High -Level Design Tools for
Floating Point FPGAs

Tom Czajkowski

The Importance of Tools

« Algorithm developers are not necessarily hardware
designers

« The usual flow is to create an algorithm in software and
then use tools to implement such algorithm on a target

platform

For FPGAs this does require actually generating the hardware for a given
algorithm

This means that the quality of the tool used directly impacts the quality of
results a designer obtains

« The key question is, if the obtained result does not meet
the required performance or area metric, is there anything
the tool offers to aid the designer?

2 © 2015 Altera Corporation—Public A'HA .

Altera’s Approach

« Two tools provide access to algorithmic development for
FPGAS, including floating point arithmetic

¢ OpenCL SDK

The tool converts OpenCL source program (C-based) into a circuit that
implements the given algorithm in hardware

Automatically connects the core algorithm to PCle/DDR interfaces to build

a complete system that can be immediately programmed onto an FPGA
without any user intervention

No hardware design expertise is required to get a functional design

« DSP Builder

A tool for algorithmic development of an IP
The output is a block that matches user specifications

3 © 2015 Altera Corporation—Public AlHA .

Altera OpenCL SDK (Highlights)

OpenCL Overview

« Open Computing Language :~‘ /‘
- Software-centric
« C/C++ API for host program OpenCL

« OpenCL C (C99-based) for
acceleration device
C/C++ API OpenCL C

- Unified design methodology

« CPU offload _hf

Memory Access
Parallelism
Vectorization

Hardware
Acceleration. .

Host CPU | <l

© 2015 Altera Corporation—Public AIHA 5

OpenCL Abstract Programming Model

Compute
Unit

WS [e]q0|D
WIS 2207

« Explicit Data Storage
Hierarchical Memory Model

« Explicit Parallelism
Vectorization
Multi-threading

© 2015 Altera Corporation—Public Alm e

Flow

OpenCL

Host Program + Kernels

v

X86

© 2015 Altera Corporation—Public

Standard OpenCL
C Compiler Compller,
EXE SOF

]
1
\ 4

uartus Il J

PCle

FPGA OpenCL Architecture

M20K
M20K

T
e o Dl

M20K
M20K
M20K

VYV VYVY

M20K

F PGA External External
Memory <€ frermer , >
x86 / Controller Controller >
External €« & PHY & PHY
Processor $ $ $

+»ddd

Modest external memory bandwidth
Extremely high internal memory bandwidth
Highly customizable compute cores

Compiling OpenCL to FPGAs

OpenCL
Host Program + Kernels

[]

\V4
$ ACL [Standard]
$ $ 1 $ Compiler C Compiler
[]]

N N
SOF X86 binary

x86

OpenCL to FPGAs

ing

Comp

&= == == == == @ = = o s mE mE omE mE mw g o]
ﬁmw&mummmmummmmmnﬁﬁmnmmmm&mmummmmummmﬁmmmmmmmmmmm

EE&EEEEE
mﬁEEEEEEEEEEEEEEEEEEEEEEﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁEEEEEEEE@EEEEW
L b e s e e e e
ﬁﬁﬁEEEEEﬁEEEEEﬁEEﬁEﬁﬁﬁﬁﬁﬁEﬁEEEEEﬁEEEEﬁﬁEEEEEﬁEEE&W
et et et ettt e o e e it ot e ettt S St bttt bt 1 1
EEE DD e
EEEENNNNEHHNNENNNNENNNNNNmHENNNNEENNNENNNHNEENHNNW

EﬁﬁﬁﬁﬁﬂEﬁQEEEEEEE?&ENNﬁEﬁﬁﬁﬁEE%ﬁﬁEEmﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ
ﬂﬁﬁﬁﬁﬁﬁﬂﬁ'ﬁﬂﬁwMﬂﬁﬁmﬁﬂﬂmmmmﬁﬁﬁﬁmuﬁﬁﬂmﬂﬁﬁ%ﬁﬂﬁﬁﬁﬁﬁﬁﬁﬂ
EﬁﬁﬁﬁmmﬂﬁmNHhEENNE&NNHNNNJNNEN%HEENHHEEENNEHNNNNNW

e e e e e e e e
T @ @ . -
... __ @
W§HE§NNK§ENHKKNNNNNNNNNENﬁﬂﬂﬁNﬂﬂﬁﬂﬁmﬂﬂﬂmﬂﬂﬂﬂﬂﬂﬂﬂﬂw
L e e ey e e s
ﬂﬂﬁmﬁﬂﬂﬂﬁmﬂﬂﬂﬂ&ﬂﬂmﬁﬂmENNW%ﬁNENEﬂﬁmNWmﬂﬂdﬂﬂﬁﬂﬁﬂﬁﬂﬂw
'Kﬁfﬁ&ﬁﬁ?%gﬁﬁﬁﬁﬁﬁﬁﬁﬁ§mkﬁﬂﬁ&ﬁﬁﬁiﬁ%gﬁﬁﬁEﬁﬁﬁ

|
m
|
MﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁEEHEEEEEEE@EEHEEF%EEEE@EEEEW
Tlanranae - SEaREL SRRl B BB sl B e aaaa R Bl EE

Mﬁﬂﬂ@ﬁﬁﬁﬁﬂﬁﬂﬁﬁﬁﬁﬂﬂﬁﬁﬂmHHN§ﬁﬂﬁﬂﬁﬁﬁﬂﬁﬁﬁﬁﬁﬁﬂﬂﬂﬁﬁﬂﬂﬂﬁ“

L e s e L e B
. = . _ _ @ = . . _ ___ ___ __ __ __ @]
ﬁﬁﬁ%&ﬁﬁ”WﬁﬁﬁﬁﬁEﬁﬁﬁﬁﬁﬁﬁEﬁﬁﬁﬁﬁﬁﬁjﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁw

EEEEHEEEEEEEEEEEEE@EHEEEH?EEEEHEEEEEEEF&EEEEEEEEEE
ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁiﬁﬁEEEHEEEEEEﬂEEEH&ﬁE&EEEEEHEEEE@EEEEW
EﬁﬁﬁhﬁﬁEEEEﬁEEEHEEEEHEEEﬁiEEEEHEEEEEEEEHEEEEEEEEHE

bl Ul Ll Ll R Fl Lt Ll Rl Ll Ll Sl Ll

#

Floating -Point Support In
OpenCL SDK

12

Conformant SP FP Support

OpenCL SDK features a complete single-precision FP
support

All operations are tested to be conformant within the
specified ULP bound

Use of a float type is sufficient to take advantage of this
feature

13

Verifying Conformance

Each function Is

tested in hardware

using ~20 Billion . B
test vectors

For single-input
functions, this is an 1
exhaustive test

- For multi-input
functions, this is a
comprehensive test

94 FP functions

- 1.88 Trillion test
vectors to achieve FP
conformance

Additional Features

The compiler enables the user to optimize FP operations to
Improve the quality of results

--fp-relaxed

- This flag enables the compiler to reorder FP operations to create a better
implementation. It needs to be supplied by a user because it has an impact on
the results produced by a given algorithm

--fpc
- This flag enables the user to inform the tool that the data being processed is
both finite and the rounding mode can be round-to-zero, instead of round-to-

nearest-even
This saves a significant amount of area in many applications

Hardened Single-Precision FP operators
When Arria 10 is the target FPGA for an OpenCL design, hardened FP
9perators are used automatically — conformant to OpenCL standard

14

15

Optimization Examples

Fast Fourier Transform

Matrix Multiplication

16

FFT

A classical signal processing application

Frequently implemented using fixed-point arithmetic
This is ok for some applications, but not for all

Key operations
- add,
subtract
multiply

17

Fused Add-Sub operation

a b

Arria 10 Hardened FP DSP Blocks

Easily make tradeoffs during design cycle

— Same DSP Block support Variable Precision integer math as well as

single-precision floating point

— Precision flexibility throughout the DSP datapath

18-bit
Precision
Mode

High
Precision
Mode

18

+

AXxB

A+C

A-C

AxB+C
AxB-C

Acc = AXxB + Acc
Vector dot Products

Complex Multiply, FFT
Butterfly

ai

bi

ar

br

19

Implementing Complex Math with Hardened FP

|
@[3

FP
Add

[

ai

br

ar

bi

@Ej

FP
Add

FP
Add

Cr

ai

bi

ar

br

20

Complex Multiplication and Addition

] []

L . FP

- Add
FP

— Sub

©

3

Ci

ai

br

r
ar

bi

[]

FP
Add

[|

[|

FP
Add

21

Results

Optimization

IEEE754 Conformant 62126 60
FPC 39662 60
Fused-Add-Sub + FPC 34102 60

Hardened FP 6208 98

Matrix Multiplication Source Code

#define BLOCK_SIZE 4
#define AS(i, j) A local [+i* BLOCK_SIZE]
#define BS(i, j) B_local [j +i * BLOCK_SIZE]

__kernel void mm(__global float *restrict C, __global float *A, __global float *B,

__local float *restrict A_local, __local float *restrict B_local)
{
int bx = get_group_id(0);
int by = get_group_id(1);
int tx = get_local_id(0);
intty = get_local_id(1);

float sum = 0.0f;
for (inti=1024* BLOCK_SIZE * by, j = BLOCK_SIZE * bx;
i <= 1024* BLOCK_SIZE * (1+by) - 1;
i += BLOCK_SIZE, j += BLOCK_SIZE*1024) {
AS(ty, tx) = Afi + 1024* ty + tx];
BS(ty, tx) = B[j + 1024* ty + tx];
barrier (CLK_LOCAL_MEM_FENCE);

#pragma unroll

for (int k = 0; k < BLOCK_SIZE; ++K) {
sum += AS(ty, k) * BS(k, tx);

}

barrier (CLK_LOCAL_MEM_FENCE);
}
Clget_global_id(1) * get_global_size(0) + get_global_id(0)] = sum;
}

Setup

4
Load Section of

N

each Matrix to
Local Memory

Barrier

\ 4

Dot Product

Y

Store Result

23

What does --fp-relaxed do?

Latency and
Area Reduction

24

Does --fpc do anything special for Matrix Multiplica tion?

In addition to the regular benefits, --fpc flow recognizes
adder trees as special constructs that can be further
simplified

Using the fact that one adder directly feeds another in a
tree structure, enables us to reduce the adder-tree area by

an additional ~27%

25

How does Matrix Multiplication use Hardened FP Bloc ks?

In matrix multiplication we can create balanced dot
products that can be implemented using vector modes in
Arria 10 Hardened FP DSP Block

The dot products are entirely contained within the DSP
blocks

DOT Product Example

"B

27

Results

Configuration

BLOCK=128, V=8, FPC 315061 1034
BLOCK=128, V=8, HFP 61293 1034

-80.55%

DSP Builder (Highlights)

29

Simulink® - Simulation and Model-Based Design

Dynamic graphical modeling
environment

Simulink®

- Dynamically develop entire systems
- Simulate and interact with the system
- Explore different architectures

- Analyze results

Libraries of predefined blocks
- Core Libraries : Sources, Sinks,
Continuous, Math, etc.
- Domain-specific Libraries : DSP
System Toolbox, etc.

- Altera Additions
Altera DSP Builder Advanced Blockset

Altera DSP Builder Standard Blockset

30

DSP Builder Advanced

Schematic Entry
Draw your algorithm, simulate & debug in Simulink

Constraint-driven design
Set desired data rate, clock frequency & device

Automated pipelining
Timing closure at high clock rates of 300-400+ MHz

Models silicon speeds
Different devices families & speed grades result in different HDL

Automated resource sharing
Marshall data though limited resources on consecutive clock cycles

High performance floating-point design
Synthesize floating-point optimized HDL

DSP Builder Schematic Entry

Drag & Drop blocks
from the library.

Connect and
parameterize

31

The picture shows such a schematic for an
infinite impulse response (IIR) filter.

- Valid

U
- Channel %
(@)
- Data S
| |
Enables

synchronisation
without cycle
counting.

Data-type propagation
simplifies schematic
design. Blocks have
simple type
propagation rules.

32

Zero Latency Blocks

Blocks are behavioural in nature

- What to do, not When to do it
- Focus on signal flow representation

Much easier debug and modification without pipeline

Behavioural input enables automatic
pipelining and optimization

33

Constraint-driven design

Specify target device or
device family and speed

grade
- Design remains generic

Specify target clock frequency

Specify Avalon-MM
characteristics

Locally guide pipelining effort
and multiplier and memory
Implementation, if necessary

34

Elementary math functions supporting floating point

Coverage of ~70 elementary math functions

Patented & published efficient mapping to FPGA hardware
- Polynomial approximation, Horner's method, truncated multipliers, ...

Compliant to OpenCL & IEEE754 accuracy standards

Rounding mode options for fundamental operators

Half- to Double-precision

FPSIinPiX

FPCOSP.'X Inverse trigonometric

FPTaanx functions

FPCotPiX

FPArcsinX\

FPAICSInP)

FPLNn FPArccosX

FPLN1px FPArccosPi

FPLog10 FPArctanX

FPLog2 FPArctanPi

FPEXp FPArctan2

s

FPExpM1 Conversion

FPEXp2 FXPToFP

FPExp10 FPTOFXP

FPPowr FPToFXPExpert

FPToFXPFused
Trig with argument EPTOEP
reduction
. - . M o t
Fixed and floating point FPSinX

FPCosX FPFusedHorner

Floatlng pOInt Only FPSinCosX FPFusedHornerExpert
FPTanX FPFusedHornerMulti
FPCotX FPFusedMultiFunction

Trigonometrics misc

FPHypot
FPRangeReduction

Basic Floating Point

FPAdd
FPAddEXxpert
FPAddN
FPSubExpert
FPAddSub \
FPAddSubExpert
FPFusedAddSub
FPMul
FPMulExpert
FPConstMul
FPAcc

FPSqrt
FPDivSqrt
FPRecipSqrt
FPCbrt

FPDiv

FPInverse
FPFloor

FPCell

FPRound

FPRint

FPFrac

FPMod

FPDim

FPAbs

FPMin

FPMax
FPMinAbs
FPMaxAbs
FPMinMaxFused
FPMinMaxAbsFused
FPCompare
FPCompareFused

35

Floating Point: Variable precision

IEEE format

7 precisions (including double and single)
floatl6_m10 (IEEE half)
float26_m17
float32_m23 (IEEE single)
float35_m26
float46_m35
float55 m44
float64_m52 (IEEE double)

where floatN_mM means total length of N bits,
of which M are mantissa

Format widths specifically chosen for
efficient FPGA implementation

Specified on Convert block

Supported blocks are accurate within
tolerances of given precision

Choose the right precision for your application

Soft Floating Point: Size vs. Precision Trade-off

Normalized* DSP count Logic: Example function (acos)
|

Double (64 bit)

anced
Precision
Typ

Single (32 bit)

! Half (16bit)

(*scaled to single = 1)

37

High-level Design Specification

38

FIR Filter Example

39

Results

Configuration

Stratix V, 128-tap 60881 128
Arria 10, 128-tap, HFP 1676 131

40

IP blocks: FIR Filters

Supports multichannel, TDM, sample rate > clock rate

41

IP blocks: FFTs
Full FFTs

Fixed and Floating point

White-box — user parameterizable & editable IP
Parallel,

Variable Sized

Bit-Width Pruning Schemes

Basic building blocks

Build your own custom FFTs

Parameterizable demos

Including folded FFT demo
(low data rate, low resource)

42

Conclusion

43

Take-aways

Floating point support is increasingly more important in
FPGA applications

Innovation in FP support for FPGAs is critical

- Devices
- Tools

Because of growing diversity in the needs customers have
for FP support, this is a great time for FP innovation

Thank You

