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ABSTRACT 

 

In developing augmented reality based tutoring scenarios difficult issues can arise if the environment used is not 

initially known.  Lacking in pre-determined fiducial markers, the tracking of the user’s position and orientation 

relative to their starting point can easily be lost.  A potential solution lies within the robotics field: simultaneous 

localization and mapping (or SLAM) algorithms which rely on visual tracking methods to both determine the layout 

of the environment and the robot’s current position and orientation given the previous estimate.  However, when 

applied to a human subject in an augmented reality environment, the agility of their movement during performance 

activities can lead to issues.  In this paper, we discuss the framework used to test a set of SLAM algorithms and 

determine their capabilities of tracking a human subject performing a variety of movements.  We detail the SLAM 

algorithms analyzed and explain their potential usage given equipment combinations that may be developed in a lab 

environment.  We also go through each movement set, detailing the hardware used in the recording process and how 

the user’s movements are designed to test the limits of a SLAM algorithm.  By developing a networked framework, 

we show how the system is easily adapted to test an algorithm with minimal changes to its code and how it may be 

used to evaluate future SLAM research.  In the end, our framework shows the capabilities and limits of SLAM 

algorithms when tracking a human user in an augmented reality system. 
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INTRODUCTION  

 

Augmented reality has been shown to create immersive environments conducive to psychomotor training scenarios 

(Hughes, Stapleton, Hughes, & Smith, 2005).  For proper spatial awareness of a virtual object, its placement within 

the real-world image must be consistent and accurate.  Traditionally, this has been accomplished with fiducial markers 

(Azuma, 1997), which use computer vision to find the marker and place the virtual object with an appropriate 

transformation applied.  However, augmented reality that can operate in an unknown environment allows for a more 

versatile training system, capable of quick setup and that does not rely on the view of markers to place an object.  This 

marker-less system requires both understanding of the environment and tracking of the user’s viewpoint relative to 

their starting position. 

 

 
 

Figure 1. Example of SLAM algorithms used in test framework. 

 

Simultaneous localization and mapping (SLAM) algorithms provide the means to accomplish this in the robotics 

community and have shown promise in augmented reality research as well (Chekhlov, Gee, Calway, & Mayol-Cuevas, 

2007) (Comport, Marchand, Pressigout, & Chaumette, 2006) (LaViola, et al., 2015).  These algorithms take in either 

a color or depth frame from a sensor and use it to simultaneously understand the environment and update the pose 

estimate of the sensor.  While showing promising results with robotic movements or running with synthetic data 

(Nardi, et al., 2015) (Geiger, Lenz, Stiller, & Urtasun, 2013), the tracking portion of a SLAM algorithm can break 

down with more agile movements, such as what the human head is capable of. 

 

In this paper, we describe a framework developed for recording data and testing it against a subset of modern SLAM 

algorithms, examples of which are shown in Figure 1.  Due to its networking background, this framework is capable 

of easily interfacing with an algorithm while requiring minimal change in the source code.  Furthermore, the 

framework can easily be expanded to include the most up to date algorithms that make their source code readily 

available.  
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We also go through an experiment run with the framework including the hardware that was used, which includes the 

HTC Vive (HTC, 2017), Oculus RIFT (Oculus VR LLC, 2017), Structure Sensor (Occipital Inc, 2017) and Intel 

RealSense (Intel Corporation, 2017).  These hardware pieces were used to record data with realistic agile human 

movements and were run through each SLAM algorithm being tested.  Preliminary results are made available. 

 

In the next section, we go through work related to this research.  In section three we walk through the development of 

the framework and explain its capabilities to interface with an algorithm.  Section four goes through the experiment 

run with the framework.  Section five concludes the paper and discusses future work. 

 

RELATED WORK 

 

There is a rich history of utilizing virtual reality and augmented reality for dismounted soldier training.  In (Witmer, 

Bailey, & Knerr, 1995) virtual environments were used for route learning and showed effectiveness so long as the 

virtual scenario could be made to match the real scenario.  It is noted in the study that the virtual elements were used 

primarily for visual means and that little interaction with the environment was possible at the time.  With (Knerr B. 

W., Lampton, Thomas, Corner, & Grosse, 2003) it was observed that team leader performance improved with 

training within a virtual environment, suggesting that as the technology advances it could form an effective means of 

training.  Virtual reality training was determined to be useful for decision making, situation awareness, 

communication, and coordination skills.  In (Knerr & Lampton, 2005) virtual reality systems are used for training of 

military operations in an urban terrain (MOUT) scenario.  It is noted that virtual reality provides a reduction in 

preparation time as it can quickly represent a new area without a different real world set having to be constructed, 

however accounting for precise movement remains an issue. 

 

Soldier training has also made use of augmented reality research to improve performance.  In (Hughes, Stapleton, 

Hughes, & Smith, 2005) a mixed reality application for another MOUT scenario is evaluated that makes use of blue 

screen technology and a see-through head mounted display (HMD).  This system also made use of a set that 

provided audio feedback cues in order to increase immersion of the training environment.  The Battlefield 

Augmented Reality System (BARS) (Livingston, et al., 2002) also aimed to take modern technology to assist in 

training for MOUT scenarios.  This system featured a see-through display, wearable computer, and GPS device to 

track the user.  While both systems were effective prototypes, they relied on either an area already known by the 

user or external devices (GPS) to provide accurate tracking of the user.   

 

When looking at SLAM research, potential exists of a single camera device being used to provide the tracking and 

mapping of an unknown area that a user may need.  This can potentially allow for precise movements of a user 

without having to re-use the same real world set or rely upon technology that may not be available in all scenarios, 

such as GPS while indoors.  While the SLAM algorithms originally worked with robotic based hardware, such as 

light detection and ranging (LIDAR) devices, it later evolved to make use of computer vision.  These systems check 

the changes between two images to update a pose estimate of the original sensor (Davison & Murray, 2002).  As 

different low-cost hardware became available, the algorithms evolved to incorporate them. 

 

An easy way to distinguish the research into this field is to look at the hardware requirements of the algorithm, 

whether it works with a depth and color frame or can operate with a single-color sensor.  For monocular SLAM, 

typically only RGB (red-green-blue) frames are used.  The parallel tracking and mapping (PTAM) method (Klein & 

Murray, 2007) showed early promise in tracking for augmented reality purposes.  However, this system only 

functioned on a desktop view and would not attempt to track as the user looked away and around the room.  This 

was later evolved into ORB-SLAM (Mur-Artal, Montiel, & Tardos, 2015), which used oriented fast and brief (ORB) 

feature detection and the PTAM methods to provide precise room wide tracking.  A different technique, LSD-

SLAM (Engel, Schöps, & Cremers, 2014), makes use of direct image comparison rather than feature detection as 

was done in PTAM and ORB-SLAM.   This method analyzes the intensity value of every pixel to compare rather 

than relying on an algorithm such as speeded up robust features (SURF) or ORB to find a spare subset of features. 

 

Regarding SLAM algorithms with depth and RGB based sensors, RGB-D SLAM provides accurate tracking by 

mapping features to an exact depth location with the assumption that the RGB and depth sensor are aligned (Endres 

F. , et al., 2012).  ORB-SLAM also incorporated depth cameras to provide a more accurate location of feature points 

detected within an image (Mur-Artal & Tardos, 2016).  A novel approach, originally based on Kinect Fusion 
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(Newcombe, et al., 2011), incorporated the iterative closest point (ICP) algorithm so that depth images could be used 

as a part of a SLAM algorithm that creates a photorealistic mapping of the environment (Olaf, et al., 2015).   

 

FRAMEWORK DEVELOPMENT 

 

The goal of our framework was to allow the same data to be provided to SLAM algorithms with minimal alteration 

of the source code required.  Since these algorithms may run on a different operating system than the framework, we 

created a network interface to communicate with the systems.  Figure 2 shows the data flow from the test bed 

software to a SLAM algorithm and the expected response. 

 

 
 

Figure 2. Data flow diagram of framework. 

 

The pre-recorded data is read from the hard drive by the SLAM analysis tool which also served as a server for 

streaming data.  A client module was developed on the platform that was running the SLAM source code and 

handled communication back to the framework’s server via the transmission control protocol (TCP).  The client 

module also was responsible for receiving RGB and depth frames and formatting them in a way to simulate a sensor 

connected to the SLAM module.  Finally, the client module received the pose estimate from the SLAM algorithm 

and provided it back to the analysis tool server.   

 

We were primarily concerned with accuracy analysis in this test and not real-time frame processing speeds.  The 

justification was that a better system with more processing power could be purchased to achieve faster speeds, but 

the accuracy of the algorithm would remain the same.  As such, the SLAM analysis tool did not send the next frame 

of RGB or depth data until it received a response from all clients with a pose estimate.  While the server was 

designed to cater to several clients at once, during testing only one client module connected at a time. 

 

The majority of the algorithms chosen ran on an Ubuntu platform with the robot operating system (ROS) installed 

on top of it.  As such, the same client module was used which made use of the ROS messaging system both in 

simulating a sensor and in receiving a pose estimate result.  For ease of debugging and testing, an Ubuntu virtual 

machine was utilized on the same system as the analysis tool.  Since real-time processing was not a focus, the 

processing requirements of the single machine running the test was not a concern. 

 

Once the SLAM analysis tool had received the pose estimate, it compared it to a truth position and orientation value 

that was recorded at the same time as the sensor frames.  Slight transformations were applied to the SLAM pose 

estimate to align all frames of reference with the truth data.  An error value was calculated for each component of 

position along with total distance and angular error for rotation.  This accumulated as the test ran to produce a root-

mean-square error (RMSE) for both position and orientation after the recorded data file was finished. 

 

EXPERIMENTAL DESIGN 

 

SLAM Algorithm Setup 

 

To test the framework, a subset of modern SLAM algorithms was chosen based on the availability of the source 

code and unique parameters of the algorithm.  Table 1 lists each algorithm to be used, the location of the source 

code, the platform it was run on and the form of sensor the algorithm works best with.   
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Table 1. Subset of algorithms used for experiment. 

 

Algorithm Location Platform Sensor 

RGB-D 

SLAM 

https://github.com/felixendres/rgbdslam_v2 Ubuntu, ROS RGB, Depth 

LSD SLAM https://github.com/tum-vision/lsd_slam Ubuntu, ROS RGB 

ORB SLAM 

Mono 

https://github.com/raulmur/ORB_SLAM2 Ubuntu, ROS RGB 

ORB SLAM 

RGBD 

https://github.com/raulmur/ORB_SLAM2 Ubuntu, ROS RGB, Depth 

InfiniTAM 

Depth 

https://github.com/victorprad/InfiniTAM Windows Depth 

InfiniTAM 

RGBD 

https://github.com/victorprad/InfiniTAM Windows RGB, Depth 

 

RGB-D SLAM (Endres F. , Hess, Sturm, Cremers, & Burgard, 2014) (Endres F. , et al., 2012) was run on Ubuntu 

with ROS.  A client module was created on Ubuntu to stream data to two ROS topics that simulate an RGB and 

depth sensor.  No modifications were required to the RGB-D SLAM source code as it already provides pose 

estimates from the internal graph optimization to a ROS topic.  The client module listens to the ROS topic and 

replies to the server with the position and orientation information.  LSD SLAM (Engel, Schöps, & Cremers, 2014) 

also ran on Ubuntu with ROS and was configured to listen to the ROS topics created by the client module’s 

simulated RGB sensor.  A minor modification was made to the source code to transmit the latest pose estimate back 

to a ROS topic that the client module was listening to.  ORB SLAM (Mur-Artal, Montiel, & Tardos, 2015) (Mur-

Artal & Tardos, 2016) ran the same as LSD-SLAM with a similar slight modification to transmit the pose estimate 

to a ROS topic.  ORB-SLAM was run with the default configuration of feature extraction and vocabulary.   

 

The InfiniTAM system (Prisacariu, et al., 2014) (Olaf, et al., 2015) ran on the Windows platform, the same as the 

SLAM analysis tool, but still made use of the network system to transmit frames and receive replies.  Since ROS 

was not an option, the client module was built directly into InfiniTAM using its own module system.  A streaming 

module was built as an input system that would be tried if all other sensor connections failed.  This module received 

frames and provided them to InfiniTAM as though it came from a sensor.  The code was then modified to take the 

latest pose estimate and provide it back to the stream module so that it could be sent to the SLAM analysis tool.  An 

example of the InfiniTAM, and all other SLAM algorithms, running on the same data is available in Figure 3. 

 

  

  
 

Figure 3. An example of each SLAM algorithm processing the same data.  From top left to bottom right is 

RGB-D SLAM, LSD-SLAM, ORB-SLAM and InfiniTAM. 
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Hardware Devices Used 

 

To record data for the experiments we made use of a customized head mounted display (HMD).  The hardware 

chosen was low-weight, low-cost, commercial off the shelf (COTS) equipment meant to represent different 

configurations that may be available in a lab environment.  The base HMD used was an Oculus Rift (Oculus VR 

LLC, 2017) Development Kit 2 (DK2) which provided inertial measurement unit (IMU) data.  Since this was not a 

desktop use of the HMD, a camera was not available to provide accurate position and orientation data available from 

the Oculus API.  Primarily the HMD was used to hold the other equipment in a manner realistic of a modified COTS 

HMD. 

 

For sensors, we made use of the Intel RealSense (Intel Corporation, 2017) R200, which provided aligned RGB and 

depth frames.  The frames were observed to be noisier than the other sensors used and provided the capability to 

evaluate the importance of frame alignment versus frame noise.  We also used a Structure IO (Occipital Inc, 2017) 

sensor which provided a decent range and low noise depth frame.  Two wide angle webcams were also attached to 

record a clean wide angle RGB image.  Originally, two were attached for stereo data analysis, but this was not 

utilized in this experiment. 

 

An HTC Vive (HTC, 2017) controller was used for truth data recordings.  It was observed that with the light house 

setup accurate, low-noise data could be recorded as the user moved around the lab environment.  The controller was 

attached to the crown of the user’s head as it did not fit comfortably onto the Oculus Rift HMD.  The Vive HMD 

was not used as its tracking would potentially have been affected by the mounting of sensors to the front of the 

system.  Figure 4 shows the constructed HMD for this experiment.  A 3D printer was used for the construction of the 

sensor mounts. 

 

 
 

Figure 4. Oculus Rift HMD modified with sensors used in the experiment. 

 

The SLAM analysis tool was developed to have two modes.  In the first mode, data gathered from each of the above 

sensors played if the sensor was connected to the computer.  The user could then select a file path and press the 

record button to gather all data from each sensor.  A separate file was created for each sensor and used a custom file 

format that consisted of a specialized header followed by each frame of data.  A playback feature was also created.   

 

In the second mode, pre-recorded data could be selected by an operator and sent to a SLAM algorithm via any 

clients connected.  As the clients responded with pose estimates, error values were calculated and all data was 

logged to a history file.  Once every sensor file reached its final frame, the SLAM analysis tool calculated the RMSE 

values and saved them off to a different tab of the log file.  Extensible markup language (XML) was used for the log 

files so that they could be viewed with Microsoft Excel and have full functionality available.  The RMSE was 

calculated using equation 1 
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where �̂�𝑡 is the truth value taken at time t and 𝑥𝑡 is the pose estimate value.  The RMSE was calculated for the 

distance of the position vector and the angular delta between quaternions.  The angle was determined with equation 
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where 𝑄𝑡 was the quaternion from the pose estimate observed at time t and �̂�𝑡
−1 was the inverse of the truth data.  

 

Furthermore, the test bed and analysis tool was modified to allow the selection of which hardware sensor to use in a 

test.  This allowed us to evaluate how different configurations affected the outcomes and to analyze what should be 

prioritized when selecting hardware.  The hardware pieces were classified as high noise RGB (RealSense R200), 

low noise RGB (wide angle webcam), high noise depth (RealSense R200) and low noise depth (structure IO).  Also, 

the permutation of aligned cameras (RealSense R200) and unaligned cameras (webcam and structure IO) were 

evaluated. 

 

PRELIMINARY RESULTS 

 

The first set of data recordings to be run through the system involved movement and orientation changes on one 

axis.  This was used for alignment of each SLAM algorithm’s coordinate system with the truth data.  Another 

alignment data set used was for the user to look to the left and move in that direction.  This was used to make sure 

all translations were in a world coordinate system.  Once properly aligned, it was expected for most algorithms to 

handle these basic movements well and have a low error.  Another data set was recorded in which the user casually 

walked around the lab environment while looking around.  This was meant to indicate an average test case where a 

user is not exhibiting the full agility of their head movements, but is acting without care of the system they are using.  

Figure 5 show two examples of the tracks a user walked as recorded from the truth data.   

 

 
Figure 5. Two examples of recorded translation data.  In the left track the user looked to the left then moved 

in that direction.  In the right track the user rotated and moved to the left, then turn and went to the back of 

the lab. 

 

After recording these basic data sets and making sure all coordinate systems agreed, the error could be properly 

calculated on every SLAM algorithm regarding the truth data recorded.  Table 2 shows the statistics of RMSE 

values across all SLAM-hardware permutations.   

 

Table 2. Statistics of RMSE values for data sets across all algorithm-hardware permutations. 

 

 X Only Y Only Z Only Yaw Only Pitch Only Roll Only 
Look 
and X 

Wander 
Slow 

Position 

Min (meters) 0.142m 0.057 m 0.239 m 0.196m 0.092m  0.082m 0.502m 0.998m 

Max 3.47m 0.721m 1.179m 2.248m 9.47m 0.387m 4.11m 4.117m 

Average 0.601m 0.223m 0.419m 0.606m 1.766m 0.168m 1.62m 2.972m 

Std Dev 0.796m 0.189m 0.212m 0.5727 2.94m 0.09m 0.771m 1.045m 

Orientation 

Min (degrees) 1.042 0.823 1.4542 16.791 9.163 6.858 10.215 22.45 

Max 96.564 155.808 93.184 113.46 146.757 55.742 147.462 147.86 

Average 19.067 22.403 12.172 50.07 49.133 13.701 58.849 73.11 

Std Dev 25.195 48.975 21.436 35.377 50.579 11.819 45.209 40.23 
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To correlate the above data with the algorithm-hardware permutation, table 3 shows for each data set which 

hardware and algorithm performed best and which performed worse.  These can be tied directly to the minimum and 

maximum values from table 2. 

 

Table 3. Correlation of minimum and maximum errors to algorithm-hardware permutation 

 

Best Worse 

Algorithm Hardware Algorithm Hardware 

Position 

X Only ORBSLAM RGBD Webcam RGB Realsense Depth RGBD-SLAM Webcam RGB Structure Depth 

Y Only LSDSLAM Webcam RGB InfiniTAM RGBD Realsense RGB Realsense Depth 

Z Only RGB-D SLAM Webcam RGB Structure Depth ORBSLAM Mono Webcam RGB 

Yaw Only ORBSLAM Mono Webcam RGB InfiniTAM RGBD Realsense RGB Realsense Depth 

Pitch Only ORBSLAM RGBD Webcam RGB Structure Depth InfiniTAM RGBD Realsense RGB Realsense Depth 

Roll Only RGB-D SLAM 
Realsense RGB Structure 
Depth RGB-D SLAM Webcam RGB Realsense Depth 

Look and X LSDSLAM Realsense RGB ORBSLAM Mono Webcam RGB 

Wander 
Slow LSDSLAM Realsense RGB RGB-D SLAM Webcam RGB Structure Depth 

Orientation 

X Only ORBSLAM RGBD 
Realsense RGB Structure 
Depth InfiniTAM Depth Realsense Depth 

Y Only ORBSLAM RGBD 
Realsense RGB Structure 
Depth InfiniTAM Depth Realsense Depth 

Z Only ORBSLAM RGBD 
Realsense RGB Realsense 
Depth InfiniTAM Depth Realsense Depth 

Yaw Only InfiniTAM RGBD 
Realsense RGB Structure 
Depth RGB-D SLAM Realsense RGB Realsense Depth 

Pitch Only ORBSLAM RGBD 
Realsense RGB Structure 
Depth InfiniTAM RGBD Webcam RGB Structure Depth 

Roll Only InfiniTAM RGBD Webcam RGB Structure Depth ORBSLAM Mono Webcam RGB 

Look and X LSDSLAM Realsense RGB RGB-D SLAM Realsense RGB Structure Depth 

Wander 
Slow ORBSLAM RGBD 

Realsense RGB Structure 
Depth InfiniTAM Depth Realsense Depth 

 

These preliminary results reveal that the errors present in a SLAM algorithm can be very large (several meters at 

times) even with simple human movements.  Note that human movements are naturally more agile and can contain 

more error than the robotic movements the system was designed for.  For example, even a relatively slow head turn 

may be faster than the robotic system an algorithm was tested against.  Also, some algorithms would not provide a 

return pose estimate if tracking became lost.  For these scenarios, the sensor frame was tracked as lost and the RGB 

or depth feed would proceed.  Any permutation that had more than 25% of the frames missing was not included in 

this data analysis. 

 

When yaw and pitch movements are a part of the data set, errors were observed to be high in both position and 

orientation suggesting that the loss of previously recognized features is driving pose estimate errors.  When the 

frame stays centered, such as the roll only movement, overall errors were very low.    

 

By examining table 3, ORB-SLAM RGBD appears to be more likely to have the best performance and in the raw 

data it often came in as one of the top three algorithm permutations tested.  InfiniTAM, either RGB-D or depth, 

appears to be the worse, but it should be noted that InfiniTAM does not drop frames or fail to provide a pose 

estimate, it always provides an estimate even if it has a high error value. When InfiniTAM maintained tracking it 

performed very well, suggesting that a re-localization system may be a vital addition to the process.   

 

For frames lost, the only permutations with over 25% lost for this data set was ORB-SLAM Mono with a RealSense 

RGB, RGB-D SLAM with a RealSense depth and either webcam or Realsense RGB, and for some data sets LSD-

SLAM with a RealSense RGB.  This suggested that noisy data can lead to very low performance if it is the primary 

data that the system relies upon.   
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It should also be noted that very few systems attempted to re-localize or to fix an estimate that was already off track.  

As such, error values accumulated over time as the track stayed away from the truth data.  This accumulation 

problem was left in to the calculations since the continuous error would be present in an augmented reality scenario 

and noticeable by a user, even if the system at the current time was tracking well. 

 

CONCLUSION AND FUTURE WORK 

 

In this paper, we showed the creation of a framework for the testing of SLAM algorithms with minimal intrusion on 

the original source code.  A subset of algorithms was downloaded and modified to fit the framework with ease and 

ran against a set of pre-recorded data.  Results were gathered through the analysis tool and provided guidance for 

how SLAM algorithms need to be improved and what hardware configurations to consider when using some SLAM 

algorithms. 

 

The experiment we ran was a small data set that tested not just the SLAM algorithms, but the framework itself.  In 

the future, a more detailed experiment should be run with more data sets that represent human movements against 

the latest SLAM algorithms, including updates that have been made to the algorithms in this paper.  Furthermore, 

this experiment examined hardware configurations, but this resulted in several permutations of data to sort through 

and in the future, may be best performed as its own test.  When testing SLAM algorithm performance, the ideal 

hardware may be utilized of low-noise and aligned color and depth sensors to minimize the variables being tested. 

 

For SLAM algorithm usage with a head mounted display, we saw that there is still a long way to go to have accurate 

tracking in a marker-less environment.  With even mild movements of the human head, large errors quickly became 

present in the tested algorithms, particularly as the head rotated.  This makes sense since every SLAM algorithm is, 

in some form, comparing the current frame with a previous one, whether via direct comparison or a sparse set of 

features.  If the present frame changes too fast, features cannot be properly matched and the deltas looked at to 

update the pose.  In our future work, we will consider a camera that does not lose features as the head rotates, such 

as a 360-degree camera and how it may be integrated into existing SLAM research or utilized with a HMD. 
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