
High-Level Design Tools for
Floating Point FPGAs

Tom Czajkowski

The Importance of Tools

2

Algorithm developers are not necessarily hardware
designers

The usual flow is to create an algorithm in software and
then use tools to implement such algorithm on a target
platform

− For FPGAs this does require actually generating the hardware for a given
algorithm

− This means that the quality of the tool used directly impacts the quality of
results a designer obtains

The key question is, if the obtained result does not meet
the required performance or area metric, is there anything
the tool offers to aid the designer?

Altera’s Approach

3

Two tools provide access to algorithmic development for
FPGAs, including floating point arithmetic

OpenCL SDK
− The tool converts OpenCL source program (C-based) into a circuit that

implements the given algorithm in hardware

− Automatically connects the core algorithm to PCIe/DDR interfaces to build
a complete system that can be immediately programmed onto an FPGA
without any user intervention

− No hardware design expertise is required to get a functional design

DSP Builder
− A tool for algorithmic development of an IP

− The output is a block that matches user specifications

Altera OpenCL SDK (Highlights)

4

OpenCL Overview

Open Computing Language
− Software-centric

C/C++ API for host program
OpenCL C (C99-based) for
acceleration device

− Unified design methodology
CPU offload

− Memory Access
− Parallelism
− Vectorization

Host CPU
Hardware

Acceleration

C/C++ API OpenCL C

OpenCL Abstract Programming Model

Explicit Data Storage
− Hierarchical Memory Model

Explicit Parallelism
− Vectorization

− Multi-threading

DeviceHost

L
o
c
a
l M

e
m

G
lo

b
a
l M

e
m

L
o
c
a
l M

e
m

L
o
c
a
l M

e
m

L
o
c
a
l M

e
m

main() {

read_data(…);

manipulate(…);

clEnqueueWriteBuffer(…);

clEnqueueNDRange(…,sum,…);

clEnqueueReadBuffer(…);

display_result(…);

}

Compute
Unit

__kernel void

sum(__global float *a,

__global float *b,

__global float *y)

{

int gid = get_global_id(0);

y[gid] = a[gid] + b[gid];

}

x86

Flow

PCIe

OpenCL

Compiler
Standard

C Compiler

SOFEXE

OpenCL
Host Program + Kernels

Verilog

__kernel void

sum(__global float *a,

__global float *b,

__global float *y)

{

int gid = get_global_id(0);

y[gid] = a[gid] + b[gid];

}

main() {

read_data(…);

manipulate(…);

clEnqueueWriteBuffer(…);

clEnqueueNDRange(…,sum,…);

clEnqueueReadBuffer(…);

display_result(…);

}

Quartus II

FPGA

FPGA OpenCL Architecture

Modest external memory bandwidth

Extremely high internal memory bandwidth

Highly customizable compute cores

Kernel
Pipeline

Kernel
Pipeline

Kernel
Pipeline

PCIe

D
D

R
*

x86 /
External

Processor

External
Memory

Controller
& PHY

M20K

M20K

M20K

M20K

M20K

M20K

Global Memory Interconnect

Local Memory Interconnect

External
Memory

Controller
& PHY

Compiling OpenCL to FPGAs

x86

PCIe

ACL
Compiler

Standard
C Compiler

SOF X86 binary

OpenCL
Host Program + Kernels

OpenCL
Host Program + Kernels

main()

{

read_data_from_file(…);

maninpulate_data(…);

clEnqueueWriteBuffer(…);

clEnqueueKernel(…, sum, …);

clEnqueueReadBuffer(…);

display_result_to_user(…);

}

__kernel void

sum(__global const float *a,

__global const float *b,

__global float *answer)

{

int xid = get_global_id(0);

answer[xid] = a[xid] + b[xid];

}

Kernel Programs

Host Program

Compiling OpenCL to FPGAs

__kernel void

sum(__global const float *a,

__global const float *b,

__global float *answer)

{

int xid = get_global_id(0);

answer[xid] = a[xid] + b[xid];

}

Load Load

Store

Load Load

Store

Load Load

Store

Load Load

Store

Load Load

Store

Load Load

Store

PCIe

DDRx

Floating-Point Support in
OpenCL SDK

11

Conformant SP FP Support

12

OpenCL SDK features a complete single-precision FP
support

All operations are tested to be conformant within the
specified ULP bound

Use of a float type is sufficient to take advantage of this
feature

Verifying Conformance

13

Each function is
tested in hardware
using ~20 Billion
test vectors

For single-input
functions, this is an
exhaustive test

− For multi-input
functions, this is a
comprehensive test

94 FP functions
− 1.88 Trillion test

vectors to achieve FP
conformance

PCIe

Host µP

Host

Program Altera FPGA

Standard C

Compiler

Standard C

Compiler

OpenCL

Host Program + Kernel

OpenCL

Host Program + Kernel

SDK for
OpenCL
SDK for
OpenCL

Design
Under Test

Additional Features

14

The compiler enables the user to optimize FP operations to
improve the quality of results

--fp-relaxed
− This flag enables the compiler to reorder FP operations to create a better

implementation. It needs to be supplied by a user because it has an impact on
the results produced by a given algorithm

--fpc
− This flag enables the user to inform the tool that the data being processed is

both finite and the rounding mode can be round-to-zero, instead of round-to-
nearest-even

This saves a significant amount of area in many applications

Hardened Single-Precision FP operators
− When Arria 10 is the target FPGA for an OpenCL design, hardened FP

operators are used automatically – conformant to OpenCL standardNew

Optimization Examples

15

Fast Fourier Transform

Matrix Multiplication

FFT

16

A classical signal processing application

Frequently implemented using fixed-point arithmetic
− This is ok for some applications, but not for all

Key operations
− add,

− subtract

− multiply

Fused Add-Sub operation

17

a b

Align

Round

<< >>

+

a b

Align

Round

<<

-

Round

+

>>

18

A x B

A + C

A - C

A x B + C

A x B – C

Acc = A x B + Acc

Vector dot Products

Complex Multiply, FFT
Butterfly

18-bit
Precision

Mode

High
Precision

Mode

Single-Precision Floating Point Variable Precision Fixed Point

Easily make tradeoffs during design cycle
– Same DSP Block support Variable Precision integer math as well as

single-precision floating point

– Precision flexibility throughout the DSP datapath

Arria 10 Hardened FP DSP Blocks

Implementing Complex Math with Hardened FP

19

FP

Mult

FP
Add

FP

Mult

FP
Sub

FP

Mult

FP
Add

FP

Mult

FP
Add

ai

bi

ar

br

M_r M_i

ai

br

ar

bi

Complex Multiplication and Addition

20

FP

Mult

FP
Add

3

3

FP

Mult

FP
Sub

FP

Mult

FP
Add

3

3

FP

Mult

FP
Add

ai

bi

ar

br

M_r M_i

ai

br

ar

bi

cr ci

Results

21

Optimization ALMs DSPs

IEEE754 Conformant 62126 60

FPC 39662 60

Fused-Add-Sub + FPC 34102 60

Hardened FP 6208 98

Matrix Multiplication Source Code

#define BLOCK_SIZE 4
#define AS(i, j) A_local [j + i * BLOCK_SIZE]
#define BS(i, j) B_local [j + i * BLOCK_SIZE]

__kernel void mm(__global float *restrict C, __global float *A, __global float *B,
__local float *restrict A_local, __local float *restrict B_local)

{
int bx = get_group_id(0);
int by = get_group_id(1);
int tx = get_local_id(0);
int ty = get_local_id(1);

float sum = 0.0f;
for (int i = 1024* BLOCK_SIZE * by, j = BLOCK_SIZE * bx;

i <= 1024* BLOCK_SIZE * (1+by) - 1;
i += BLOCK_SIZE, j += BLOCK_SIZE*1024) {

AS(ty, tx) = A[i + 1024* ty + tx];
BS(ty, tx) = B[j + 1024* ty + tx];
barrier(CLK_LOCAL_MEM_FENCE);

#pragma unroll
for (int k = 0; k < BLOCK_SIZE; ++k) {

sum += AS(ty, k) * BS(k, tx);

}
barrier(CLK_LOCAL_MEM_FENCE);

}
C[get_global_id(1) * get_global_size(0) + get_global_id(0)] = sum;

}

Setup

Load Section of

each Matrix to

Local Memory

Dot Product

Barrier

Barrier

Store Result

What does --fp-relaxed do?

23

+

*

+

*

+

*

+

*

* * * *

+ +

+

+

Latency and

Area Reduction

Does --fpc do anything special for Matrix Multiplication?

24

In addition to the regular benefits, --fpc flow recognizes
adder trees as special constructs that can be further
simplified

Using the fact that one adder directly feeds another in a
tree structure, enables us to reduce the adder-tree area by
an additional ~27%

How does Matrix Multiplication use Hardened FP Blocks?

25

In matrix multiplication we can create balanced dot
products that can be implemented using vector modes in
Arria 10 Hardened FP DSP Block

The dot products are entirely contained within the DSP
blocks

DOT Product Example

26

FP

Mult

FP
Add

FP

Mult

FP
Add

FP

Mult

FP
Add

FP

Mult

FP
Add

Results

27

Configuration ALMs DSPs

BLOCK=128, V=8, FPC 315061 1034

BLOCK=128, V=8, HFP 61293 1034

-80.55%

DSP Builder (Highlights)

28

Simulink® - Simulation and Model-Based Design

29

Dynamic graphical modeling
environment

Simulink®

− Dynamically develop entire systems

− Simulate and interact with the system

− Explore different architectures

− Analyze results

Libraries of predefined blocks
− Core Libraries: Sources, Sinks,

Continuous, Math, etc.

− Domain-specific Libraries: DSP
System Toolbox, etc.

− Altera Additions
Altera DSP Builder Advanced Blockset

Altera DSP Builder Standard Blockset

DSP Builder Advanced

30

Schematic Entry
− Draw your algorithm, simulate & debug in Simulink

Constraint-driven design
− Set desired data rate, clock frequency & device

Automated pipelining
− Timing closure at high clock rates of 300-400+ MHz

Models silicon speeds
− Different devices families & speed grades result in different HDL

Automated resource sharing
− Marshall data though limited resources on consecutive clock cycles

High performance floating-point design
− Synthesize floating-point optimized HDL

DSP Builder Schematic Entry

31

- Valid

- Channel

- Data

Enables

synchronisation
without cycle

counting.

P
ro

to
c
o
l

Data-type propagation
simplifies schematic

design. Blocks have

simple type
propagation rules.

Drag & Drop blocks
from the library.

Connect and

parameterize

The picture shows such a schematic for an
infinite impulse response (IIR) filter.

Zero Latency Blocks

32

Blocks are behavioural in nature
− What to do, not When to do it

− Focus on signal flow representation

Much easier debug and modification without pipeline

Behavioural input enables automatic
pipelining and optimization

Constraint-driven design

33

Specify target device or
device family and speed
grade

− Design remains generic

Specify target clock frequency

Specify Avalon-MM
characteristics

Locally guide pipelining effort
and multiplier and memory
implementation, if necessary

Elementary math functions supporting floating point

34

Coverage of ~70 elementary math functions
Patented & published efficient mapping to FPGA hardware

− Polynomial approximation, Horner’s method, truncated multipliers, …

Compliant to OpenCL & IEEE754 accuracy standards
Rounding mode options for fundamental operators
Half- to Double-precision

Basic Floating Point

FPAdd

FPAddExpert
FPAddN
FPSubExpert
FPAddSub \
FPAddSubExpert
FPFusedAddSub
FPMul
FPMulExpert
FPConstMul
FPAcc
FPSqrt
FPDivSqrt
FPRecipSqrt
FPCbrt
FPDiv
FPInverse
FPFloor
FPCeil
FPRound
FPRint
FPFrac
FPMod
FPDim
FPAbs
FPMin
FPMax
FPMinAbs
FPMaxAbs
FPMinMaxFused
FPMinMaxAbsFused
FPCompare
FPCompareFused

Exp, Log and Power

FPLn
FPLn1px
FPLog10
FPLog2
FPExp
FPExpFPC
FPExpM1
FPExp2
FPExp10
FPPowr

Trig with argument
reduction

FPSinX
FPCosX
FPSinCosX
FPTanX
FPCotX

Inverse trigonometric
functions

FPArcsinX\
FPArcsinPi
FPArccosX
FPArccosPi
FPArctanX
FPArctanPi
FPArctan2

Trigonometrics of pi*x

FPSinPiX
FPCosPiX
FPTanPiX
FPCotPiX

Trigonometrics misc

FPHypot
FPRangeReduction

Conversion

FXPToFP
FPToFXP
FPToFXPExpert
FPToFXPFused
FPToFP

Macro Operators

FPFusedHorner
FPFusedHornerExpert
FPFusedHornerMulti
FPFusedMultiFunction

Fixed and floating point

Floating point only

Floating Point: Variable precision

35

IEEE format

7 precisions (including double and single)
float16_m10 (IEEE half)

float26_m17

float32_m23 (IEEE single)

float35_m26

float46_m35

float55_m44

float64_m52 (IEEE double)

− where floatN_mM means total length of N bits,

of which M are mantissa

Format widths specifically chosen for
efficient FPGA implementation

Specified on Convert block

Supported blocks are accurate within
tolerances of given precision

Choose the right precision for your application

Soft Floating Point: Size vs. Precision Trade-off

36

Averaged logic & DSP use across maths

functions, relative to single precision

Precision
DSP usage compared to

single precision

Logic usage

compared to single

precision

f16m10 0.6 0.3

f26m17 0.9 0.6

f32m23 1 1

f35m26 1.2 1.4

f46m35 2.2 2.2

f55m44 3.7 3.4

f64m52 5.0 4.6

Half (16bit)

Single (32 bit)

Double (64 bit)

Logic: Example function (acos)Normalized* DSP count

(*scaled to single = 1)

Enhanced
Precision

Types

High-level Design Specification

37

FIR Filter Example

38

Results

39

Configuration ALMs DSPs

Stratix V, 128-tap 60881 128

Arria 10, 128-tap, HFP 1676 131

IP blocks: FIR Filters

Supports multichannel, TDM, sample rate > clock rate

40

IP blocks: FFTs

Full FFTs
− Fixed and Floating point

− White-box – user parameterizable & editable IP

− Parallel,

− Variable Sized

− Bit-Width Pruning Schemes

Basic building blocks
− Build your own custom FFTs

Parameterizable demos
− Including folded FFT demo

(low data rate, low resource)

41

Conclusion

42

Take-aways

43

Floating point support is increasingly more important in
FPGA applications

Innovation in FP support for FPGAs is critical
− Devices

− Tools

Because of growing diversity in the needs customers have
for FP support, this is a great time for FP innovation

Thank You

