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Abstract

Fuzzy ARTMAP neural networks have been proven to be good classifiers on a variety of classification

problems. However, the time that Fuzzy ARTMAP takes to converge to a solution increases rapidly as the

number of patterns used for training is increased. In this paper we examine the time Fuzzy ARTMAP

takes to converge to a solution and we propose a coarse grain parallelization technique, based on a

pipeline approach, to speed-up the training process. In particular, we have parallelized Fuzzy ARTMAP,

without the match-tracking mechanism. We provide a series of theorems and associated proofs that show

the characteristics of Fuzzy ARTMAP’s, without matchtracking, parallel implementation. Results run

on a BEOWULF cluster with three large databases show linear speedup as a function of the number

of processors used in the pipeline. The databases used for our experiments are the Forrest CoverType

database from the UCI Machine Learning repository and two artificial databases, where the data generated

were 16-dimensional Gaussianly distributed data belonging to two distinct classes, with different amounts

of overlap (5 % and 15 %).

keywords: Fuzzy ARTMAP, Data Mining, BEOWULF cluster, Pipelining, NetworkPartitioning.
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I. I NTRODUCTION

Neural Networks have been used extensively and successfully to tackle a wide variety of problems. As

computing capacity and electronic databases grow, there isan increasing need to process considerably

larger databases. In this context, the algorithms of choicetend to be ad–hoc algorithms (Agrawal &

Srikant, 1994) or tree based algorithms such as CART (King, Feng, & Shutherland, 1995) and C4.5

(Quinlan, 1993). Variations of these tree learning algorithms, such as SPRINT (Shafer, Agrawal, &

Mehta, 1996) and SLIQ (Mehta, Agrawal, & Rissanen, 1996) have been successfully adapted to handle

very large data sets.

Neural network algorithms, on the other hand, can have a prohibitively slow convergence to a solution,

especially when they are trained on large databases. Even oneof the fastest (in terms of training speed)

neural network algorithms, the Fuzzy ARTMAP algorithm ((Carpenter, Grossberg, & Reynolds, 1991)

and (Carpenter, Grossberg, Markuzon, Reynolds, & Rosen, 1992)), and its faster variations ((Kasuba,

1993), (Taghi, Baghmisheh, & Pavesic, 2003)) tend to converge slowly to a solution as the size of the

network increases.

One obvious way to address the problem of slow convergence toa solution is by the use of paralleliza-

tion. Extensive research has been done on the properties of parallelization of feed–forward multi–layer

perceptrons (Mangasarian & Solodov, 1994) (Torresen & Tomita, 1998) (Torresen, Nakashima, Tomita,

& Landsverk, 1995). This is probably due to the popularity of this neural network architecture, and also

because the backpropagation algorithm (Rumelhart, Hinton, & Williams, 1986), used to train these type

of networks, can be characterized mathematically by matrixand vector multiplications, mathematical

structures that have been parallelized with extensive success.
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Regarding the parallelization of ART neural networks we canfind the work by Manolakos (Manolakos,

1998) who implements the ART1 neural network (Carpenter et al., 1991) on a ring of processors. To

accomplish this Manolakos divides the communication in twobidirectional rings, one for theF1 layer

of ART1 and another for theF2 layer of ART1. Learning examples are pipelined through the ring to

optimize network utilization. Experimental results of Manolakos’ work indicate close to linear speed-up

as a function of the number of processors. This approach is efficient for ring networks and it is an open

question of whether it can be extended for Fuzzy ARTMAP. Another parallelization approach that has been

used with ART and other types of neural networks is the systems integration approach where the neural

network is not implemented on a network of computers but on parallel hardware. Zhang (Zhang, 1998)

shows how a fuzzy competitive neural network similar to ARTMAP can be implemented using a systolic

array. Asanovíc (Asanovíc et al., 1998) uses a special purpose parallel vector processor SPERT-II to

implement back-propagation and Kohonen neural networks. In (Malkani & Vassiliadis, 1995), a parallel

implementation of the Fuzzy-ARTMAP algorithm, similar to theone investigated here, is presented.

However, in his paper, a hypercube topology is utilized for transferring data to all of the nodes involved

in the computations. While it is trivial to map the hypercubeto the more flexible switched network

typically found in a Beowulf, this would likely come with a performance hit. In this approach each

one of the processors maintains a subset of the architecture’s templates, and finds the template with

the maximum match in its local collection. Finally, in thed-dimensional hypercube, all the processors

cooperate to find the global maximum throughd different synchronization operations. This can eventually

limit the scalability of this approach, since the valued grows with the size of the hypercube, while the

network bandwidth remains constant.
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Mining of large databases is an issue that has been addressedby many researchers, Mehta (Mehta

et al., 1996), developed SLIQ, a decision-tree based algorithm that combines techniques of tree-pruning

and sorting to efficiently manage large datasets. Furthermore, Shafer (Shafer et al., 1996), proposed

SPRINT, another decision-tree based algorithm, that removedmemory restrictions imposed by SLIQ and

is designed to be amenable to parallelization. The Fuzzy ARTMAPneural network has many desirable

characteristics, such as the ability to solve any classification problem, the capability to learn from data in

an on-line mode, the advantage of providing interpretations for the answers that it produces, the capacity

to expand its size as the problem requires it, and the abilityto recognize novel inputs, among others. Due

to all these virtues we investigate Fuzzy ARTMAP’s parallelization in an effort to improve its convergence

speed to a solution when it is trained with large datasets.

There are many variants within the Fuzzy ARTMAP family of neuralnetworks. Kasuba (Kasuba, 1993),

with only classification problems in mind, develops a simplified Fuzzy ARTMAP structure (simplified

Fuzzy ARTMAP), while Taghi, et al., in (Taghi et al., 2003), describe variants of simplified Fuzzy

ARTMAP, called Fast Simplified Fuzzy ARTMAP, variants. These Fuzzy ARTMAP variants are faster

than the original Fuzzy ARTMAP algorithm, because they eliminated all the computations performed

in the ARTb module of Fuzzy ARTMAP, and because they have simplified the computations performed

in the ARTab module of Fuzzy ARTMAP; the results produced by these simplified Fuzzy ARTMAP

variants are the same as the results produced by the originalFuzzy ARTMAP, when the problem at hand

is a classification problem.

One of the Fuzzy ARTMAP fast algorithmic variants presented in(Taghi et al., 2003) is called,

SFAM2.0 and it this algorithmic Fuzzy ARTMAP variant (that is equivalent to Fuzzy ARTMAP for
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classification problems) that is the focus of our paper. Furthermore, in this paper, we only concentrate

on the no-match tracking version of SFAM2.0. No-match tracking was a concept introduced by

Anagnostopoulos, in the framework of the ART networks (Anagnostopoulos and Georgiopoulos, 2003).

No match-tracking is a specific ART network behavior, where whenever an input pattern is presented to

the ART network and a category is chosen that maximizes the bottom-up input, passes the vigilance, but

is mapped to the incorrect output, this category is deactivated and a new category (uncommitted category)

is activated next that will encode the input pattern. As a reminder, in that case, the typical ART network

behavior is to engage the match-tracking mechanism that deactivates the chosen category, increases the

vigilance threshold and searches for another appropriate category that might be or might not be an

uncommitted category. Anagnostopoulos has shown through experimentation in (Anagnostopoulos and

Georgiopoulos, 2003) that no-match-tracking Fuzzy ARTMAP increases the number of categories created

in the category representation layer compared to Fuzzy ARTMAPbut it does so while providing improved

generalization performance. No Match-tracking in Fuzzy ARTMAP should not be confused with the on-

line operation in Fuzzy ARTMAP. On-line Fuzzy ARTMAP operation implies that an input-output pair

is presented only once in Fuzzy ARTMAP’s training phase, and it can be used in a match-tracking or a

no-match tracking Fuzzy ARTMAP. The reason that we focus on the no match-tracking Fuzzy ARTMAP

is because it gives us the opportunity to first parallelize thecompetitive aspect of Fuzzy ARTMAP,

while ignoring the complications of the feedback mechanismthat matchtracking introduces. Finally, we

focus on the on-line version of this network, since a parallelization of the on-line version extends in a

straightforward fashion to the off-line version of the network.

For simplicity, we refer to this Fuzzy ARTMAP variant (on-line, no-matchhtracking SFAM2.0) simply
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asFuzzy ARTMAP, or FAM. If we demonstrate the effectiveness of our parallelization strategies for FAM,

extension to other ART structures can be accomplished without a lot of effort. This is due to the fact

that the other ART structures share a lot of similarities with FAM, and as a result, the advantages of the

proposed parallelization approach can be readily extendedto other ART variants (for instance Gaussian

ARTMAP (Williamson, 1996), Ellipsoidal ARTMAP (G. C. Anagnostopoulos & Georgiopoulos, 2001),

among others).

The remainder of this paper is organized as follows: Section IIpresents the Fuzzy ARTMAP neural

network architecture and a few Fuzzy ARTMAP variants. Section III continues with the pseudo-code of

the off-line, match-tracking Fuzzy ARTMAP, on-line match tracking Fuzzy ARTMAP, and on-line no-

match tracking Fuzzy ARTMAP (referred to simply as FAM). Section IV focuses on the computational

complexity of the on-line, match-tracking Fuzzy ARTMAP, and serves as a necessary motivation for the

parallelization approach introduced in this paper. SectionV presents a discussion of the Beowulf cluster

as our platform of choice. Section VI continues with the pseudocode of the parallel Fuzzy ARTMAP,

refereed to as PFAM, and associated discussion to understand the important aspects of this implementation.

Section VII focuses on theoretical results related to the proposed parallelization approach. In particular,

we prove there that PFAM is equivalent to the FAM, and that the processors in the parallel implementation

will be reasonablybalanced by considering a worst case scenario. Furthermore,section VIII proceeds

with experiments and results comparing the performance andPFAM and FAM on three databases, one

of them real and two artificial. The article concludes with section IX, where a summarization of our

experiences, from the conducted work, and future research are delineated.
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II. T HE FUZZY ARTMAP NEURAL NETWORK ARCHITECTURE/FUZZY ARTMAP VARIATIONS

The Fuzzy ARTMAP neural network and its associated architecture was introduced by Carpenter and

Grossberg in their seminal paper (Carpenter et al., 1992). Since its introduction, a number of Fuzzy

ARTMAP variations and associated successful applications of this ART family of neural networks have

appeared in the literature (for instance, ARTEMAP (Carpenter& Ross, 1995), ARTMAP-IC (Carpenter

& Markuzon, 1998), Ellipsoid-ART/ARTMAP (G. C. Anagnostopoulos & Georgiopoulos, 2001), Fuzzy

Min-Max (Simpson, 1992), LAPART2 (Caudell & Healy, 1999), andσ-FLNMAP (Petridis, Kaburlasos,

Fragkou, & Kehagais, 2001), to mention only a few. For the purposes of the discussion that follows we

rely on the work by Kasuba (Kasuba, 1993) and Taghi, Baghmisheh, and Pavesic (Taghi et al., 2003)

(see section I). In this paper, we have implemented the Fuzzy ARTMAP version, called SFAM2.0 in

Taghi’s paper. As we have emphasized in the Introduction, SFAM2.0 is equivalent to the original Fuzzy

ARTMAP algorithm (see (Carpenter et al., 1992)) for classification problems.

The block diagram of SFAM2.0 (also depicted in Kasuba (Kasuba,1993)) is shown in figure 1. Notice

that this block diagram is different than the block diagram of Fuzzy ARTMAP mentioned in (Carpenter

et al., 1991), because it has eliminated theARTb module, and inter-ART module of Fuzzy ARTMAP, and

has replaced them with the a single layer of nodes, designated asF b
2 in Figure 1. The Fuzzy ARTMAP

architecture of the block diagram of Figure 1 has three major layers. Theinput layer (F a
1 ) where the

input patterns (designated byI) are presented, thecategory representation layer(F a
2 ), where compressed

representations of these input patterns are formed (designated aswa
j , and calledtemplates), and the

output layer (F b
2 ) that holds the labels of the categories formed in the category representation layer.

Another layer, shown in Figure 1 and designated byF a
0 is a pre-processing layer and its functionality
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is to pre-process the input patterns, prior to their presentation to the Fuzzy ARTMAP architecture. This

pre-processing operation (called complementary coding) is described in more detail later.

In this paper we focus on the on-line implementation of SFAM2.0. In the on-line implementation

of SFAM2.0 the training data (input/output patterns) are presented to SFAM2.0 only once. This version

of Fuzzy ARTMAP training is sometimes referred to asone-epoch trainingFuzzy ARTMAP. Also,

in this paper, we concentrate on a version of Fuzzy ARTMAP introduced by Anagnostopoulos (G.

Anagnostopoulos, 2000), and referred to asno-match trackingFuzzy ARTMAP. In the no-match tracking

Fuzzy ARTMAP match-tracking is disengaged in the following sense. In the training phase of Fuzzy

ARTMAP when a node in the category representation layer is chosen to represent an input pattern, but

this node is mapped to the incorrect label, the node is deactivated and a search for another node in the

category representation layer ensues (match-tracking mechanism). However, in no-match tracking Fuzzy

ARTMAP when a node in the category representation layer is chosen to represent an input pattern, but

this node is mapped to the incorrect label, a new (uncommitted node) is chosen to represent this pattern.

In (G. Anagnostopoulos, 2000), Anagnostopoulos has shown that no-match tracking Fuzzy ARTMAP

creates more nodes in the category representation layer of Fuzzy ARTMAP, but quite often improves the

network’s generalization performance. In our case, we chose to focus on the no-match tracking Fuzzy

ARTMAP because it allows us to concentrate on implementing, in parallel, the competitive process in

Fuzzy ARTMAP, without having to worry about the implementation of the match-tracking mechanism

which has its own complications. Furthermore, the parallel implementation of the competitive process in

Fuzzy ARTMAP has applicability to other neural networks in theliterature that involve similar competitive

phases in their design. From now on we will refer, for simplicity, to the on-line, no-match tracking,
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SFAM2.0network as Fuzzy ARTMAP.

In this paper, we will occasionally discuss the off-line, SFAM2.0 with match tracking, and the on-line

SFAM2.0 with match tracking, and we will refer to these networks asoff-line Fuzzy ARTMAP with

match-tracking, and on-line Fuzzy ARTMAP with match-tracking. Once more, we reserve the simpler

notation,Fuzzy ARTMAP, for the on-line, no-match tracking SFAM2.0 that is the focusin this paper.

Any of the aforementioned Fuzzy ARTMAP variants can operate intwo distinct phases: thetraining

phaseand theperformance phase. During the training phase of a Fuzzy ARTMAP variant a set of

PT inputs and associated labels pairs,
{
(I1, label(I1)), . . . , (Ir, label(Ir)), . . . , (IPT , label(IPT ))

}
, is

provided. Then, the training algorithm of this Fuzzy ARTMAP variant is engaged to learn the correct

mapping from an input pattern to an associated label. The performance phase of any of the aforementioned

Fuzzy ARTMAP variants works as follows: Given a set ofPS input patterns, such as̃I1, Ĩ2, . . . , ĨPS , we

want to find the Fuzzy ARTMAP output (label) produced when eachone of the test patterns is presented

at its F a
1 layer. In order to achieve the this goal we present the test set to the trained Fuzzy ARTMAP

architecture and we observe the network’s output.

The training phase of theoff-line, match-tracking Fuzzy ARTMAPis succinctly described in Taghi’s

et al., paper (Taghi et al., 2003). We repeat it here to give the reader a good, well-explained overview of

the operations involved in its training phase.

1) Find the nearest category in the category representation layer of the Fuzzy ARTMAP architecture

that ”resonates” with the input pattern.

2) If the labels of the chosen category and the input pattern match, update the chosen category to be

closer to the input pattern.
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3) Otherwise, we reset the winner, temporarily increase theresonance threshold (calledvigilance

parameter), and try the next winner. This process is calledmatchtracking.

4) If the winner is uncommitted, create a new category (assign the representative of the category to

be equal to the input pattern, and designate the label of the new category to be equal to the label

of the input pattern).

The nearest category to an input patternIr presented to the Fuzzy ARTMAP architecture is determined

by finding the category that maximizes the function:

T a
j (Ir,wa

j , α) =
|Ir ∧wa

j |
α + |wa

j |
(1)

This equation introduces two operands, one of them is thefuzzy min operand, and designated by the

symbol∧. The fuzzy min operation of two vectorsx, andy, designated asx ∧ y, is a vector whose

components are equal to the minimum of components ofx and y. The other operand introduced is

designated by the symbol| · |. In particular,|x| is the size of a vectorx and is defined to be the sum of

its components.

The above function is called thebottom-up input(or choice function) pertaining to theF a
2 nodej with

category representation (template) equal to the vectorwa
j , due to the presentation of input patternIr.

This function obviously depends on a Fuzzy ARTMAP network parameterα, calledchoice parameter,

that assumes values in the interval(0,∞). In most simulations the useful range ofα is the interval

(0, 10]. Larger values ofα create more category nodes in the category representation layer of the Fuzzy

ARTMAP architecture.
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The resonance of a category is determined by examining if the function, calledvigilance ratio, and

defined below

ρ(Ir,wa
j ) =

|Ir ∧wa
j |

|Ir| (2)

satisfies the following condition:

ρ(Ir,wa
j ) ≥ ρa (3)

If the above equation is satisfied we say that resonance is achieved. The parameterρa is called the

vigilance parameterand assumes values in the interval[0, 1]. As the vigilance parameter increases, more

category nodes are created in the category representation layer (F a
2 ) of the Fuzzy ARTMAP architecture. If

the label of the input pattern (Ir) is the same as the label of the resonating category, then thecategory’s

template (wa
j ) is updated to incorporate the features of this new input pattern (Ir). The update of a

category’s template (wa
j ) is performed as depicted below:

wa
j = wa

j ∧ Ir (4)

If the categoryj is chosen as the winner and it resonates, but the label of thiscategorywa
j is different

than the label of the input patternIr, then this category is reset and the vigilance parameterρa is increased

to the level (this is enforced in the match-tracking Fuzzy ARTMAP):
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ρ(Ir,wa
j ) + ε (5)

In the above equationε takes very small values. Increasing the value of the vigilance barely above

the level of vigilance ratio of the category that is reset guarantees that after this input/label-of-input

pair is learned, immediate presentation of this input to theFuzzy ARTMAP architecture will result in

correct recognition of its label. It is difficult to correctlyset the value ofε so that you can guarantee that

after category resets no legitimate categories are missed by Fuzzy ARTMAP. Nevertheless, in practice,

typical values of the parameterε are taken from the interval[0.00001, 0.001]. After the reset of category

j (if that’s the case), other categories are searched that maximize the bottom-up input and they satisfy

the vigilance (resonate). This process continues until a category is found that maximizes the bottom-up

input, satisfies the vigilance and has the same label as the input pattern presented to the Fuzzy ARTMAP

architecture. Once this happens, update of the category’s template, as indicated by equation (4), ensues.

If through this search process an uncommitted category (an uncommitted category is a category that has

not encoded any input pattern before) is chosen, it will passthe vigilance, its label will be set to be

equal to the label of the presented input pattern, and the update of the category’s template will create a

template that is equal to the presented input pattern.

All input patternsI presented at the input layer (F a
1 ) of the Fuzzy ARTMAP architecture has the

following form:

I = (a,ac) = (a1, a2, . . . , aMa
, ac

1, a
c
2, . . . , a

c
Ma

) (6)
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where,

ac
i = 1− ai; ∀i ∈ {1, 2, . . . , Ma} (7)

The assumption here is that the input vectora is such that each one of its components lies in the

interval [0, 1]. Any input pattern can be, through appropriate normalization, represented by the input

vectora, whereMa stands for the dimensionality of this input pattern. The above operation that createsI

from a is calledcomplementary codingand it is required for the successful operation of Fuzzy ARTMAP.

The number of nodes (templates) created in theF a
2 layer of the Fuzzy ARTMAP architecture (category

representation layer) is designated byNa, and it is not a parameter that needs to be defined by the user

before training commences;Na’s value is dictated by the needs of the problem at hand and thesetting

of the choice parameter (α) and baseline vigilance parameterρ̄a. The baseline vigilance parameteris a

parameter set by the user as a value in the interval[0, 1]. The vigilance parameterρa, mentioned earlier

(see equation (3)), is related with the baseline vigilanceρ̄a since at the beginning of training with a new

(input pattern)/label pair, the vigilance parameter is setequal to the baseline vigilance parameter; during

training with this (input pattern)/label pair the vigilance parameter could be raised above the baseline

vigilance parameter (see equation (5)), only to be reset back to the baseline vigilance parameter value

once a new (input pattern)/label pair appears. This raising of the vigilance parameter is accomplished

according to equation (5). Prior to initiating the training phase of any Fuzzy ARTMAP variant the user

has to set the values for the choice parameterα (chosen as a value in the interval[0, 10]), and the baseline

vigilance parameter valuēρa (chosen as a value in the interval[0, 1]).
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Despite the fact that we focused above on describing the training phase of the off-line, match

tracking Fuzzy ARTMAP, the equations presented are also pertinent for the on-line, match tracking

Fuzzy ARTMAP, or the on-line no-match tracking Fuzzy ARTMAP (referred to for simplicity as Fuzzy

ARTMAP); the only difference, emphasized many times by now, isthat in the no-match tracking case we

would never have to employ equation (5) that increases the value of the vigilance when the match-tracking

mechanism is engaged.

In the performance phase of any Fuzzy ARTMAP variant, a test input is presented to the Fuzzy

ARTMAP architecture and the category node in theF a
2 layer that has the maximum bottom-up input is

chosen. The label of the chosenF a
2 category is the label that the Fuzzy ARTMAP architecture predicts

for this test input. By knowing the correct labels of test inputs belonging to a test set allows us, in this

manner, to calculate the classification error of the Fuzzy ARTMAP variant for this test set.

III. T HE FUZZY ARTMAP VARIANTS ’ PSEUDO-CODE

The off-line, match-tracking, Fuzzy ARTMAP algorithm is shownin figure 2. The on-line, match-

tracking Fuzzy ARTMAP algorithm is shown in figure 3. Notice thatin the off-line, match tracking

Fuzzy ARTMAP training, the learning process (lines 4 through 30) of the algorithm are performed until

no more network weight changes are made or until the number ofiterations reached a maximum number

(designated asepochs). In the on-line, match-tracking Fuzzy ARTMAP training, the learning process

(lines 3-24) passes through the data once.

In this paper we are primarily concerned with the on-line training phase of Fuzzy ARTMAP. Notice

though that by parallelizing the ”on-line training” Fuzzy ARTMAP, in essence we are also parallelizing
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the ”off-line training” Fuzzy ARTMAP. This is because the ”off-line training” Fuzzy ARTMAP, is an

”on-line training” Fuzzy ARTMAP, where after an on-line training cycle is completed, another cycle

starts with the same set of (input patterns)/label pairs; these on-line training Fuzzy ARTMAP cycles are

repeated for as long as it is necessary for the Fuzzy ARTMAP network to learn the required mapping.

In figures 2, 3 the match-tracking mechanism is employed, where if the label of the input patternIr is

different than the label of the template of the nodejmax (i.e., templatewa
jmax

), the the vigilance level is

increased a search for a new template ensues.

In this paper we are only concerned with Fuzzy ARTMAP where training is on-line and the match-

tracking mechanism is disengaged, and we refer to this Fuzzy ARTMAP version, for simplicity, as Fuzzy

ARTMAP. The training phase of Fuzzy ARTMAP is shown in figure 5.

The performance phase of the algorithm is much simpler, and iscommon to all the above Fuzzy

ARTMAP variants. In the performance phase we return the labelassociated with the template that wins

the competition for the input pattern. It is common in this phase to set the parameterρ̄a equal to 0

to assure that the network will produce a predicted label (classification) for every input pattern (albeit

sometimes erroneous). The Fuzzy ARTMAP performance phase is shown in figure 4.

IV. COMPLEXITY ANALYSIS OF THE ON-LINE , MATCH TRACKING FUZZY ARTMAP

We concentrate on analyzing the time complexity of the on-line Fuzzy ARTMAP variants because

this is the focus of the paper. Our approach requires making afew assumptions about the size of the

networks created and the match-tracking cycles. This complexity analysis will motivate the pipelined

implementation of Fuzzy ARTMAP.
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We can see from the pseudocode (2, 3) that the on-line, match-tracking Fuzzy ARTMAP algorithm

tests every input patternI in the training set against each templatewa
j at least once. Let us callΓ the

average number of times that the innerrepeat loop (lines 5 to 19 of the online training phase algorithm

of figure 3) is executed for each input pattern, and christen itthe matchtracking factor. Then the number

of times that a given input patternI passes through the code will be:

Time(I) = O(Γ× templates) (8)

It is then easy to see that the time complexity of the algorithm is:

Time(on-line, match-tracking, Fuzzy ARTMAP) = O(Γ× PT× templates) (9)

In both of the above equationstemplatescorresponds to the average number of templates created during

the on-line, match-tracking Fuzzy ARTMAP training phase.

We have seen that with some databases the on-line, match-tracking Fuzzy ARTMAP algorithm achieves

a certaincompression ratiothat is proportional to number of input patternsPT (Case 1). We have also

seen that with other databases the algorithm creates templates which number saturates to a constant (Case

2). In either case, we denote the compression ratio (Case 1), or the constant (Case 2), byκ. Then the

complexity of the algorithm ends up being equal to:

Time(on-line, match-tracking, Fuzzy ARTMAP) = O(Γ× κ× PT 2) (10)
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for Case 1, and

Time(Fuzzy ARTMAP) = O(Γ× κ× PT ) (11)

for Case 2.

Obviously for Case 1 implementing a parallel pipeline implementation of the algorithm makes sense.

For Case 2 there are occasions where although the time complexity of the algorithm is linear in the

number of patterns, the constantκ is large enough so that a parallel, pipeline implementationof the

algorithm is still justified.

V. THE BEOWULF PARALLEL PLATFORM

The Beowulf cluster of workstations is a network of computerswhere processes exchange information

through the network’s communications hardware. In our case, it consisted of 96AMD nodes, each with

dual AthlonMP 1500+ processors and 512MB of RAM. The nodes areconnected through aFast Ethernet

network.

In general, the Beowulf cluster configuration is a parallel platform that has a high latency. This implies

that to achieve optimum performance communication packetsmust be of large size and of small number.

Parallelization techniques in this platform are radicallydifferent from shared memory or vector machines.

Also communication between nodes in the cluster is done by consent from all the parties involved; that

is all communicating entities must agree to send/receive information in compatible formats. This has an

impact on the design of the algorithm because receiving entities must knowbefore-handthat they are

going to receive information in order to be prepared to accept it. There is no central coordinating entity
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and protocols must be based on listening/polling schemes and must dispense of any interrupt driven

communication.

We have two choices for parallelization design. We can request from each node in the network to

process a different input pattern. Or we can request that each node processes the same input patterns

at the same time. If we want the parallel implementation to work equivalently to the sequential one

the first design will lead to a pipelined approach where each node computes a stage in the pipeline.

The second approach will lead to a master/slave topology where all nodes communicate to a gathering

master node. We chose to follow the pipelined approach because in this scenario we are only doing point

to point communication, which is a constant time operation in a Fast Ethernet switched network. The

master/slave approach tends to degrade communication performance as the size of the gather operation

increases. Our design is based on fixed packet size communication through the network. No network

bandwidth would be gained by using variable sized packets since packets are more efficient when they

are large. Furthermore, to find out the size of a packet a receiving process would have to incur an extra

(and expensive) communication.

To find an appropriate packet size for our experiments, we ran our system on 512,000 patterns of

both the CoverType database and the Gaussian 5% database. Packet performance for the Gaussian 15%

database was not evaluated, because classification overlap does not affect packet transmission time, and

the 15% Gaussian database is on all other respects identicalto the Gaussian 5% database. Figures 6 and

7 illustrate the results. For the CoverType database, any packet size 64 and above performed acceptably.

For the Gaussian database, any packet size of 128 and above was sufficient. We translate this into bytes

to give a guideline for the packet size of future database runs. To find the bytes transfered, we multiply
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the number of templates in a packet, times the size of the template’s vector (plus one for the label),

times the number of bytes in each value of the vector ( 4 bytes for both 32-bit integers and floating point

numbers).

For the CoverType database:

64× 55× 4 = (14080)Bytes (12)

For the Gaussian 5% database:

128× 17× 4 = (8704)Bytes (13)

These numbers will likely be dependent on characteristics ofthe Beowulf cluster, such as CPU power,

network bandwidth and network latency. However, a good ruleof thumb for similar clusters will be a

packet size greater than or equal to 10Kbytes.

VI. B EOWULF FUZZY ARTMAP IMPLEMENTATION

The parallel implementation of Fuzzy ARTMAP (on-line, no-match tracking Fuzzy ARTMAP algo-

rithm) is discussed here. We call this implementation Parallel Fuzzy ARTMAP (PFAM). A depiction of

the pipeline is shown in figure 8. The elimination of matchtracking makes the learning of a pattern a one–

pass over the pipeline procedure and different patterns canbe processed on the different pipeline steps

to achieve optimum parallelization. For the understandingof PFAM we need the following definitions:

• n: number of processors in the pipeline.
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• k: index of the current processor in the pipeline,k ∈ {0, 1, . . . , n− 1}.

• p: packet size, number of patterns sent downstream;2p = maximum number of templates sent

upstream.

• Ii: input patterni of current packet in the pipeline.i ∈ {1, 2, . . . , p}.

• wi: current best candidate template for input patternIi.

• T i: current maximum activation for input patternIi.

• myTemplates: variable local to the current processor, set of templates that belong to the current

processor.

• nodes: variable local to the current processor that holds the total number of templates the processor

is aware of (its own plus the templates of the other processors).

• myShare: maximum amount of templates that the current processor is allowed to have.

• wi
k−1: templatei coming from the previous processork − 1 upstream in the pipeline.

• wi
k+1: templatei coming from the next processork + 1 downstream in the pipeline.

• wi: templatei going to the next processork + 1 downstream in the pipeline.

• wi
to(k−1): templatei going to previous processork − 1 upstream in the pipeline.

• I.class: class label associated with a given input pattern.

• w.class: class label associated with a given template.

• index(w): sequential index assigned to a template.

• newNodesk+1: integer that holds the number of new created nodes that processork+1 communicates

upstream in the pipeline.

• newNodesk: integer that holds the number of new created nodes that processork communicates
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upstream in the pipeline.

The exchange of packets between processors is pictorially illustrated in figure 9. In this figure, the

focus is on processork and the exchange of packets between processork and its neighboring upstream

and downstream processors (i.e., processorsk − 1 andk + 1 respectively).

The PFAM implementation is in the procedure PFAM shown in Figure 11 and the initialization procedure

INIT is shown in figure 10. The pseudocode of PFAM is the main heart of the parallel algorithm. In the

theorems that follow, there is a one to one correspondence between PFAM instances and computing

processors, and we will therefore loosely talk about PFAM instances and processors as names referring

to the same entity (the meaning will be clear from the context).

Each element of the pipeline will execute PFAM for as long as there are input patterns to be processed.

The input parameterk tells the routine PFAM which stage of the pipeline it is, where the valuek varies

from 0 to n− 1. After initializing most of the values as empty (figure 10) we enter the loop of lines 2

through 35 (Figure 11). This loop continues execution until there are no more input patterns to process.

The first activity of each processor is to create a packet of excess templates to send upstream (lines 4

to 6 of PFAM). Lines 7 to 10 correspond to the information exchange between contiguous nodes in the

pipeline. The functions SEND-NEXT and RECV-NEXT on lines 7 and 8, respectively, don’t do anything

if the processor is the last in the pipeline (k = n − 1). The same is true for the function SEND-PREV

when the processor is the first in the pipeline (k = 0). On the other hand, the function RECV-PREV reads

input patterns from the input stream it’s the first in the pipeline. These fresh patterns will be paired with

an uncommitted node(1, 1, · · · , 1) with index∞ as their best representative so far. On all other cases

these functions do the obvious information exchange between contiguous processors in the pipeline. We
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assume that all communication happens at the same time and issynchronized. We can achieve this in an

MPI environment by doing non–blocking sends and using anMPI-Waitall to synchronize the receive

of information.

The function FIND-WINNER (see figure 12) is also important. This function searches through a set

of templatesS to find if there exists a templatewi that is a better choice (using FAM criteria) for

representingI than the current best representativew. If it finds one it swaps it withw, leavingw in S

and extractingwi from it. By sending the input patterns downstream in the pipeline coupled with their

current best representative template we guarantee that thetemplates are not duplicated amongst different

processors and that we do not have multiple–instance consistency issues.

Also when exchanging templates between processors in the pipeline we have to be careful that patterns

that are sent downstream do not miss the comparison with templates that are being sent upstream. This

is the purpose of lines 12 to 15 (communication with the processor downstream in the pipeline) and

lines 18 to 21 of PFAM (see Figure 11). On line 12 we setS to represent the set of templates that have

been sent upstream to nodek by nodek + 1. We loop through each pattern, template pair(I,w) (lines

13 to 15) to see if one of the templates, sent upstream, has a higher activation (bottom-up input) than

the ones that were sent downstream; if this is true then the template will be extracted fromS. The net

result of this is thatS ends up containing the templates that lost the competition,and therefore the ones

that processork should keep (line 15). The converse computation is performedon lines 18 to 21. On

line 18 we setS to represent the set of templates that were sent upstream to the previous nodek − 1

in the pipeline. On lines 19 to 20 we compare the pattern, template pairs(Ii
k−1,w

i
k−1) that k − 1 sent

downstream in the pipeline with the templates inS that processork sent upstream. On line 21 of PFAM
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we set our current pattern, template pairs to the winners of this competition. The setS is discarded since

it contains the losing templates and therefore the templates that processk − 1 keeps. Another way of

looking at this is that what happens in lines 12 to 15 in PFAM(k) is duplicated exactly in lines 18 to 21

in PFAM(k + 1), this ensures that both processors compare and select exactly the same templates to go

upstream or downstream in the pipeline from the packets thathad just been exchanged.

Finally, on line 30 of figure 11 we add both the input patternIi and the templatewi to the set of

templates. This does the obviousmyTemplatesupdate except when the templatewi happens to be the

uncommitted node in which the addition is ignored.

The main loop of PFAM starts with line 2 and ends with line 35. The main loop is executed for as

long as there are input patterns to process. The first processorthat becomes aware that there are no more

input patterns to process is processor0 (first processor in the pipeline). It communicates this information

to the other processors by sending a(wi, Ii, T i) = (none, none, 0) to the next processor (see line 36 of

figure 11). Lines 37 and 38 of PFAM make sure that the templates that are sent upstream in the pipeline

are not lost after the pool of training input patterns that are processed is exhausted.

VII. PROPERTIES OF THEPFAM ALGORITHM

We present and prove a series of fourteen (14) theorems. Thesetheorems are distinguished in two

groups. The group of theorems associated with the correctness of the PFAM, and the group of theorems

associated with the performance of the PFAM. For ease of reference Table I lists the theorems and their

names dealing with the correctness of the algorithm, while Table II lists the theorems dealing with the

performance of the algorithm.
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Theorem Name
7.1 Non–duplication
7.5 Bundle size sufficiency
7.11 Overflow impossibility
7.13 Partial evaluation correctness

TABLE I

PFAM CORRECTNESSTHEOREMS

The major purpose of these theorems is to prove that PFAM (a) is equivalent to the sequential version

of FAM, (b) it does not suffer from any inconsistencies, and (c) it exhibits good performance. Examples

of inconsistencies would be: a template residing in more than one place in the pipeline (not possible as

theorem 8.1 (non-duplication) proves), or that the first processor in the pipeline sends templates upstream

(not possible as theorem 8.11 (overflow impossibility) proves). It is worth mentioning that theorems 8.2

through 8.9 facilitate the demonstration of the overflow impossibility theorem. The equivalence of the

parallel and sequential version of the algorithm is demonstrated through the partial evaluation correctness

theorem (theorem 8.13). Good performance is dependent on the distribution of templates amongst the

processors in the pipeline (workload balance). An upper bound on the difference between the number of

templates that two processors in the pipeline could own has been established through the pipeline length

invariance theorem (theorem 8.12) and it is equal top + 1, wherep is the packet size. This upper bound

is independent of the pipeline depthn. For instance, if 100,000 templates are present in the pipeline and

p = 64, the templates that any two processors possess cannot differ by more than 65 (wherep+1 = 65).

Definition 7.1: A templatewa
j is in transit if the template has been received by the current processor

i from the processor upstreami− 1 in the pipeline, and the current processor has not made the decision



25

Theorem Name
7.2 Template awareness delay
7.3 Weak upstream migration precondition
7.4 Upstream packet size sufficiency
7.6 Strong upstream migration precondition
7.7 Strong upstream migration postcondition
7.8 Template ownership delay
7.9 Network size lower bound
7.10 Template ownership bound
7.12 Pipeline depth invariance
7.14 Workload balance variance bound

TABLE II

PFAM PERFORMANCETHEOREMS

yet of whether to send this template upstream, downstream, or keep it. Templates in transit are stored in

the wi’s array of processori.

Definition 7.2: A templatewa
j is ownedby a processori in the pipeline if it is stored in themyTemplates

array of processori.

Theorem 7.1:Non–duplication

A templatew will either be owned by a single processor, or it will be in transit on a single processor

(i.e. only one copy of the template exists in the system).

Proof: First let us note that templates start their existence in processorn− 1 on line 30 of PFAM.

Here they are immediately added to the templates of processn − 1, so they start belonging to a single

processor.

Templates only change location when

1) They are compared with a given input patternIr and selected to represent it, in which case they

are deleted from the template list owned by the processor andadded to the templates in transit.
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2) They are in transit and lose competition to another template, in which case they are removed from

the templates in transit and added to the templates owned by the processor.

3) They are sent upstream or sent downstream as in-transit templates.

The only possible situation where the templates may be in two places at once is in situation 3 when they

are exchanged between processors in the pipeline. This is theonly scenario where two processors hold

a copy of the same template.

So the only possible problem will arise when two consecutive processors exchange templates. Now

a template that is sent downstream on line 7 of PFAM by a processk − 1 is received by processk on

line 10 of PFAM. Every templatew that is sent downstream is tagged along with an input patternI.

Processork will keep the template in transit if it is the best candidate for input patternI. To verify this,

processork will compare templatew against the templates that he himself sent upstream. If a template

w′ that was sent upstream is a better candidate thanw for the input patternI (lines 19–21) then process

k will discard templatew and keep templatew′.

Concurrently, processork−1 will check the pair of templatew and input patternI it sent to processor

k and compare them against the templates that it receives fromprocessork. If a templatew′ that was

received from processork is a better candidate thanw for input patternI (lines 12–15) then processor

k − 1 will keep templatew and discard templatew′.

As we can see, these concurrent operations guarantee that a template that was sent downstream or

upstream will not reside in two places at the same time. Furthermore, it is guaranteed that this template

will be compared against all the input patterns that flow through the pipeline.

Theorem 7.2:Template awareness delay
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The total number of templates that a processork = 0, 1, . . . , n− 1 in the pipeline is aware of is equal

to the number of templates that existed in the systemn− k − 1 iterations ago.

Proof: Consider processorn− 1, the last in the pipeline. This processor knows immediately when

a template is created, and as a result it knows how many templates existn−1−k = n−1− (n−1) = 0

iterations ago.

The number of templates created per iteration is sent upstream to the previous processor in the variable

newNodes. This variable is received by processorn−2 one iteration after the templates have been created,

by processorn− 3 two iterations after the templates have been created, and ingeneral, by processori,

n− 1− i iterations after the templates have been created. This meansthat a processork always receives

on the current iteration the value of the variablenewNodesthat was createdn−k− 1 iterations ago, and

this implies that processork is aware of the amount of templates that existedn−k−1 iterations ago.

Theorem 7.3:Weak upstream migration precondition

A processork in the pipeline sends templates upstream only if and only if on the current iteration:

|myTemplates| > myShare (14)

Proof: It will suffice to say that PFAM creates the packet of templates to be sent upstream in lines

4 through 6. Looking at line 4 of the PFAM pseudocode we can see that templates are packed to be sent

upstream only when condition 14 is met.

Theorem 7.4:Upstream packet size sufficiency

No processor in the pipeline, except the first one, can have, atany point in time, an excess of templates

greater than2p.
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Proof: By an excess of templates we mean the number of templates overits self imposed fair share

indicated in the variablemyShare. What we need to prove that equation 15 never holds, or that itis

impossible for a processor in the pipeline to reach a situation where the number of templates it has is

greater that its fare share plus the amount it can send upstream.

|myTemplates| > myShare+ 2p (15)

Let us notice that at the beginning of execution there are no templates in transit and that all the processes

have their fair share of templates. In other words they comply with the condition 16

|myTemplates| ≤ myShare (16)

Now lets consider the processorn − 1, the last in the pipeline. If this processor complies with the

equation 16 and receivesp templates from processorn− 2, it would have a total of at mostp+ myShare

templates. In the worst case scenario all of thep templates that have been sent are not of the correct

category and will force the creation of anotherp templates giving a maximum total of2p + myShare

of templates, where2p are in transit. At the beginning of the next iteration, processorn − 1 will pack

2p templates to be sent upstream to the previous process in the pipeline (assuming its variablemyShare

does not increase, which would ease the pressure on the processor) and will receivep templates from

the previous processor upstream. Notice that thep templates extra that it ended up with are not part of

it’s fair share because they are templates in transit. Consequently, processors’n− 1 number of templates

|myTemplates| did not exceedmyShare.
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Now consider any other processor that is not the last or the first in the pipeline and assume (as it does

when it starts) that it complies with equation 16. This processor can receive in the worst case scenario

a total of p templates from it’s upstream neighbor and2p templates from it’s downstream neighboring

processor. Now thep templates that arrived from upstream will continue their journey downstream (maybe

not the same ones butat leastthat quantity), so they will not increase the total number oftemplates that

the processor owns. The excess of the2p templates coming from downstream overmySharewill, on a

worst case scenario, be packed and sent upstream to the previous processor (some of them could be kept

if myShareincreases)

Theorem 7.5:Bundle size sufficiency

The excess templates for a processork 6= 0, at any given time, always fits in the packet of size2p to

be sent upstream.

Proof: See theorem 7.4.

Theorem 7.6:Strong upstream migration precondition

If a processork ∈ {0, 1, . . . , n− 1} in the pipeline sends templates upstream, then it is true that:

• 1 iteration ago processork + 1 complied with condition 14 and sent templates upstream.

• 2 iterations ago processork + 2 complied with condition 14 and sent templates upstream.

...

• n− 1− k iterations ago processorn− 1 complied with condition 14 and sent templates upstream.

Proof: If processork sends templates upstream then by theorem 7.3 it complies with condition 14.

But by the reasoning in theorem 7.4 all excess templates fit in the packet size so they are sent upstream
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on the next iteration that they are received. This means that the excess templates were received from

processork + 1 one iteration ago. Similarly, if processork + 1 sent templates upstream one iteration

ago then by theorem 7.3 processork + 1 must have complied with condition 14 two iterations ago, and

this can only happen if 2 iterations ago processork + 2 sent templates upstream. By induction oni and

repeating this argument we can state that, in general, processork + i complied with condition 14 and

sent templates upstreami iterations ago.

Theorem 7.7:Strong upstream migration postcondition

If a processork ∈ {0, 1, . . . , n− 1} in the pipeline sends templates upstream, then it is true that:

1) • at this iteration processork keepsmySharetemplates.

• 1 iteration ago processork + 1 kept mySharetemplates.

• 2 iterations ago processork + 2 kept mySharetemplates.

...

• n− 1− k iterations ago processorn− 1 kept mySharetemplates.

2) All of the values ofmySharewere the same for all the processors.

3) The templates that each processor keeps are distinct.

Proof: First let us notice that by theorem 7.2

• on the current iteration processork is aware of the templates that existed in the systemn− k − 1

iterations ago.

• 1 iteration ago processork + 1 was aware of the templates that existed in the systemn − k − 1

iterations ago.
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• 2 iterations ago processork + 2 was aware of the templates that existed in the systemn − k − 1

iterations ago.

...

• n − k − 1 iterations ago processorn − 1 was aware of the templates that existed in the system

n− k − 1 iterations ago.

This means that all the processors were aware of the same amount of templates and therefore their

values formySharewere all the same. It is evident by looking at lines 12 to 14 of PFAM that the

processor keepsmySharetemplates when it sends upstream. We also know by theorem 7.6that they all

sent templates upstream on the corresponding iterations. Now for any pair of processorsk + i andk + j

wherei < j, the templates that processork + i kept i iterations ago cannot be the ones that processor

k + j kept j iterations ago. This is true because it takes at least(j − i) iterations to transmit templates

from j to i and processork+j kept themj iterations ago, and consequently, they cannot reach processor

k + i by j − (j − i) = i iterations ago.

Theorem 7.8:Template ownership delay

The templates that a processork has, at the current iteration, were created at leastn− k− 1 iterations

ago

Proof: Since templates are created in processn−1 on line 30 of the code of PFAM. These templates

maybe sent upstream one step of the pipeline per iteration. The distance fromk to processorn − 1 is

equal ton− k− 1, so the templates thatk has must have been created at leastn− k− 1 iterations ago.
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Theorem 7.9:Network size lower bound

If a processork sends templates upstream on a given iteration, then the number of templatesN that

existed in the systemn− 1− k iterations ago complies with the condition:

N > (n− k)myShare (17)

Proof: Notice that if processork sends templates upstream then it complies with condition 14

and by Theorem 8.7 all processors fromk on-wards keptmySharetemplates and these templates are all

distinct. Also by theorem 7.8 all these templates where created at leastn− k − 1 iterations ago. So the

number of templates that existed in the systemn− k − 1 iterations ago is at least:

N ≥ |myTemplates|+ (n− 1− k)myShare

> myShare+ (n− 1− k)myShare= (n− k)myShare (18)

Theorem 7.10:Template ownership bound

A processork in the pipeline cannot have more than myShare templates, and it cannot own less than

max(0, myShare− p(2(n− 1− k)− 1)) templates.

Proof: The fact that a processork can not exceedmyShareof templates has already been shown

by theorem 7.4. Furthermore, the fact that it cannot own less that 0 templates is obvious. What needs to

be proven then is that ifmyShare> p(2(n − k − 1) − 1) Then the number of templates will never be

less thanmyShare− p(2(n− k − 1)− 1) templates.

To prove this let us assume a steady state in the pipeline where nodek hasmySharetemplates, and the
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worst case possible scenario. In this scenario processk would receive from processk − 1 packets ofp

pattern/template(Ii,wi) pairs where thewi could be the uncommitted node, and would send downstream

packets ofp pattern/template pairs where thewi no longer is the uncommitted node. This means that on

each iteration processk would be losingp patterns to the neighboring processors in the pipeline.

Patterns lost to the neighboring processors in the pipelinewill travel, in a worst case scenario, all the

way downstream to the last processor in the pipeline and afterwords find their way back to processork.

If this is the situation then processork will have to waitn− 1− k units of time, for the patterns sent, to

reach processorn− 1 and then wait anothern− 1− k iterations for the patterns to come back upstream.

This is a total of2(n− 1− k) iterations before a packet ofp templates sent downstream by processork

is seen again by processork. If during these2(n− 1− k)− 1 iterations processork has the bad luck of

sendingp templates of it’s own templates downstream at each iteration, then during that time processork

would have lostp(2(n−1−k)−1) templates and would possess a total ofmyShare−p(2(n−1−k)−1)

templates.

Theorem 7.11:Overflow impossibility

The first processor in the pipeline will always be able to absorbthe templates that have been sent to

it from the next processor downstream.

Proof: Let us assume the contradiction that it cannot absorb the templates it has received from

the next processor downstream. This means that processor 0 complies with condition 14 and that is has

to send templates back. By theorem 7.9 the number of templates N that existed in the systemn − 1

iterations ago complies with equation 17. But by line 35 of PFAM we have:
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N > n×myShare= n

⌈
nodes

n

⌉

≥ n

(
nodes

n

)

= nodes (19)

This means that the numberN of templates that existed in the systemn− 1 iterations ago is greater

thannodes, the number of templates that processor 0 is aware of, and this is a contradiction of theorem

7.2.

Theorem 7.12:Pipeline depth invariance

The difference in the number ofmySharethat two arbitrary processors in the pipeline have cannot

exceedp + 1 wherep is the packet size. Note that the difference in number of templates is independent

of the pipeline size n.

Proof: First, by theorem 7.2 we know that a processork is aware of the number of templates that

existedn−1−k iterations ago. Also, the largest difference in the number of templates that two processors

are aware of is found in the difference between processor0 and processorn − 1. Now, let us assume

that processor 0 is aware ofnodes0 templates. Since this amount of templates existedn − 1 iterations

ago and we can create a maximum ofp templates per iteration then themaximumnumber of templates

that processorn − 1 can be aware of isnodes0 + (n − 1)p. This means that the value ofmySharefor

processor 0 is

myShare0 =

⌈
nodes0

n

⌉

≥ nodes0
n

(20)

and the value ofmySharefor processorn− 1 is at the most

mySharen−1 =

⌈
nodes0 + (n− 1)p

n

⌉

≤ nodes0 + (n− 1)p

n
+ 1 (21)
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We also know that the number of templates that each processork owns is less than or equal tomySharek.

Hence, the maximum amount of difference in templates between 2 processors in the pipeline is less than

or equal to

mySharen−1 −myShare0 =

⌈
nodes0 + (n− 1)p

n

⌉

−
⌈

nodes0
n

⌉

≤

nodes0 + (n− 1)p

n
+ 1− nodes0

n
=

(n− 1)p

n
+ 1 ≤ p + 1 (22)

Theorem 7.13:Partial evaluation correctness

If we make the packet sizep of PFAM equal to the size of the training set and set the number of

processors ton = 1, then the parallel algorithm presented here is equivalent to Fuzzy ARTMAP (FAM).

Proof: Let us start by noting that if the number of the processor isn = 1 then the functions

RECV-NEXT and SEND-PREV do not perform any computation, and can be omitted. This implies that

the variables exchanged in these processors also do not holdany information and can be eliminated too.

These variables are the set of templates{wi
k+1} coming from the next process in the pipeline and the

set of variables{wi
to(k−1)} going to the processor upstream in the pipeline. By eliminating these lines

of code and doing partial evaluation and eliminating unnecessary variables we end up with the code of

figure 13

Notice that the only differences with Fuzzy ARTMAP are that

1) the set of patterns doesn’t come as a parameter.

2) We are using the function FIND-WINNER to find the winner node and

3) Templates are being extracted and reinserted in the template set.
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To guarantee that the first templates created receive priority over newer templates we number the templates

when created with a sequential index and use this index to determine who wins competition in case of

a tie between templates.

Theorem 7.14:Workload balance variance bound

In a pipeline with an arbitrary number of processors and a downstream packet sizep, the standard

deviation of the number of templates that each processor owns cannot exceed

p

2
√

3
(23)

Proof: Given that in the PFAM algorithm there are many templates in transit we cannot knowexactly

how many templates each processor possesses. We can though,approximate a worst case workload balance

scenario if we assume, as will usually be the case, that the number of comparisons that a given processor

performs on each iteration will be proportional to the number of templates that it is allowed to possess

or O(myShare). In a worst case scenario, on every iteration the network will be creatingp new templates

so processk will have a value of

nodesk = nodes0 + kp

The expected value ofmySharefor this worst case scenario will be

Avg(myShare) =

∑n−1
k=0

nodes0+kp
n

n
=

nodes0 + p
n

∑n−1
k=0 k

n
=
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nodes0 + p
2(n− 1)

n
=

nodes0
n

+
p

2n
(n− 1)

and the variance will be

1

n

n−1∑

k=0

(
nodes0 + kp

n
− nodes0

n
− p

2n
(n− 1)

)2

=

After some algebraic calculations we can show that the variance is equal to

p2 n2 − 1

12n2

and finally this gives us a standard deviation of

√

p2
n2 − 1

12n2
=

p

2
√

3

√

1− n−2 <
p

2
√

3
(24)

If, for example, we use a packet size of 64 patterns, then the worst possible standard deviation in the

value ofmySharewould not exceed

64

2
√

3
=

32√
3

= 18.4752

regardlessof the pipeline sizen.
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VIII. E XPERIMENTS

Experiments were conducted on three databases: one real–world database and two artificially–generated

databases (Gaussian distributed data). Training set sizesof 1000 × 2i, i ∈ {5, 6, . . . , 9}, that is 32,000

to 512,000 patterns were used for the training of PFAM an FAM. The test set size was fixed at 20,000

patterns. The number of processors in the pipeline varied from p = 1 to p = 32. Pipeline sizes were also

increased in powers of 2. The packet sizes used were 64 and 128 for the CoverType and the Gaussian

databases, respectively.

To avoid additional computational complexities in the the experiments (beyond the one that the size

of the training set brings along) the values of the ART network parameters̄ρa, andα were fixed (i.e.,

the values chosen were ones that gave reasonable results forthe database of focus). For each database

and for every combination of(p, PT) = (partition, training set size) values we conducted 12 independent

experiments (training and performance phases), corresponding to different orders of pattern presentations

within the training set. As a reminder Fuzzy ARTMAP performance depends on the values of the network

parameters̄ρa, andα, as well as the order of pattern presentation within the training set.

All the tests where conducted on theOPCODE Beowulf cluster of workstations of the Institute for

Simulation and Training. This cluster consists of 96 nodes, with dual Athlon 1500+ processors and

512MB of RAM. The runs were done in such as way as to utilize halfas many nodes asp. Thus, there

were two MPI processes per node, one per processor.

The metrics used to measure the performance of the pipelined approach were:

1) Classification performance of PFAM (Higher classification performance is better).

2) Size of the trained, PFAM.
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3) Speedup of PFAM compared to FAM.

To calculate the speedup, we simply measured the CPU time for each run.

VIII.-A. Forest CoverType Database

The first database used for testing was the Forest CoverType database provided by Blackard (Blackard,

1999), and donated to the UCI Machine Learning Repository (University of California, Irvine, 2003).

The database consists of a total of 581,012 patterns each one associated with 1 of 7 different forest tree

cover types. The number of attributes of each pattern is 54, but this number is misleading since attributes

11 to 14 are actually a binary tabulation of the attributeWilderness-Area, and attributes 15 to 54

(40 of them) are a binary tabulation of the attributeSoil-Type. The original database values are not

normalized to fit in the unit hypercube. Thus, we transformed the data to achieve this. There are no

omitted values in the data.

Patterns 1 through 512,000 were used for training. The test set for all trials were patterns 561,001 to

581,000. A visualization of the first 3 dimensions of the Forest CoverType database can be seen in figure

14. Different tones correspond to different classes. As it can be seen from the figure the class boundaries

are quite complex. Classification performance of different machine learning algorithms for this database

has been reported in the range of 75%.

VIII.-B. Gaussian Databases

The Gaussian data was artificially generated using the polar form of the Box–Muller transform with

theR250 random number generator by Kirkpatrick and Scholl (Kirkpatrick & Stoll, 1981). We generated

2-class, 16 dimensional data. All the dimensions are identically distributed with the same meanµ and
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varianceσ2 except one. The discriminating dimension has offset means sothat the overlap between the

Gaussian curves is set at 5% for one database and at 15% for theother. 532,000 patterns where generated

for each Gaussian database. 512,000 patterns were used for training; the remaining 20,000 patterns were

used for testing.

The speed-up performance of the CoverType, and the Gaussian 5% overlap, and the Gaussian 15%

overlap are reported in Figures 15, 16 and 17, respectively. One important conclusion from these results

is that the speed-up achieved using PFAM grows linearly with the number of processors used in the

pipeline. Also, we notice that the slope of increase varies depending on the number of patterns used

in the training phase of Fuzzy ARTMAP. Furthermore, for 32,000 training patterns and 64,000 training

patterns the speed-up curve exhibits a knee (saturation phenomenon). This is likely due to the fact that

for the smaller training sets, the overhead for pattern transfer becomes more pronounced. This saturation

is more obvious for the 32,000 training patterns than for the64,000 patterns. This phenomenon is not

observed for training patterns 128,000, 256,000 or 512,000.

Tables IV and V exhibit the generalization performance and the size of the architectures created by

FAM. For the Gaussian 5% overlap database the best generalization performance observed is around 93%,

while the observed compression ratio (i.e., ratio of numberof patterns used in training versus number of

templates) is equal to 5. F or the 15% Gaussian dataset these numbers are 80% (maximum generalization

performance) and 3 (compression ratio). Note that the best generalization performance expected with

the 5% Gaussian and the 15% Gaussian databases are 5% and 15%,respectively. Also, note that the

compression achieved with FAM is relatively small, but the objective of this paper was not to produce a

high compression for the training data but to demonstrate the correct, sensible pipelined implementation
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of the main loop in FAM (that can be easily extended to other ART architectures).

IX. SUMMARY - CONCLUSIONS

We have produced a pipelined implementation of Fuzzy ARTMAP. This implementation can be

extended to other ART neural network architectures that have similar competitive structure as Fuzzy

ARTMAP. It can also be extended to other neural networks that are designated as ”competitive” neural

networks, such as PNN, RBFs, as well as other “competitive” classifiers. We have introduced and proven a

number of theorems pertaining to our pipeline implementation. The major purpose of these theorems was

to show that PFAM (a) is equivalent with the sequential version of Fuzzy ARTMAP,(b) it does not suffer

from inconsistencies, and (c) it exhibits good performance. In particular, the good performance of PFAM

was exhibited by observing the linear speed-up achieved as the number of processors increased from 1 to

32. In the process, we produced other performance results related to the generalization performance and

the size of the architectures that Fuzzy ARTMAP created. We believe that our objective of appropriately

implementing Fuzzy ARTMAP on a Beowulf cluster has been accomplished and a clear evidence of this

assertion are the speed-up results exhibited by PFAM and illustrated in Figures 15-17. Extension of our

implementation approach to other ”competitive” classifiersis possible. Extension of our implementation

to the match-tracking Fuzzy ARTMAP algorithm is more involvedand it is the topic of our current

research.
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Fig. 1. Simplified Block Diagram of the Fuzzy ARTMAP Architecture. It consists of an input layer (F a
1 ), where the input

patterns are applied, a category representation layer (F a
2 ) where compressed representations of these input patterns are formed,

and an output layer (F b
2 ) where labels of the input patterns are produced. LayerF a

0 is a pre-processing layer that complementary
encodes the input patternsa to form input patternsI.



OFF-L INE, MATCH TRACKING, FUZZY ARTMAP TRAINING PHASE(
{
I1, I2, . . . , IPT

}
, ρ̄a, α, epochs, ε)

1 w0 ← (1, 1, . . . , 1)
︸ ︷︷ ︸

2Ma

2 templates← {w0}
3 iterations← 0
4 repeat
5 modified← FALSE

6 for each Ir in
{
I1, I2, . . . , IPT

}

7 do ρ← ρ̄a

8 repeat
9 Tmax ← 0

10 status← none

11 for each wa
j in templates

12 do if ρ(Ir,wa
j ) ≥ ρ and T (Ir,wa

j , α) > Tmax

13 then
14 Tmax ← T (Ir,wa

j , α)
15 jmax ← j

16
17 if wa

jmax

6= w0

18 then if label(Ir) = label(wa
jmax

)
19 then status← Allocated

20 else status← Matchtracking

21 ρ← ρ(Ir,wa
jmax

) + ε

22 until status6= Matchtracking

23 if status= Allocated

24 then if wa
jmax

6= (wa
jmax

∧ Ir)
25 then wa

jmax

← wa
jmax

∧ Ir

26 modified← TRUE

27 else templates← templates∪ {Ir}
28 modified← TRUE

29 iterations← iterations+ 1
30 until (iterations= epochs) or (modified= FALSE)
31 return templates

Fig. 2. Off-Line, Match-Tracking Fuzzy ARTMAP’s Training phase. It involves finding the category that best matches the
input pattern, and passes the vigilance, and is mapped to the correct label. Input patterns are presented repeatedly to the Fuzzy
ARTMAP architecture until a certain number of iterations, referred to as epochs, is reached. The match-tracking mechanism is
enforced.



ON-L INE, MATCH-TRACKING FUZZY ARTMAP TRAINING PHASE(
{
I1, I2, . . . , IPT

}
, ρ̄a, α, ε)

1 w0 ← (1, 1, . . . , 1)
︸ ︷︷ ︸

2Ma

2 templates← {w0}
3 for each Ir in

{
I1, I2, . . . , IPT

}

4 do ρ← ρ̄a

5 repeat
6 Tmax ← 0
7 status← NoneFound

8 for each wa
j in templates

9 do if
[

ρ(Ir,wa
j ) ≥ ρ

]

and
[

T (Ir,wa
j , α) > Tmax

]

10 then
11 Tmax ← T (Ir,wa

j , α)
12 jmax ← j

13
14 if wa

jmax

6= uncommitted
15 then if label(Ir) = label(wa

jmax

)
16 then status← Allocated

17 else status← Matchtracking

18 ρ← ρ(Ir,wa
jmax

) + ε

19 until status6= Matchtracking

20 if status= Allocated

21 then
22 wa

jmax

← wa
jmax

∧ I

23 else
24 templates← templates∪ {Ir}
25 return templates

Fig. 3. On-Line, Match-Tracking Fuzzy ARTMAP’s Training phase. Itinvolves finding the category that best matches the
input pattern, and passes the vigilance, and is mapped to the correct label. Input patterns are presented to the Fuzzy ARTMAP
architecture only once, in contrast to the off-line version of match-tracking Fuzzy ARTMAP. The match-tracking mechanism is
enforced.



FUZZY ARTMAP’ S PERFORMANCEPHASE(Ir, templates, ρ̄a, β)
1 Tmax ← 0
2 jmax ← NIL

3 for each wa
j in templates

4 do
5 if ρ(Ir,wa

j ) ≥ ρ̄a and T (Ir,wa
j , β) > Tmax

6 then
7 Tmax ← T (Ir,wa

j , β)
8 jmax ← j

9
10 if wa

jmax

6= w0

11 then return label(wa
jmax

)
12 else return NIL

Fig. 4. Fuzzy ARTMAP’s performance phase. In this phase a test input pattern is presented to Fuzzy ARTMAP and the
category that best matches this input pattern and passes the vigilance is chosen. The predicted label of this test input pattern
is the label that this chosen category is mapped to. Quite often, in the performance phase of Fuzzy ARTMAP the baseline
vigilance parameter value is chosen equal to zero.



ON-L INE, NO MATCH-TRACKING FUZZY ARTMAP TRAINING PHASE(
{
I1, I2, . . . , IPT

}
, ρ, α)

1 w0 ← (1, 1, . . . , 1)
︸ ︷︷ ︸

2Ma

2 templates← {w0}
3 for each Ir in

{
I1, I2, . . . , IPT

}

4 do
5 repeat
6 Tmax ← 0
7 status← NoneFound

8 for each wa
j in templates

9 do if
[

ρ(Ir,wa
j ) ≥ ρ

]

and
[

T (Ir,wa
j , α) > Tmax

]

10 then
11 Tmax ← T (Ir,wa

j , α)
12 jmax ← j

13
14 if wa

jmax

6= w0 and label(Ir) = label(wa
jmax

)
15 then wa

jmax

← wa
jmax

∧ Ir

16 else templates← templates∪ {Ir}
17 until
18 return templates

Fig. 5. On-Line, No-Match-Tracking Fuzzy ARTMAP’s Training phase. This is the version of Fuzzy ARTMAP that we
implemented in this paper, and for simplicity it is refereed to as Fuzzy ARTMAP. It involves finding the category that best
matches the input pattern, and passes the vigilance, and is mapped to the correct label. If the first chosen node is not mapped
to the correct label an uncommitted node is chosen next to represent thisinput pattern (i.e., the match-tracking mechanism is
disengaged).
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Fig. 8. Pipeline Structure.

Fig. 9. Exchange of packets between processors. Note, packets arelisted for processork only. Optimum packet sizes were
estimated using the graphs of figure 6 and 7. Packets sent upstream aredepicted on top of the PROCESSORboxes and consist
of only the templates that have to be reassigned to a specific Processor template pool. Packets sent downstream are depicted
below of the PROCESSORboxes and consists of triads of templatew

i, input patternIi, and activationT i.



INIT(p)
1 nodes← 0
2 myTemplates← {}
3 ∀2p

i=1

(

wi
to(k−1) ← none

)

4 ∀p
i=1

(
wi ← none

)

5 ∀p
i=1I

i ← none

6 myShare← 0
7 newNodes← 0
8 newNodesk+1 ← 0
9 continue← TRUE

Fig. 10. Initialization procedure for the PFAM implementation. Since no processing has begun, all counters are set to 0. These
correspond to thenodes, newNodesandmyShare variables. The corresponding sets and packets are initialized to empty (since
packets are of fixed size, their elements are initializednone).



PFAM(k, n, ρa, α, p)
1 INIT(p)
2 while continue
3 do
4 while |myTemplates| > myShare
5 do
6 EXTRACT-TEMPLATE

(

myTemplates,
{

wi
to(k−1)

})

7 SEND-NEXT
(
k, n,

{(
wi, Ii, T i

)
: i = 1, 2, . . . , p

})

8 RECV-NEXT
(
k, n,

{
wi

k+1 : i = 1, 2, . . . , 2p
}

, newNodesk+1

)

9 SEND-PREV
(

k,
{

wi
to(k−1) : i = 1, 2, . . . , 2p

}

, newNodes
)

10 RECV-PREV
(
k,

{(
wi

k−1, I
i
k−1, T

i
k−1

)
: i = 1, 2, . . . , p

})

11 newNodes← newNodesk+1

12 S ←
{
wi

k+1

}

13 for each i in {1, 2, . . . , p}
14 do FIND-WINNER(Ii,wi, T i, ρa, α,S)
15 myTemplates← myTemplates∪ S
16 if Ii

k−1 = EOF

17 then continue← FALSE

18 else S ←
{

wi
to(k−1)

}

19 for each i in {1, 2, . . . , p}
20 do FIND-WINNER(Ii

k−1,w
i
k−1, T

i
k−1, ρa, α,S)

21
(
Ii,wi, T i

)
←

(
Ii
k−1,w

i
k−1, T

i
k−1

)

22 for each i in {1, 2, . . . , p}
23 do FIND-WINNER(Ii,wi, T i, ρa, α, myTemplates)
24 if k = n− 1
25 then if class(Ii) = class(wi)
26 then
27 myTemplates← myTemplates∪ {Ii ∧wi}
28 else newTemplate← Ii

29 index(newTemplate)← newNodes+ nodes
30 myTemplates← myTemplates∪ {Ii,wi}
31 newNodes← newNodes+ 1
32 if newNodes> 0
33 then
34 nodes← nodes+ newNodes
35 myShare←

⌈
nodes

n

⌉

36 SEND-NEXT (k, n, {(none, none, 0)})
37 RECV-NEXT

(
k, n,

{
wi

k+1 : i = 1, 2, . . . , 2p
}

, newNodek+1

)

38 myTemplates← myTemplates∪
{
wi

k+1 : i = 1, 2, . . . , 2p
}

Fig. 11. Parallel Fuzzy ARTMAP (PFAM) implementation. Exchange of templates between processors is done in lines 4–10.
Templates received from the processor downstream are compared with the input pattern/template pairs sent downstream in lines
12–15. Templates sent to the processor upstream are compared with theincoming templates from this processor in lines 18–21.
The input pattern/template pairs going downstream are compared with the local pool of templates in lines 22–23. The rest of
the loop on lines 24–35 do necessary bookkeeping updates if the current processor is the last in the pipeline.



FIND-WINNER(I,w, T, ρa, α,S =
{
wi

}
)

1 idx← −1
2 for each wi in S
3 do if

[
ρ(I,wi) ≥ ρa

]

4 then
5 if

[
T (I,wi, α) > T

]

6 then
7 T ← T (I,wi, α)
8 idx← i

9 else if
[
T (I,wi, α) = T

]
and index(wi) < index(w)

10 then T ← T (I,wi, α)
11 idx← i

12 if idx 6= −1
13 then
14 EXTRACT(widx,S)
15 ADD(w,S)
16 w← widx

17 return TRUE

18 else
19 return FALSE

Fig. 12. Utility function to find the best candidate template in a template list. Neededby the PFAM implementation. Given
a current input patternI with its current templatew and activation T, this procedure compares the input with all the members
of a given template poolS. If the setS holds a template that is better representative ofI than w, then these templates are
swapped (lines 14–15) and the winner is left inw.



PROCESS(ρa, α)
1 myTemplates← {}
2 ∀p

i=1I
i ← none

3 newNodes← 0
4 continue← TRUE

5 RECV-PREV
(
k,

{(
wi

k−1, I
i
k−1, T

i
k−1

)
: i = 1, 2, . . . , p

})

6 newNodes← 0
7 for each i in {1, 2, . . . , p}
8 do FIND-WINNER(Ii,wi, T i, ρa, α, myTemplates)
9 if class(Ii) = class(wi)

10 then
11 myTemplates.ADD({Ii ∧wi})
12
13 else
14 newTemplate← Ii

15 index(newTemplate)← newNodes
16 myTemplates.ADD({Ii,wi})
17 newNodes← newNodes+ 1
18

Fig. 13. Partial evaluation of PFAM using number of processorsp = 1. Having only one processor implies that the packet
size is the size of the training set. Also the while loop and transmissions can be eliminated since these events happen between
processors (we have only one). The only transmission procedure that survives is the RECV-PREV which reads from the input
stream. Comparison with pool of templates is sequential and is taken care of by the FIND-WINNER procedure.



Fig. 14. A random sample of 5,000 Forest Covertype data-points out of the available 581,012 data-points is shown. The data-points are projected to
the first 3 dimensions of the database. Different colors for the data-points represent different class labels.
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to process the input patterns over the timeT1 it takes one processor to do the same amount of work, or asTp

T1
. Speedup for the smallest database sizes
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Fig. 16. Parallel speedup versus number of processors for the Gaussian 5% overlap database. Speedup is measured as the ratio of the timeTp it takes
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. Speedup for the smallest

database sizes 32,000 and 64,000 input patterns levels out faster after 16 processors. Speedup for the largest database sizes is close to linear, which is
the theoretical optimum.
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Fig. 17. Parallel speedup versus number of processors for the Gaussian 15% overlap database. Speedup is measured as the ratio of the timeTp it
takesp processors to process the input patterns over the timeT1 it takes one processor to do the same amount of work, or asTp
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. Speedup for the

smallest database sizes 32,000 and 64,000 input patterns levels out faster after 16 processors. Speedup for the largest database sizes is close to linear,
which is the theoretical optimum.



Examples (Thousands)Classification PerformanceAverage Templates Created
32 70.29 5148.83
64 74.62 11096.66
128 75.05 22831
256 77.28 49359.33
512 79.28 100720.75

TABLE III

PERFORMANCERESULTS ON THECOVERTYPEDATABASE. IN THIS TABLE, THE AVERAGE CLASSIFICATION PERFORMANCE

AND THE AVERAGE NUMBER OF TEMPLATES CREATED BYFAM OR PFAM ARE DEPICTED, AS THE NUMBER OF POINTS IN

THE TRAINING SET INCREASES FROM32K TO 512K . AVERAGE PERFORMANCES ARE REPORTED FOR12 DIFFERENT ORDERS

OF TRAINING PATTERN PRESENTATIONS IN THE TRAINING PHASE OFFUZZY ARTMAP. CLASSIFICATION RESULTS ARE

REPORTED FOR A TEST SET OF20K INPUT PATTERNS THAT IS DIFFERENT FROM THE PATTERNS USED IN THE TRAINING SET.

Examples (Thousands)Classification PerformanceAverage Templates Created
32 92.50 7032.83
64 92.74 13513.41
128 92.91 25740.5
256 93.11 48854.5
512 93.21 92365.66

TABLE IV

PERFORMANCERESULTS ON A2-CLASS, 16-DIMENSIONAL GAUSSIAN DATASET WITH 5% OVERLAP. THE OVERLAP OF5%

IMPLIES THAT THE BEST POSSIBLE CLASSIFIER FOR THIS DATASET(I .E., THE BAYES CLASSIFIER) CAN ACHIEVE AN

OPTIMUM ERROR RATE OF5%. IN THIS TABLE, THE AVERAGE CLASSIFICATION PERFORMANCE AND THEAVERAGE

NUMBER OF TEMPLATES CREATED BYFAM OR PFAM ARE DEPICTED, AS THE NUMBER OF POINTS IN THE TRAINING SET

INCREASES FROM32K TO 512K . AVERAGE PERFORMANCES ARE REPORTED FOR12 DIFFERENT ORDERS OF TRAINING

PATTERN PRESENTATIONS IN THE TRAINING PHASE OFFUZZY ARTMAP. CLASSIFICATION RESULTS ARE REPORTED FOR A

TEST SET OF20K INPUT PATTERNS THAT IS DIFFERENT FROM THE PATTERNS USED IN THE TRAINING SET.



Examples (Thousands)Classification PerformanceAverage Templates Created
32 79.25 10608.83
64 79.82 20695.83
128 80.10 40319
256 80.32 78540.58
512 80.54 152827.91

TABLE V

PERFORMANCERESULTS ON A2-CLASS, 16-DIMENSIONAL GAUSSIAN DATASET WITH 15% OVERLAP. THE OVERLAP OF

15% IMPLIES THAT THE BEST POSSIBLE CLASSIFIER FOR THIS DATASET(I .E., THE BAYES CLASSIFIER) CAN ACHIEVE AN

OPTIMUM ERROR RATE OF15%. IN THIS TABLE, THE AVERAGE CLASSIFICATION PERFORMANCE AND THEAVERAGE

NUMBER OF TEMPLATES CREATED BYFAM OR PFAM ARE DEPICTED, AS THE NUMBER OF POINTS IN THE TRAINING SET

INCREASES FROM32K TO 512K . AVERAGE PERFORMANCES ARE REPORTED FOR12 DIFFERENT ORDERS OF TRAINING

PATTERN PRESENTATIONS IN THE TRAINING PHASE OFFUZZY ARTMAP. CLASSIFICATION RESULTS ARE REPORTED FOR A

TEST SET OF20K INPUT PATTERNS THAT IS DIFFERENT FROM THE PATTERNS USED IN THE TRAINING SET.


