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The Importance of Tools
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Algorithm developers are not necessarily hardware 
designers

The usual flow is to create an algorithm in software and 
then use tools to implement such algorithm on a target 
platform

− For FPGAs this does require actually generating the hardware for a given 
algorithm

− This means that the quality of the tool used directly impacts the quality of 
results a designer obtains

The key question is, if the obtained result does not meet 
the required performance or area metric, is there anything 
the tool offers to aid the designer?



Altera’s Approach
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Two tools provide access to algorithmic development for 
FPGAs, including floating point arithmetic

OpenCL SDK
− The tool converts OpenCL source program (C-based) into a circuit that 

implements the given algorithm in hardware

− Automatically connects the core algorithm to PCIe/DDR interfaces to build 
a complete system that can be immediately programmed onto an FPGA 
without any user intervention

− No hardware design expertise is required to get a functional design

DSP Builder
− A tool for algorithmic development of an IP

− The output is a block that matches user specifications



Altera OpenCL SDK (Highlights)

4



OpenCL Overview

Open Computing Language 
− Software-centric

C/C++ API for host program
OpenCL C (C99-based) for 
acceleration device

− Unified design methodology
CPU offload

− Memory Access
− Parallelism
− Vectorization

Host CPU
Hardware 

Acceleration

C/C++ API OpenCL C



OpenCL Abstract Programming Model

Explicit Data Storage
− Hierarchical Memory Model

Explicit Parallelism
− Vectorization

− Multi-threading
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main() {

read_data( … );

manipulate( … );

clEnqueueWriteBuffer( … );

clEnqueueNDRange(…,sum,…);

clEnqueueReadBuffer( … );

display_result( … );

}

Compute
Unit

__kernel void

sum(__global float *a,

__global float *b,

__global float *y)

{

int gid = get_global_id(0);

y[gid] = a[gid] + b[gid];

}



x86

Flow

PCIe

OpenCL 

Compiler
Standard

C Compiler

SOFEXE

OpenCL
Host Program + Kernels

Verilog

__kernel void

sum(__global float *a,

__global float *b,

__global float *y)

{

int gid = get_global_id(0);

y[gid] = a[gid] + b[gid];

}

main() {

read_data( … );

manipulate( … );

clEnqueueWriteBuffer( … );

clEnqueueNDRange(…,sum,…);

clEnqueueReadBuffer( … );

display_result( … );

}

Quartus II



FPGA

FPGA OpenCL Architecture

Modest external memory bandwidth

Extremely high internal memory bandwidth

Highly customizable compute cores
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Compiling OpenCL to FPGAs

x86

PCIe

ACL 
Compiler

Standard
C Compiler

SOF X86 binary

OpenCL
Host Program + Kernels

OpenCL
Host Program + Kernels

main()

{

read_data_from_file( … );

maninpulate_data( … );

clEnqueueWriteBuffer( … );

clEnqueueKernel(…, sum, …);

clEnqueueReadBuffer( … );

display_result_to_user( … );

}

__kernel void

sum(__global const float *a,

__global const float *b,

__global float *answer)

{

int xid = get_global_id(0);

answer[xid] = a[xid] + b[xid];

}

Kernel Programs

Host Program



Compiling OpenCL to FPGAs

__kernel void

sum(__global const float *a,

__global const float *b,

__global float *answer)

{

int xid = get_global_id(0);

answer[xid] = a[xid] + b[xid];

}

Load Load

Store

Load Load

Store

Load Load

Store

Load Load

Store

Load Load

Store

Load Load

Store

PCIe

DDRx



Floating-Point Support in
OpenCL SDK
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Conformant SP FP Support
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OpenCL SDK features a complete single-precision FP 
support

All operations are tested to be conformant within the 
specified ULP bound

Use of a float type is sufficient to take advantage of this 
feature



Verifying Conformance
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Each function is 
tested in hardware 
using ~20 Billion 
test vectors

For single-input 
functions, this is an 
exhaustive test

− For multi-input 
functions, this is a 
comprehensive test

94 FP functions
− 1.88 Trillion test 

vectors to achieve FP 
conformance

PCIe

Host µP

Host

Program Altera FPGA

Standard C

Compiler

Standard C

Compiler

OpenCL

Host Program + Kernel

OpenCL

Host Program + Kernel

SDK for
OpenCL
SDK for
OpenCL

Design 
Under Test



Additional Features
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The compiler enables the user to optimize FP operations to 
improve the quality of results

--fp-relaxed
− This flag enables the compiler to reorder FP operations to create a better 

implementation. It needs to be supplied by a user because it has an impact on 
the results produced by a given algorithm

--fpc
− This flag enables the user to inform the tool that the data being processed is 

both finite and the rounding mode can be round-to-zero, instead of round-to-
nearest-even

This saves a significant amount of area in many applications

Hardened Single-Precision FP operators
− When Arria 10 is the target FPGA for an OpenCL design, hardened FP 

operators are used automatically – conformant to OpenCL standardNew



Optimization Examples
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Fast Fourier Transform

Matrix Multiplication



FFT
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A classical signal processing application

Frequently implemented using fixed-point arithmetic
− This is ok for some applications, but not for all

Key operations
− add,

− subtract

− multiply



Fused Add-Sub operation
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A x B

A + C

A - C

A x B + C

A x B – C

Acc = A x B + Acc

Vector dot Products

Complex Multiply, FFT 
Butterfly

18-bit 
Precision 

Mode

High 
Precision 

Mode

Single-Precision Floating Point Variable Precision Fixed Point 

Easily make tradeoffs during design cycle
– Same DSP Block support Variable Precision integer math as well as 

single-precision floating point

– Precision flexibility throughout the DSP datapath

Arria 10 Hardened FP DSP Blocks



Implementing Complex Math with Hardened FP
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Complex Multiplication and Addition
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Results
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Optimization ALMs DSPs

IEEE754 Conformant 62126 60

FPC 39662 60

Fused-Add-Sub + FPC 34102 60

Hardened FP 6208 98



Matrix Multiplication Source Code

#define BLOCK_SIZE 4
#define AS(i, j) A_local [j + i * BLOCK_SIZE ]
#define BS(i, j) B_local [j + i * BLOCK_SIZE ]

__kernel  void mm( __global float *restrict C, __global float *A, __global float *B, 
__local float *restrict A_local, __local float *restrict B_local)

{
int bx = get_group_id(0);
int by = get_group_id(1);
int tx = get_local_id(0);
int ty = get_local_id(1);

float sum = 0.0f;
for (int i = 1024* BLOCK_SIZE * by, j = BLOCK_SIZE * bx;

i <= 1024* BLOCK_SIZE * (1+by)  - 1;
i += BLOCK_SIZE, j += BLOCK_SIZE*1024) {

AS(ty, tx) = A[i + 1024* ty + tx];
BS(ty, tx) = B[j + 1024* ty + tx];
barrier(CLK_LOCAL_MEM_FENCE);

#pragma unroll
for (int k = 0; k < BLOCK_SIZE; ++k) {

sum += AS(ty, k) * BS(k, tx);

}
barrier(CLK_LOCAL_MEM_FENCE);

}
C[get_global_id(1) * get_global_size(0) + get_global_id(0)] = sum;

}

Setup

Load Section of 

each Matrix to 

Local Memory

Dot Product

Barrier

Barrier

Store Result



What does --fp-relaxed do?
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Does --fpc do anything special for Matrix Multiplication?
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In addition to the regular benefits, --fpc flow recognizes 
adder trees as special constructs that can be further 
simplified

Using the fact that one adder directly feeds another in a 
tree structure, enables us to reduce the adder-tree area by 
an additional ~27%



How does Matrix Multiplication use Hardened FP Blocks?
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In matrix multiplication we can create balanced dot 
products that can be implemented using vector modes in 
Arria 10 Hardened FP DSP Block

The dot products are entirely contained within the DSP 
blocks



DOT Product Example
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Results
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Configuration ALMs DSPs

BLOCK=128, V=8, FPC 315061 1034

BLOCK=128, V=8, HFP 61293 1034

-80.55%



DSP Builder (Highlights)
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Simulink® - Simulation and Model-Based Design
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Dynamic graphical modeling 
environment 

Simulink®

− Dynamically develop entire systems

− Simulate and interact with the system

− Explore different architectures

− Analyze results

Libraries of predefined blocks 
− Core Libraries: Sources, Sinks, 

Continuous, Math, etc.

− Domain-specific Libraries: DSP 
System Toolbox, etc.

− Altera Additions
Altera DSP Builder Advanced Blockset

Altera DSP Builder Standard Blockset



DSP Builder Advanced
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Schematic Entry
− Draw your algorithm, simulate & debug in Simulink

Constraint-driven design
− Set desired data rate, clock frequency & device

Automated pipelining
− Timing closure at high clock rates of 300-400+ MHz

Models silicon speeds
− Different devices families & speed grades result in different HDL

Automated resource sharing
− Marshall data though limited resources on consecutive clock cycles

High performance floating-point design
− Synthesize floating-point optimized HDL 



DSP Builder Schematic Entry
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Data-type propagation 
simplifies  schematic 

design. Blocks have 

simple type 
propagation rules.

Drag & Drop blocks 
from the library.

Connect and 

parameterize

The picture shows such a schematic for an 
infinite impulse response (IIR) filter. 



Zero Latency Blocks
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Blocks are behavioural in nature
− What to do, not When to do it

− Focus on signal flow representation

Much easier debug and modification without pipeline

Behavioural input enables automatic 
pipelining and optimization



Constraint-driven design

33

Specify target device or 
device family and speed 
grade

− Design remains generic

Specify target clock frequency

Specify Avalon-MM 
characteristics

Locally guide pipelining effort 
and multiplier and memory 
implementation, if necessary



Elementary math functions supporting floating point
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Coverage of ~70 elementary math functions
Patented & published efficient mapping to FPGA hardware

− Polynomial approximation, Horner’s method, truncated multipliers, …

Compliant to OpenCL & IEEE754 accuracy standards
Rounding mode options for fundamental operators
Half- to Double-precision

Basic  Floating Point

FPAdd

FPAddExpert
FPAddN
FPSubExpert
FPAddSub \
FPAddSubExpert
FPFusedAddSub
FPMul
FPMulExpert
FPConstMul
FPAcc
FPSqrt
FPDivSqrt
FPRecipSqrt
FPCbrt
FPDiv
FPInverse
FPFloor
FPCeil
FPRound
FPRint
FPFrac
FPMod
FPDim
FPAbs
FPMin
FPMax
FPMinAbs
FPMaxAbs
FPMinMaxFused
FPMinMaxAbsFused
FPCompare
FPCompareFused

Exp, Log and Power

FPLn
FPLn1px    
FPLog10    
FPLog2     
FPExp
FPExpFPC
FPExpM1    
FPExp2     
FPExp10    
FPPowr

Trig with argument 
reduction

FPSinX
FPCosX
FPSinCosX
FPTanX
FPCotX

Inverse trigonometric 
functions

FPArcsinX\
FPArcsinPi
FPArccosX
FPArccosPi
FPArctanX
FPArctanPi
FPArctan2

Trigonometrics of pi*x

FPSinPiX
FPCosPiX
FPTanPiX
FPCotPiX

Trigonometrics misc

FPHypot
FPRangeReduction

Conversion

FXPToFP
FPToFXP
FPToFXPExpert
FPToFXPFused
FPToFP

Macro Operators

FPFusedHorner
FPFusedHornerExpert
FPFusedHornerMulti
FPFusedMultiFunction

Fixed and floating point

Floating point only



Floating Point: Variable precision
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IEEE format

7 precisions (including double and single)
float16_m10 (IEEE half)

float26_m17

float32_m23 (IEEE single)

float35_m26

float46_m35

float55_m44

float64_m52 (IEEE double)

− where floatN_mM means total length of N bits,                                                

of which M are mantissa

Format widths specifically chosen for                                    
efficient FPGA implementation

Specified on Convert block

Supported blocks are accurate within 
tolerances of given precision

Choose the right precision for your application



Soft Floating Point: Size vs. Precision Trade-off
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Averaged logic & DSP use across maths 

functions, relative to single precision 

Precision
DSP usage compared to 

single precision

Logic usage 

compared to single 

precision

f16m10 0.6 0.3

f26m17 0.9 0.6

f32m23 1 1

f35m26 1.2 1.4

f46m35 2.2 2.2

f55m44 3.7 3.4

f64m52 5.0 4.6

Half (16bit)

Single (32 bit)

Double (64 bit)

Logic: Example function (acos)Normalized* DSP count

(*scaled to single = 1)

Enhanced 
Precision 

Types



High-level Design Specification
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FIR Filter Example
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Results
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Configuration ALMs DSPs

Stratix V, 128-tap 60881 128

Arria 10, 128-tap, HFP 1676 131



IP blocks: FIR Filters

Supports multichannel, TDM, sample rate > clock rate
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IP blocks: FFTs

Full FFTs
− Fixed and Floating point

− White-box – user parameterizable & editable  IP

− Parallel, 

− Variable Sized

− Bit-Width Pruning Schemes

Basic building blocks
− Build your own custom FFTs

Parameterizable demos
− Including folded FFT demo

(low data rate, low resource)
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Conclusion
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Take-aways
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Floating point support is increasingly more important in 
FPGA applications

Innovation in FP support for FPGAs is critical
− Devices

− Tools

Because of growing diversity in the needs customers have 
for FP support, this is a great time for FP innovation



Thank You


