” where 
the first number is the number of classes and the second number is the class 
overlap. For example, G2c-05 means the Gaussian database is a 2 class and 5% 
overlap database. 
2. Modified Iris Database (MOD-IRIS) 

In this database we started from the IRIS dataset (Hettich et al., 1998) of the 
150 3-class problem. We eliminated the data corresponding to the class that is 
linearly separable from the others. Thus we ended up with 100 data-points. From 
the 4 input attributes of this IRIS dataset we focused on only 2 attributes 
(attribute 3 and 4) because they seem to have enough discriminatory power to 
separate the 2-class data. Finally, in order to create a reasonable size dataset 
from these 100 points (so we can reliably perform cross-validation to identify 
the optimal Safe μARTMAP parameters) we created noisy data around each one 
of these 100 data-points (the noise was Gaussian of zero mean and small 
variance) to end up with approximately 10,000 points. We named this database 
Modified Iris. 
3.  Modified Abalone Database (ABALONE) 
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This database is originally used for prediction of the age of an abalone. 
contains 4177 instances, each with 7 numerical attributes, 1 categorical attribute, 
and 1 numerical target output (age). We discarded the categorical attribute in our 
experiments, and grouped the target output values into 3 classes: 8 and lower 
(class 1), 9-10 (class 2), 11 and greater (class 3). This grouping of output values 
has been reported in the literature before.  
4. Page Blocks Database (PAGE) 

This database represents the problem of classifying the blocks of the page 
layout in a document (Hettich et al., 1998). One of the noteworthy points about 
this database is that, its major class has a high probability of occurring (above 
80%). 

The data in each one of the above databases was split into a training set, a 
validation set, and a test set. The percentage of classes in each one of these 
subsets resembled the percentage of classes in the original dataset. The 
summarized specifics of each one of these databases are depicted in Table 1. 
The training set was used to train the Gaussian ARTMAP networks, the 
validation test was used to assess the performance of the ART networks for 
various settings of their parameter values, and the test set was used to report the 
performance of the “best performing” networks.  
 

 Database 
Name 

# Training 
Instances 

# Validation 
Instances 

# Test 
Instances 

# Numerical 
Attributes 

# Classes 
( ) bN

% Major Class 
( ) 0A

1 G2c-05 500 5000 5000 2 2 1/2 

2 G2c-15 500 5000 5000 2 2 1/2 

3 G2c-25 500 5000 5000 2 2 1/2 

4 G2c-40 500 5000 5000 2 2 1/2 

5 G4c-05 500 5000 5000 2 4 1/4 

6 G4c-15 500 5000 5000 2 4 1/4 

7 G4c-25 500 5000 5000 2 4 1/4 

8 G4c-40 500 5000 5000 2 4 1/4 

9 G6c-05 504 5004 5004 2 6 1/6 

10 G6c-15 504 5004 5004 2 6 1/6 

11 G6c-25 504 5004 5004 2 6 1/6 

12 G6c-40 504 5004 5004 2 6 1/6 

13 MOD-IRIS 500 4800 4800 2 2 1/2 

14 ABALONE 501 1838 1838 7 3 1/3 

15 PAGE 500 2486 2487 10 5 0.832 

Table 1: Specifics of the Databases 

c. Network Parameter Settings 
Experiments were conducted with 11 different values of the baseline vigilance 

parameter, aρ , ranging from 0.0 to 1.0 in intervals of 0.1, and 10 different values of the 

initial standard deviation parameter, γ, ranging from 0.1 to 1.0 in intervals of 0.1.  
Additionally, for each value of aρ  and γ, we used a 100 different orders of pattern 
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presentation for the training data, resulting in a total of 11,000 networks being created per 
database. Note that the performance of Gaussian ARTMAP networks is affected by the 
order according to which the training patterns are presented to Gaussian ARTMAP.  

d. Experimental Procedure – Experimental Results 
The best GAM, dGAM network was chosen to be the one that maximized 

the value of the fitness function, defined in Section a. That is, we trained each of 
GAM 11,000 times (corresponding to the 11,000 parameters used in Section c) 
and we identified as the optimal GAM network the one that maximized the 
value of the fitness function. We also trained dGAM 11,000 times 
(corresponding to the 11,000 parameters used in Section c) and we identified as 
the optimal dGAM network the one that maximized the value of the fitness 
function. The comparison of the performances of the optimal dGAM size 
(Nodes) and accuracy on the validation set (PCC XV), as well as accuracy 
(generalization) on the test set (PCC Test)) for each one of the databases are 
demonstrated in Table 2. Table 2 also contains the fitness function value of the 
optimal network. Figures 2 (a-d) show how well this fitness function works by 
showing the network size and generalization performance of the best 100 (more 
or less) GAM, and dGAM networks, as well as the specific network that this 
fitness function chooses as optimal.  

The results from Table 2 show that both of the algorithms, GAM and 
dGAM, achieved near optimal performance with respect to the percentage 
correct classification for the Gaussian datasets.  Furthermore, the size of the 
networks created by dGAM is smaller than the size of the network created by 
GAM in datasets with significant amount of overlap between data belonging to 
different classes (e.g., see size for G2c_40, G4c_40 and G6c_40). In particular, 
the size of the network is decreased by 50% for the G2c_40 problem, by 23% 
for the G4c_40 problem, and by 20% for the G6c_40 problem. These results 
seem to indicate that distributed learning (where more than one node is activated 
in the representation layer of Gaussian ARTMAP) seems to be having a 
beneficial influence on the category proliferation problem. This result is also 
reinforced by the significant reduction of the nodes created by  

 
Nodes PCC Test PCC XV Fitness Set 

GAM dGAM GAM dGAM GAM dGAM GAM dGAM 
G2c_05 5 5 95.14 95.16 94.7 94.78 2.19 2.19 
G2c_15  6 6 84.8 84.8 85.1 85 1.98 1.97 
G2c_25 7 6 74.94 75 74.78 75.1 1.72 1.73 
G2c_40 20 9 59.7 61.14 59.08 59.76 1.23 1.26 
G4c_05 11 8 94.7 94.86 95.5 95.58 2.20 2.21 
G4c_15 22 17 84.1 84.3 84.02 83.92 1.93 1.94 
G4c_25 27 25 74.7 74.68 75.44 75.46 1.71 1.71 
G4c_40 43 33 59.02 59.46 60.54 60.88 1.26 1.28 
G6c_05 13 13 94.62 94.5 94.76 95.02 2.18 2.19 
G6c_15 20 19 84.77 84.81 84.23 84.49 1.94 1.95 
G6c_25 38 28 73.8 74.16 75.52 75.4 1.70 1.71 
G6c_40 89 71 59.01 59.41 59.39 59.77 1.17 1.2 
Iris 8 6 94.96 94.98 94.98 94.96 2.19 2.19 
Abalone 235 165 63.15 62.25 64.71 63.25 1.16 1.21 
Pageblocks 21 21 89.67 89.59 95.21 95.29 2.18 2.19 

Table 2: Performance of Gaussian ARTMAP (GAM) versus distributed GAM (dGAM) 
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(a) (b) 

(c) (d) 
Figure 2: Top networks (Node Count (Vertical axis) vs. PCC on the validation set (Horizontal axis)) 
for G6c_15 ((a) GAM, (b) dGAM) and G6c_40 ((c) GAM, (d) dGAM); red dot denotes top fitness 
function value 

 
by dGAM, compared with the nodes created by GAM, for the Abalone dataset 
(235 nodes for GAM versus 165 nodes for dGAM). The Abalone dataset can 
also be thought of as a dataset, where data belonging to different classes 
significantly overlap (since its classification accuracy on unseen data (validation 
or test set) is rather poor (only 60%)). For problems, where the overlap of data is 
not significant there is no difference between the sizes of GAM and dGAM. 

CONCLUSIONS 
We have experimented with the Gaussian (GAM) and distributed Gaussian 

(dGAM) networks. The goal of our experimentation is to determine of whether 
distributed learning has the inherent ability to improve the category proliferation 
problem observed by a number of winner-take-all ART networks. The 
conclusion from our experiments is that distributed learning in the context of 
how it was defined by Williamson in dGAM has a beneficial effect on the 
category proliferation problem, when the amount of data overlap, belonging to 
different classes, is significant. In the process of comparing the two networks 
with each other, we defined a fitness function whose value was affected by both 
network’s generalization and network’s size. It was verified experimentally that 
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this fitness function works well, and it gave us an automatic and reliable way of 
defining the optimal GAM and dGAM networks.  
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