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Machete: Easy, Efficient, and Precise Continuous Custom
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We present Machete, a straightforward segmenter one can use to isolate custom gestures in continuous in-

put. Machete uses traditional continuous dynamic programming with a novel dissimilarity measure to align

incoming data with gesture class templates in real time. Advantages of Machete over alternative techniques

is that our segmenter is computationally efficient, accurate, device-agnostic, and works with a single train-

ing sample. We demonstrate Machete’s effectiveness through an extensive evaluation using four new high-

activity datasets that combine puppeteering, direct manipulation, and gestures. We find that Machete out-

performs three alternative techniques in segmentation accuracy and latency, making Machete the most per-

formant segmenter. We further show that when combined with a custom gesture recognizer, Machete is the

only option that achieves both high recognition accuracy and low latency in a video game application.
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1 INTRODUCTION

The same natural and non-verbal articulations we use to communicate with one another also allow
individuals to interact with software systems when leveraged in user interface design. Indeed ges-
tures have permeated every edge of the user interface boundary having been exploited through in-
teractive displays, smart watches, handheld game controllers, and passive sensor tracking systems;
and it may be that this trend ceases only when and if brain–computer interfaces obtain the same
level of maturity that today’s alternative low cost input devices enjoy. As such, researchers con-
tinue to investigate how to maximize gesture utility as well as how best to recognize gesture pat-
terns. One such branch of research fueled by continued success and demand addresses issues that
surface at the intersection between customization and simplicity. We have researchers, designers,
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and users who will train their software to recognize unique and idiosyncratic custom gesture pat-
terns so long as their system is content with only one or two demonstrations of a particular gesture.
For this reason, we require methods that work well with very little training data. Further, we have
researchers, designers, and practitioners who by trade are neither mathematicians, computer sci-
entists, nor pattern matching experts but want customization in their interface and will implement
or integrate recognizers that are sufficiently easy to comprehend. It has been a non-trivial effort
addressing these requirements, but the community has made great progress over the last decade
through the advancement of $-family recognizers, including $1 [89], $N [3], Protractor [46], $N-
Protractor [4], $P [78], $P+ [77], and $Q [79], as well as those recognizers inspired by them, such as
Penny Pincher [76], Jackknife [74], $3 [41], and Protractor 3D [42], among others [12, 26, 28]. These
recognizers enable customization using purposefully straightforward algorithms andmathematics.
Yet, a number of common input device types, including those that use passive sensors, provide

continuous input sampled from human motion, and while there are a number of approaches for
localizing gesture end points over continuous streams, only a few are $-family principled. Of these,
window-based segmentation is perhaps the most common approach, where on a per frame basis
one evaluates the most recent fixed-length set of input samples using an ordinary recognizer [34,
48, 59, 69]. Other approaches correlate discontinuities in an input signal with gesture boundaries
[17, 35, 36], whereas others just use simple heuristics [40, 43]. Needless to say, each method has
its own set of drawbacks relating to computational inefficiency, imprecision, or both, and this
motivates us to present a new solutionwe call Machete, a novel, continuous dynamic programming
(CDP) [58] based solution tailored for fast and efficient custom gesture segmentation.

Machete offers two primary advantages over alternative methods. First and foremost, our tech-
nique is computationally efficient, whereas other techniques such as energy-based segmentation
frequently invoke an underlying robust recognizer to evaluate segmented gesture candidates,
we are able to prune away most candidates, which is critical for resource strapped platforms
and real-time recognition systems. Second, we do not require a static boundary such as with a
sliding window, which means Machete is able to support a greater temporal variability in gesture
production. To evaluate our approach, we collected continuous high activity (HA)1 datasets from
30 participants using 3 input devices, 1 of which we split into 2 subsets to create a total of 4 unique
and varying datasets. We then compared Machete to three alternative segmentation techniques
and demonstrate that across four different error measures, our technique is the only method that
consistently achieves high accuracy across all conditions. Specifically, in three cases, Machete
outperforms all segmenters; and in the fourth case, the most accurate method not only requires
excessive computation but is the least accurate method across the prior three conditions. Further,
Machete is significantly more efficient, reducing processing time by as much as 98%, and in our
view these reasons make Machete the best option for a variety of continuous custom gesture
recognition problems. Thus, the contributions of this article are:

(1) A novel segmentation technique based on CDP for custom gestures that is simple yet
highly effective. Specifically, we introduce a new local cost function that improves CDP’s
ability to match patterns. We also introduce a new measure that improves the Douglas–
Peucker (DP) line simplification algorithm [21] we use to train our segmenter.

(2) Four HA datasets that mix gestures with direct manipulation and puppeteering like inter-
actions. One can download our datasets at https://github.com/ISUE/Machete.

1By high activity we mean that participants were continuously moving without breaks in a way that combined gesture

with non-gesture activities.
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(3) An evaluation of Machete that demonstrates competitive segmentation accuracy and su-
perior computational performance. In a first test, we look at the effect of four segmentation
approaches on our HA datasets. In a second test, we look at the effect of segmentation on
recognizer accuracy and latency in a Unity-based application.

2 MOTIVATION

In this section, we define the language of this manuscript and motivate our decision to focus on
customization using straightforward techniques. To begin, by gesture we understand a neuromus-
cular response resulting from an intentional communication that is captured via an input device

that periodically samples the environment. A gesture recognizer is able to analyze an input de-
vice signal and determine to which gesture class a given sequence of motion most likely belongs.
When a person is unable to delineate gesture end points through mechanical mechanisms, such
as a trigger toggle or touch event, then the signal is continuous and the system must algorithmi-
cally localize end points to either segment the input, or engage in gesture spotting. Segmentation
and spotting are often used interchangeably, but by spotting we mean that the system only needs
to recognize gesticulations as they occur, not identify where within time their end points local-
ize. To train a system, one can specify gestures through high-level language descriptions [44, 62]
or by example [63]. In the latter case, example motions sampled from gesticulating individuals
are used to train class models, from which the system learns one more representations of a tar-
get class. In general, more examples correlate with better performance, but to facilitate end-user
customization, the system must work well with limited training data. An extreme case of this is
one shot learning, where the system is given only one example of each gesture. Our goal in this
work is to deliver fast and robust custom gesture segmentation using only straightforward, $-
family principled techniques. In the remainder of this section, we further describe the importance
of customization, simplicity, and speed.

2.1 The Virtues of Gesture Customization

Nacenta et al. [52] describe four gesture set types: stock gestures, pre-designed gestures, user-
elicited gestures,2 and user-defined gestures. Generic system-wide available actions such as pinch,
rotate, and swipe are stock gestures that are widely available to designers for use in their own
software. Stock options are likely limited and therefore least expressive, as their shoehorned in-
clusion into a user interface may result in rather ambiguous associations, e.g., pinch to open a
jogging playlist. Alternatively, designers who leverage their expertise and domain knowledge can
pre-design gesture sets that are in their view meaningful, memorable, and well separated in a rec-
ognizer’s feature space. Or, when time permits and sufficient resources are available, designers
may instead choose to conduct an elicitation study so as to determine what is an appropriate ges-
ture set for their interface. Finally, as it pertains to customization, designers can let users define
their own gestures. Herein, we are concerned primarily with this latter type. We believe that sup-
port for gesture customization in user interface design inherently possesses functional, practical,
and cognitive virtue.
As a functional virtue: The need for customization becomes apparent in designs where pre-

defined gestures, user-elicited gestures, and stock gestures are inadequate or unworkable. For in-
stance, one may envision a supernatural game where players create their own wand spells using
an HTC Vive controller, or a system where meaningful shortcuts are required for an unspecified
number of referents. Custom gestures are further useful in security and authentication, such as

2Nacenta et al. actually filed user-elicited gestures under pre-designed gestures, but for reasons soon explained, we keep

them separate.
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to increase password entropy and complicate shoulder surfing attacks [54]. Or as a final exam-
ple, those with motor impairments are sometimes unable to interact with a given device using
typical able-bodied articulations [2]. Customization can overcome this issue by allowing impaired
individuals to define gesture sets that accommodate their impairment.
As a practical virtue: Once a designer decides that stock gestures are inadequate, he or she may

consider using pre-designed gestures, yet designers often get it wrong [51]. We are often unsure of
how users want to interact with our software; or what seems appropriate to us as experts turns out
to be awkward and unfamiliar to others. However, we can overcome this issue with iterative design
and elicitation studies. Norton et al. [55], for instance, conducted a Wizard-of-Oz study to explore
full body interaction in a parkour game environment. Wobbrock et al. [88] conducted an elicitation
study to learn how non-technical users gesture on interactive tabletops. Chan et al. [14] performed
a similar study for single-hand microgestures (SHMG). Such investigations yield workable gesture
sets and recommendations for user interface design within their respective domains that, while
being quite useful, have two limitations. First, established findings are specific to their domain,
e.g., an SHMG consensus set is unlikely to be of value to one who is designing a Vive game. In
other words, if prior knowledge is unavailable or without a direct application to one’s interface,
he or she will still need to conduct their own study, which, to the second point, can be time and
cost prohibitive. Finding sufficient time, participants, and capital to run a user study is sometimes
no small feat. These reasons make customization an attractive practical alternative, especially to
the indie developer, prototyper, hobbyist, and student.
As a cognitive virtue: It should first be understood that gestures are personal. When creating

custom gesture sets, users tend to prioritize the intuitive, natural, and obvious first; the simple and
easy second; and the familiar third [57]. But the result is still something unique; that is, we each
have our own ideas about which actions ought to map to which functions based on internal con-
ceptualizations, associations, and perceptions. This may be why we never see perfect agreement
for all tasks in elicitation studies, and why custom gesture sets require less concentration and are
easier to remember [52].
These virtues compel us to focus on customization and consequently techniques that work with

very little training data. Because if we wish to support gesture customization, we must also ensure
we do not burden the user [46]. Yet how we choose to go about designing such a system is of equal
importance, which leads us next to $-family principles.

2.2 $-family Ideology and Practice

Human–computer interaction (HCI) researchers often engage in rapid prototyping to iteratively
design, evaluate, and refine user interfaces. Some researchers further incorporate custom gestures
into their software so as to facilitate natural and fluid interactions. Since HCI researchers vary
in skill, it is common to find people in the field who are familiar with neither machine learn-
ing nor the advanced mathematics employed by pattern matching techniques that enable gesture
recognition. $-family recognizers3 serve these individuals by offering straightforward solutions to
complex pattern matching problems, so that researchers can incorporate custom gesture recog-
nition into their interfaces with comparatively little effort. Wobbrock et al. introduced the first
$-family recognizer, $1 [89], after which a long and varied series of work followed. It is because
of their reliability, relatability, simplicity, and adherence to the fundamental principles outlined
below that $-family recognizers have been widely adopted by the community.4

3For simplicity, we refer to the core recognizers [3, 4, 46, 77–79, 89] and those inspired by as the $-family collectively.
4Impact of the $-family is discussed at http://depts.washington.edu/acelab/proj/dollar/impact.html.
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We too are motivated by the $-family design philosophy in order to provide a robust segmen-
tation solution that is accessible to a large and varied talent pool, ranging in background from
developer to designer, and in skill from neophyte to expert. In our interpretation of the $-family
literature, tenets of the philosophy stand on:

(1) Independence: One can implement a proposed technique from scratch without requiring
external library support, thereby enabling gesture recognition on new platforms or in
new programming languages as they come into existence, where popular libraries do not
already exist. In other words, if necessary, one can implement all required machinery
without difficulty.

(2) Foundational Mathematics: Computations involve only straightforward algebra, geometry,
and statistics that most learn early in their academic careers.

(3) Relatable Representations: How a method internally represents a class model is straight-
forward, utilizing constructs that are easy to understand and visualize.

(4) Basic Algorithms: Techniques employ algorithms that can be understood by those who
have completed their first computer science course or have equivalent experience.

(5) Competitive Accuracy: Recognizers achieve high accuracy with limited training data so as
to avoid burdening users and not push integrators toward more complex solutions.

(6) Customizability: New gesture classes and examples can be added to the system at runtime
without significant effort or delay.

Adherence to these goodness criteria bestow additional benefits onto developers in that one can
quickly understand, implement, and debug such recognizers. And because most variants come
with reference code, pseudocode, or both, efforts are further hastened.
Although, there is yet no objective measure one can use to evaluate whether a proposed solu-

tion is $-family compatible, one can at least compare and contrast with non-compliant recogniz-
ers to gain an intuitive notion of what the community considers orthodox. To give a taste, many
advanced approaches use statistical features to describe and model gesture classes that are hand-
engineered [7, 20, 30, 31, 67] and derived from domain or problem-specific knowledge. One of the
more popular and easier to understand solutions developed by Rubine [63] uses linear discriminate
analysis, which constructs and inverts a covariance matrix. Poor feature selection can lead to poor
performance or singular matrices—two issues that are hard to conceptualize and debug without
prior experience. To evaluate the similarity of query data to class models, advanced recognition
techniques may use naive-Bayes [87], hidden Markov models (HMM) [91], support vector ma-
chines (SVM) [83], random forests [75], or deep learning [49], to name a few. $-family recognizers,
on the other hand, typically use simple point or vector data representations with nearest neighbor
patternmatching, which is said to be the simplest instance-based learningmethod [50]. Techniques
that have been employed as part of the data preparation and measurement include uniform spa-
tial resampling, min-max scaling, the DP line simplification algorithm [21], dynamic time warping
(DTW) [74], golden section search [89], Euclidean distance (ED), angular cosine distance, stochas-
tic resampling [72], nonlinear embedding [32, 33], lower bounding [74, 79], point cloud matching
[78], and the like.

2.3 The Need for Speed

Since $1’s inception, researchers have put a concerted effort into optimizing recognizer perfor-
mance for three important reasons:

(1) Real-time Performance: User interface design often requires low latency feedback in order
to maintain a fluid interaction. For instance, it has been shown that users perceive, plan,
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and react to millisecond delays [27]. And although numerous applications do not require
real-time performance, we still prefer responsive feedback. Further, processing queries
should not delay other ongoing operations, as software does much more than just analyze
input—it must share hardware resources with other system processes [76].

(2) Low-Resource Devices: Mobile, wearable, and embedded devices employ low-resource com-
puting technology to preserve power and lower cost, and to enable gesture recognition
on such devices, we require highly efficient techniques [79].

(3) Quantity: In general, recognizer accuracy improves with training set size, whereas re-
sponsiveness declines under an increased workload. Intuitively, algorithmically and com-
putationally efficient techniques are able to process more templates per unit time without
compromising runtime performance requirements [76].

For these reasons, we place special emphasis on computational performance. As will be shown,
our approach is exceptionally fast, yet highly accurate.

2.4 Effect of Segmentation on User Experience

The techniques we explore in this work use a hierarchical approach where a segmenter first iden-
tifies the temporal boundaries of a gesture candidate and then a recognizer classifies the candi-
date. Gesture candidates may be rejected or mapped to a known gesture class. In a customization
context, especially when using nearest neighbor pattern matching, the probability that a recog-
nizer correctly classifies a true positive gesture candidate increases with segmentation accuracy.
To illustrate, we discuss various error measures in Section 8.3 and, in particular, we highlight real
segmentation errors in Figure 13. Visual inspection reveals that poor segmentation accuracy yields
significant truncation or extension of gesture candidates, leading to higher recognizer dissimilar-
ity scores. Improper segmentation, therefore, may lead to gesture candidate rejection when such
scores are too high. One can raise the rejection threshold to combat this effect, but doing so will
lead to an increase in false positives. Segmentation accuracy, therefore, plays an important role in
user experience given that recognition errors can frustrate users, require greater effort to use, and
reduce confidence [22, 37].

Although we discussed computational performance in the previous subsection, it is worth dis-
cussing efficiency further in the context of user experience. Arguably, window-based segmentation
is the most popular method given that windowing generally yields high accuracy and is easy to
implement. One issue we often face, however, is that windowing also has high computational costs
where for every frame we must extract and evaluate one or more sequences from the input stream.
As we demonstrate in our evaluation, this can result in a significant drop in frame rates, some-
times to below interactive rates (10–17.5Hz depending on use case [16]). Since prior work in video
games has shown that frame rates and player performance as well as perceived quality are related
[19], any latency that results in frame rate reductions can be harmful to user experience. In virtual
reality, higher frame rates result in smoother motion and increased presence, whereas low frames
rates can also lead to motion sickness [85]. These results have led Oculus to recommend applica-
tions run at the Rift display refresh rate (90 frames per second (FPS)) or faster in their best practices
report [56]. So although high segmentation accuracy may be possible, we must also consider its
impact on overall software performance.

3 RELATEDWORK

Gesture spotting and segmentation is said to be as difficult as gesture recognition itself [86], and
like with recognition, there are countless approaches people use to solve these problems. Example
questions we can ask follow: What is the probability that a given frame is a gesture boundary,
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regardless of class? Given all history leading up to a moment in time, to what gesture class does
the present frame most likely belong? What subsequence ending at the present frame maximizes
the probability that it belongs to a particular gesture class? These subtly different questions impact
how one approaches segmentation.
Escalera et al.’s survey paper [24] on multi-modal gesture recognition discusses segmentation

and identifies two main approaches: direct and indirect. A second survey by Weinland et al.
[86] uses a slightly different organization: boundary detection, sliding windows, and grammar
concatenation. Between the surveys, direct methods entail boundary detection and windowing,
whereas indirect methods correspond to higher-level grammars. Therefore, we report on direct
and indirect segmentation strategies, though our goal here is to inform the reader about com-
monly employed techniques and discuss their relation to our design goals. For more information,
please refer to the surveys.

3.1 Direct Methods

Direct methods use heuristics or examine physical characteristics of motion such as velocity, ac-
celeration, and poses to localize endpoints, but these methods tend to be unreliable in the presence
of complex interactions [86]. For example, to detect gesture boundaries in dance sequences, Kahol
et al. [35] hierarchically track the velocity, acceleration, and mass of various segments that are
coalesced into a single force, kinetic energy, and momentum result. They then look for minima in
the total body force signal to guide subsequent analysis in deciding boundaries. Kang et al. [36]
similarly look for abnormal velocities, static poses, and severe curvatures to help detect candidate
gesture boundaries in video games. Ye et al. [93] use curvature to segment a single stroke gesture
into constituent strokes. Chen et al. [17] used energy and root mean squared (RMS) as their metric
to segment real-time electromyography signals. RMS is often measured when using electromyog-
raphy. Arn et al. [5] proposed the use of generalized curvature analysis to segment user gestures
from continuous Kinect skeletal data. It is able to segment main motions from transitions. Regions
of high curvature are transition phases, whereas main motions have lower curvature. This can be
seen as the inverse of energy based segmentation, because lower regions of energy are considered
segmentation points. Other examples include [66, 82].

Perhaps the most prevalent technique used for segmentation is the sliding window, which con-
tinuously evaluates a fixed-size subset of the most recent input. Windowing is attractive because
of its simplicity, as one only needs to keep a small buffer of history that is continuously fed to
an underlying recognizer. Sliding windows have been used in data glove [48], body-worn inertial
sensors [34], and vision-based body and tracking [69] gesture recognition systems. One problem
with windowing, however, is that one must decide on an appropriate window size. This issue can
be resolved by learning appropriate window sizes with training data [48] or by using multiple
windows at the expense of greater computation.
Keogh et al. [38] presented an overview of several techniques for time series segmentation, in-

cluding windowing, top-down, and bottom up. Top-down segmentation processes an entire time
series at once and splits it repeatedly based on a given measure (such as energy) until either it
reaches a set number of segments or no further splits are possible. The bottom-up technique con-
versely groups sequences together that have similar properties until a certain criteria is met. Both
top-down and bottom-up are traditionally offline approaches to segmentation, which limits their
utility compared to sliding windows, despite being generally more accurate. Keogh et al., however,
propose the sliding window after bottom-up (SWAB) technique, which builds small segments that
may be merged in the future.
Different from most other direct approaches, Vatavu et al. [80] proposed a hierarchical recogni-

tion approach based on the integral absolute curvature of two-dimensional (2D) gestures, which
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they proved to be scale invariant. With a modest amount of training data, one can determine a
representative band of curvatures and quickly reject unfit segments.
Simple, heuristic (rule-based) segmentation is also common, whereby a system uses easy to de-

tect criteria in order to delineate gestures from other user activities. Using a Kinect, Kristensson
et al. [43] defined an “input zone” for hand gestures where users could interact with their ap-
plication. Movement into and out of the zone therefore segmented the continuous input stream.
Gesture Watch [40] instead uses a hardware sensor to detect when one raises their wrist, at which
time the system begins to record input from other sensors until he or she again lowers their wrist,
thereby trigging recognition.

3.2 Indirect Methods

Indirect methods are like mini-recognizers that score continuous data until a possible gesture
boundary is detected, many of which require extensive training data. One example is Alon et al.’s
spatiotemporal HMM recognizer [1] as well as Yin and Davis’s three part HMM [94]. This latter
approach divides a gesture into three parts, the pre-stroke (setup), nucleus (main activity), and
post-stroke, and learns models for each. Other examples include the use of artificial neural net-
works [53] for hand gestures and conditional random fields for sign language [92]. Yin and Davis
[94] trained an HMM to detect hand gestures from salience maps extracted from RGB-D images.
Wang et al. [84] make use of an HMM for segmenting atomic gestures from streams of human
actions in recorded videos.
For a more recent example, consider uDeepGRU [11], which took first place in the 2019 3D

shape retrieval contest (SHREC’19) for continuous hand gesture recognition. uDeepGRU is an
end-to-end deep neural network designed for recognizing gestures in an unsegmented stream of
data. With gated recurrent units [18] as the main building block, uDeepGRU takes as input per-
frame raw direction vector features and outputs class conditional probabilities. Feature extraction
and implicit segmentation are performed jointly without relying on the data of future time steps.
These properties make uDeepGRU suitable for online recognition of gestures, but nontrivial to
understand and implement.
Conversely, one approach suitable of custom gesture recognition is CDP [58], which relaxes

a DTW constraint that makes continuous recognition possible. Similarly, Sakurai et al. [65] use
a modified DTW algorithm, called SPRING, to continuously segment single or multidimensional
data streams. The two modifications they proposed were star-padding, which reduces the number
of matrices one needs to calculate per candidate template, and sub-sequence time warping, which
adds additional information to each individual cell of the DTW matrix. These two modifications
dramatically reduce spatial and temporal complexity of the problem of time series matching. In
our view, SPRING and CDP are very similar.
Most similar to our work, Tang et al. [70] proposed Structured Dynamic TimeWarping (SDTW)

for hand gestures, where like Machete, they utilize direction vectors between consecutive points to
segment input. Specifically, their local cost function measures the exact angle between model and
input direction vectors, rather than the squared ED between point data.When the cumulative score
reaches a predetermined threshold, SDTW then localizes gesture end points based on a sliding
window SVM over position and velocity data. While direction vectors are a corner stone of our
work, we propose a unique local cost function and initial boundary condition that makes Machete
viable for customization, whereas SDTW requires sufficient training data to learn an SVM model.
Further, we designed Machete for a variety of input, not just hand gestures.

3.2.1 Accept-Reject Criteria. A continuous gesture recognizer evaluates input as it arrives, and
for each new sample, the recognizer must decide whether or not to inform the system of a possi-
ble gesticulation. This decision comprises the accept-reject criteria—the set of conditions one must
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satisfy in order to send notification. Typically, scores that fall below a per class rejection threshold

are discarded, whereas sufficiently high scores result in further analysis. What happens thereafter
is nuanced, application specific, and rarely discussed in the literature, despite having a significant
impact on recognition accuracy. When descriptions are provided, they often lack detail, appear ad-
hoc, or seem to fit the data at hand [36, 90, 94]. To illustrate with a few examples, some approaches
require that a duration of time passes between subsequent detections as a way to remove unin-
tended non-gesture movements and potential noise [10, 59]. Similarly, a recognizer may require
that an evolving pattern scores well over multiple consecutive frames prior to acceptance, so as
to circumvent arbitrary spikes from noisy data [35]. Recognizers may further purge [1, 9] or keep
[8] prior data and internal state information upon detection, which impacts subsequent signal
processing. One may use a low sampling rate to stabilize results or interpolate across multiple
frames [9]. In this work, we do not propose an accept-reject criteria per se, but we do describe a
related pruning technique that eliminates most candidate gestures.

3.3 Putting It All Together

We are interested in finding a fast and accurate segmentation approach suitable for gesture cus-
tomization that also conforms to $-family standards. After surveying the state-of-the-art, we found
three candidate approaches. Standard energy-based segmentation showed promise because of
computational efficiency; however, there are at least two shortcomings. First, boundaries are not
gesture-specific, which implies we have to evaluate all templates for each boundary pair. Second,
energy alone does not appear to be a reliable boundary indicator and one may have to learn addi-
tional criteria from training data to use this direct method.
Windowing also shows promise, having a long history of success. It is simple, direct, and we

expect windowing to do well when temporal variability is low given that prototype-based window
sizes will precisely fit incoming data. Otherwise, with greater variance, the optimal size has to be
learned, multiple windows have to be used, or both. The most critical issue we see is that there
is also no potential for pruning, which means that we must run a full evaluation every frame and
incur high computational costs.
We also considered SWAB [38] and the integral absolute curvature approach [80]. We were

concerned that SWAB would require domain-specific knowledge and extensive tuning to use ef-
fectively, or suffer from the same issues that plague other direct methods. For this reason, we
decided to leave SWAB for future work. On the other hand, the integral absolute curvature ap-
proach requires at least a small training set size to learn valid curvature intervals. We require that
our segmenter works well with a single training example per gesture class (one-shot learning).
Our final choice is CDP, which is fast, and in our opinion, $-family friendly. However, CDP

suffers from several issues that we address. Specifically, we introduce a new local cost function
that is time, scale, and position invariant. Instead of measuring ED between corresponding points
normalized by the warping path length, we measure the weighted squared inner product between
corresponding direction vectors normalized by gesture path length. To ensure proper segmentation
with our new local cost function, we also introduce a sink node cost that controls how the first
element of two sequences are matched. We further propose a simple automatic pruning technique
that eliminates the majority of segmented gesture candidates. Finally, we improve DP resampling
by including angular information in its point selection logic, which leads to better gesture repre-
sentations and templates. The combination of these new techniques is collectively calledMachette.

4 MACHETE

We depict a typical custom gesture recognition pipeline that incorporates Machete in Figure 1 be-
low. An input device periodically measures its sensors at a fixed sampling rate fs and outputs a

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 1, Article 5. Publication date: January 2021.



5:10 E. M. Taranta II et al.

Fig. 1. Gesture recognition pipeline for continuous input. An input device samples human motion and out-

puts noisy data that we clean with a low-pass filter. For each example gesture provided by the user during

training, Machete uses a CDP based technique to find gesture candidates in the continuous input. In this

illustration, matrix rows represent frames and columns represent template elements that must be matched.

Identified candidates are thereafter passed to a gesture recognizer for further analysis. If the candidate sat-

isfies the recognizer’s critiera, the application is informed a gesture is recognized.

discrete signalX . This signal contains high-frequency noise and other corruptions that the system
removes with a low-pass filter so as to let through the most informative frequencies, i.e., those that
embed human motion. Filtered signal Y is then fed into the main recognition subsystem where we
measure its likeness to each gesture class. Specifically, Machete first determines on a per frame
basis how well the incoming filtered data matches a given class template suitable for segmenta-
tion, but not recognition. When its dissimilarity score is sufficiently low, Machete localizes the
end points and passes the segmented gesture candidateY [start : end] to an underlying robust rec-
ognizer for further analysis. The recognizer processes the candidate and generates a new score
that is more reliable than Machete’s initial estimate. With the recognizer’s output in hand, an
accept-reject machine analyzes the current state-of-affairs, e.g., context in combination with other
ongoing recognition results, to decide whether the sequence is without meaning or that it indeed
maps to the specified gesture class.
In this section, we describe Machete in detail. We start with preprocessing but quickly proceed

to DTW so as to gain an intuitive understanding of how its elastic matching process works. There-
after, we turn to CDP [58], which generalizes DTW by relaxing one constraint that thereby enables
continuous processing. In our CDP discussion, we introduce three novel modifications that facili-
tate gesture segmentation. We thereafter discuss the DP line simplification algorithm [21] and our
modification thereto, which we use to convert training samples into Machete templates. Last, we
describe our strategy for pruning most candidate gestures that boosts overall performance. Note,
pseudocode for all methods discussed in this section can be found in Appendix A.

4.1 Preprocessing

Machete works on direction vectors, which means we must first transform input signal X into a
series of deltas as follows:

�X =
(
�x i = x i+1 − x i ��� i = 1 . . .XN − 1

)
. (1)

During this transformation, we discard new input samples that would produce invalid vectors.
For instance, we discard samples that are less than one pixel away from the last accepted position
when working with mouse data. It is also critical that one smooths the input signal with a low-
pass filter so as to remove jitter and variabilities in the direction vector signal. Small differences in
position over time can result in significant fluctuations between consecutive direction vectors. And
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Fig. 2. Visualization of two time series before and after DTW alignment. The shaded regions between them

represent the amount of dissimilarity measured by ED. Although the unaligned series are of a shorter dura-

tion, the area between them after alignment is significantly improved.

although we account for this issue via a per input sample weighting scheme, filtering nonetheless
further improves performance.

4.1.1 Training. Given demonstration sampleX belonging to gesture classдi ∈ G, we must con-
vert the sample into aMachete template. To do this, we first find a suitable low resolution represen-
tation of X using a modified DP line simplification algorithm, after which we then define template
T as the normalized direction vectors between DP points Y :

T =

(
�ti =

yi+1 −yi
| |yi+1 −yi | |

�����
i = 1 . . .YN − 1

)
. (2)

4.2 Dynamic Time Warping

DTW is an elastic matching dissimilarity measure that finds the optimal alignment between two
sequences based on a given local cost function. Although squared ED is the most common cost
function, Jackknife [74] utilizes the inner product of gesture path direction vectors, which provides
translation and scale invariance. We adopt this approach herein not just because of its simplicity,
but because we are unaware of any alternative computationally efficient data representation or
technique that can handle position and scale variance on a per time-step basis.
To understand how DTW works at a high level, consider Figure 2 above. We present two se-

quences produced by the same individual who twice in a row raises their arm up high. In the left
graph, notice that the sequences are temporally out of sync because of differences in production
speed. The shaded area between each sequencemeasures the squared ED, i.e.,

∑
(xi − yi )2 between

them, which reveals major dissimilarities. Contrast this with DTWwhich is able to resolve tempo-
ral differences as shown in the right graph, where we see that DTW eliminates most of the shaded
area. How does this work? Internally, DTW constructs an optimal warping pathW that specifies
how each element from query Q maps to template T . Warping pathW is defined as:

W =
(
w i = (a,b)

���� 1 ≤ a ≤ |Q |, 1 ≤ b ≤ |T |
)
, (3)

and is used by DTW in the following way:

DTW (Q,T ) =
|W |∑
i=1

d (qa , tb ) (4)

a = w ia

b = w ib
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where d (qa , tb ) is a local cost function that measures the dissimilarity between query element qa
and template element tb .

Next we need to understand how DTW constructs the warping path. Let us suppose we have
partial warping pathW [1 : N ] and the last element thereinwN = (i, j ) maps query qi to template
t j . From here, we have three options for how we can proceed—we can set:

—wN+1 = (i, j + 1) Repeat query qi so that it is matched with template t j+1
—wN+1 = (i + 1, j ) Repeat template t j so that it is matched with query qi+1
—wN+1 = (i + 1, j + 1) Repeat neither and match query qi+1 with template t j+1

It is by repeating elements in either sequence that DTW is able to align the sequences. Referring
back to Figure 2 (right), one can see example short plateaus in the aligned curves where elements
are repeated.
One might note that there are many possible warping paths that align two sequences, but DTW

selects the optimal solution via an elegant dynamic programming approach. DTW constructs a
|Q | × |T |matrixM , where each element (i, j ) holds the optimal warping path score that alignsQ[1 :
i] with T [1 : j]. In other words, once two subsequences are aligned, element (i, j ) is the measure
between them. The matching decision described above can then be decided using the following
recurrence relation:

Mi, j = d (qi , t j ) +min
⎧⎪⎪⎨⎪⎪⎩

Mi, j−1 Repeat queryqi
Mi−1, j Repeat template t j
Mi−1, j−1 Repeat neither,

(5)

with boundary conditions:

M0,0 = 0 (6)

Mi,0 = ∞ (7)

M0, j = ∞. (8)

In code, one can fill in the matrix one row at a time from left to right, starting at (1, 1). Then for
each subsequent element (i, j ), one evaluates Equation (5). Once this process reaches the bottom
right corner ( |Q |, |T |), the optimal path (and score) through the matrix is known. Two important
DTW properties worth noting are that every warping path through M forces q1 to be matched
with t1 (as a consequence of the boundary conditions), and similarly q |Q | is matched with t |T | .

Pathological warping occurs when a small section of one sequence is alignedwith a large section
of a second sequence due to unbound warping [61]. To prevent pathological warping, one may
impose a warping path constraint, such as a Sakoe–Chiba band [64]. One may also use lower
bounding [39, 74, 96] along with other techniques [60] to optimize the alignment process, but
these optimizations do not apply to this work.

4.3 Continuous Dynamic Programming

CDP [58] extends DTW so as to be able to match patterns embedded in unsegmented sequences,
including gestures embedded in continuous signals. Specifically, CDP replaces the initial matching
constraint imposed on DTW by Equation (7) with a new condition Mi,0 = 0. In this way, CDP
introduces the start of a new warping path every frame that extends on through matrix M only
when its cumulative distance is sufficiently low. We present an example of this process in Figure 3.
When the system samples a new Kinect pose qi at time i , CDP establishes the start of a new path
by matching pose qi with template t1. CDP then processes the remainder of the row as standard
DTWwould. At the end of the update,Mi, |T | holds the optimal warping path score ending at time
i , and by monitoring this score we can speculate about whether the user gesticulated. We illustrate
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Fig. 3. Visualization of a CDP matrix. Each row is the result of processing one new input sample from a con-

tinuous stream, and each element holds the accumulated warping path score. Arrows indicate the direction

of each warping path through the matrix. The blue warping path highlights the best result, showing which

input poses where matched with which template poses.
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this idea in the previous figure where we highlight the optimal warping path associated with the
best score found in the last column and visualize the eight matched elements. Our system after
having found a sufficiently low score can extract the subsequence and pass it to the underlying
recognizer for further analysis.
Since DTW has been used in prior work that meets our design criteria [47, 74], and CDP is a

straightforward extension of DTW as just described, we decided to use CDP in Machete. However,
standard CDP suffers from scale and position invariance under the ED measure, which we address
in our work. Specifically, in the following subsections we (1) develop a new local cost function,
(2) define CDPip , and (3) introduce a new initial matching constraint.

4.3.1 Local Cost Function. The squared ED local cost function one typically employs in DTW
and CDP is inappropriate for several continuous gesture recognition problems. Namely, squared
ED is neither position nor scale invariant. One way around this issue is to use a running z-score
normalization scheme [60], but finding an appropriate lag in the presence of large discontinuities
(such as when a person jumps to a new location on an interactive display) may prove challenging.
Further, we want to avoid scaling noise to unit variance which can happen when idle components
do not change position during gesticulation, e.g., the y-component in a minus sign. A simpler
approach is to measure the inner product between direction vectors, which is invariant to position
and scale and has already been used successfully to recognize gestures across varying input device
types [74, 76]. We specifically leverage the inner product between direction vectors as follows:

d
(
�qi ,�t j

)
=
��
	
1 −
〈
�qi ,�t j

〉
‖�qi ‖


�
�

2

. (9)

In words, the inner product of normalized direction vectors fall in the interval [−1, 1]. Since
template elements are already normalized, we only need to divide < �qi ,�t j > by the query’s vector

length |�qi |. To transform this product into a dissimilarly measure, we subtract it from one, and as a
consequence, the score falls in the interval [0, 2]. We further square the sum to allow for a greater
variability in low angular differences, and to further penalize severely diverging trajectories. This
difference can be seen in Figure 4. Certainly one can use other powers, but squaring the sum is
computationally efficient as it does not involve an expensive power function call, and we found
that cubing the sum did not improve performance.

4.3.2 CDPwith Direction Vectors. Given Equation (9) as the local cost function, we defineCDPip
as the weighted sum of the optimal warping path throughM , which corresponds to the recurrence
blow. Note, our unique contributions are, first, how we weight the local cost function with ‖�qi ‖
and, second, how we track and normalize the result with path length Li, j :

Mi, j =
1

Li, j

⎡⎢⎢⎢⎢⎢⎣
‖�qi ‖ · d

(
�qi , �t j

)
+ Lk,l ·min

⎧⎪⎪⎨⎪⎪⎩

Mi, j−1
Mi−1, j
Mi−1, j−1

⎤⎥⎥⎥⎥⎥⎦
(10)

Li, j = Lk,l + ‖�qi ‖. (11)

L is an auxiliary matrix that stores the sum of query vector lengths along each warping path.
And indices (k, l ) correspond to the selected matrix element Mk,l (being one of Mi, j−1, Mi−1, j or
Mi−1, j−1). The effect of Equation (10) on the overall cost is that the contribution of each warping
path element is weighted by the query vector’s length. This treatment ensures that short vectors
occurring on cusps and corners have less impact on the final score than do vectors that define the
main body of motion. It is worth noting that we informally testedCDPip without the normalization
factor and saw a significant drop in performance.
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Fig. 4. Amplitude of unweighted local cost functions over varying angles. The squared variant ensures that

a wider variability of similar angles are mapped to lower costs, whereas dissimilar angles are more severely

penalized.

We designed our warping path formula with $-family principles in mind. The local cost function
is weighted by the input direction vector length, a simple geometric operation that has been used
in prior work [72, 74, 76]; and we track the full gesture path length through the warping path,
which is merely an accumulator. Similarly, in code, it is trivial to define a warping path object that
stores the start frame, unnormalized weighted cumulative score, and cumulative path length. In
this way, one can calculateMi, j on the fly by normalizing the score and extend a warping path by
propagating these values to the next element, as shown in our pseudocode in Appendix A.

4.3.3 Boundary Conditions. One issue with matching direction vectors is that once a gesture
begins, a subsequent vector may better match the first template element. When this happens, the
new warping path will overtake the prior path rather than extend it. Our solution to overcome this
problem is to modify the initial matching condition so thatCDPip only starts a new warping path
when the present path passing through the first column is worse than a threshold θ . Formerly,
CDPip ’s boundaries conditions are:

M0,0 = 0 L0,0 = 0

Mi,0 = (1 − cos (θ ))2 Li,0 = 0
M0, j = ∞ L0, j = 1

Note that because Li,0 = 0, the transition from column zero to one, which starts a new warping
path, carries zero cost. With this modification, vectors matching the first template element are now
grouped together. In Section 5 we discuss how we select the θ parameter in further detail.

4.4 Correction Factors

One limitation of Machete is that we are unable to localize gesture end points that occur within a
straight line. For full body gestures, this issue is less problematic, but straight lines are common for
2D gestures. Our sink node weighting scheme enables Machete to latch onto the start point when
the gesture boundary occurs on a curve, but we also need a similar mechanism for end points. To
address end point localization, we adopt the correction factors concept [6, 74].

CDP ′ip = CDPip × c fopenness × c ff 2l . (12)
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The adjusted CDP ′ip score is the standard score inflated by two correction factors that measure

dissimilarity information not captured byCDPip . Specifically, we look at the relationship between
the first and last points of a gesture, c fopenness . When they are far apart, the gesture is open, and
conversely, the gesture is closed when these points are collocated. Second, we also consider the
angle made by the direction vector between them, c ff 2l . Since the direction vector may be unre-
liable when a gesture is closed but provide useful information about correct gesture production
when open, we use a weighting scheme to balance these two factors, which we describe shortly.
A correction factor resolves to one (zero inflation) when there is no difference between the query
and template, and differences between them cause the factors to scale upward, though we limit
each factor’s maximum value to two (not shown in the math below).
We limit the design of our new correction factors to the same set of operations used in prior

rapid prototyping work [72, 74, 76] to ensure compliance with our design goals; namely, we use
scalars, vectors, ratios, weighting, min-max functions, and inner products. In greater detail, let us
define the first to last point (abbreviated f 2l ) direction vector as follows:

�xf 2l = x l − x f , (13)

where f and l , respectively, index the gesture’s start and end points. From �xf 2l , we derive the
openness of a gesture as the length of its direction vector over the gesture’s path length:

openness =
‖�xf 2l ‖
L . (14)

Here, L is the total path lengthX [f : l], which we measure directly from training data or estimate
with Ll, |T | for queries. We use these values because of their fast computation—one can index the
points from a circular buffer and Ll, |T | is readily available. Intuitively, from Equation (14), we see
a five point star gesture will score low in openness, whereas a gesture separated by the length

of its boundary will score highest. With training sample’s �tf 2l direction vector, we also decide
how much to weight the c fopenness and c ff 2l factors. The direction vector length relative to the
gesture’s bounding box diagonal length diaд gives us a sense of the gesture’s openness, where a
value close to one means the gesture is fully open. Note, we cannot use the diagonal length in the
above definition of openness because we found the per component boundaries were too expensive
to carry forward through time. However, to calculate the bounding box during training is okay.
With this in mind, we calculate the weights with:

wf 2l = min �
	
1, 2
‖�tf 2l ‖
diaд



�

(15)

wclosedness = 1 − ‖
�tf 2l ‖
diaд

. (16)

By these definitions, we give preference to wf 2l when the gesture is more open and wclosedness

when the gesture is closed.
With the direction vectors, openness, and weights, we last define the correction factors as

follows:

c ff 2l = 1 +wf 2l
1

2
�
	
1.0 −

〈
�qf 2l

‖�qf 2l ‖
,
�tf 2l

‖�tf 2l ‖

〉


�

(17)

c fopenness = 1 +wclosedness

(
max (openness (Q ),openness (T ))

min (openness (Q ),openness (T ))
− 1.0

)
. (18)
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Fig. 5. Example Machete segmentation scores over time as a participant performs the cartwheel right ges-

ture. A total of 17 templates are loaded. Per frameMachete scores are rendered red for the cartwheel gesture

and blue for the remaining sixteen gestures. Ground truth segmentation is in bold red. Based on our pruning

strategy, the four minimum values below the template threshold (horizontal dashed black line) are where

candidate gestures are passed from Machete to an underlying recognizer for further evaluation. Notice that

in approximately 200 frames, the recognizer is invoked only four times to analyze the cartwheel gesture.

Without weighting, the c ff 2l factor is manipulated so that it evaluates to one when the query and
template direction vectors match, whereas c ff 2l evaluates to two when they perfectly differ. The
fraction in c fopeness is a ratio greater than one that describes the difference in openness. Simi-
larly, c fopenness is one when their openness matches, but scales to higher values as their openness
diverges.
These correction factors together help compensate for situations where gestures end on a long

line. In our evaluation, we only apply these factors to mouse data, where we have several such
gestures. For full body interactions, however, we do not leverage this mechanism, and it is a goal
of our future work to derive a more general solution.

4.5 Pruning

Machete generates a new gesture candidate every frame, but in order to reduce the computational
burden of calling an underlying recognizer too frequently, we wish to prune as many candidates
as possible. Figure 5 illustrates how several CDPip template scores progress over time during a
cartwheel right gesture. We observe that most (though not all) curves stay relatively high while
the user swings their arms, whereas the cartwheel template score drops close to zero.We anticipate
this drop for two reasons. First, we expect well defined gestures to stand out from other human
motion, which implies that the input will diverge from most template patterns at least enough to
drive the score high on average. Second, because we square the inner product, sufficiently similar
patterns ought to approach zero. Based on these assumptions, we are able to derive a relatively
efficient pruning strategy.
For each template, we track the running average and automatically reject any candidate that is

above half the mean. We believe this is a reasonable conservative estimate given that scores are
expected to approach zero during gesticulation. To further improve pruning, we also assume that
gesture end points correlatewithminima. Based on this idea, we also prune any candidate that does
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Fig. 6. Comparison of resampling techniques. Each original sample is resampled using angular DP and then

uniformly resampled using the same number of points.

not occur on aminimum. This rule results in the automatic rejection of most remaining candidates.
As shown in Figure 5, only a few candidate gestures satisfy these requirements, whereas the vast
majority are discarded.

4.6 Angular DP

Our final point of order is to describe how Machete transforms a given training sample into a
template. Many recognizers uniformly resample the sample’s trajectory to a fixed number of points
that are equidistantly spaced along its arc length. However, uniform resampling may cut corners,
express the gesture’s shape with too many points, or both. Instead, we hope to reduce computation
by representing a pattern with the least number of points possible, but while preserving important
features. One technique that does both is the DP line simplification algorithm [21], which has been
successfully used in gesture recognition [26].

The algorithm proceeds as follows. Given line segment xaxb , we calculate the distance of each
point x i ,a < i < b to the segment. We then select the furtherest point x i from the segment and
subdivide it into two halves: xax i and x ixb . DP recurses into both halves and continues on as
such until either the furthest distance falls below a predetermined threshold ϵ or the segment is
indivisible. All selected points are then combined to describe a simplified version of the original
trajectory. This approach is generally effective, but because Machete works on direction vectors,
we make a small modification. Instead of using distance directly, we weight it by the normalized
angle it forms with the end points:

d ′i = di · arccos ��
	

〈
�v1, �v2

〉
‖�v1‖ · ‖�v2‖


�
�
1

π
(19)

�v1 = x i − xa (20)

�v2 = xb − x i , (21)

where di is the distance from x i to xaxb and d ′i is the scaled distance. Please see our pseudocode
in Appendix A for more information.
We chose to weight the distance of a point by its associated angle in order to help DP select those

points where the trajectory changes direction, e.g., on corners and cusps. We believed this would
lead to better simplified gesture representations using fewer points, which we later confirm. For
now, we illustrate the impact of Angular DP on resampling in Figure 6. For each sample, we first
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resample the trajectory using Angular DP with ϵ = 0.01. We then uniformly resample the original
trajectory to the same number of points selected by Angular DP. By inspecting their shapes side
by side, one will notice that angular DP provides a better description of each gesture shape, often
using relatively few points.

5 PARAMETER SELECTION

Our system requires three parameters, a low-pass filter cutoff frequency fc , an angular DP ter-
mination threshold ϵ (Section 4.6), and an initial sink node cost θ (Section 4.3.3). We turn to the
former first, but before we can select a cutoff frequency, we must choose a low-pass filter. There
are several options compatible with $-family principles, including the moving average, exponen-
tial moving average, double exponential moving average [45], and 1€ [13] filters. We decided to
use a multiple-pass centered moving average (MCMA) because of its simplicity, optimal proper-
ties [68], and because we wanted the filtered response to correspond directly to the original input
to facilitate analysis with our development tools. The central moving average (CMA) filter has a
single parameterM , the number of points per average, which we set to three:

yi =
x i−1 + x i + x i+1

3
, (22)

where signalY is the filtered response over input signalX . MCMAbuilds on this by passing the sig-
nal through a CMA filter R times. Algebraic manipulation of basic MCMA facts using our window
size leads to:

R =
3

2

(
fs

2π fc

)2
. (23)

The sampling rate fs can be determined from training data or at runtime, but the cutoff fre-
quency fc is less trivial. In general, most human motion falls below 10 Hz [95], but this varies over
different types of motion. Although there are automatic low-pass filter calibration procedures for
pointing tasks [71] which balance precision and lag, we are unaware of similar procedures for
gestures. So to help us decide appropriate cutoff values, we examine two public datasets that are
representative of the gesture types used in our evaluation. The first is a Kinect dataset [23] compris-
ing sixteen full body parkour gestures collected from sixteen participants, totaling 1,280 samples.
The second, $1-GDS [89], is a pen and touch gesture dataset comprising 16 gestures articulated at
3 different speeds by ten participants, totaling 4,800 samples.
We conducted power spectral density (PSD) analysis on each sample and combined their cumu-

lative powers into a single distribution. These results are shown in Figure 7. Our analysis reveals
that information embedded in full body gestures fall below 3 Hz, which we select as the cutoff
frequency fc for our Kinect and Vive input described later. For pen and touch gestures, we see that
most information falls below 5 Hz, which we select as the cutoff frequency fc for mouse input. In
addition to PSD data, we also illustrate MCMA’s frequency response for each cutoff, which shows
the reduction in signal strength over varying frequencies. Specifically, this shows what ratio of
each frequency will remain in the signal after being filtered. The strength of low frequencies are
left mostly unaltered, whereas high frequencies are almost entirely removed. Recall that our main
objective with filtering is to remove high frequency noise that jitters the direction vectors without
distorting the gesture’s trajectory. In this regard, one will note that MCMA has a slow rolloff; so
even if the cutoff is not optimal, there is still sufficient wiggle room and the gesture shape will
largely remain in tact.
Next we must determine an appropriate threshold ϵ that balances precision and computation.

Our goal is then to find ϵ that will adequately describe complex trajectories. To do this, we compare
the intraclass and interclass score distributions of a sufficiently complex dataset. Specifically, for
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Fig. 7. Cumulative power spectral distribution for parkour Kinect (left) as well as pen and touch (right)

gesture signals. Vertical red lines denotes our proposed cutoff frequency for full body and hand gestures,

respectively.

Fig. 8. Left: Minimum separation between each EDS [81] gesture class and its nearest neighbor as measured

by Machete over varying ϵ thresholds. Right: Average resampling rate N per threshold.

a given dataset and threshold ϵ , we compute the pairwise dissimilarity of each sample to every
other sample in the dataset using Machete—between two samples, one is used as a template and
the other is treated as continuous input. For each class д1 and д2, we find д1’s intraclass mean score
and the interclass mean score from д1 to д2, and then we save their ratio. A ratio greater than one
means the classes are perfectly separated, whereas a ratio less than one indicates there may be
confusion between the classes under Machete, and to have the best separation possible, we select
threshold ϵ that maximizes the ratio between the closest classes.
We carried out our analysis over two pen datasets combined into one whole [81]. The Execu-

tion Difficulty Sets (EDS) were created to model and test the perceived difficulty of articulating
unistroke pen gestures. In aggregate, there were 38 gestures articulated 20 times, with 18 gestures
being produced by 14 participants and the remaining 20 by 11, for a grand total of 9,440 samples.
We chose to use EDS because compared to other options, they varied in complexity. With a smaller
dataset, we run the risk of selecting a poor threshold because classes are easily separated and not
representative of all motions possible in its associated input space.
Using the described procedure on EDS, we collected the minimum separation ratio between

classes over varying thresholds. In Figure 8, we plot the result for each of the 36 classes as well
as the average resampling rate N for each threshold. We find that the best separation occurs at
ϵ = 0.75%, which we round up to 1% since the difference is not substantial. At this level, we also
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Fig. 9. An example FTL screenshot: The leader and participant are standing on one foot, as if to maintain

balance on a tightrope, when a gesture command pops up. At this time, the participant will immediately

stop following and execute the command, after which they will return to following the leader.

note that the resampling rate is low compared to typical values used by $-family recognizers,
e.g., $Q recommends using N = 32. Although lower rates are possible, we see that the separation
between classes also quickly drops, and so we are compelled to remain at ϵ = 1%.
With a ϵ threshold in hand, we were able to next decide on the initial sink node cost θ . For

this parameter, we simply resampled all of the samples of a given dataset using angular DP, and
thereaftermeasured the pairwise angles between each samplewithin the same class.We again used
EDS for hand gestures, and analysis revealed the average angle to be μ = 20.8 (σ = 32.4), which
we rounded to 20 degrees. Informal testing on our mouse dataset revealed this was a good choice
as θ values outside this locality produces worse results. For fully body gestures, using the same
procedure over the Kinect parkour dataset, we found that θ jumped to nearly μ = 65.02 (σ = 27.0)
degrees. Informal testing revealing that although results were reasonable, this threshold was more
liberal than necessary. When we lowered the parameter to θ = 40 degrees, performance slightly
improved and so we used this value throughout our evaluation for full body gestures.

6 DATA COLLECTION

To evaluate the effectiveness of Machete against alternative techniques, we collected HA data from
30 participants over 3 input device types (10 participants per device).

6.1 Data Collection

We designed Machete to spot custom gestures among other HA interactions. However, because
most public datasets were captured with a single device and comprise presegmented sequences,
low-activity interactions, or both, we decided to collect four new HA datasets using three unique
input device types via a game-based data collection protocol. Our goal was to ensure that par-
ticipants engaged in a range of activities that vary beyond just gestures, such as to puppeteer an
avatar or directly manipulate objects in a virtual environment. To this end, we designed a simple
“Follow The Leader” (FTL) game that forces players to remain active between gesticulations in a
way that is consistent with our objective. Through the interface, we present a continuously ac-
tive leader who performs various random movements that participants must mimic to their best
ability. At random times throughout the game, we further present text commands that require a
player to break solidarity and gesticulate, see Figure 9. This strategy results in a rich stream of
complex, high-activity motions that (unlike a typical one-at-a-time data collection protocol) cap-
tures participants easing into and out of gesticulations from other activities. Another reason we
chose this approach is because gesture productions may differ when a participant’s attention is
divided. For instance, several studies show a significant difference in recognizer accuracy when
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Fig. 10. High activity gesture dataset for Kinect and Vive, where L and R denote left and right respectively.

For example, there is a left upper cut gesture and a right uppercut gesture. All seventeen gestures were used

in our Kinect evaluation, where only the first eleven (top row and golf swing) were used for Vive.

comparing game data to homogenous cross validated data [15, 75, 76], which we believe is also
likely to make segmentation an even more difficult problem.

6.1.1 Apparatuses. We chose to leverage the Kinect, Vive, and mouse for a number of reasons.
Namely, they cover a wide range of input device types, sensor qualities, and data representations.
Concerning Kinect, we recorded 21 three-dimensional (3D) skeletal joint positions using an XBOX
ONE Kinect, for a total ofm = 63 components per data point. However, since the hand and foot
data were especially noisy, we zeroed out this part of the signal. The HTC Vive reports two 3D
controller positions and orientations via quaternions, which we break into two separate datasets,
for a total ofm = 6 andm = 8 components per data point, respectively. Last, a mouse reports 2D
position data, thereby yieldingm = 2 components per data point (since we do not sample button
state signals). We also chose to evaluate mouse data because it is challenging to perform complex
trajectories with this input device due to issues with friction and range, whereby participants must
constantly reposition their arm, hand, and device.

6.1.2 Follow the Leader. We developed FTL in Unity5 as a means to procure Kinect, HTC Vive
controller, and mouse data. FTL has two modes, which are the demonstration and game modes. In
demonstration mode, we record five custom samples of each gesture class in a randomized order
so as to increase within class variability6. For Kinect and Vive, we first display text that specifies
what gesture the participant must perform, and once he or she indicates their readiness, we start a
countdown timer.When this timer reachers zero, we commence recording and conclude the record
via a keyboard stroke after the gesture is complete. For mouse data, a participant instead toggles
the left mouse button to achieve the same effect. We replay each sample to verify correctness
and ensure the participant is satisfied with their result. When a participant performs a gesture
incorrectly or a tracking error occurs, we simply discard the faulty sample and try again. In total,
we collected three datasets comprising 17 full-body Kinect, 11 HTC Vive controller, and 10 mouse
gestures. See Figures 10 and 11 for a depiction of each.

5Unity is a popular, real-time game development platform, see https://unity.com/.
6Gestures repeated back-to-back may have less variation.
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Fig. 11. The ten mouse gestures used in our evaluation, taken from [81, 89].

In FTL’s game mode, we render a leader7 on screen and participants are told to follow its motion
as closely as possible. All avatar movements are non-gesture actions designed to mimic the direct
manipulation and puppeteering kind of interactions that may occur in a video game, however, at
unknown intervals we display a text command instructing the participant to perform a specific
gesture. During gesticulation, we visually confirmed that the participant correctly produced the
gesture, as there were some instances when a participant forgot a gesture’s form or confused left
with right. If we observed an error, the instance was re-queued to be retried at a later time. We
collected three correct instances of every gesture throughout each game session. Before we began
the main session, however, we first allowed each participant to complete a practice round, where
each gesture was executed one time, thereby allowing a participant to become familiar with FTL’s
mechanics. Each practice session lasted approximately 2 minutes.

6.1.3 Subjects. We recruited thirty students (17 male, 13 female) from a local university to par-
ticipate in our study. Their ages ranged from 18 to 29 with a median age of 22. All but one par-
ticipant owned a game system, and none of the participants had any mobility problems. For each
participant, we first explained the study’s purpose and then demonstrated each gesture they would
have to perform, after which we started to collect data. Each session lasted about 30 minutes and
participants were allowed to take a break if they felt tired.

7 EVALUATION OF ANGULAR DP

To understand whether angular DP is a viable alternative to standard DP and uniform resampling,
we examined the effect of resampling rate on all training data under an inner product measure. For
a given training sample and rate N , we spatially resampled the training sample to N points using
DP, angular DP, and uniform resampling. Then to measure differences between a training sample
and its resampled variants, we again uniformly resampled all four trajectories to a high resolution
(N = 1024), and measured the inner product between corresponding normalized direction vectors:

f
(
�X , �Y
)
=

1024∑
i=1

〈
�xi , �yi

〉
. (24)

Dissimilarity measure f informs us of the resampled trajectory’s likeness to its original form. We
next relate the three methods to each other by measuring the percentage improvement of angular
DP and standard DP over uniform resampling. This improvement is equivalent to the percentage
decrease in dissimilarity:

Improvement =

(
1 − DP

Uniform

)
× 100%, (25)

where DP is the dissimilarity measure for a given DP method, and Uniform is the same measure
under uniform resampling.
We finally averaged together all results per dataset per N as shown in Figure 12. Across all

conditions, angular DP showed an average improvement of 44% (σ = 24%) over uniform resam-
pling, whereas standard DP only achieved an average improvement of 37% (σ = 24%). Further, on

7With Kinect and Vive, the leader is a skeleton model, whereas with mouse, the leader is a long mouse trail.
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Fig. 12. Left: Percentage improvement in self similarity measure relative to uniform resampling for standard

DP using distance only and our angular DP variant (higher is better). Right: Resample count distribution per

gesture, sorted by median.
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visual inspection, we see the direction of this difference is consistent for all values of N , across
all datasets, except for especially low resampling rates where all three methods are approximately
equivalent. In our view, these results justify our minor modification to DP when working with
direction vectors.

7.1 Automatic Parameter Selection

As part of our evaluation, we also recorded the resampling rate N selected by our automatic pa-
rameter selection algorithm for angular DP (Section 4.6) for each training sample. These results
are shown in Figure 12, which are grouped by gesture class and sorted by median. Across all con-
ditions, the average resampling rate was N = 13 (σ = 4.6), whereas the minimum and maximum
values were respectively 4 and 30. Compared with common rates found in the literature (e.g., the
recent $Q uses N = 32), these results are quite low, which is expected to boost Machete’s com-
putational performance. Further, results are consistent with our intuition that longer and more
complex gestures require higher N to adequately describe its shape.

8 EVALUATION OF MACHETE

We compare Machete against three alternative segmentation approaches to determine which tech-
nique is most performant in both accuracy and computation across all four datasets. We assume
that a given segmenter is paired with a robust recognizer having a reliable accept–reject criteria. In
this way, the segmenter may frequently pass candidate gestures to the recognizer without concern
for generating false positives, and the recognizer in turn will evaluate each candidate, accepting
only those queries that are most like their gesture class while rejecting any query that does not
match. In practice, the recognizer may incorrectly accept or reject certain candidates or notify an
application of gesticulation before it is complete, even as a better solution simultaneously unfolds.
However, for the purpose of our first evaluation, we focus mainly on how well our segmenter is
able to localize a gesture’s end points.
Specifically, we pair each segmenter with Jackknife [74], a general purpose, device-agnostic cus-

tom gesture recognizer. For a given participant and training sample, we train both the segmenter
and Jackknife with the specified sample, after which we replay the session one frame at a time
through the system. After each call, the segmenter returns a flag indicating whether or not it has
identified a gesture candidate. If so, the candidate is fed to the recognizer as a query where it
is scored. When playback is within the boundaries of a section where FTL told a participant to
perform a gesture, we log the best score and segmentation result.

8.1 The Contenders

As described in our Related Work section, we identified three segmentation approaches that we
believe are compliant with $-family principles: an energy-based method, windowing, and CDP.
The former identifies gesture boundaries by examining a time series’s energy profile. Given input
time series X , we define its energy profile as:

E = (ei | i = 1 . . . |X | − 1) (26)

ei =
1

2
| |x i+1 − x i | |2. (27)

We treat each minimum in E as a candidate gesture boundary. As such, when we observe a new
boundary in a continuous stream, we assume it correlates with the end of a gesture, and its be-
ginning can be any previous boundary that falls within 1.5 times the training sample’s length. We
then pass each start-end pair as a candidate gesture to the underlying recognizer for further anal-
ysis. It may be possible for us to reduce the number of candidate gestures by rejecting boundaries
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whose energies are too high, but this requires learning a threshold from training data, which is
difficult to do in a customization context.
Windowing is perhaps themost popularmethod andwas included because of its ubiquity and ef-

fectiveness. In our evaluation, we assume that the training sample length provides the best approx-
imation of duration in practice. Therefore, we match our window length to the training sample.
One can instead use multiple windows to improve segmentation, but this will increase computa-
tional costs, which is contrary to our objective.
Finally, since Machete is based on CDP, we also wanted to evaluate standard CDP. One issue,

however, is that CDP measures ED, which is neither position nor scale invariant and consequently
inappropriate for our evaluation. For this reason, we replace its local cost function with an inner
product measure that works on normalized direction vectors, though the result is not squared as it
is with Machete. Further, we normalize the accumulated cost by warping path length, not distance,
as we do for Machete. Note, without these two changes, we found CDP was unusable with our HA
datasets.

8.2 Preprocessing and Ground Truth

Since a training sample is likely to contain idle data at its tails, we trim each Kinect and Vive sample
as part of a preprocessing step. This step was especially helpful in controlling the sliding window
length, which will have otherwise been too long. Specifically, to remove unwanted frames, we
computed the cumulative energy over time and removed all frames that fall outside of the inner
98%; 1% of energy was cut from each tail. What remains is a valid pattern that a given segmenter
must match. We chose to use this process given that it is sufficiently straightforward and anyone
can use it without difficulty in practice. Second, because mouse data may contain hooks,8 after
angular DP processing, we heuristically cut the first and last vector when their length was less
than 20% of their neighboring vectors. Further, because there is a great deal of variability in mouse
gesture production, we additionally train the systemwith samples rotated ±15 degrees—thus, each
training sample is converted into three templates for all segmenters.
For each gesture instance in a session, wemust establish ground truth segmentation and identify

where in time the gesture begins and ends. To accomplish this task, we use a two step process.
First, we conduct a naive brute force search in the region of a session where an instance is known
to reside. Specifically, if we expect to find a gesture instance between times t1 and t2, we search for
the start s and end e times that minimize the dissimilarly between subsequence Xs,e and a given
training sample Y under measure f :

s, e = argmin
t1≤s≤e≤t2

f (Xs,e ,Y ), (28)

where f is a DTW-based measure that varies per device type and yields a reasonable segment
approximation. Since there are five training samples per gesture class, we further take the median
of the aggregate start and end results as an estimate of ground truth. Finally, in step two, we
examine each result from step one. If we observe an obvious error, we manually search for the
correct solution and log the updated result. However, we try to limit such corrections as this second
step is highly subjective.

8.3 Error Measures

Given our evaluation protocol, we obtained one segmentation result per instance per training
sample that in aggregate form 7,350 results—10 participants × 5 training samples per participant

8Changes in direction due to imprecision that sometimes occur at the start or end of a stroke.
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× 3 instances per session × (17 Kinect + 11 Vive position + 11 Vive quaternion + 10 mouse) ges-
ture classes. We examined each result to determine if the given segmenter correctly detected the
associated gesture instance. For eachmiss, we removed the offending result along with the remain-
ing three corresponding segmentation results, so that the population remained identical between
methods. With those results that remained, we proceeded to extract four error measures. The first
three of these were the signed start, signed end, and total segmentation errors. Let Gs and Ge ,
respectively, denote the ground truth start and end times, and let Ss and Se similarly denote the
segmenter candidate boundaries. The three errors are then defined as:

Start Error = Ss −Gs , (29)

End Error = Se −Ge , (30)

Total Error = |Start Error| + |End Error| . (31)

These measures are important in understanding how well a method temporally segments ges-
tures, but alone the result can be misleading. When one gesticulates quickly, the difference be-
tween two frames can have a significant impact on the gesture’s shape, whereas this difference is
less dramatic at lower speeds. For this reason, we also measure the arc length error:

Arc Length Error =
L (X [min(Ss ,Gs ) : max(Ss ,Gs )]) + L (X [min(Se ,Ge ) : max(Se ,Ge )])

L (X [Gs : Ge ])
,

(32)
where X is the session time series, and L is the arc length:

L (X ) =
|X |∑
i=2

‖x i − x i−1‖ . (33)

As one can see, we relate clipped and extended boundaries to the gesture’s total arc length via a
ratio. If the start and end errors for a given gesture instance are respectfully one and zero frames,
but this difference represents 5% of total gesture’s arc length, then the arc length error is 5%, which
we believe better represents howwell a segmenter captured the gesture’s shape, compared to time-
based error measures. To gain an intuition of this measure, we visualize varying arc length error
magnitudes in Figure 13. Roughly, with errors that are 10% or less, we see that the gesture shape is
well preserved. Beyond this point, clipping and extensions begin to fundamentally change gesture
shapes, which can lead to an increase in false negatives when the underlying recognizer is unable
to identify an otherwise well articulated gesture.

8.3.1 Design and Analysis. We conducted one experiment per dataset, where each experiment
was a 1-factor repeated measures design. The nominal factor was segmenter, for which there were
four levels: Machete, CDP,Window, and Energy. The outcome variables were those just discussed—
the start, end, total, and arc length errors. These errors were averaged over each participant into a
single result. We then used Friedman testing [25] to drive our omnibus, after which we conducted
post-hoc analysis with exact, two-tailedWilcoxon signed rank tests, while protecting against mul-
tiple comparison type I errors by way of the Holm–Bonferroni step-down procedure [29].

8.4 Results

8.4.1 Temporal Variability. We first examined the temporal variability of ground truth results
as shown in Figure 14. These results represent the pairwise interclass distribution of duration,
defined as the ratio of maximum to minimum duration between each pair of gesture instances
belonging to the same class and participant. We included these data specifically to give one a sense
of how well we might expect the window method to do over the varying datasets. Vive gestures
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Fig. 13. Varying arc length errors over mouse data. We render ground truth as a thin black line and highlight

errors in red where the segmenter truncated a gesture or extended beyond its temporal boundary.

Fig. 14. Distribution of pairwise intraclass ground truth duration ratios.

Table 1. Average (μ) per Frame Processing Time in Nanoseconds and Standard Deviation (σ )

Kinect Vive Position Vive Quaternion Mouse
Method μ (σ ) μ (σ ) μ (σ ) μ (σ )
Machete 1.71 (0.48) 0.54 (0.18) 0.57 (0.16) 2.63 (0.73)

CDP 6.55 (0.86) 1.61 (0.31) 1.81 (0.34) 6.28 (0.97)
Window 98.44 (17.19) 44.58 (11.92) 53.94 (11.39) 123.84 (19.91)
Energy 13445.53 (2035.94) 6507.65 (2661.44) 9646.43 (3952.72) 6836.84 (1777.55)

have the least variation (μ = 1.08,σ = 0.08), which is followed by Kinect (μ = 1.11,σ = 0.11) and
mouse (μ = 1.27,σ = 0.28) gestures. Indeed we see by arc length error analysis (discussed soon),
that the windowing segmenter’s performance declines across the datasets in accordance with this
variability. In most cases, performance is still acceptable, but it could be improved by using a
multiple window scheme.

8.4.2 Computational Performance. In addition to segmentation errors, we also recorded the av-
erage processing time per frame needed to run each segmenter, which includes any calls to the
underlying Jackknife recognizer. Average nanosecond times are presented in Table 1. We see that
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Table 2. Percentage Decrease in Computation Time per Segmenter

Invocation Using Window as the Baseline

Method Kinect Vive Position Vive Quaternion Mouse

Machete 98.27 98.80 98.95 97.88
CDP 93.35 96.39 96.65 94.93

Window 0.00 0.00 0.00 0.00
Energy −13558.13 −14498.28 −17782.85 −5420.48

Table 3. Average (μ) Segmentation Error in Frames and Standard Deviation (σ )
for Kinect Position Data, as well as the Percentage Path Length Error

Start Error End Error Total Error Length Error
Method μ (σ ) μ (σ ) μ (σ ) μ (σ )
Machete 2.41 (0.65) 3.45 (1.05) 5.86 (1.68) 7.45 (1.75)

CDP 4.50 (0.77) 3.70 (1.15) 8.21 (1.89) 12.48 (1.56)
Window 3.42 (0.84) 4.94 (1.26) 8.36 (1.74) 8.17 (1.92)
Energy 4.42 (1.21) 6.86 (1.80) 11.28 (2.48) 10.23 (2.18)

Machete and CDP are extremely fast compared to window and energy-based segmentation. The
latter is especially slow because it calls Jackknife numerous times when it identifies a local min-
imum in the energy profile. Since we believe that windowing is the present first-choice method
for segmentation, we use this technique as a baseline to calculate the percentage decrease in pro-
cessing time as presented in Table 2. Machete reduces the computational burden by at least 98%
across all experiments. CDP performs similarly well, but because its accuracy is subpar (as will
be shown), we do not consider CDP a practical option. In contrast, energy-based segmentation
runs thousands of times worse than window based segmentation, which implies one is better off
running multiple sliding windows in parallel.
In this work, we are concerned primarily with computational performance because as discussed

in Section 2, fast processing allows us to processmore templates per unit time, enable segmentation
on low resource devices, and free up system resources; and as shown, Machete is remarkably
efficient. However, with only one template loaded, we cannot afford to sacrifice segmentation
accuracy, and as we see next, Machete works well under this condition.

8.5 Segmentation Accuracy

8.5.1 Kinect Segmentation. Friedman tests revealed a significant difference between the four
segmenters across all error measures. On average, Machete achieved the lowest error as shown in
Table 3. Concerning start segmentation error, Machete was significantly different from CDP and
energy, but not window, per Table 4. This was true for the remaining measures as well. Window
was also different from energy, and energy from CDP across the end segmentation and total error
measures. These results in sum suggest that Machete and window-based segmentation are both
reasonable approaches, though Machete may be a better option because of its significantly lower
total segmentation error.

8.5.2 Vive Position Segmentation. Results for Vive position data are very similar to Kinect.
Friedman tests revealed a significant difference between the four segmenters across all error mea-
sures. On average, Machete again achieved the lowest error as shown in Table 5. On the start, total,
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Table 4. Kinect Segmentation Post-hoc Results Using the Exact, Two-tailed Wilcoxon Signed Rank Test

Start Error End Error Total Error Length Error(
χ 2
3 = 20.0, p < .001

) (
χ 2
3 = 22.2, p < .001

) (
χ 2
3 = 22.0, p < .001

) (
χ 2
3 = 22.6, p < .001

)
Pair W + p r W + p r W + p r W + p r

Machete - Window 4 0.05 — 6 0.05 — 3 <.05 0.9 L 16 0.28 —
Machete - CDP 55 <.05 1.0 L 55 <.05 1.0 L 55 <.05 1.0 L 55 <.05 1.0 L
Machete - Energy 0 <.05 1.0 L 0 <.05 1.0 L 0 <.05 1.0 L 3 <.05 0.9 L
Window - CDP 49 0.08 — 9 0.06 — 26 0.92 — 55 <.05 1.0 L
Window - Energy 47 0.10 — 54 <.05 1.0 L 52 <.05 0.9 L 46 0.15 —
CDP - Energy 35 0.49 — 0 <.05 1.0 L 5 <.05 0.8 L 47 0.15 —

Friedman test results are also listed under each column header.

Table 5. Average (μ) Segmentation Error in Frames and Standard Deviation (σ ) for
Vive Position Data, as well as the Percentage Path Length Error

Start Error End Error Total Error Length Error
Method μ (σ ) μ (σ ) μ (σ ) μ (σ )
Machete 8.95 (2.45) 10.65 (2.87) 19.60 (4.56) 6.10 (1.33)

CDP 16.61 (2.32) 11.68 (3.05) 28.29 (3.83) 13.93 (1.16)
Window 10.83 (3.50) 13.11 (2.90) 23.95 (5.84) 6.93 (0.89)
Energy 17.00 (3.60) 22.93 (5.43) 39.93 (7.64) 8.31 (1.94)

Table 6. Vive Position Segmentation Post-hoc Results Using the Exact, Two-tailed

Wilcoxon Signed Rank Test

Start Error End Error Total Error Length Error(
χ 2
3 = 22.4, p < .001

) (
χ 2
3 = 24.2, p < .001

) (
χ 2
3 = 23.5, p < .001

) (
χ 2
3 = 22.4, p < .001

)
Pair W + p r W + p r W + p r W + p r

Machete - Window 14 0.39 — 1 <.05 1.0 L 6 0.05 — 9 0.13 —
Machete - CDP 55 <.05 1.0 L 48 0.07 — 55 <.05 1.0 L 55 <.05 1.0 L
Machete - Energy 0 <.05 1.0 L 0 <.05 1.0 L 0 <.05 1.0 L 4 <.05 0.9 L
Window - CDP 53 <.05 0.9 L 12 0.13 — 49 0.05 — 55 <.05 1.0 L
Window - Energy 55 <.05 1.0 L 55 <.05 1.0 L 55 <.05 1.0 L 46 0.13 —
CDP - Energy 24 0.77 — 0 <.05 1.0 L 1 <.05 1.0 L 54 <.05 1.0 L

Friedman test results are also shown under each column header.

and arc length error, Machete was significantly different from CDP and energy, but not window,
per Table 6; but Machete was not different from CDP in end error. Like with Kinect, these results
suggest that Machete and window-based segmentation are both reasonable approaches, though
Machete may be a better option because of its significantly lower end segmentation error. We also
note that their difference in the end error measure was marginal.

8.5.3 Vive Quaternion Segmentation. Friedman tests revealed a significant difference between
the four segmenters across all error measures. On average, Machete for the third time achieved
the lowest error as shown in Table 7, although there were less significant differences (see Table 8).
In start and total error, Machete differed from CDP and energy, and on arc length error, Machete
differed from CDP. Across the four measures, Machete did not differ from window-based seg-
mentation, but we note that the end and total errors are marginal. Again, like with Kinect and
Vive, these results suggest that Machete and window-based segmentation are both reasonable ap-
proaches, but unlike in prior cases, Machete does not have a clear edge over windowing in error.
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Table 7. Average (μ) Segmentation Error in Frames and Standard Deviation (σ ) for
ViveQuaternion Data, as well as the Percentage Path Length Error

Start Error End Error Total Error Length Error
Method μ (σ ) μ (σ ) μ (σ ) μ (σ )
Machete 9.02 (1.83) 10.72 (2.10) 19.75 (2.75) 7.32 (0.76)

CDP 12.94 (2.70) 11.27 (2.14) 24.20 (3.31) 12.15 (1.47)
Window 12.71 (5.13) 14.09 (3.94) 26.80 (7.96) 7.85 (1.29)
Energy 17.82 (4.58) 17.17 (3.46) 34.99 (6.01) 8.51 (1.11)

Table 8. Vive Quaternion Segmentation Post-hoc Results Using the Exact,

Two-tailed Wilcoxon Signed Rank Test

Start Error End Error Total Error Length Error(
χ 2
3 = 19.1, p < .001

) (
χ 2
3 = 17.8, p < .001

) (
χ 2
3 = 20.3, p < .001

) (
χ 2
3 = 21.0, p < .001

)
Pair W + p r W + p r W + p r W + p r

Machete - Window 7 0.11 — 4 0.05 — 5 0.06 — 16 0.55 —
Machete - CDP 54 <.05 1.0 L 46 0.13 — 55 <.05 1.0 L 55 <.05 1.0 L
Machete - Energy 0 <.05 1.0 L 0 <.05 1.0 L 0 <.05 1.0 L 6 0.08 —
Window - CDP 33 0.62 — 7 0.11 — 26 0.92 — 55 <.05 1.0 L
Window - Energy 49 0.11 — 45 0.13 — 49 0.06 — 39 0.55 —
CDP - Energy 7 0.11 — 0 <.05 1.0 L 0 <.05 1.0 L 55 <.05 1.0 L

Friedman test results are also listed under each column header.

Table 9. Average (μ) Segmentation Error in Frames and Standard Deviation (σ ) for
Mouse Position Data, as well as the Percentage Path Length Error

Start Error End Error Total Error Length Error
Method μ (σ ) μ (σ ) μ (σ ) μ (σ )
Machete 19.86 (8.68) 24.90 (4.38) 44.76 (7.68) 5.61 (1.31)

CDP 35.35 (8.73) 25.27 (3.87) 60.62 (9.66) 13.98 (2.12)
Window 28.75 (7.72) 33.57 (4.88) 62.31 (9.14) 10.08 (2.46)
Energy 25.72 (7.77) 26.84 (3.51) 52.56 (8.46) 4.73 (1.36)

8.5.4 Mouse Segmentation. Friedman tests revealed a significant difference between the four
segmenters across all error measures. For the first time, energy achieved the lowest arc length
error, which was significantly different from all other methods (see Tables 9 and 10). However,
Machete still achieved the lowest average start, end, and total segmentation errors, and on all
measures Machete was significantly different fromwindow-based segmentation. Although energy
based segmentation performed better on arc length error, we note that both Machete and energy
perform well, where both are better than 6% (the lowest averages for all datasets). On the other
hand, window-based segmentation performed at its worst, which may be due to the increased
temporal variability in this dataset.

8.6 Machete in Practice

To better understand the viability of Machete in practice, we implemented the custom gesture
recognition pipeline shown in Figure 1. We used Jackknife [74] to classify segmented gesture can-
didates. Since automatic rejection threshold selection for custom gestures is yet an unsolved prob-
lem, and because we are primarily concerned with the effect of segmentation on recognition and
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Table 10. Mouse Segmentation Post-hoc Results Using the Exact, Two-tailed Wilcoxon Signed Rank Test

Start Error End Error Total Error Length Error(
χ 2
3 = 19.6, p < .001

) (
χ 2
3 = 16.9, p < .001

) (
χ 2
3 = 22.4, p < .001

) (
χ 2
3 = 27.8, p < .001

)
Pair W + p r W + p r W + p r W + p r

Machete - Window 2 <.05 0.9 L 0 <.05 1.0 L 0 <.05 1.0 L 0 <.05 1.0 L
Machete - CDP 55 <.05 1.0 L 32 0.70 — 55 <.05 1.0 L 55 <.05 1.0 L
Machete - Energy 6 0.05 — 14 0.39 — 0 <.05 1.0 L 51 <.05 0.9 L
Window - CDP 53 <.05 0.9 L 1 <.05 1.0 L 22 0.62 — 54 <.05 1.0 L
Window - Energy 15 0.23 — 0 <.05 1.0 L 4 <.05 0.9 L 0 <.05 1.0 L
CDP - Energy 53 <.05 0.9 L 12 0.39 — 51 <.05 0.9 L 55 <.05 1.0 L

Friedman tests results are also shown under each column header.

latency, we used a grid search to find optimal rejection thresholds for each condition discussed
below.
Based on results reported in the prior section, we further decided to evaluate both Machete-

based and Window-based segmentation on Kinect input. Both techniques are comparable in start,
end, and path length error, showing no statistically significant difference in accuracy when one
selects an appropriate window size. Insufficient accuracy prohibits the use of CDP, which also im-
pacts energy-based segmentation, as does computational performance. Further, since windowing
is a popular technique, it is useful to understand where Machete stands with respect to window-
based segmentation.
One challenge with windowing is that one must select an appropriate window size. Too short

and gesture candidates will be truncated. Too large and the window will contain data from tempo-
rally adjacent activities. In both case, a recognizer may reject the result. In our prior test, we set the
window size to that of its associated training sample length to understand the potential of window-
based segmentation. In a practical application, one must balance accuracy with latency and use
only aminimumnumber of windows.When gesture lengths are homogeneous, one can use a single
window and expect reasonable segmentation. In our case, gesture length varies between short and
long gestures; so it is unclear what window size we should use. For this reason, we evaluate five op-
tions: a single window using the (1) minimum, (2) middle, and (3) maximum sample length; (4) two
windows using the minimum and maximum training sample length; and (5) all three together.
Since our goal with this evaluation is to understand how segmentation may impact user ex-

perience, we measure recognition accuracy and latency. See Section 2.4 for a discussion on the
importance of these measures. Latency results were collected with an Intel Core i7-7700K with 24
GB 2400 MHz DRAM and an Nvidia GeForce GTX 1080, running Windows 10.

8.6.1 Recognition Accuracy. To measure the effect of segmentation on recognition accuracy
in a realistic scenario, we use the following procedure: For a given participant P , we randomly
select T training samples per gesture class. We train both the segmenter and Jackknife with said
random sample, and then replay participant P ’s session through our pipeline, one frame at a time.
During replay, we record all true positive tp, false positive f p, and false negative f n classification
results—gesture candidates output by the segmenter that are not rejected by Jackknife. Results
are then combined into an F1-score, a commonly used accuracy measure balancing precision and
recall:

F1 =
tp

tp + 1
2 ( f p + f n)

. (34)

Recognizers achieve a perfect score when all performed gestures are correctly classified, but de-
grade as misses and misclassifications increase. In our evaluation, a true positive occurs when a
participant performs the specified gesture and our pipeline correctly observes the correct pattern.
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Fig. 15. F1-score accuracy for varying training set sizes for different segmentation strategies.Minimum refers

to the length of the minimum length training sample, whereas maximum refers to the maximum length

training sample and mid is their average.

Otherwise, missed patterns are treated as false negatives, and missclassficiations as false positives.
For each participant and level ofT , we repeat the process 10 times and average all F1 score results
into a single accuracy measure per individual. Training count T varies from 1 to 5.
Results are shown in Figure 15. We observe that poor window choices lead to poor recognition

accuracy. Using only the maximum or mid window length, windowing achieves only a 61% and
74% accuracy, respectfully. By segmenting with the minimum length, accuracy increases to 88% for
T = 1 and 89% forT = 3, but there is no further gain. Machete and multiple window segmentation
significantly outperform single window segmentation, and are comparable to each other. Using
twowindows (minimum andmaximum), accuracy starts at 92% and increases to 94% asT increases,
and three window segmentation performs similarly. Machete-based segmentation also performs
well, has the sharpest incline, and ends with the highest result, starting at 91% and ending at 95%.
As we saw earlier (Figure 14), a number of Kinect gestures share similar temporal variation,

which is likely why the minimum sized window works best of all single window options. The
remaining gestures are sufficiently long and captured by the maximum window. For gesture sets
that possess greater variability than ours, selecting appropriate window lengths will prove to be
more challenging. Further, we find that poor segmentation leads to suboptimal results, evidenced
by a substantial reduction in recognition accuracies achieved by the single windowmethods. These
lower results force one to use multiple windows, leading to observable latency degradations as we
will soon see.

8.6.2 Latency. To evaluate the effect of segmentation on latency, we implemented our pipeline
in a Unity based video game called Sleepy Town, Figure 16 (see [73] for a full description). It
presents a simple geometric 3D environment in which citizens wander between random points
without purpose. We chose to use this simple platform because it uses many features common
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Fig. 16. Screenshot of Sleepy Town [73] environment.

among modern games, including path planning, behavior scripts, collision detection and response,
physics, scene management, and rendering. Our pipeline must, therefore, share system resources
with other various ongoing processes. This means that gesture recognition overhead may directly
impact frame rate and system responsiveness.
Due to COVID-19, wewere unable to directly collect participant data. For this reason, we decided

to select an exemplar participant from our previous FTL data collection procedure and replay their
session data through our pipeline as if it were read directly from a Kinect input device.We repeated
this procedure for varying training set sizes and segmenter approaches as discussed in the previous
section. During this time, we tracked frame rate and recognition accuracies (which were confirmed
to match our prior results).
Results are shown in Figure 17. Sleepy Town running without gesture recognition maintains

approximately 137 FPS. The single window segmenters drop down to near 60 FPS with one tem-
plate per gesture class loaded, and performance continues to drop as more templates are loaded,
ultimately hitting 32–35 FPS. Two window segmentation starts at 58 FPS and drops to 19 FPS.
Three window segmentation drops from 40 to 13 FPS. Machete outperforms all window options,
starting at close to maximum performance, 126 FPS, and dropping down to 83 FPS.
As expected, we find there is significant overhead when using window-based segmentation.

Since recognition accuracy may be too low with one window in many cases, we expect one will
prefer to use two windows, if not more (for instance, Multiwave [59] used five windows to handle
temporal variability issues). We also note that all methods degrade as the number of templates
increase, though Machete is the only method that continues to operate in an acceptable range
with 85 templates loaded [16] (17 gestures × 5 per class). This increase in performance will benefit
user experience in both desktop and virtual reality applications, where high latency can degrade
performance and presence, as well as increase the probability of inducing motion sickness.

9 DISCUSSION

Our experiments reveal that Machete is the only segmentation method that consistently achieves
high accuracy across all datasets, and in most cases, Machete is the best performing method.
Window-based segmentation is a close second on three datasets, but performed poorly on mouse
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Fig. 17. Frame rate over varying training set sizes for the various segmentation configurations. Curves are

in approximate order of the legend labels. The horizontal red dashed line is the frame rate of Sleepy Town

without gesture recognition.

data. Although there was not a statistically significant difference between Machete and window-
ing across all conditions, the direction of their differences remained constant. When we look at
computational performance, only CDP can compete, but because of its poor accuracy, CDP is not
a viable option. Machete’s combined accuracy, speed, scalability, and simplicity makes it a clearly
capable segmenter.
In more detail, we found that windowing works relatively well in the presence of minor tem-

poral variabilities, but falters as variability increases. We can recover performance by employing
multiple sliding windows, where we evaluate each window every frame and take the best result.
A related practical issue with our evaluation is that we fit our window size to the training data,
so each template uses its own window. In practice, one may cluster templates into groups that
share a common window size, or one might select just a few sizes that all templates share. The
downside of using multiple windows is obvious though, more windows means more overhead
means more processing, and there is still no guarantee a particular size will fit a given gesture
instance. Alternatively, one can use a single long sliding window to segment input when and if
gesture boundaries are delineated by periods of inactivity between actions. For instance, a two
second gesture is adequately described by a four second window when a user holds their pose be-
fore and after gesticulation, and when the underlying recognizer is time invariant. This approach
may be appropriate for low-activity interactions but not for HA interactions where users are en-
gaged in constant motion. Machete does not suffer from these issues, which is why our technique
outperformed window-based segmentation in every test.
We found that energy-based segmentation was often less accurate and its computational perfor-

mance was also low. Although we were able to quickly calculate the input signal’s energy profile,
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performance dropped because of an overabundance in minima, each of which resulted in multiple
calls to the recognizer. We believe with more work we can develop a thresholding scheme that re-
jects certain minima and coalesces collocated minima to reduce the number of candidate gestures.
However, based on work by Kahol et al. [35], we fear a workable solution will be complicated, de-
vice specific, or both. Interestingly, the method did very well on mouse data. There are often clear
low-energy start and stop points in this dataset where the segmenter could latch, which is why
accuracy is high in this case. In a related way, this also may be why the segmenter is less successful
on full body gestures. Recall that gestures comprise pre-stroke, nucleus, and post-stroke activities
[94], where the nucleus defines the main action. It may be that the nucleus is clearly delineated in
mouse data but not in full body gestures. Regardless, because of the segmenter’s inconsistent per-
formance and high overhead, we believe it is not a good general first-choice technique for custom
gesture recognition.
CDP was the worst performing segmenter in our evaluation. We noticed that CDP had consis-

tently high start errors, and visual inspection of the associated distributions reveals a bias toward
late segmentation. This issue is likely because of CDP’s zero sink node cost, an issue we addressed
in Machete. With respect to computational performance, CDP did very well, though because we
were unable to find a reliable rejection threshold, it did not perform as well as Machete. This dif-
ference in part is due to Machete’s improved local cost function. In other words, our modifications
to CDP have a profound impact on performance.
Another issue with both windowing and energy-based segmentation is that these methods do

not prune gesture candidates. The latter technique will identify potential gesture boundaries and
invoke the recognizer with a query that it must score against each template. Other than duration
and application-specific context, there is no a-priori information available that the recognizer can
use to discard unlikely matches. Windowing has a similar problem. Whether templates share a
window or are independent, the recognizer must evaluate each per frame. Another advantage
of Machete is that the recognizer only evaluates one query-template pair per invocation, which
further reduces the workload.
Advantages of Machete over other segmenters were also found in our recognition and latency

evaluations. As expected, with better segmentation, we find gesture recognition accuracy im-
proves. Otherwise, gesture sequences that are truncated or extended beyond their natural bound-
aries may be rejected by the underlying recognizer. In our case, to match Machete’s accuracy, we
were required to use twowindows, but not without sacrificing significant computational resources.
Frame rates in our Sleepy Town video game fell to below 20 FPS with two window segmentation
as we scaled the training set size up from one to five samples per gesture class (85 samples total).
In the worst case, Machete remained above 80 FPS. Low frame rates are known to impact per-
ceived quality and performance in video games [16], which made windowing a suboptimal option.
Informally, when running with window-based segmentation, we were also able to observe respon-
siveness degradation. Moreover, we had observed this issue in prior research and it became part
of what motivated us to invent Machete.
We also note that performance can be impacted by gesture class similarity, where similar ges-

tures may produce more candidates relative to when there is greater separation between gesture
classes. Our Kinect dataset has several gestures that are related such as the left hook, left uppercut,
left-right-left combo, push, and backflip, as well as the right handed variants. All of these require
significant forward left arm movement. Yet, despite their similiarity, we find that Machete main-
tains a high level of performance throughout all of our evaluations. For these reasons, we believe
practitioners and designers engaged in continuous custom gesture recognition work will be able
to take advantage of our segmenter to improve both recognition accuracy and latency.
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9.1 Does Machete Adhere to $-family Principles

Machete uses many techniques that have already been vetted by the community. To ensure that
Machete adheres to those design guidelines described early on, we only need to look at our specific
changes. We first spatially resample training samples using angular DP. DP line simplification had
already been used in prior rapid prototyping work for gesture recognition [26]. Internally, DP
decides on split points by a distance measure, which we now weight by the angle formed by the
split. This is a straightforward geometry exercise handled with very little code.
Next, Machete uses CDP to identify candidate gesture patterns in continuous data. CDP is iden-

tical to DTW except that the first column of each new matrix row is constant, rather than infinite.
In this work, we provide reasonable values one can use for various input devices types, and DTW
has already been used in Jackknife [74]. That is, we incur no additional complexity in this regard.
We also introduced a new local cost function that weights the squared inner product by the input
vector length. Direction vectors and length are nothing new in the $-family literature [72, 74, 76],
though. Perhaps the most complex aspect of our approach is that we normalize the accumulated
warping path cost by the total gesture path length. However, this only means that one must prop-
agate accumulated path lengths through the matrix as paths are extended. Last, the correction
factors we introduce are, in our opinion, no more difficult to understand or implement than those
introduced by Jackknife [74] and may be customized according to designer needs.
Machete also uses a straightforward data representation—direction vectors. Although raw input

is often not spatial data, we can easily think about trajectories through multidimensional spaces.
For example, one uses quaternions to represent 3D orientation with four components, but quater-
nions are not always considered to be an intuitive construct. Despite this issue, we can still under-
stand trajectories through a four dimensional space and a trajectory’s change in position over, over
time. This approach is why Jackknife works with accelerometer, quaternion, and binned sound
wave data, and is why we chose to use direction vectors in Machete.

9.2 Limitations and Future Work

Presently, Machete is unable to localize end points that occur within the middle of long straight
lines. If one produces a right arrow with an exceptionally long shaft, Machete will incorrectly es-
timate its end points as being near deviations from the template. Often such deviations naturally
occur on gesture boundaries, but not always. Our correction factors help localize end points rela-
tive to the associated start, but when this estimate is wrong, the error may propagate to the end
point as well. One solution may be to include a post processing step that refines segmentation, but
we leave this to future work. Another issue is that Machete is not orientation invariant, though
we do not intend to address this limitation. Because Machete is sufficiently fast, one can simply
add rotated samples to the training set, or depending on the target environment, orientation can
be handled elsewhere within the application.
Another important question is how can we improve Machete so that it does not depend on an

underlying recognizer, because an obvious benefit in independence is that we reduce overall sys-
tem complexity. We found that our approach is very effective at segmenting continuous input, but
its measurement strategy cannot sufficiently separate gesture classes, and this is why we require
external validation. We believe the underlying issue relates to elasticity. Recognizers like Jackknife
that work on segmented input are able to put sequences into direct correspondence over both space
and time because they resample the input and limit warping, whereas Machete does neither. As
part of our future work, we plan to address this situation, perhaps by using correction factors that
evolve over time and help prevent pathological warping.
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We have also argued based on prior work that Machete adheres to $-family principles and that
it can be used for rapid prototyping. We acknowledge that our view is subjective and some tech-
niques in this as well as other work may be more complex than we first thought, or that such
techniques are only accessible to those with a few years of experience in computer science, engi-
neering, mathematics, or other related fields. To understand what rapid prototyping appropriate
means will require an in depth study of techniques presented to those of varying backgrounds in
the HCI community, and perhaps the development of a new measure, which we leave for future
work.

9.3 What’s In a Name?

A machete is a coarse cutting tool often used in tropical settings to remove unwanted overgrowth
and shrubbery. It requires little training to use: one simply swings forcefully at a target and is left
with clean-cut greenery. In much the same way, our segmentation method requires little back-
ground knowledge or gesture recognition experience. A practitioner can simply swing Machete
at their continuous data and be left with well-segmented data that any high precision recognizer
can thereafter evaluate.

10 CONCLUSION

We have presented Machete, a reliable and fast segmentation technique for custom gestures.
Through an extensive evaluation involving difficult HA data across a variety of input devices,
we found that Machete’s accuracy is competitive with other commonly used approaches and of-
ten performs better. However, Machete especially shines with respect to performance. Because of
Machete’s discriminatory power and simple pruning rules, it reduces the computational burden
by as much as 98%. Further, our technique is straightforward, being a CDP variant with several
novel improvements, which allows for quick integration and rapid prototyping. Though more im-
portantly, because of its high accuracy, one can use Machete to support custom interface design
for continuous input device types. As such, we believe Machete will serve a need for those who
require fast, custom gesture segmentation.

APPENDIX

A PSEUDOCODE

In this section, we provide pseudocode for Machete. Note that indexing starts at zero, and 〈·〉
and ‖ · ‖, respectively, denote the inner product and vector length operators. Throughout our
pseudocode, template refers to a single object created by Initialize-Template that we use to cache
template, segmentation, and culling data. In practice, the input buffer instantiated and used by
this object is shared between all instances. Further, in our testing, ϵ = 0.01, θ = 20 degrees for
mouse gestures, and θ = 40 for full body gestures.
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Initialize-Template(samplePts , θ , ϵ )

/*** Initialize house keeping data. Note that row is a circular buffer over two CDPip rows. ***/

template .buf f er ← []

template .row ← [[], []]

template .�T = []

template .star t F rame ← 0

template .endFrame ← 0

template .currRowIdx ← 0

template .s1← 0

template .s2← 0

template .s3← 0

/*** Resample using Angular DP and build template and create initial CDPip matrix. ***/

pt s ← Angular-DP (samplePts, ϵ )
N ← ��pt s ��
for i ← 0 to N − 1 do

elem .star t F rame ← −1
elem .endFrame ← −1
elem .cumulativeCost ← 0

elem .cumulativeLenдth ← 0

elem .score ← ∞
if i = 0 then elem .score ← (1 − cos(θ ))2

Push-Back(template .row[0], elem)
Push-Back(template .row[1], elem)

if i > 0 then
�v ← pt s [i] − pt s [i − 1]
Push-Back

(
template .�T , �v

‖ �v ‖
)

/*** Calculate correction factor values and weights. ***/

�f 2l ← pt s [N − 1] − pt s [0]
diaдLenдth ←Diagonal-Length(pt s )
lenдth ←Path-Length(pt s )

template . �f 2l ← �f 2l

‖ �f 2l ‖
template .openness ← ‖ �f 2l ‖

lenдth

template .wclosedness ← 1 − ‖ �f 2l ‖
diaдLenдth

template .wf 2l ← min

(
1, 2

‖ �f 2l ‖
diaдLenдth

)

return template

Angular-DP (trajectory , ϵ )

/*** Determine threshold that stops recursion. ***/

diaдLenдth ←Diagonal-Length(trajectory )
ϵ ← diaдLenдth × ϵ

/*** Recursively find most descriptive points. ***/

newPts ← {}
N ← ��trajectory ��
Push-Back(newPts, trajectory[0])
Angular-DP-Recursive(trajectory , 0,N − 1,newPts , ϵ )

Push-Back(newPts, trajectory[N − 1])
return newPts
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Angular-DP-Recursive (trajectory , star t , end , newPts , ϵ )

/*** Base case. ***/

if star t + 1 ≥ end then return

/*** Calculate distance from every point in [start+1, end-1] ***/

/*** to the line defined by trajectory[start] to trajectory[end]. ***/

�AB ← trajectory[end] − trajectory[star t ]
denom ←

〈
�AB, �AB

〉
if denom = 0 then return

larдest ← ϵ

selected ← −1

for idx ← star t + 1 to end − 1 do
/*** Project point onto line segment AB. ***/

�AC ← trajectory[idx ] − trajectory[star t ]
numer ←

〈
�AB, �AC

〉
d2←

〈
�AC, �AC

〉
− (numer 2/denom)

/*** Get vectors made by end points and this point. ***/

�v1← trajectory[idx ] − trajectory[star t ]
�v2← trajectory[end] − trajectory[idx ]
l1← ‖v1‖
l2← ‖v2‖
if l1 × l2 = 0 then continue

/*** Calculate weighted distance and save if it’s the best so far. ***/

d ←
〈
�v1, �v2

〉
/ (l1 × l2)

distance ← d2 × acos(d )/π
if distance ≥ larдest then

larдest ← distance

selected ← idx

if selected = −1 then return

/*** If we split the subsequence, then recurse into each half. Also save the split point. ***/

Angular-DP-Recursive(trajectory, star t, selected, newPts, ϵ )
Push-Back(newPts, trajectory[selected])
Angular-DP-Recursive(trajectory, selected, end, newPts, ϵ )

Calculate-Correction-Factors(template , cdpElem)

/*** Calculate the first-to-last vector, then the closeness and first-to-last correction factors. ***/

�f 2l ← template .buf f er [cdpElem .endFrame] − template .buf f er [cdpElem .star t F rame]

f 2lLenдth ← ‖ �f 2l ‖
openness ← f 2lLenдth / cdpElem .cumulativeLenдth

cfopenness ← 1 + template .wclosedness ×
(
max(openness, template .openness )
min(openness, template .openness ) − 1

)
cfopenness = min

(
2, cfopenness

)

cff 2l ← 1 + 1
2 × template .wf 2l ×

(
1 −
〈

�f 2l
f 2l Lenдth , template .f 2l

〉)

cff 2l = min
(
2, cff 2l

)
return

(
cfopenness × cff 2l

)
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Consume-Input (template ,x , f rameNumber )

/*** Add input to buffer. ***/

Push-Back(template .buf f er, x )

/*** Filter out inconsequential movement. We use δ = 1 for mouse data and zero otherwise. ***/

lenдth ← ‖x − template .pr ev ‖
if lenдth < δ then return

/*** Convert to direction vector. ***/

�x ← (x − template .pr ev ) / lenдth
template .pr ev ← x

/*** We store two rows of matrix data, accessed as a circular buffer. ***/

prevRow ← template .row [template .currRowIdx ]

template .currRowIdx ← (template .currRowIdx + 1) mod 2

currRow ← template .row [template .currRowIdx ]

currRow [0] .star t F rame ← f rameNumber

/*** Update current row with new input. ***/

�T ← template .�T

TN ← ����T
���

for col ← 1 to TN do

/*** Determine which one of three paths to extend. ***/

best ← currRow [col − 1]
path2← prevRow [col − 1]
path3← prevRow [col ]

if path2.score ≤ best .score then best ← path2

if path3.score ≤ best .score then best ← path3

/*** Extend selected path through current column. ***/

localCost ← lenдth ×
(
1 −
〈
�x , �t [col − 1]

〉)2
currRow[col ].star t F rame ← best .star t F rame

currRow[col ].endFrame ← f rameNumber

currRow[col ].cumulativeCost ← best .cumulativeCost + localCost

currRow[col ].cumulativeLenдth ← best .cumulativeLenдth + lenдth

currRow[col ].score ← currRow[col ].cumulativeCost / currRow[col ].cumulativeLenдth

cf ← Calculate-Correction-Factors(template, currRow [TN ])
correctedScore ← cf × currRow [TN ] .score

/*** Determine if we should call underlying recognizer. ***/

template .doCheck ← f alse

template .total ← template .total + currRow [TN ] .score

template .n ← template .n + 1

template .s1← template .s2

template .s2← template .s3

template .s3← correctedScore

/*** If new low, save segmentation information. ***/

if template .s3 < template .s2 then
template .star t F rame = currRow [TN ] .star t F rame

template .endFrame = currRow [TN ] .endFrame

return

/*** If previous frame is a minimum below the threshold, trigger check ***/

μ = template .total / (2 × template .n)
template .doCheck ← (template .s2 < μ and template .s2 < template .s1 and template .s2 < template .s3)
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