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Abstract

Fuzzy ARTMAP neural networks have been proven to be goodifiks on a variety of classification
problems. However, the time that Fuzzy ARTMAP takes to cagwdo a solution increases rapidly as the
number of patterns used for training is increased. In thjzepave examine the time Fuzzy ARTMAP
takes to converge to a solution and we propose a coarse gaaallgization technique, based on a
pipeline approach, to speed-up the training process. lticpkar, we have parallelized Fuzzy ARTMAP,
without the match-tracking mechanism. We provide a serig¢henrems and associated proofs that show
the characteristics of Fuzzy ARTMAP'’s, without matchtriack parallel implementation. Results run
on a BEOWULF cluster with three large databases show lineeedfp as a function of the number
of processors used in the pipeline. The databases used faxperiments are the Forrest CoverType
database from the UCI Machine Learning repository and twificéal databases, where the data generated
were 16-dimensional Gaussianly distributed data belaptpnwo distinct classes, with different amounts

of overlap (5 % and 15 %).

keywords. Fuzzy ARTMAP, Data Mining, BEOWULF cluster, Pipelining, NetwdPartitioning.



. INTRODUCTION

Neural Networks have been used extensively and succestiutickle a wide variety of problems. As
computing capacity and electronic databases grow, theam imcreasing need to process considerably
larger databases. In this context, the algorithms of chtéogl to be ad—hoc algorithms (Agrawal &
Srikant, 1994) or tree based algorithms such as CART (KinggFé&nShutherland, 1995) and C4.5
(Quinlan, 1993). Variations of these tree learning algonis, such as SPRINT (Shafer, Agrawal, &
Mehta, 1996) and SLIQ (Mehta, Agrawal, & Rissanen, 1996) haaenlsuccessfully adapted to handle
very large data sets.

Neural network algorithms, on the other hand, can have ailptiviely slow convergence to a solution,
especially when they are trained on large databases. Evenfdhe fastest (in terms of training speed)
neural network algorithms, the Fuzzy ARTMAP algorithm ((Garter, Grossberg, & Reynolds, 1991)
and (Carpenter, Grossberg, Markuzon, Reynolds, & Rose®2)19and its faster variations ((Kasuba,
1993), (Taghi, Baghmisheh, & Pavesic, 2003)) tend to cajzvesfowly to a solution as the size of the
network increases.

One obvious way to address the problem of slow convergenaestution is by the use of paralleliza-
tion. Extensive research has been done on the propertiesralfghiaation of feed—forward multi-layer
perceptrons (Mangasarian & Solodov, 1994) (Torresen & Tanii®98) (Torresen, Nakashima, Tomita,
& Landsverk, 1995). This is probably due to the popularity a$ theural network architecture, and also
because the backpropagation algorithm (Rumelhart, Hjr@owilliams, 1986), used to train these type
of networks, can be characterized mathematically by matnad vector multiplications, mathematical

structures that have been parallelized with extensiveesscc



Regarding the parallelization of ART neural networks we fiad the work by Manolakos (Manolakos,
1998) who implements the ART1 neural network (Carpenter ¢t1891) on a ring of processors. To
accomplish this Manolakos divides the communication in tidirectional rings, one for thd? layer
of ART1 and another for thd’ layer of ART1. Learning examples are pipelined through thg tm
optimize network utilization. Experimental results of Méadws’ work indicate close to linear speed-up
as a function of the number of processors. This approach isesifitor ring networks and it is an open
question of whether it can be extended for Fuzzy ARTMAP. Anogizgallelization approach that has been
used with ART and other types of neural networks is the systiEmegration approach where the neural
network is not implemented on a network of computers but aallgh hardware. Zhang (Zhang, 1998)
shows how a fuzzy competitive neural network similar to ARTRI&an be implemented using a systolic
array. Asanovi (Asanovt et al., 1998) uses a special purpose parallel vector oceSPERT-1I to
implement back-propagation and Kohonen neural networkg¢Mialkani & Vassiliadis, 1995), a parallel
implementation of the Fuzzy-ARTMAP algorithm, similar to tlk@e investigated here, is presented.
However, in his paper, a hypercube topology is utilized fansferring data to all of the nodes involved
in the computations. While it is trivial to map the hypercuioethe more flexible switched network
typically found in a Beowulf, this would likely come with a germance hit. In this approach each
one of the processors maintains a subset of the architécti@mplates, and finds the template with
the maximum match in its local collection. Finally, in thedimensional hypercube, all the processors
cooperate to find the global maximum througjdifferent synchronization operations. This can eventually
limit the scalability of this approach, since the valdigrows with the size of the hypercube, while the

network bandwidth remains constant.



Mining of large databases is an issue that has been addrbgsetny researchers, Mehta (Mehta
et al., 1996), developed SLIQ, a decision-tree based algoritiat combines techniques of tree-pruning
and sorting to efficiently manage large datasets. Furtherntmafer (Shafer et al., 1996), proposed
SPRINT, another decision-tree based algorithm, that remo@udory restrictions imposed by SLIQ and
is designed to be amenable to parallelization. The Fuzzy ARTMA&al network has many desirable
characteristics, such as the ability to solve any classificgiroblem, the capability to learn from data in
an on-line mode, the advantage of providing interpretatimn the answers that it produces, the capacity
to expand its size as the problem requires it, and the abditgcognize novel inputs, among others. Due
to all these virtues we investigate Fuzzy ARTMAP'’s paralldl@ain an effort to improve its convergence

speed to a solution when it is trained with large datasets.

There are many variants within the Fuzzy ARTMAP family of neuretworks. Kasuba (Kasuba, 1993),
with only classification problems in mind, develops a simplifltuzzy ARTMAP structure (simplified
Fuzzy ARTMAP), while Taghi, et al., in (Taghi et al., 2003), délse variants of simplified Fuzzy
ARTMAP, called Fast Simplified Fuzzy ARTMAP, variants. These Fuz&TMAP variants are faster
than the original Fuzzy ARTMAP algorithm, because they elatdd all the computations performed
in the ART, module of Fuzzy ARTMAP, and because they have simplified the ctatipns performed
in the ART,;, module of Fuzzy ARTMAP; the results produced by these simplifiedzi#lIARTMAP
variants are the same as the results produced by the origizaly ARTMAP, when the problem at hand

is a classification problem.

One of the Fuzzy ARTMAP fast algorithmic variants presentedTiaghi et al., 2003) is called,

SFAM2.0 and it this algorithmic Fuzzy ARTMAP variant (that isualent to Fuzzy ARTMAP for



classification problems) that is the focus of our paper. Funibee, in this paper, we only concentrate
on the no-match tracking version of SFAM2.0. No-match tragkiwas a concept introduced by
Anagnostopoulos, in the framework of the ART networks (Amagjopoulos and Georgiopoulos, 2003).
No match-tracking is a specific ART network behavior, wheremdver an input pattern is presented to
the ART network and a category is chosen that maximizes thierbeup input, passes the vigilance, but
is mapped to the incorrect output, this category is deaetivand a new category (uncommitted category)
is activated next that will encode the input pattern. As aineler, in that case, the typical ART network
behavior is to engage the match-tracking mechanism thattidates the chosen category, increases the
vigilance threshold and searches for another appropriategory that might be or might not be an
uncommitted category. Anagnostopoulos has shown throwgbrinentation in (Anagnostopoulos and
Georgiopoulos, 2003) that no-match-tracking Fuzzy ARTMA& éases the number of categories created
in the category representation layer compared to Fuzzy ARTMutRt does so while providing improved
generalization performance. No Match-tracking in Fuzzy ARIMshould not be confused with the on-
line operation in Fuzzy ARTMAP. On-line Fuzzy ARTMAP operationglies that an input-output pair
is presented only once in Fuzzy ARTMAP'’s training phase, andahit loe used in a match-tracking or a
no-match tracking Fuzzy ARTMAP. The reason that we focus on theatch-tracking Fuzzy ARTMAP

is because it gives us the opportunity to first parallelize ¢bepetitive aspect of Fuzzy ARTMAP,
while ignoring the complications of the feedback mechanikat matchtracking introduces. Finally, we
focus on the on-line version of this network, since a paliaiéon of the on-line version extends in a

straightforward fashion to the off-line version of the neti

For simplicity, we refer to this Fuzzy ARTMAP variant (on-lineo-matchhtracking SFAM2.0) simply



asFuzzy ARTMAPor FAM. If we demonstrate the effectiveness of our parallelizativategies for FAM,
extension to other ART structures can be accomplished witholot of effort. This is due to the fact
that the other ART structures share a lot of similaritieshviiAM, and as a result, the advantages of the
proposed parallelization approach can be readily extetaedher ART variants (for instance Gaussian
ARTMAP (Williamson, 1996), Ellipsoidal ARTMAP (G. C. Anagnagtoulos & Georgiopoulos, 2001),

among others).

The remainder of this paper is organized as follows: Sectiqrdbents the Fuzzy ARTMAP neural
network architecture and a few Fuzzy ARTMAP variants. Sectlbndntinues with the pseudo-code of
the off-line, match-tracking Fuzzy ARTMAP, on-line matchdking Fuzzy ARTMAP, and on-line no-
match tracking Fuzzy ARTMAP (referred to simply as FAM). Seatly focuses on the computational
complexity of the on-line, match-tracking Fuzzy ARTMAP, areh&s as a necessary motivation for the
parallelization approach introduced in this paper. Secdqresents a discussion of the Beowulf cluster
as our platform of choice. Section VI continues with the pseode of the parallel Fuzzy ARTMAP,
refereed to as”AM, and associated discussion to understand the importagtigsyf this implementation.
Section VIl focuses on theoretical results related to the@sed parallelization approach. In particular,
we prove there thatfAM is equivalent to the FAM, and that the processors in the lghiadplementation
will be reasonablybalanced by considering a worst case scenario. Furtherraectipn VIII proceeds
with experiments and results comparing the performanceRmadt and FAM on three databases, one
of them real and two artificial. The article concludes with EectiX, where a summarization of our

experiences, from the conducted work, and future reseachklgineated.



Il. THE Fuzzy ARTMAP NEURAL NETWORK ARCHITECTURHFUZZY ARTMAP VARIATIONS

The Fuzzy ARTMAP neural network and its associated architeatas introduced by Carpenter and
Grossberg in their seminal paper (Carpenter et al., 1992ceSits introduction, a number of Fuzzy
ARTMAP variations and associated successful applicatidrthie® ART family of neural networks have
appeared in the literature (for instance, ARTEMAP (Carpe&td&oss, 1995), ARTMAP-IC (Carpenter
& Markuzon, 1998), Ellipsoid-ART/ARTMAP (G. C. Anagnostoposl & Georgiopoulos, 2001), Fuzzy
Min-Max (Simpson, 1992), LAPART2 (Caudell & Healy, 1999), amd-LNMAP (Petridis, Kaburlasos,
Fragkou, & Kehagais, 2001), to mention only a few. For the psgs of the discussion that follows we
rely on the work by Kasuba (Kasuba, 1993) and Taghi, Baghshishnd Pavesic (Taghi et al., 2003)
(see section 1). In this paper, we have implemented the FURYMAP version, called SFAM2.0 in
Taghi’'s paper. As we have emphasized in the Introduction,MBEA is equivalent to the original Fuzzy
ARTMAP algorithm (see (Carpenter et al., 1992)) for classiiicaproblems.

The block diagram of SFAM2.0 (also depicted in Kasuba (KastB83)) is shown in figure 1. Notice
that this block diagram is different than the block diagraitFozzy ARTMAP mentioned in (Carpenter
et al., 1991), because it has eliminated th&7;, module, and inter-ART module of Fuzzy ARTMAP, and
has replaced them with the a single layer of nodes, desidresté? in Figure 1. The Fuzzy ARTMAP
architecture of the block diagram of Figure 1 has three majgers. Theinput layer (F}*) where the
input patterns (designated @y are presented, theategory representation lay€fs'), where compressed
representations of these input patterns are formed (desidrasw;, and calledtemplatey and the
output layer (F?) that holds the labels of the categories formed in the cayegepresentation layer.

Another layer, shown in Figure 1 and designatedHgyis a pre-processing layer and its functionality



is to pre-process the input patterns, prior to their pregent to the Fuzzy ARTMAP architecture. This

pre-processing operation (called complementary codisiglescribed in more detail later.

In this paper we focus on the on-line implementation of SFAM2n the on-line implementation
of SFAM2.0 the training data (input/output patterns) arespreed to SFAM2.0 only once. This version
of Fuzzy ARTMAP training is sometimes referred to ase-epoch trainingFuzzy ARTMAP. Also,
in this paper, we concentrate on a version of Fuzzy ARTMAP thioed by Anagnostopoulos (G.
Anagnostopoulos, 2000), and referred tahasmatch tracking-uzzy ARTMAP. In the no-match tracking
Fuzzy ARTMAP match-tracking is disengaged in the followingis® In the training phase of Fuzzy
ARTMAP when a node in the category representation layer is@hdo represent an input pattern, but
this node is mapped to the incorrect label, the node is dedietl and a search for another node in the
category representation layer ensues (match-trackingnamezm). However, in no-match tracking Fuzzy
ARTMAP when a node in the category representation layer isemdo represent an input pattern, but
this node is mapped to the incorrect label, a new (uncomdhittade) is chosen to represent this pattern.
In (G. Anagnostopoulos, 2000), Anagnostopoulos has shdah rio-match tracking Fuzzy ARTMAP
creates more nodes in the category representation layerzaly FARTMAP, but quite often improves the
network’s generalization performance. In our case, we e€tiosfocus on the no-match tracking Fuzzy
ARTMAP because it allows us to concentrate on implementingpdrallel, the competitive process in
Fuzzy ARTMAP, without having to worry about the implementatiof the match-tracking mechanism
which has its own complications. Furthermore, the paratfgllementation of the competitive process in
Fuzzy ARTMAP has applicability to other neural networks in literature that involve similar competitive

phases in their design. From now on we will refer, for simpjicto the on-line, no-match tracking,



SFAM2.0network as Fuzzy ARTMAP.

In this paper, we will occasionally discuss the off-line, $3FA0 with match tracking, and the on-line
SFAM2.0 with match tracking, and we will refer to these netkgors off-line Fuzzy ARTMAP with
match-tracking and on-line Fuzzy ARTMAP with match-trackin@nce more, we reserve the simpler
notation,Fuzzy ARTMAPfor the on-line, no-match tracking SFAM2.0 that is the foaushis paper.

Any of the aforementioned Fuzzy ARTMAP variants can operatevim distinct phases: theraining
phaseand theperformance phaseDuring the training phase of a Fuzzy ARTMAP variant a set of
PT inputs and associated labels paifgI',label(I')),..., (I",label(I")),. .., (IFT, label(IT))}, is
provided. Then, the training algorithm of this Fuzzy ARTMAP igat is engaged to learn the correct
mapping from an input pattern to an associated label. Thepeance phase of any of the aforementioned
Fuzzy ARTMAP variants works as follows: Given a setR$input patterns, such d8,12,..., 175, we
want to find the Fuzzy ARTMAP output (label) produced when eait of the test patterns is presented
at its F* layer. In order to achieve the this goal we present the teéstoste trained Fuzzy ARTMAP
architecture and we observe the network’s output.

The training phase of theff-line, match-tracking Fuzzy ARTMAP succinctly described in Taghi's
et al., paper (Taghi et al., 2003). We repeat it here to gieerdader a good, well-explained overview of

the operations involved in its training phase.

1) Find the nearest category in the category representai@r bf the Fuzzy ARTMAP architecture
that "resonates” with the input pattern.
2) If the labels of the chosen category and the input patteatcim update the chosen category to be

closer to the input pattern.
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3) Otherwise, we reset the winner, temporarily increase résnance threshold (calledgilance
parametej), and try the next winner. This process is calledtchtracking

4) If the winner is uncommitted, create a new category (astig representative of the category to
be equal to the input pattern, and designate the label of ¢heaategory to be equal to the label

of the input pattern).

The nearest category to an input pattErpresented to the Fuzzy ARTMAP architecture is determined
by finding the category that maximizes the function:
" A wil

(I, wi,a) =

(1)

o+ |wi

This equation introduces two operands, one of them isfubey min operandand designated by the
symbol A. The fuzzy min operation of two vectoss, andy, designated ax Ay, is a vector whose
components are equal to the minimum of componentx @nd y. The other operand introduced is
designated by the symbol |. In particular,|x| is the size of a vectox and is defined to be the sum of

its components.

The above function is called tH®ttom-up inpufor choice function) pertaining to th&y node; with
category representation (template) equal to the vestprdue to the presentation of input patteih
This function obviously depends on a Fuzzy ARTMAP network patamy, calledchoice parameter
that assumes values in the interél co). In most simulations the useful range afis the interval
(0,10]. Larger values ofy create more category nodes in the category representatyen of the Fuzzy

ARTMAP architecture.
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The resonance of a category is determined by examining if uhetibn, calledvigilance ratiq and

defined below

. " A wi|
T
satisfies the following condition:
p(I", W) > pa (3)

If the above equation is satisfied we say that resonance ig\athi The parameter, is called the
vigilance parameteand assumes values in the inter{@l1]. As the vigilance parameter increases, more
category nodes are created in the category representayien(ty’) of the Fuzzy ARTMAP architecture. If
the label of the input patterd’() is the same as the label of the resonating category, theocatiegory’s
template %) is updated to incorporate the features of this new inputepat(”). The update of a

category's templatew() is performed as depicted below:

W;-Z = W;-l AT (4)

If the category; is chosen as the winner and it resonates, but the label ot#tegoryw? is different
than the label of the input patteifi, then this category is reset and the vigilance paramegtes increased

to the level (this is enforced in the match-tracking Fuzzy ARIR:
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p(I",wj) + € (5)

In the above equationa takes very small values. Increasing the value of the vig#daharely above
the level of vigilance ratio of the category that is resetrgugees that after this input/label-of-input
pair is learned, immediate presentation of this input to Fagzy ARTMAP architecture will result in
correct recognition of its label. It is difficult to correctbet the value o€ so that you can guarantee that
after category resets no legitimate categories are misgdelibzy ARTMAP. Nevertheless, in practice,
typical values of the parameterare taken from the interval.00001, 0.001]. After the reset of category
j (if that's the case), other categories are searched thainmimexthe bottom-up input and they satisfy
the vigilance (resonate). This process continues until egeay is found that maximizes the bottom-up
input, satisfies the vigilance and has the same label as thi paptern presented to the Fuzzy ARTMAP
architecture. Once this happens, update of the categ@mwiplate, as indicated by equation (4), ensues.
If through this search process an uncommitted category f@ormamitted category is a category that has
not encoded any input pattern before) is chosen, it will ghssvigilance, its label will be set to be
equal to the label of the presented input pattern, and thatepaf the category’s template will create a

template that is equal to the presented input pattern.

All input patternsI presented at the input layef{) of the Fuzzy ARTMAP architecture has the

following form:

I:(a>ac):(alaa2a--'7aMa,7atljaa§a-"va?\/[a) (6)
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where,

ai =1—a; Vie {1,2,...,M,} (7)
The assumption here is that the input veciois such that each one of its components lies in the
interval [0, 1]. Any input pattern can be, through approgriaormalization, represented by the input
vectora, where M, stands for the dimensionality of this input pattern. The &boperation that creatds
from a is calledcomplementary codingnd it is required for the successful operation of Fuzzy ARTMAP
The number of nodes (templates) created in kifelayer of the Fuzzy ARTMAP architecture (category
representation layer) is designated Ny, and it is not a parameter that needs to be defined by the user
before training commence®y,’s value is dictated by the needs of the problem at hand anddttang
of the choice parameten) and baseline vigilance parameigy. The baseline vigilance parametes a
parameter set by the user as a value in the intgtval]. The vigilance parameter,, mentioned earlier
(see equation (3)), is related with the baseline vigilapgcsince at the beginning of training with a new
(input pattern)/label pair, the vigilance parameter isexpial to the baseline vigilance parameter; during
training with this (input pattern)/label pair the vigilamgarameter could be raised above the baseline
vigilance parameter (see equation (5)), only to be reset bathe baseline vigilance parameter value
once a new (input pattern)/label pair appears. This raisinth® vigilance parameter is accomplished
according to equation (5). Prior to initiating the traininhase of any Fuzzy ARTMAP variant the user
has to set the values for the choice parametérhosen as a value in the interyal 10]), and the baseline

vigilance parameter valug, (chosen as a value in the interjal 1]).
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Despite the fact that we focused above on describing thaingiphase of the off-line, match
tracking Fuzzy ARTMAP, the equations presented are alsongertifor the on-line, match tracking
Fuzzy ARTMAP, or the on-line no-match tracking Fuzzy ARTMAP émréd to for simplicity as Fuzzy
ARTMAP); the only difference, emphasized many times by nowh& in the no-match tracking case we
would never have to employ equation (5) that increases thie d the vigilance when the match-tracking
mechanism is engaged.

In the performance phase of any Fuzzy ARTMAP variant, a testiting presented to the Fuzzy
ARTMAP architecture and the category node in #g layer that has the maximum bottom-up input is
chosen. The label of the choséi§ category is the label that the Fuzzy ARTMAP architecture mtsdi
for this test input. By knowing the correct labels of testutgpbelonging to a test set allows us, in this

manner, to calculate the classification error of the Fuzzy ARPMAriant for this test set.

Ill. THE Fuzzy ARTMAP VARIANTS’ PSEUDGCODE

The off-line, match-tracking, Fuzzy ARTMAP algorithm is shownfigure 2. The on-line, match-
tracking Fuzzy ARTMAP algorithm is shown in figure 3. Notice thiatthe off-line, match tracking
Fuzzy ARTMAP training, the learning process (lines 4 throu@h & the algorithm are performed until
no more network weight changes are made or until the numbigerations reached a maximum number
(designated agpoch3. In the on-line, match-tracking Fuzzy ARTMAP training, theaining process
(lines 3-24) passes through the data once.

In this paper we are primarily concerned with the on-linenireg phase of Fuzzy ARTMAP. Notice

though that by parallelizing the "on-line training” Fuzzy ARAP, in essence we are also parallelizing
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the "off-line training” Fuzzy ARTMAP. This is because the "dfifie training” Fuzzy ARTMAP, is an
"on-line training” Fuzzy ARTMAP, where after an on-line traig cycle is completed, another cycle
starts with the same set of (input patterns)/label paimsdhon-line training Fuzzy ARTMAP cycles are
repeated for as long as it is necessary for the Fuzzy ARTMAP arktwo learn the required mapping.
In figures 2, 3 the match-tracking mechanism is employed, evifathe label of the input patterfi” is
different than the label of the template of the nodg. (i.e., templatew] ), the the vigilance level is
increased a search for a new template ensues.

In this paper we are only concerned with Fuzzy ARTMAP wherening is on-line and the match-
tracking mechanism is disengaged, and we refer to this FURWMAP version, for simplicity, as Fuzzy
ARTMAP. The training phase of Fuzzy ARTMAP is shown in figure 5.

The performance phase of the algorithm is much simpler, antbismon to all the above Fuzzy
ARTMAP variants. In the performance phase we return the labsbciated with the template that wins
the competition for the input pattern. It is common in thisapl to set the parametgy equal to 0
to assure that the network will produce a predicted labels§ification) for every input pattern (albeit

sometimes erroneous). The Fuzzy ARTMAP performance phasevgnsim figure 4.

IV. COMPLEXITY ANALYSIS OF THE ON-LINE, MATCH TRACKING Fuzzy ARTMAP

We concentrate on analyzing the time complexity of the aer-lFuzzy ARTMAP variants because
this is the focus of the paper. Our approach requires makifgwaassumptions about the size of the
networks created and the match-tracking cycles. This codtplanalysis will motivate the pipelined

implementation of Fuzzy ARTMAP.
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We can see from the pseudocode (2, 3) that the on-line, niecking Fuzzy ARTMAP algorithm
tests every input patterhin the training set against each templat¢ at least once. Let us call the
average number of times that the inmepeat loop (lines 5 to 19 of the online training phase algorithm
of figure 3) is executed for each input pattern, and christémeitmatchtracking factarThen the number

of times that a given input pattedpasses through the code will be:

Time(I) = O(T x template$ (8)

It is then easy to see that the time complexity of the algorith:

Time(on-line, match-tracking, Fuzzy ARTMAR O(T" x PT x template$ (9

In both of the above equatiomsmplatesorresponds to the average number of templates creatawyduri

the on-line, match-tracking Fuzzy ARTMAP training phase.

We have seen that with some databases the on-line, matdirga-uzzy ARTMAP algorithm achieves
a certaincompression ratidhat is proportional to number of input patterR§” (Case ). We have also
seen that with other databases the algorithm creates terapldiich number saturates to a const&ldge
2). In either case, we denote the compression ratio (Caser Ihyeoconstant (Case 2), by. Then the

complexity of the algorithm ends up being equal to:

Time(on-line, match-tracking, Fuzzy ARTMAR O(I" x x x PT?) (10)
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for Case 1, and

Time(Fuzzy ARTMAP= O(T x k x PT) (11)

for Case 2.

Obviously for Case 1 implementing a parallel pipeline inmpémtation of the algorithm makes sense.
For Case 2 there are occasions where although the time cxitgptd the algorithm is linear in the
number of patterns, the constastis large enough so that a parallel, pipeline implementatibthe

algorithm is still justified.

V. THE BEOWULF PARALLEL PLATFORM

The Beowulf cluster of workstations is a network of computehere processes exchange information
through the network’s communications hardware. In our cassonsisted of 96AMD nodes, each with
dual AthlonMP 1500+ processors and 512MB of RAM. The nodesammected through Bast Ethernet
network.

In general, the Beowulf cluster configuration is a parallakfioirm that has a high latency. This implies
that to achieve optimum performance communication pagketst be of large size and of small number.
Parallelization techniques in this platform are radicdliifferent from shared memory or vector machines.
Also communication between nodes in the cluster is done logamt from all the parties involved; that
is all communicating entities must agree to send/receif@nmation in compatible formats. This has an
impact on the design of the algorithm because receivingiemtmust knowbefore-handthat they are

going to receive information in order to be prepared to ac@efhere is no central coordinating entity
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and protocols must be based on listening/polling schemdsnaust dispense of any interrupt driven

communication.

We have two choices for parallelization design. We can regfrem each node in the network to
process a different input pattern. Or we can request thdt eade processes the same input patterns
at the same time. If we want the parallel implementation tokwequivalently to the sequential one
the first design will lead to a pipelined approach where eadtenmmputes a stage in the pipeline.
The second approach will lead to a master/slave topology evakmodes communicate to a gathering
master node. We chose to follow the pipelined approach ecawthis scenario we are only doing point
to point communication, which is a constant time operatioraiFast Ethernet switched network. The
master/slave approach tends to degrade communicatioarpenmice as the size of the gather operation
increases. Our design is based on fixed packet size commionidatough the network. No network
bandwidth would be gained by using variable sized packeisespackets are more efficient when they
are large. Furthermore, to find out the size of a packet a rexpmiocess would have to incur an extra

(and expensive) communication.

To find an appropriate packet size for our experiments, we ransgstem on 512,000 patterns of
both the CoverType database and the Gaussian 5% databaket parformance for the Gaussian 15%
database was not evaluated, because classification overdgpnadt affect packet transmission time, and
the 15% Gaussian database is on all other respects idetttittaé Gaussian 5% database. Figures 6 and
7 illustrate the results. For the CoverType database, adgepaize 64 and above performed acceptably.
For the Gaussian database, any packet size of 128 and abeveuifigient. We translate this into bytes

to give a guideline for the packet size of future databass.rtia find the bytes transfered, we multiply
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the number of templates in a packet, times the size of the I&ap vector (plus one for the label),
times the number of bytes in each value of the vector ( 4 byiebdth 32-bit integers and floating point
numbers).

For the CoverType database:

64 x 55 x 4 = (14080)Bytes (12)

For the Gaussian 5% database:

128 x 17 x 4 = (8704)Bytes (13)

These numbers will likely be dependent on characteristidh@Beowulf cluster, such as CPU power,
network bandwidth and network latency. However, a good afl¢humb for similar clusters will be a

packet size greater than or equal to 10Kbytes.

VI. BEOWULF Fuzzy ARTMAP IMPLEMENTATION

The parallel implementation of Fuzzy ARTMAP (on-line, no-nfatcacking Fuzzy ARTMAP algo-
rithm) is discussed here. We call this implementation Rer&uzzy ARTMAP (FrAm). A depiction of
the pipeline is shown in figure 8. The elimination of matchtiagkmakes the learning of a pattern a one—
pass over the pipeline procedure and different patternsbeaprocessed on the different pipeline steps

to achieve optimum parallelization. For the understanadihgrAmM we need the following definitions:

« n: number of processors in the pipeline.
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k: index of the current processor in the pipelides {0,1,...,n — 1}.

p. packet size, number of patterns sent downstrezm:= maximum number of templates sent
upstream.

I': input patterni of current packet in the pipeliné.c {1,2,...,p}.

w': current best candidate template for input pattErn

T*: current maximum activation for input patteff

myTemplatesvariable local to the current processor, set of templatbes belong to the current
processor.

nodes variable local to the current processor that holds thd taienber of templates the processor
is aware of (its own plus the templates of the other procs}sor

myShare maximum amount of templates that the current processadiowed to have.

w;;.fl: template: coming from the previous processkr— 1 upstream in the pipeline.

w};H: template: coming from the next processér+ 1 downstream in the pipeline.

w': template; going to the next processér+ 1 downstream in the pipeline.

Wio(kq): template: going to previous processér— 1 upstream in the pipeline.

I.class: class label associated with a given input pattern.

w.class: class label associated with a given template.

indeXw): sequential index assigned to a template.

newNodeg, : integer that holds the number of new created nodes thaepsod:+ 1 communicates
upstream in the pipeline.

newNodeg integer that holds the number of new created nodes thatepsock communicates
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upstream in the pipeline.

The exchange of packets between processors is pictoriadistrinted in figure 9. In this figure, the
focus is on processdr and the exchange of packets between processund its neighboring upstream
and downstream processors (i.e., processorsl andk + 1 respectively).

The FramM implementation is in the procedure&AMv shown in Figure 11 and the initialization procedure
INIT is shown in figure 10. The pseudocode @faR is the main heart of the parallel algorithm. In the
theorems that follow, there is a one to one correspondenteeba FAM instances and computing
processors, and we will therefore loosely talk aboah¥? instances and processors as hames referring
to the same entity (the meaning will be clear from the context

Each element of the pipeline will executeAM for as long as there are input patterns to be processed.
The input parametek tells the routine PAM which stage of the pipeline it is, where the valuearies
from 0 ton — 1. After initializing most of the values as empty (figure 10) weer the loop of lines 2
through 35 (Figure 11). This loop continues execution ungf¢hare no more input patterns to process.
The first activity of each processor is to create a packet ofssxtemplates to send upstream (lines 4
to 6 of PFam). Lines 7 to 10 correspond to the information exchange betveeatiguous nodes in the
pipeline. The functions &ND-NEXT and RECV-NEXT on lines 7 and 8, respectively, don’t do anything
if the processor is the last in the pipeline £ n — 1). The same is true for the functionESD-PREV
when the processor is the first in the pipelike= 0). On the other hand, the functioreRv-PREV reads
input patterns from the input stream it’s the first in the pipel These fresh patterns will be paired with
an uncommitted nodél, 1,--- ;1) with index oo as their best representative so far. On all other cases

these functions do the obvious information exchange betweatiguous processors in the pipeline. We
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assume that all communication happens at the same time a&yddhronized. We can achieve this in an
MPI environment by doing non—blocking sends and using/Bh- Vi t al | to synchronize the receive

of information.

The function FND-WINNER (see figure 12) is also important. This function searches tirai set
of templatesS to find if there exists a templates’ that is a better choice (using FAM criteria) for
representind than the current best representative If it finds one it swaps it withw, leavingw in S
and extractingw’ from it. By sending the input patterns downstream in the lpipecoupled with their
current best representative template we guarantee tha¢naates are not duplicated amongst different

processors and that we do not have multiple—instance densisissues.

Also when exchanging templates between processors in piedine we have to be careful that patterns
that are sent downstream do not miss the comparison withléeespthat are being sent upstream. This
is the purpose of lines 12 to 15 (communication with the pssoe downstream in the pipeline) and
lines 18 to 21 of PAM (see Figure 11). On line 12 we s8tto represent the set of templates that have
been sent upstream to no#leby nodek + 1. We loop through each pattern, template gdirw) (lines
13 to 15) to see if one of the templates, sent upstream, haghermactivation (bottom-up input) than
the ones that were sent downstream; if this is true then tmpltde will be extracted frond. The net
result of this is thatS ends up containing the templates that lost the competiéiod,therefore the ones
that processok should keep (line 15). The converse computation is perfororedines 18 to 21. On
line 18 we setS to represent the set of templates that were sent upstreahe tprévious nodé — 1
in the pipeline. On lines 19 to 20 we compare the pattern, Imraﬂppairs(lfgfl,w};fl) thatk — 1 sent

downstream in the pipeline with the templatesSirthat processok sent upstream. On line 21 ofFRm
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we set our current pattern, template pairs to the winnerkisfdompetition. The sef is discarded since
it contains the losing templates and therefore the tengpltitat proces — 1 keeps. Another way of
looking at this is that what happens in lines 12 to 15 mmi(k) is duplicated exactly in lines 18 to 21
in PFaM(k + 1), this ensures that both processors compare and seledtyettac same templates to go
upstream or downstream in the pipeline from the packetshadtjust been exchanged.

Finally, on line 30 of figure 11 we add both the input patt&rand the templatav’ to the set of
templates. This does the obviousyTemplatesipdate except when the templaté happens to be the
uncommitted node in which the addition is ignored.

The main loop of RPAM starts with line 2 and ends with line 35. The main loop is exedubr as
long as there are input patterns to process. The first proctsstidnecomes aware that there are no more
input patterns to process is proces8dfirst processor in the pipeline). It communicates this infation
to the other processors by sendingve’, I’, 7%) = (none, none, 0) to the next processor (see line 36 of
figure 11). Lines 37 and 38 ofHFRM make sure that the templates that are sent upstream in théngip

are not lost after the pool of training input patterns tha processed is exhausted.

VIlI. PROPERTIES OF THEPFAM ALGORITHM

We present and prove a series of fourteen (14) theorems. Ttheseems are distinguished in two
groups. The group of theorems associated with the correctrfethe FFAM, and the group of theorems
associated with the performance of theam. For ease of reference Table I lists the theorems and their
names dealing with the correctness of the algorithm, whabIld 1l lists the theorems dealing with the

performance of the algorithm.
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Theorem| Name
7.1 Non—duplication
7.5 Bundle size sufficiency
7.11 Overflow impossibility
7.13 Partial evaluation correctness

TABLE |
PFaAM CORRECTNESSHEOREMS

The major purpose of these theorems is to prove tiratnP(a) is equivalent to the sequential version
of FAM, (b) it does not suffer from any inconsistencies, aogi{ exhibits good performance. Examples
of inconsistencies would be: a template residing in more trae place in the pipeline (not possible as
theorem 8.1 (non-duplication) proves), or that the first pssor in the pipeline sends templates upstream
(not possible as theorem 8.11 (overflow impossibility) pgjvét is worth mentioning that theorems 8.2
through 8.9 facilitate the demonstration of the overflow isgibility theorem. The equivalence of the
parallel and sequential version of the algorithm is demmaestl through the partial evaluation correctness
theorem (theorem 8.13). Good performance is dependenteigitribution of templates amongst the
processors in the pipeline (workload balance). An uppentaan the difference between the number of
templates that two processors in the pipeline could own kas lestablished through the pipeline length
invariance theorem (theorem 8.12) and it is equab #o1, wherep is the packet size. This upper bound
is independent of the pipeline depth For instance, if 100,000 templates are present in theipgeind

p = 64, the templates that any two processors possess cannatliffeore than 65 (wherg+ 1 = 65).

Definition 7.1: A templatew? is in transit if the template has been received by the current processor

i from the processor upstreain- 1 in the pipeline, and the current processor has not made ttisiaie
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Theorem| Name
7.2 Template awareness delay
7.3 Weak upstream migration precondition
7.4 Upstream packet size sufficiency
7.6 Strong upstream migration precondition
7.7 Strong upstream migration postcondition
7.8 Template ownership delay
7.9 Network size lower bound
7.10 Template ownership bound
7.12 Pipeline depth invariance
7.14 Workload balance variance bound

TABLE I
PFrAM PERFORMANCETHEOREMS

yet of whether to send this template upstream, downstreakeep it. Templates in transit are stored in
the w''s array of processoi.

Definition 7.2: A templatew? is ownedby a processorin the pipeline if it is stored in thenyTemplates
array of processoi.

Theorem 7.1:Non—duplication

A templatew will either be owned by a single processor, or it will be innigsd on a single processor
(i.e. only one copy of the template exists in the system).

Proof: First let us note that templates start their existence ingesarn — 1 on line 30 of FFAM.

Here they are immediately added to the templates of progesd, so they start belonging to a single
processor.

Templates only change location when

1) They are compared with a given input pattédfhand selected to represent it, in which case they

are deleted from the template list owned by the processoradddd to the templates in transit.
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2) They are in transit and lose competition to another terapiatwhich case they are removed from
the templates in transit and added to the templates ownetebprocessor.

3) They are sent upstream or sent downstream as in-trangilatas.

The only possible situation where the templates may be in taceg at once is in situation 3 when they
are exchanged between processors in the pipeline. This ignilgescenario where two processors hold
a copy of the same template.

So the only possible problem will arise when two consecutik@c@ssors exchange templates. Now
a template that is sent downstream on line 7 eAR® by a process: — 1 is received by procesk on
line 10 of F~aM. Every templatew that is sent downstream is tagged along with an input paftern
Processok will keep the template in transit if it is the best candidate ihput patternl. To verify this,
processolk will compare templatev against the templates that he himself sent upstream. If pléten
w’ that was sent upstream is a better candidate thdar the input patterd (lines 19-21) then process
k will discard templatew and keep templates’.

Concurrently, processdr— 1 will check the pair of templatev and input patterd it sent to processor
k and compare them against the templates that it receives ffroocessork. If a templatew’ that was
received from processdr is a better candidate tham for input patternI (lines 12—-15) then processor
k — 1 will keep templatew and discard template’.

As we can see, these concurrent operations guarantee teatpdate that was sent downstream or
upstream will not reside in two places at the same time. Furtbee, it is guaranteed that this template
will be compared against all the input patterns that flow thjfothe pipeline. ]

Theorem 7.2:Template awareness delay
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The total number of templates that a procegser 0, 1,...,n — 1 in the pipeline is aware of is equal

to the number of templates that existed in the systemk — 1 iterations ago.

Proof: Consider processor — 1, the last in the pipeline. This processor knows immediatehgnv
a template is created, and as a result it knows how many téespdxistn —1—k=n—1—(n—1) =0
iterations ago.

The number of templates created per iteration is sent upstteahe previous processor in the variable
newNodesThis variable is received by processor 2 one iteration after the templates have been created,
by processon — 3 two iterations after the templates have been created, agéneral, by processar
n — 1 — i iterations after the templates have been created. This ntkaha processat always receives
on the current iteration the value of the variahlewvNodeghat was created — k£ — 1 iterations ago, and

this implies that processdr is aware of the amount of templates that existed k£ — 1 iterations ago.m
Theorem 7.3:Weak upstream migration precondition

A processork in the pipeline sends templates upstream only if and onhnithe current iteration:

|myTemplatds> myShare (14)
Proof: It will suffice to say that PAm creates the packet of templates to be sent upstream in lines
4 through 6. Looking at line 4 of theHAm pseudocode we can see that templates are packed to be sent

upstream only when condition 14 is met. ]
Theorem 7.4:Upstream packet size sufficiency

No processor in the pipeline, except the first one, can hawanyapoint in time, an excess of templates

greater thar2p.
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Proof: By an excess of templates we mean the number of templatestewaif imposed fair share
indicated in the variablenyShare What we need to prove that equation 15 never holds, or thiat it
impossible for a processor in the pipeline to reach a stinatvhere the number of templates it has is

greater that its fare share plus the amount it can send apsire

|myTemplatds> mySharet 2p (15)

Let us notice that at the beginning of execution there are mplaes in transit and that all the processes

have their fair share of templates. In other words they cgrmgth the condition 16

|myTemplatds< myShare (16)

Now lets consider the processar— 1, the last in the pipeline. If this processor complies witk th
equation 16 and receivestemplates from processar— 2, it would have a total of at mogt+ myShare
templates. In the worst case scenario all of theemplates that have been sent are not of the correct
category and will force the creation of anothetemplates giving a maximum total @p + myShare
of templates, wher@p are in transit. At the beginning of the next iteration, pissmn — 1 will pack
2p templates to be sent upstream to the previous process inipghkng (assuming its variableyShare
does not increase, which would ease the pressure on thespmend will receiver templates from
the previous processor upstream. Notice thatpthlemplates extra that it ended up with are not part of
it's fair share because they are templates in transit. Gpresdly, processors: — 1 number of templates

|myTemplateésdid not exceednyShare
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Now consider any other processor that is not the last or theiffithe pipeline and assume (as it does
when it starts) that it complies with equation 16. This prgoescan receive in the worst case scenario
a total of p templates from it's upstream neighbor agg templates from it's downstream neighboring
processor. Now thg templates that arrived from upstream will continue theurjeey downstream (maybe
not the same ones bat leastthat quantity), so they will not increase the total numbetewhplates that
the processor owns. The excess of #etemplates coming from downstream ovaySharewill, on a
worst case scenario, be packed and sent upstream to theysewiocessor (some of them could be kept
if myShareincreases) u

Theorem 7.5:Bundle size sufficiency

The excess templates for a proceskg# 0, at any given time, always fits in the packet of sizeto
be sent upstream.

Proof. See theorem 7.4. ]

Theorem 7.6:Strong upstream migration precondition

If a processor: € {0,1,...,n — 1} in the pipeline sends templates upstream, then it is true tha

« 1 iteration ago processdr+ 1 complied with condition 14 and sent templates upstream.

« 2 iterations ago processér+ 2 complied with condition 14 and sent templates upstream.

« n—1— k iterations ago processar— 1 complied with condition 14 and sent templates upstream.
Proof: If processork sends templates upstream then by theorem 7.3 it compliéisoaitdition 14.

But by the reasoning in theorem 7.4 all excess templates fitarpacket size so they are sent upstream
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on the next iteration that they are received. This means tekkcess templates were received from

processork + 1 one iteration ago. Similarly, if processar+ 1 sent templates upstream one iteration

ago then by theorem 7.3 procesdo# 1 must have complied with condition 14 two iterations ago, and

this can only happen if 2 iterations ago processar 2 sent templates upstream. By induction oand

repeating this argument we can state that, in general, gsocg + i complied with condition 14 and

sent templates upstreairiterations ago. ]
Theorem 7.7:Strong upstream migration postcondition

If a processor € {0,1,...,n — 1} in the pipeline sends templates upstream, then it is true tha

1) .« atthis iteration processdr keepsmySharetemplates.
« 1 iteration ago processdr+ 1 kept mySharetemplates.

o 2 iterations ago processér+ 2 kept mySharegemplates.

« n— 1 — k iterations ago processaer— 1 kept mySharetemplates.
2) All of the values ofmySharewere the same for all the processors.
3) The templates that each processor keeps are distinct.

Proof: First let us notice that by theorem 7.2

« on the current iteration processhris aware of the templates that existed in the systemk — 1
iterations ago.
« 1 iteration ago processdr+ 1 was aware of the templates that existed in the systemk — 1

iterations ago.
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« 2 iterations ago processér+ 2 was aware of the templates that existed in the systemki — 1

iterations ago.

« n — k — 1 iterations ago processar — 1 was aware of the templates that existed in the system

n — k — 1 iterations ago.

This means that all the processors were aware of the same ambtemplates and therefore their
values formySharewere all the same. It is evident by looking at lines 12 to 14 &AW that the
processor keepsiySharetemplates when it sends upstream. We also know by theorerth&t@hey all
sent templates upstream on the corresponding iteratioms. fdr any pair of processors+ i andk + j
wherei < j, the templates that processbr- i kept: iterations ago cannot be the ones that processor
k + j keptj iterations ago. This is true because it takes at léast i) iterations to transmit templates
from j to ¢ and processot + j kept themj iterations ago, and consequently, they cannot reach poces
k+i by j— (j —i) =1 iterations ago. [ |

Theorem 7.8:Template ownership delay

The templates that a procesgohas, at the current iteration, were created at leastk — 1 iterations
ago
Proof: Since templates are created in processl on line 30 of the code of ”AM. These templates
maybe sent upstream one step of the pipeline per iteratioa.didtance fromt to processom — 1 is
equal ton — k — 1, so the templates that has must have been created at leastk — 1 iterations ago.
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Theorem 7.9:Network size lower bound
If a processork sends templates upstream on a given iteration, then the etuailiemplatesV that

existed in the system — 1 — k iterations ago complies with the condition:

N > (n — k)myShare a7
Proof: Notice that if processok sends templates upstream then it complies with condition 14
and by Theorem 8.7 all processors fragnon-wards keptyShareemplates and these templates are all
distinct. Also by theorem 7.8 all these templates whereteteat least» — k — 1 iterations ago. So the

number of templates that existed in the system k — 1 iterations ago is at least:

N > |myTemplatégst (n — 1 — k)myShare

> mySharet (n — 1 — k)myShare= (n — k)myShare (18)

Theorem 7.10:Template ownership bound
A processork in the pipeline cannot have more than myShare templates,taahmot own less than
max (0, myShare- p(2(n — 1 — k) — 1)) templates.

Proof: The fact that a processaér can not exceednyShareof templates has already been shown
by theorem 7.4. Furthermore, the fact that it cannot own leasQ templates is obvious. What needs to
be proven then is that ilnyShare> p(2(n — k — 1) — 1) Then the number of templates will never be
less tharmyShare- p(2(n — k — 1) — 1) templates.

To prove this let us assume a steady state in the pipelineewlaatek hasmyShargemplates, and the
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worst case possible scenario. In this scenario prokessuld receive from process — 1 packets ofp
pattern/templatél’, w') pairs where thev’ could be the uncommitted node, and would send downstream
packets ofp pattern/template pairs where ti€ no longer is the uncommitted node. This means that on

each iteration procedgs would be losingp patterns to the neighboring processors in the pipeline.

Patterns lost to the neighboring processors in the pipslifigravel, in a worst case scenario, all the
way downstream to the last processor in the pipeline andvadtes find their way back to processbr
If this is the situation then processbkmwill have to waitn — 1 — k& units of time, for the patterns sent, to
reach processat — 1 and then wait anothet — 1 — k iterations for the patterns to come back upstream.
This is a total of2(n — 1 — k) iterations before a packet pftemplates sent downstream by procedsor
is seen again by processbr If during these2(n — 1 — k) — 1 iterations processadr has the bad luck of
sendingp templates of it's own templates downstream at each iteratieen during that time processbr
would have losp(2(n—1—k) — 1) templates and would possess a totahyfShare- p(2(n—1—k) — 1)

templates. ]
Theorem 7.11:.0verflow impossibility

The first processor in the pipeline will always be able to absbebtemplates that have been sent to

it from the next processor downstream.

Proof: Let us assume the contradiction that it cannot absorb thel&tespit has received from
the next processor downstream. This means that processanglies with condition 14 and that is has
to send templates back. By theorem 7.9 the number of tensplatéhat existed in the system — 1

iterations ago complies with equation 17. But by line 35 6RRR we have:
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n

N > n x myShare=n {nodes} >n <nodes
n

) = nodes (29)
This means that the numbéf of templates that existed in the system- 1 iterations ago is greater
thannodes the number of templates that processor 0 is aware of, asdgla contradiction of theorem

7.2. [ |
Theorem 7.12:Pipeline depth invariance

The difference in the number aghySharethat two arbitrary processors in the pipeline have cannot
exceedp + 1 wherep is the packet size. Note that the difference in number of tatep is independent

of the pipeline size n.

Proof: First, by theorem 7.2 we know that a proceskds aware of the number of templates that
existedn — 1 —k iterations ago. Also, the largest difference in the numiieemplates that two processors
are aware of is found in the difference between proce8sand processor. — 1. Now, let us assume
that processor 0 is aware obdeg templates. Since this amount of templates existed 1 iterations
ago and we can create a maximumpofemplates per iteration then tlmeaximumnumber of templates
that processorn — 1 can be aware of isiodeg + (n — 1)p. This means that the value afiySharefor

processor 0 is

mySharg — [nodeﬂ - nodesg (20)
n

- n

and the value ofnySharefor processom — 1 is at the most

+1 (21)

nodesg + (n — 1)p-‘ < nodesy + (n — 1)p
- <

mySharg_, = {

n
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We also know that the number of templates that each procéssens is less than or equal toyShare.
Hence, the maximum amount of difference in templates betvieprocessors in the pipeline is less than

or equal to

nodeso + (n — 1)p]  [nodesg <
n n o

mySharg_, — mySharg = [

d _1
nodeso + (n = Lp P i1<ptt (22)

+1_node§: (n—1)
n n n

Theorem 7.13:Partial evaluation correctness

If we make the packet sizg of PFAM equal to the size of the training set and set the number of
processors ta = 1, then the parallel algorithm presented here is equivaleiuzzy ARTMAP (FAM).

Proof: Let us start by noting that if the number of the processor is- 1 then the functions

ReECVv-NEXT and SND-PREV do not perform any computation, and can be omitted. This espihat
the variables exchanged in these processors also do noahglothformation and can be eliminated too.
These variables are the set of templa{e\%H} coming from the next process in the pipeline and the
set of variables{wio(kfl)} going to the processor upstream in the pipeline. By elinmigathese lines
of code and doing partial evaluation and eliminating unaeagy variables we end up with the code of
figure 13

Notice that the only differences with Fuzzy ARTMAP are that

1) the set of patterns doesn’t come as a parameter.
2) We are using the functionii®D-WINNER to find the winner node and

3) Templates are being extracted and reinserted in the &tenpét.
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To guarantee that the first templates created receive grimrér newer templates we number the templates
when created with a sequential index and use this index termiaie who wins competition in case of

a tie between templates. ]
Theorem 7.14:Workload balance variance bound

In a pipeline with an arbitrary number of processors and amdtngam packet sizg, the standard

deviation of the number of templates that each processos @annot exceed

p
Wi (23)
Proof: Given that in the PAM algorithm there are many templates in transit we cannot kexaetly
how many templates each processor possesses. We can thppghximate a worst case workload balance
scenario if we assume, as will usually be the case, that thbauof comparisons that a given processor
performs on each iteration will be proportional to the numbktemplates that it is allowed to possess

or O(mySharg. In a worst case scenario, on every iteration the networkbeilcreatingp new templates

so process will have a value of

nodeg = nodeg + kp

The expected value ahySharefor this worst case scenario will be

n—1 nodes—+kp
AvgmySharg = =k=0__n___ _

n

nodes + 2 Y7 k B
n
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and the variance will be

122 /nodes + kp nodesy p 2
- > - ——(n-1) =

n n 2n
k=0

After some algebraic calculations we can show that the naeidas equal to

and finally this gives us a standard deviation of

n?—1 P p
2 = —1-n2<_ 24
2V/3 " 2V/3 24)

P02

If, for example, we use a packet size of 64 patterns, then trstypossible standard deviation in the

value of mySharewould not exceed

64 32 = 18.4752

23 V3

regardlessof the pipeline sizen.



38
VIll. EXPERIMENTS

Experiments were conducted on three databases: one reld-database and two artificially—generated
databases (Gaussian distributed data). Training set efz&800 x 2¢,i € {5,6,...,9}, that is 32,000
to 512,000 patterns were used for the training eAl® an FAM. The test set size was fixed at 20,000
patterns. The number of processors in the pipeline varied fre= 1 to p = 32. Pipeline sizes were also
increased in powers of 2. The packet sizes used were 64 andot2Bef CoverType and the Gaussian
databases, respectively.

To avoid additional computational complexities in the tixperiments (beyond the one that the size
of the training set brings along) the values of the ART neknyoarameterss,, and o were fixed (i.e.,
the values chosen were ones that gave reasonable resutteefdatabase of focus). For each database
and for every combination dfp, PT) = (partition, training set size) values we conducted 12 iedelent
experiments (training and performance phases), correspgno different orders of pattern presentations
within the training set. As a reminder Fuzzy ARTMAP performadepends on the values of the network
parameterg,, anda, as well as the order of pattern presentation within theningi set.

All the tests where conducted on tii#CODE Beowulf cluster of workstations of the Institute for
Simulation and Training. This cluster consists of 96 nodegh wlual Athlon 1500+ processors and
512MB of RAM. The runs were done in such as way as to utilize aalfnany nodes gs Thus, there
were two MPI processes per node, one per processor.

The metrics used to measure the performance of the pipelipgeach were:

1) Classification performance ofFRM (Higher classification performance is better).

2) Size of the trained, RAM.
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3) Speedup of PaM compared to FAM.

To calculate the speedup, we simply measured the CPU timeafdr min.

VIIl.-A. Forest CoverType Database

The first database used for testing was the Forest CoverTypbats provided by Blackard (Blackard,
1999), and donated to the UCI Machine Learning Repositoryiv@isity of California, Irvine, 2003).
The database consists of a total of 581,012 patterns eachssoeiated with 1 of 7 different forest tree
cover types. The number of attributes of each pattern is 4thisinumber is misleading since attributes
11 to 14 are actually a binary tabulation of the attribid der ness- Ar ea, and attributes 15 to 54
(40 of them) are a binary tabulation of the attrib@&ei | - Type. The original database values are not
normalized to fit in the unit hypercube. Thus, we transformesl data to achieve this. There are no
omitted values in the data.

Patterns 1 through 512,000 were used for training. The tédosall trials were patterns 561,001 to
581,000. A visualization of the first 3 dimensions of the FofesverType database can be seen in figure
14. Different tones correspond to different classes. Asiit be seen from the figure the class boundaries
are quite complex. Classification performance of differeathine learning algorithms for this database

has been reported in the range of 75%.

VIIl.-B. Gaussian Databases

The Gaussian data was artificially generated using the potar & the Box—Muller transform with
the R250 random number generator by Kirkpatrick and Scholl (Kirkjght& Stoll, 1981). We generated

2-class, 16 dimensional data. All the dimensions are idelyi distributed with the same meanand
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varianceos? except one. The discriminating dimension has offset mearthagathe overlap between the
Gaussian curves is set at 5% for one database and at 15% foihire 532,000 patterns where generated
for each Gaussian database. 512,000 patterns were usedifiing; the remaining 20,000 patterns were

used for testing.

The speed-up performance of the CoverType, and the Gaus%taaverlap, and the Gaussian 15%
overlap are reported in Figures 15, 16 and 17, respectivelg. i@portant conclusion from these results
is that the speed-up achieved usingaR grows linearly with the number of processors used in the
pipeline. Also, we notice that the slope of increase variegedding on the number of patterns used
in the training phase of Fuzzy ARTMAP. Furthermore, for 32,0@0ning patterns and 64,000 training
patterns the speed-up curve exhibits a knee (saturationopfenon). This is likely due to the fact that
for the smaller training sets, the overhead for patternsfiearbecomes more pronounced. This saturation
is more obvious for the 32,000 training patterns than for @400 patterns. This phenomenon is not

observed for training patterns 128,000, 256,000 or 512,000

Tables IV and V exhibit the generalization performance drel gize of the architectures created by
FAM. For the Gaussian 5% overlap database the best geraiatiperformance observed is around 93%,
while the observed compression ratio (i.e., ratio of nundfgratterns used in training versus number of
templates) is equal to 5. F or the 15% Gaussian dataset thiesigens are 80% (maximum generalization
performance) and 3 (compression ratio). Note that the beserglization performance expected with
the 5% Gaussian and the 15% Gaussian databases are 5% andetpegtively. Also, note that the
compression achieved with FAM is relatively small, but thgeative of this paper was not to produce a

high compression for the training data but to demonstragectiirect, sensible pipelined implementation



41

of the main loop in FAM (that can be easily extended to otheiT ARchitectures).

IX. SUMMARY - CONCLUSIONS

We have produced a pipelined implementation of Fuzzy ARTMARSs Timplementation can be
extended to other ART neural network architectures thak rgrnilar competitive structure as Fuzzy
ARTMAP. It can also be extended to other neural networks thatdasignated as "competitive” neural
networks, such as PNN, RBFs, as well as other “competitivessifi@rs. We have introduced and proven a
number of theorems pertaining to our pipeline implemeotatlThe major purpose of these theorems was
to show that Pam (@) is equivalent with the sequential version of Fuzzy ARTMAR,it does not suffer
from inconsistencies, and (c) it exhibits good performategarticular, the good performance ofAM
was exhibited by observing the linear speed-up achieveleasumber of processors increased from 1 to
32. In the process, we produced other performance resldt®deto the generalization performance and
the size of the architectures that Fuzzy ARTMAP created. Wiedeekhat our objective of appropriately
implementing Fuzzy ARTMAP on a Beowulf cluster has been acdisimgd and a clear evidence of this
assertion are the speed-up results exhibited bavPand illustrated in Figures 15-17. Extension of our
implementation approach to other "competitive” classifisrpossible. Extension of our implementation
to the match-tracking Fuzzy ARTMAP algorithm is more involvadd it is the topic of our current

research.
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Fig. 1. Simplified Block Diagram of the Fuzzy ARTMAP Architecture. It e@ts of an input layerKy*), where the input
patterns are applied, a category representation lay£y Wwhere compressed representations of these input patterns amdform
and an output layerR?) where labels of the input patterns are produced. Ld¥eis a pre-processing layer that complementary
encodes the input patterasto form input patterng.



OFF-LINE, MATCH TRACKING, FuzzY ARTMAP TRAINING PHASE({T',I?,... . I¥T} 5, a, epochse)

1 W0<—(1,1,...,1)
————
2M,

2 templates— {wq}

3 iterations«— 0

4  repeat

5 modified« FALSE

6 for each I" in {I',12,...,I77}

7 do p < pq

8 repeat

9 Tmaz < 0
10 status«— none
11 for each w§ in templates
12 do if p(I",w§) > p and T(I", w}, ) > Trnaa
13 then
14 Tonaz — TT", w, a)
15 jmaa: A j
16
17 if wi —#wo
18 then if label(I") = label(w] )
19 then status«< Allocated
20 else status— Matchtracking
21 p—pIll,wi )+e
22 until status# Matchtracking
23 if status= Allocated
24 then if wi —#(wi AT
25 then W;lmaz — W?mm AT
26 modified«— TRUE
27 else templates— templatesJ {I"}
28 modified«— TRUE
29 iterations« iterations—+ 1

30 until (iterations= epoch$ or (modified= FALSE)
31 return templates

Fig. 2. Off-Line, Match-Tracking Fuzzy ARTMAP’s Training phaseé.involves finding the category that best matches the
input pattern, and passes the vigilance, and is mapped to the corrdctitglog patterns are presented repeatedly to the Fuzzy
ARTMAP architecture until a certain number of iterations, referred topagles, is reached. The match-tracking mechanism is
enforced.



ON-LINE, MATCH-TRACKING Fuzzy ARTMAP TRAINING PHASE({I',I2,... . I"T} 5, a,¢€)
1 wo—(1,1,...,1)
—_——
2M,
2 templates— {wo}
3 for each I"in {I'. 1% ... 17T}
4 dop <« pg
5 repeat
6 Tmaz < 0
7 status«< NoneFound
8 for each w{ in templates
9 do if L:)(Ir,wg) > p} and [T(I’",w
t

;‘la a) > Tmax

10 en

11 Traz < T(IT,W?, a)

12 Jmaz < J

13

14 if wi  # uncommitted

15 then if label(I") = label(w§ )
16 then status«— Allocated
17 else status«— Matchtracking
18 p—pI,wi )+e
19 until status# Matchtracking

20 if status= Allocated

21 then

22 Wi Wi AT

23 else

24 templates— templates) {I"}

25 return templates

Fig. 3. On-Line, Match-Tracking Fuzzy ARTMAP’s Training phaseiriolves finding the category that best matches the
input pattern, and passes the vigilance, and is mapped to the corrdctifglog patterns are presented to the Fuzzy ARTMAP
architecture only once, in contrast to the off-line version of match-ingckuzzy ARTMAP. The match-tracking mechanism is
enforced.



Fuzzy ARTMAP’s PERFORMANCEPHASE(I", templatesp,, 3)
1 The <0

2 jmaz < NIL
3 for each w{ in templates
4 do
5 if p(I",w$) > p, and T(I", Wi, 8) > Thnaw
6 then
7 Tz — T(IT,W?,,@)
8 Jmaz < J
9
10 if wi # wo
11 then return label(wf )

12 else return NIL

Fig. 4. Fuzzy ARTMAP’s performance phase. In this phase a testt ipgtiern is presented to Fuzzy ARTMAP and the
category that best matches this input pattern and passes the vigilanaesencifhe predicted label of this test input pattern
is the label that this chosen category is mapped to. Quite often, in the parioe phase of Fuzzy ARTMAP the baseline
vigilance parameter value is chosen equal to zero.



ON-LINE, NO MATCH-TRACKING Fuzzy ARTMAP TRAINING PHASE({T',I?,... . I¥T} p «)
1 wo— (1,1,...,1)
—_—
2M,
2 templates— {wo}
3 for each I"in {I',I?,... . 177}
4 do
5 repeat
6 Trnaz < 0
7 status«<— NoneFound
8 for each wf in templates
9

do if Lf(l’",w?) Zp} and [T(I*,wg,a) > Thas
t

10 en

11 Tmax — T(Ir7 W?v Oé)

13

14 if W?a # wo and label(I") = label(w?mw)
15 then wi e wi AT

16 else templates— templates) {I"}

17 until

18 return templates

Fig. 5. On-Line, No-Match-Tracking Fuzzy ARTMAP’s Training phaSéis is the version of Fuzzy ARTMAP that we
implemented in this paper, and for simplicity it is refereed to as Fuzzy ARPMA involves finding the category that best
matches the input pattern, and passes the vigilance, and is mapped toréw label. If the first chosen node is not mapped
to the correct label an uncommitted node is chosen next to represetmphbispattern (i.e., the match-tracking mechanism is
disengaged).
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Fig. 6. Running time of training the Covertype database using differeckepasizes between the processors. Packet sizes are in bytes. Since th
transmission time is much slower than the processing time it is beneficialuoe¢de number of transmissions relative to processing, and this behavio
is reflected in the graph. Also, given that for every transmission theaecisnstant transmission set up time, regardless of the packet sizepule w
expect the running time to reach a saturation level, as it does.
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Fig. 7. Running time of training the Gaussian 5% overlap database usimgediffpacket sizes between the processors. Packet sizes aredn byte
Since the transmission time is much slower than the processing time it is haneficeduce the number of transmissions relative to processing, and
this behavior is reflected in the graph. Also, given that for every trégssam there is a constant transmission set up time, regardless of thet paaek

we would expect the running time to reach a saturation level, as it does.
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Fig. 9. Exchange of packets between processors. Note, packelistadefor processok only. Optimum packet sizes were
estimated using the graphs of figure 6 and 7. Packets sent upstreatepscted on top of the ROCESSORbOxes and consist

of only the templates that have to be reassigned to a specific Procesgbateepool. Packets sent downstream are depicted
below of the RocESSORboxes and consists of triads of templaté, input patternl’, and activatior™.



INIT(p)
1 nodes— 0

myTemplates— {}
v, Wio(k—1) <~ ome
vY_, (w' < none)
szlli < none
myShare— 0
newNodes— 0
newNodeg,; — 0

continue<— TRUE

O©Ooo~NOUh, WN

Fig. 10. Initialization procedure for the PFAM implementation. Since no¢ssing has begun, all counters are set to 0. These
correspond to theodes newNodesand myShare variables. The corresponding sets and packets are initialized to emptg (sin
packets are of fixed size, their elements are initializede).



PFAM (k:’ n’ pa7 a’p)

1 INIT(p)

2 while continue

3 do

4 while |[myTemplatds> myShare

5 do

6 EXTRACT-TEMPLATE myTempIates{wio(k_l)D

7 SEND-NEXT (k,n, { (W, I, T") : i =1,2,...,p})

8 RECV-NEXT (k,n,{w}_,:i=1,2,...,2p} ,newNodeg, )

9 SEND-PREV (k, {Wio(k—l) i=1,2,.. .,2p} ,newNode
10 RECV-PREV (k, {(wi_, I, |, T} ;) :i=1,2,...,p})
11 newNodes— newNodes, |

12 S — {W%c+1}

13 for eachiin {1,2,...,p}

14 do FIND-WINNER(I!, w*, T?, pg, @, S)
15 myTemplates— myTemplates S

16 if I, |, = EOF

17 then continue«< FALSE

18 dse S {wi,,

19 for eachiin {1,2,...,p}

20 do FIND-WINNER(L, _,, Wi |, T} |, pa, t,S)

21 (', T) — (T, Wi, i)

22 for eachiin {1,2,...,p}

23 do FIND-WINNER(I!, w', T, p,, o, myTemplates

24 ifk=n-1

25 then if clasgI’) = clasgw?)

26 then

27 myTemplates— myTemplates) {I* A w'}
28 else newTemplate— I

29 indexnewTemplate<— newNodes+ nodes
30 myTemplates— myTemplates) {I¢, w'}
31 newNodes— newNodes- 1

32 if newNodes> 0

33 then

34 nodes— nodes+ newNodes

35 myShare— [ 0des]

36 SEND-NEXT (k,n, {(none,none,0)})
37 Recv-NexT (k,n,{w}j,,:i=1,2,...,2p} ,newNodg,,)
38 myTemplates— myTemplates) {w} ,, :i=1,2,...,2p}

Fig. 11. Parallel Fuzzy ARTMAP (PFAM) implementation. Exchange ofpgkates between processors is done in lines 4-10.
Templates received from the processor downstream are compétetheinput pattern/template pairs sent downstream in lines
12-15. Templates sent to the processor upstream are compared witkedheéng templates from this processor in lines 18-21.
The input pattern/template pairs going downstream are compared with thleploal of templates in lines 22-23. The rest of
the loop on lines 24-35 do necessary bookkeeping updates if the tpromessor is the last in the pipeline.



FIND-WINNER(L, w, T, po, @, S = {w"})
1 idx«— —1

2 for each wiin S
3 doif [p(I,w') > p,]
4 then
5 if [T(Lw', a)>T]
6 then
7 T — T(I,w' a)
8 idx « ¢
9 ese if [T(I,w',a) =T] and indeXw’) < indexw)
10 then T — T(I,w", @)
11 idx « ¢
12 if idx# —1
13 then
14 EXTRACT (W', S)
15 ADD(w,S)
16 w — wi
17 return TRUE
18 else
19 return FALSE

Fig. 12. Utility function to find the best candidate template in a template list. Nebgdbe PFAM implementation. Given

a current input patterfi with its current templatev and activation T, this procedure compares the input with all the members
of a given template poab. If the setS holds a template that is better representativd dfian w, then these templates are
swapped (lines 14-15) and the winner is leftvwn



PROCES% 4, @)
1 myTemplates- {}
2 V¢_,T' < none
3 newNodes— 0
4 continue<— TRUE
5 Recv-Prev (k,{(wi_;,I,_|,Ti_;):i=1,2,...,p})
6 newNodes— 0
7 for eachiin {1,2,...,p}
8 do FIND-WINNER(I!, w', T, p,, o, myTemplates
9 if clasgI’) = clasgw?)

10 then

11 myTemplate®\DD({I' A w'})

12

13 else

14 newTemplate— I’

15 indexnewTemplate<— newNodes
16 myTemplate&\ DD ({I¢, w'})

17 newNodes— newNodest 1

18

Fig. 13. Partial evaluation of PFAM using number of procesgots 1. Having only one processor implies that the packet
size is the size of the training set. Also the while loop and transmissions calintieaged since these events happen between
processors (we have only one). The only transmission procedursuhaves is the Rcv-PREV which reads from the input
stream. Comparison with pool of templates is sequential and is taken fthyetioe FND-WINNER procedure.



Fig. 14. A random sample of 5,000 Forest Covertype data-pointsfaiecavailable 581,012 data-points is shown. The data-points are pbjecte
the first 3 dimensions of the database. Different colors for the datdspepresent different class labels.
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Fig. 15. Parallel speedup versus number of processors for @peetdatabase. Speedup is measured as the ratio of theljiritaakesp processors

to process the input patterns over the tiffieit takes one processor to do the same amount of work, &f&&peedup for the smallest database sizes
32,000 and 64,000 input patterns levels out faster after 16 praseueedup for the largest database sizes is close to linear, which isthnetital
optimum.
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Fig. 16. Parallel speedup versus number of processors for thes@awb% overlap database. Speedup is measured as the ratio of tig, tintakes
p processors to process the input patterns over the Timi¢ takes one processor to do the same amount of work, c%a§peedup for the smallest
database sizes 32,000 and 64,000 input patterns levels out fastet@fteocessors. Speedup for the largest database sizes is closetpvihieh is
the theoretical optimum.
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Parallel speedup versus number of processors for thesf@aaul5% overlap database. Speedup is measured as the ratio of tHE, titme

Fig. 17.
takesp processors to process the input patterns over the Timi takes one processor to do the same amount of work, o%asSpeedup for the
smallest database sizes 32,000 and 64,000 input patterns levelsteutdtier 16 processors. Speedup for the largest database sireseisoclinear,

which is the theoretical optimum.



Examples (Thousands)Classification PerformanceAverage Templates Created
32 70.29 5148.83
64 74.62 11096.66
128 75.05 22831
256 77.28 49359.33
512 79.28 100720.75
TABLE I

PERFORMANCERESULTS ON THECOVERTYPEDATABASE. IN THIS TABLE, THE AVERAGE CLASSIFICATION PERFORMANCE
AND THE AVERAGE NUMBER OF TEMPLATES CREATED BYFAM OR PFAM ARE DEPICTED, AS THE NUMBER OF POINTS IN
THE TRAINING SET INCREASES FROM32K TO 512K. AVERAGE PERFORMANCES ARE REPORTED FOR2 DIFFERENT ORDERS
OF TRAINING PATTERN PRESENTATIONS IN THE TRAINING PHASE OFUzzY ARTMARP. CLASSIFICATION RESULTS ARE
REPORTED FOR A TEST SET OROK INPUT PATTERNS THAT IS DIFFERENT FROM THE PATTERNS USED INHE TRAINING SET.

Examples (Thousands)Classification PerformanceAverage Templates Created
32 92.50 7032.83
64 92.74 13513.41
128 92.91 25740.5
256 93.11 48854.5
512 93.21 92365.66
TABLE IV

PERFORMANCERESULTS ON A2-CLASS, 16-DIMENSIONAL GAUSSIAN DATASET WITH 5% OVERLAP. THE OVERLAP OF5%
IMPLIES THAT THE BEST POSSIBLE CLASSIFIER FOR THIS DATASE(l.E., THE BAYES CLASSIFIER) CAN ACHIEVE AN
OPTIMUM ERROR RATE OF5%. IN THIS TABLE, THE AVERAGE CLASSIFICATION PERFORMANCE AND THEAVERAGE

NUMBER OF TEMPLATES CREATED BYFAM OR PFAM ARE DEPICTED, AS THE NUMBER OF POINTS IN THE TRAINING SET

INCREASES FROM32K TO 512k. AVERAGE PERFORMANCES ARE REPORTED FOR2 DIFFERENT ORDERS OF TRAINING

PATTERN PRESENTATIONS IN THE TRAINING PHASE OFUzzY ARTMAP. CLASSIFICATION RESULTS ARE REPORTED FOR A

TEST SET OF20K INPUT PATTERNS THAT IS DIFFERENT FROM THE PATTERNS USED INHE TRAINING SET.



Examples (Thousands)Classification PerformanceAverage Templates Created
32 79.25 10608.83
64 79.82 20695.83
128 80.10 40319
256 80.32 78540.58
512 80.54 152827.91
TABLE V

PERFORMANCERESULTS ON A2-CLASS, 16-DIMENSIONAL GAUSSIAN DATASET WITH 15% OVERLAP. THE OVERLAP OF
15%IMPLIES THAT THE BEST POSSIBLE CLASSIFIER FOR THIS DATASE(].E., THE BAYES CLASSIFIER) CAN ACHIEVE AN
OPTIMUM ERROR RATE OF15%. IN THIS TABLE, THE AVERAGE CLASSIFICATION PERFORMANCE AND THEAVERAGE
NUMBER OF TEMPLATES CREATED BYFAM OR PFAM ARE DEPICTED, AS THE NUMBER OF POINTS IN THE TRAINING SET
INCREASES FROM32K TO 512k. AVERAGE PERFORMANCES ARE REPORTED FOR2 DIFFERENT ORDERS OF TRAINING
PATTERN PRESENTATIONS IN THE TRAINING PHASE OFUzzY ARTMAP. CLASSIFICATION RESULTS ARE REPORTED FOR A
TEST SET OF20K INPUT PATTERNS THAT IS DIFFERENT FROM THE PATTERNS USED INHE TRAINING SET.



