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ABSTRACT

Habitually poor posture can lead to repetitive strain injuries that lower an individual’s quality of

life and productivity. Slouching over computer screens and smart phones, asymmetric weight

distribution due to uneven leg loading, and improper loading posture are some of the common

examples that lead to postural problems and health ramifications. To help cultivate good postural

habits, researchers have proposed slouching, balance, and improper loading posture detection

systems that alert users through traditional visual, auditory or vibro-tactile feedbacks when posture

requires attention. However, such notifications are disruptive and can be easily ignored. We

address these issues with a new physiological feedback system that uses sensors to detect these poor

postures, and electrical muscle stimulation to automatically correct the poor posture. We compare

our automatic approach against other alternative feedback systems and through different unique

contexts. We find that our approach outperformed alternative traditional feedback systems by being

faster and more accurate while delivering an equally comfortable user experience.
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CHAPTER 1: INTRODUCTION

1.1 Poor Posture

Posture is the manner in which we support our bodies in different everyday activities like standing,

sitting, or lying down. The alignment of the body parts bolstered by the correct muscular tension

against gravity plays a crucial role in maintaining good and healthy posture. Posture can be identified

as static or dynamic motor habits developed based on morphological and physiological backgrounds

of individuals [109]. Posture also serves as an indicator of the body’s proprioceptive efficiency

for neuro-muscular coordination, and also reflects well-being, activity level, and personality of an

individual. Cultivating good postural habits allows correct alignment of the head, neck, torso, and

legs for maintaining healthy posture.

Poor posture leading to Repetitive Strain Injuries (RSI) are increasingly becoming prevalent all

over the world. Modern living has adversely impacted human motor function and behavior, and

has resulted in increasing sedentary lifestyle tendencies [25, 30, 145]. In adaptation to the changing

lifestyle and daily behavior, the human body performs subconscious changes to the proprioceptive

control systems which may lead to forming new postural habits that may result in poor posture.

Advancements in technology with televisions, computers, smartphones, gaming, social media, and

motorized transport options have resulted in a decline in regular physical activity which contributes to

poor posture in young students [105,109]. Improper occupational customs, unwarranted workstation

arrangements, and increasing multi-tasking requirements are often the biggest factors contributing

to the development of poor postural habits in the adult working population.

Poor posture has also been linked to health deterioration, and low productivity at the workplace [9].

Repetitive processes such as use of computer systems, smartphones, prolonged standing/leaning
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tasks, and repetitive lifting actions presents a high risk of RSI such as wrist extension, neck cradling,

forward neck, slouching, asymmetric weight distribution and chronic lower back pain. These RSI

if not detected, analyzed, and corrected at early-stage, lead to the development of poor posture

habits which induce soreness, intense pain, trigger point pain, and muscle tightness in the associated

regions. If untreated, these conditions may evolve into chronic musculoskeletal injuries such as

Carpel-Tunnel syndrome, chronic neck pain, lower back pain, knee & ankle injuries, and gait

imbalance [169].

Nearly $90 billion are spent annually in the USA, for treating repetitive strain injuries (RSI) and

lower body injuries arising out of poor workplace postures [39, 43]. Figure 1.1 illustrates the

proportions of the population affected by RSI of wrist, neck, shoulder, and lower back. Additionally,

orthopedic doctors have claimed that poor postural habits cultivated at the workplace such as

prolonged sessions of sitting, standing, leaning and repetitive lifting will have damaging effects in

the long run on a person’s health conditions [9]. Recently, a study showed that poor posture affects

the transverses abdominus muscle. The transverses abdominus muscle is a muscle layer of the

anterior and lateral abdominal wall which is layered below the internal oblique muscle responsible

for maintaining the torso in an upright position while standing and sitting. The study determined that

thickness of the transverses abdominus muscle is significantly less when a person maintained a poor

posture [169]. This muscle dysfunction or dystrophy caused by poor posture is directly associated

with lower back pain. Lower body injuries are one of the noted root causes of disability in the world

and affect approximately 80% of the world population at some point in their lives [96, 113, 175].

Another study compared the stress and performance levels between participants who were asked to

maintain good posture versus participants who were asked to maintain poor or irregular posture.

The results reported higher stress and lower performance amongst the participants who emulated

poor postural habits [174]. Some studies also indicate that even maintaining good posture for a long

time might be considered a bad postural habit as the muscles in the spine could stop generating
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Figure 1.1: Poor posture due to RSI.

substances necessary for normal biological operations [21]. Although maintaining a good posture is

essential, it is important to alternate or change posture over a period for maintaining good health.

Current intervention technology only deals with detecting poor postures, providing alert mechanisms,

and relying on the users’ willingness to correct their postures themselves. This presents a gap in

research for automatically alerting, correcting, and maintaining good posture when poor postural

habits have already been formed. As a result, there is a dire need for implementation of an ergonomic

intervention technology with the capability of detection and subsequent automatic correction for

restoring and maintaining good posture. In this work, we focused on three significant posture

problems arising out of prolonged activity or repetitive actions:

1. Slouching

2. Asymmetric weight distribution (AWD)

3. Improper loading posture (ILP)
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1.2 Slouching

In the past decade, most of the working community have desk jobs that often require long durations

of being seated at a computer workstation, and college students who spend numerous hours hunched

and leaning towards their laptops while studying. These practices place significant strain on

their shoulders, neck, and spine and over time develop into poor postural habits that lead to low

performance and severe health issues in the long run. Figure 1.2 shows correct posture and slouched

posture while sitting at the workplace. The repetitive strain placed on the shoulders, neck and

spine gradually results in the development of poor postural habits. The development of these poor

postural habits especially slouching causes the pectoral (chest) muscles to overly contract resulting

in unnatural curvature of the spine, rounding of the shoulders, and thoracic regions. Consequently,

this unnatural curvature of the spine results in weakening of the rhomboid (shoulder), and trapezius

(neck) muscles, and causes intense pain over a period of time.

Figure 1.2: Correct Vs Incorrect sitting posture. (Left) Incorrect sitting posture with slouched torso,
(Right) Correct sitting posture with torso upright.

4



The current interventions or solutions for poor slouched posture comprise educating the working

population about guidelines for configuring proper workplace environment for maintaining correct

posture, guidelines for positioning keyboards, monitor viewing angles, chair height and arm

rest adjustments are also recommended [214]. Additionally, injured workers are educated by

occupational therapists for development of healthy and correct workplace postural habits. However,

workers are often found struggling to maintain these healthy postural habits on their own. The

development of new healthy postural habits to replace already developed poor postural habits

poses a significant challenge and requires an additional feedback system that alerts the users to

maintain correct posture and prevent poor postural habits from re-establishing. Although, Multiple

Resource Theory establishes that humans are capable of performing multiple parallel tasks in spite

of the increased cognitive demand [201], workers are often found to be highly engaged in a task to

automatically identify their poor posture and correct their posture.

As current intervention technology offers only slouching detection and requires users’ conscious

effort to correct slouched posture, there is dire need for the implementation of a wearable intervention

technology with autonomous capabilities for slouched posture detection and correction to prevent

this chronic problem with little to no disruption of the primary task and facilitate proper posture

maintenance during work and gaming activities.

1.3 Asymmetric Weight Distribution (AWD)

The maintenance of stable posture is important as two-thirds of our body mass, and delicate

organs are being supported by our legs which form a narrow base of support. Asymmetric weight

distribution (AWD) characterized by postural sway and impaired standing balance has been known

to be responsible for multiple health conditions resulting in reduced functional ability [202].

Numerous posture-related health issues such as lower back pain [139], anterior cruciate ligament
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Figure 1.3: Asymmetric weight distribution vs Symmetric weight distribution. (A) AWD posture,
(B) Balanced Posture.

ruptures [85, 133, 155], and knee and ankle injuries [62, 111] are associated with an increase in

postural sway and AWD. Postural control is a constant re-establishment process of balance and is

integral to the safe execution of most movements in our daily life. Posture adjustment relies primarily

on the integration of different sensory feedback such as the visual, vestibular, and proprioceptive

control systems. Subconscious proprioception, in the form of awareness from muscle receptors, and

joints also play an important role in the control of posture and balance. However, the effectiveness of

our body’s postural control system decreases with cognitive demand, age, and injuries, and imposes

a critical demand on the postural control system especially while being engaged in additional

cognitive tasks during standing activities. Although conscious proprioception plays a crucial role in

gross muscular and full-body posture adjustments, poor postural habits and impaired proprioception

may lead to increased postural sway, AWD, and even loss of balance [10]. AWD may lead to

increasing instability, subsequent injury, and progressive deterioration of posture and gait [189].
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Investigation of AWD has provided valuable information in an array of situations such as fall

detection and prediction in the elderly [87], evaluation of balance-related disabilities (Parkinson’s

disease, stroke, and concussions), and lower body post-surgery rehabilitation [6, 7, 59, 134, 178].

Prolonged standing causes muscle dysfunction, or dystrophy of the muscles of the leg and often

leads to unequal load distribution on the hips, knees, ankles, and feet which are responsible for

stabilizing the torso in an upright position and is directly associated with lower back pain [169].

As existing intervention technology attempts only postural sway detection and necessitates the

participants’ attention and effort to self-correct imbalance, there is a need for the development of an

automatic wearable intervention technology with the capability for AWD detection and subsequent

correction to facilitate proper posture maintenance during tasks involving prolonged standing hours

such as work, recreational, and gaming activities.

1.4 Improper Loading Posture (ILP)

Chronic lower back pain caused by improper loading posture while lifting objects has been known

to affect nearly 80% of the population at some point in their lifetime [96, 175]. Preventing back

injuries poses a major workplace safety challenge. Lower back pain is increasingly becoming

widespread among the working population especially manual workers such as industry laborers,

construction workers, delivery men, carpenters, welders, farmers, health assistants, teachers, and

office workers prone to RSI and poor postural health [53]. The major risk factors for lower back

pain include overloading, and improper loading due to repetitive mechanical stresses on lumbar

muscles, ligaments, and vertebrae [108]. Figure 1.4(A) illustrates improper loading posture with

high torso inclination and low knee bend which places a stress on the lower regions of the spine.

Figure 1.4(B) illustrates proper loading posture with an upright torso and knee bend which allows

the legs to support the lift and minimize the stress placed on the lower back.

7



Figure 1.4: Improper lifting posture vs Proper lifting posture. (A) Improper lifting posture with
high torso inclination and low knee bend, (B) Proper lifting posture with upright torso and ideal
knee bend.

The Occupational Safety and Health (OSH) academy estimated compressive forces exerted on

the lower back in different lifting activities and a comparison of the risk of injury for different

lifting conditions is illustrated in Figure 1.5 [190]. They utilized the Michigan 2-D static strength

model to estimate the compressive forces and illustrate that the bent over lifting posture presents the

highest risk of lower back injury. The repetitive mechanical stresses on the lower back can occur in

occupational and non-occupational environments during common everyday activities such as leaning

and lifting [26, 150, 182]. Other potential risk factors such as bending, twisting, and prolonged

static leaning workplace postures have also been known to cause lower back pain [20]. Even lifting

moderate loads repetitively can increase the risk of lower back pain [32, 36, 83], weaken or damage

the lumbar muscles [5], and could cause intervertebral disc degeneration or herniation [68]. The

repetitive stresses exerted on the ligaments and muscle tissues can also result in fatigue, strain and

discomfort [46, 179]. This widespread characteristic of lower back pain due to improper loading

has led researchers to evaluate different loading strategies, develop improper loading detection

techniques, and lift assistive devices to support proper loading posture. As existing intervention

technology offers only ILP detection and requires the users’ willingness and effort to correct ILP,

there is a fundamental need for the development of an autonomous ILP detection and correction

system capable of automatically detecting ILP early in the lift phase and subsequently correcting it
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to mitigate risk of injury to the lower back.

Figure 1.5: Risk of injury and compressive forces exerted on lower back in different lifting
activities [190].

1.5 Electrical Muscle Stimulation (EMS)

Electrical muscle stimulation has been shown to induce involuntary muscular contractions for

generating physiological responses [41, 165, 184]. Integration of EMS with a poor posture detection

system can be utilized to correct poor habitual posture and restore/maintain good posture through

involuntary muscular contractions when strategically applied in specific patterns and at distinct

locations. The design of an autonomous poor posture detection and correction system also presents

the challenge of integrating the sensor based poor posture detection system and EMS with wearable

intervention technology. This has paved the way for this research in developing sensor based
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wearable technologies that employ sensors for detecting the poor postures such as slouching, AWD,

and ILP, and subsequently applying electrical muscle stimulation to specific muscles for automatic

correction of these poor postures. Our work aims to explore and provide insights into differences

between our approach of automatic posture correction and posture self-correction in traditional

visual, audio, and vibro-tactile feedback techniques.

1.6 Research Questions

1. Can sensor based systems accurately detect poor posture such as slouching, AWD and ILP?

2. Can an EMS based system be utilized for correcting slouching, AWD, and ILP ?

3. Can EMS based physiological feedback loops deliver equal or better user experience (accuracy

perception, task disruption, engagement, comfort) compared to traditional feedback types

(visual, audio and vibro-tactile)?

4. Will users prefer an automatic poor posture detection and correction system over alternative

traditional feedback systems requiring self-correction?

1.7 Objectives

The main objectives of our work include:

1. Design and development of sensor based automatic poor posture detection systems for

detecting slouching, AWD, and ILP.

2. Design and development EMS algorithm for correcting slouching, AWD, and ILP through

involuntary muscular contractions.
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3. Integrate sensors and EMS with wearable technology for automatic detection and subsequent

correction of slouching, AWD and ILP.

1.8 Contributions

The main contributions of our work on automatic posture correction utilizing EMS include:

1. Design and development of an automatic slouching detection and correction system utilizing

EMS.

2. Design and development of an automatic AWD detection and correction system utilizing

EMS

3. Design and development of an automatic ILP detection and correction system utilizing EMS

4. Four novel user studies for quantitative, and qualitative evaluation of performance, and

usability of our automatic poor posture detection and correction utilizing EMS feedback

against different traditional feedback techniques (audio, visual, and vibro-tactile), and under

different conditions of posture awareness and engagement in breaking habitual poor posture.

1.9 Thesis Statement

“Automatic posture correction using sensor-based detection and subsequent EMS induced physio-

logical responses through active feedback loops results in faster correction at high accuracy in

comparison to alternative traditional techniques (audio, visual, vibro-tactile), while simultaneously

delivering an equally comfortable user experience.”
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1.10 Reader’s Guide

Chapter 2 is a compilation of the related works and the technological advancements in poor posture

detection and alert mechanisms, and utilization of EMS in rehabilitation and HCI. Chapter 3

details our automatic slouching detection and correction system along with a human subject study

conducted to compare performance of our approach against alternative traditional audio, and visual

feedback systems. Chapter 4 details our automatic AWD detection and correction system along

with a human subject study conducted to compare performance of our approach against alternative

audio, and vibro-tactile feedback systems. Chapter 5 details our automatic ILP detection and

correction system along with two user studies conducted to compare performance of our approach

against traditional audio and vibro-tactile feedback systems. Chapter 6 details a discussion on the

quantitative and qualitative results of our studies in each of the three use cases with additional focus

on performance, user perception, and feasibility. Chapter 7 presents the limitations of our work and

proposals for future work followed by the conclusion in chapter 8.

The next chapter focuses on the related work, and challenges faced in developing instrumented

wearables intervention devices for enabling posture detection and correction.
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CHAPTER 2: LITERATURE REVIEW

2.1 Slouching

2.1.1 Slouching Detection

Although there exists a prevalent approach to improve posture through ergonomic solutions such as

adjusting desk and chair heights, monitoring viewing angles, and keyboard and mouse positions [9],

there exists only a small number of reliable techniques for continued posture monitoring and

detection of poor posture, especially slouching. With the increase in computational power, sensor

miniaturization, and development of wearable technology, posture monitoring has been attracting

increased attention for developing detection and alert-based wearables that allow the user to

self-correct their posture based on feedback from the system. This development of sensors and

their integration into wearables has also enabled real-time monitoring, and live feedback systems

irrespective of the location of the work environment. Despite these efforts, and due to the novelty

of wearable intervention technologies, current research is focused on developing more accurate

monitoring techniques, and development of predictive algorithms for better detection of poor posture.

As a result, aspects such as integration of embedded sensors into wearables, aesthetics, usability,

wearability, and user comfort are often neglected.

Previous research on slouching posture monitoring is mainly focused on sensor-based and vision-

based systems for monitoring and detection. The sensor based slouching posture detection tech-

niques employ a variety of sensors such as inertial measurement units (IMU), force sensitive resistors

(FSR), electromagnetic inclinometer, fiber-optic sensors, and smart garments. Vision-based systems

often include the use of a camera and Microsoft Kinect for monitoring, detection, and alerting the

users. Past research on posture monitoring and detection can be classified into two main categories:
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slouching monitoring without feedback, and slouching detection with real-time feedback solutions.

2.1.2 Slouching Monitoring without Feedback

Slouching posture monitoring is a domain of research primarily in the medical sector to investigate

the causes of long-term health effects of poor posture at the workplace leading to chronic conditions

of the spine such as kyphosis. DorsaVi’s ViMove designed by Charry et al., was an ambulatory

inertial system for 3D measurements of low back movements. They utilized an accelerometer,

and a gyroscope placed on the upper, and lower spine regions to measure the 3D orientation of

the spine [33]. The results of the spine position from their positional algorithm were validated

by an Opti Trak system. Developing upon this, Kang et al., embedded IMU sensors into a smart

garment to measure spine posture and compared them with a motion capture camera system [91]

while Miyajima et al., utilized a six-axis accelerometer and gyro meter combination across the knee,

hip, and spine to determine lumbar torque and validated their approach using an optical capture

system [146]. The smart garment developed by Kang et al., employed a set of IMU sensors placed

on the right and left shoulder, and on the right and left waist regions to determine pitch and roll

motion for postural monitoring. Further, Voinea et al., proposed a model that converts orientation

angles from the IMU sensors to calculate the curvature of the spine [196]. Their method involved

the use of an instrumented shirt that fitted with 5 IMU sensors running along the spine from the

upper to lower thoracic regions. Similarly, Hams et al., developed a smart garment that contained

accelerometers placed along the spine, scapula, and shoulders to measure trunk inclination in

children [77]. Building upon this, Felisberto et al., developed a wearable system for the elderly to

classify good and poor posture while sitting by employing IMU sensors on the upper torso, hip, and

legs [58].

Another approach employing a set of accelerometers was utilized by Wu et al., to design a vest
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containing single axis accelerometers below the neck, chest, and left and right hips to determine

tilt angles [206]. Additionally, Motoi et al., developed a wearable system with accelerometers and

gyroscopes placed on the chest, lower thigh, and upper calf to monitor gait speed, and angular

changes in the trunk, thigh, and calf muscles along the sagittal plane [148]. Building upon this,

Cajamarca et al., designed ”Straighten Up” to measure spinal posture and assessment of user

experience [31]. The system contained accelerometers attached to the upper, central, and lower

trunk. However, no accuracy or error rates were reported. Similarly, Faber et al., utilized the MTx

IMU system to determine the optimal placement location for a single accelerometer to obtaining

trunk inclination [55]. Alternatively, Tsuchiya et al., used a different approach by combining flex

sensors with accelerometers to measure the shape of the lumbar skin and to identify lumbosacral

alignment changes using X-rays [191]. Palmondon et al., used a similar technique by designing a

hybrid system that employed IMUs and potentiometers at the pelvic and spine for 3D measurement

of trunk posture [163]. Their study concluded that potentiometers are required when data from

the magnetometers are unreliable due to ambient magnetic fields at offices. Further, Nath et al.,

developed a method to identify postural risks and trunk flexion using data from a smartphone’s

built-in IMU [152]. Alternatively, Tanaka et al., utilized an electromagnetic inclinometer on the

chest, thigh, and leg for long term measurement of human posture [186]. Their method presented

results with an angular resolution of 12 degrees. However, no accuracy or error was reported.

Spinal posture monitoring was also conducted by Bell et al., [18] and Dunne et al., [52] utilizing

fiber optic goniometers to determine spinal and lumbar posture. While Bell et al., placed fiber optic

goniometers along the L5 and S1 regions of the spine and pelvis to identify activities associated with

the lumbar postures, Dunne et al., placed fiber optic goniometers along the spine and on the scapulae

for monitoring seated spinal posture. The results indicated that motion profiles were accurately

identified, and the system was comfortable and unobtrusive. However, no accuracy and errors were

reported. Further, Bhattacharya et al., used an ergonomic dosimeter to develop a reliable system
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for continuous monitoring of postural data in construction workers [23]. Their system measured

postural angles of the torso and the upper arm in the sagittal plane. All the systems mentioned above

are purely designed for monitoring and detection of spinal posture, however, the main limitation of

these systems was the absence of a real-time feedback system for alerting or correcting the users’

posture. The following section presents research conducted on detection and real-time feedback

systems for spinal posture control.

2.1.3 Slouching Detection with Real-Time Feedback

Slouching posture detection with real-time feedback is mainly an area of research associated with

the development of wearable intervention technology for detecting poor posture and alerting the user

to self-correct their posture. The three main types of feedback employed are visual, auditory and

vibro-tactile through which information about the users’ posture and the need to correct themselves

is conveyed through visual messages/notifications on their monitors/smart phones, voice feedback,

and vibration alerts respectively.

O’Sullivan et al., developed a real-time biofeedback posture detection system that employed a strain

gauge along the spine to measure force exerted on the vertebra. They utilized auditory, and visual

feedback mechanisms to analyze vertebral motion in the sagittal plane [158]. Similarly, Yan et al.,

designed a wearable system that employed IMU sensors on the back, and an IMU instrumented

helmet to validate personal protective equipment for insecure motion warning using an auditory

feedback alarm [208]. However, no data was published on the accuracy of the system. Further, Fathi

et al., proposed a wearable system for detection of spinal displacement, and provide real-time alerts

for hunched or slouched conditions [57]. They utilized Shimmer IMUs placed at the thoracic spine,

cervical spine, and lower lumbar spine to detect spine displacement, but their real-time feedback

system mechanism was not reported.
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”Posture Monitor” developed by Abyarjoo et al., employed an IMU sensor that could be attached to

the upper back of the users’ shirt for detection of poor posture and development of good posture

habits using an auditory alarm [4]. However, the system was reported to be highly sensitive to

postural changes and required further validation of the proposed system. Similarly, Valdivia et

al., used an MPU-9250 IMU strapped to an elastic band worn at the waist [193]. They compared

the performance of the IMU sensor with a Microsoft Kinect V2 by analyzing performance of the

real-time feedback in an exergame that aimed at improving spinal posture. Their results concluded

that though the IMU-based system performed more accurately than the vision-based Kinect system,

the IMU-based exergame was less engaging to the users. Further, ”Zishi”, an instrumented vest

developed by Wang et al., employed two 9-axis IMU sensors placed on the upper and lower spine

for postural analysis, and alert using visual or auditory feedback through an android smartphone

application [197]. However, their system was not validated and required further testing to establish

its validity.

Building upon this, Wong et al., developed a trunk posture monitoring with an auditory alarm

feedback system to estimate spinal curvature in the sagittal, and coronal planes using a tri-axial ac-

celerometer, and three gyroscopes placed on the upper, middle, and lower regions of the spine [205].

The results indicated that trunk posture could be monitored with high accuracy during daily activities

and were validated by a motion analysis system. However, they were unable to determine rotation

of the trunk in the traverse plane due to the lack of magnetometer information in their system which

is crucial to determine the lean and slouching conditions. Further, a proof-of-concept wearable

system for postural balance, and gait training with real-time vibro-tactile feedback (vibration alerts)

was developed by Xu et al [207]. Their system utilized eight IMUs placed on either side of the

torso to monitor trunk tilt, and provide vibro-tactile feedback. However, limitations of their system

included validation of the results, and determining rate of error for the system. Similarly, Gopalai

et al., utilized a wireless IMU attached to the trunk, and a wobble board for providing real-time
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biofeedback via vibrational alerts for postural control [67]. Their results indicated preliminary

verification of the detection of poor postural control, and improvement in posture control when

biofeedback was provided. The system was more focused on postural stability using biofeedback

and less related to spinal posture detection.

Further, a hybrid posture alert system developed by Bazzareli et al., employed electromagnetic

technology with a bi-axial accelerometer placed on the left and right scapulae, and provided vibro-

tactile feedback to correct scoliosis in adolescents [17]. Their results indicated a good sensitivity of

the system in alerting the users, however no accuracy was reported, and further testing for validation

was required. Another approach was the use of inductive sensors by Sardini et al., to monitor seated

posture, and validate with an optical measurement system [177]. Inductive sensors were attached

to the front and back of a shirt to monitor seated posture, and real-time vibro-tactile feedback

was provided for self-correction. Though the system was validated for detecting seated posture

during different activities, only sagittal plane measurement of the spinal posture was taken into

consideration.

”SPoMo”, a six-axis IMU with accelerometer and gyroscope was developed by Petropoulos et al.,

for automatic monitoring of spinal posture while seated [160]. The IMUs were placed on the lower

and upper back, and provided vibro-tactile feedback to the users for maintaining upright spinal

posture. A similar approach using IMUs on the upper and lower back was undertaken by Lou et al.

They developed a smart garment fitted with IMUs (triple axis accelerometer and two axis gyroscope)

on the upper and lower back regions for posture monitoring during daily activities, and subsequent

vibro-tactile feedback for alerting users in case of poor posture detection [132]. However, both

SPoMo and smart garment systems were affected by the accumulated error due to the gyroscope

drift, and required additional calibration and filtering for long term utilization.

Another real-time feedback system, ”Spineangel” was developed by Ribeiro et al., to deliver real-
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time audio feedback when poor posture was detected to enable the users to correct themselves. Their

system employed a wearable belt fitted with a triaxial accelerometer to investigate the relationship

between poor posture and lower back pain [171]. However, no results on the accuracy of the system

and error rates were published. Further, Giansanti et al., also developed an auditory biofeedback

wearable system that utilized accelerometers and real-time auditory feedback to improve postural

control [64]. They utilized a uniaxial accelerometer, and three gyroscopes placed between the

lower and upper spine close to center of mass of the body to determine the degree of flexion. An

auditory sound feedback system that varied its pitch corresponding to the degree of flexion was

delivered to the user to correct their posture. Though their study reported improvement in balance

and reduced work expenditure for self-correction upon auditory alerts, their study was focused on

postural control in elderly subjects and entirely relied upon auditory feedback. This may limit its

use in elderly subjects with hearing deficits.

Further, Leung et al., designed ”Limber”, a minimally disruptive method for detecting poor posture

and alerting in an office style workplace [115]. Their system incorporated IMU and strain gauges

on the shoulders, spine, and neck to detect poor posture while sitting, and implemented a positive

and negative feedback system based on correct and incorrect postures, respectively. However, no

results were published, and no efforts were made to incorporate aesthetics, comfort, and workplace

protocols into the proposed wearable technology. Alternatively, a real-time visual feedback approach

was undertaken by Hermanis et al. Their proposed system utilized a 7x9 IMU grid attached to

the back of a vest to monitor posture, and provided real-time visual feedback via an android

application [81]. However, their system was not validated for accuracy. Another real-time visual

feedback approach via a smart phone application was implemented by Lin et al. Their system

contained a vest fitted with five micro-electromechanical triaxial accelerometers placed on the

middle and lower spine, middle of the chest, and either side of the waist for real-time posture

monitoring and feedback [118]. The wearable system was validated for functionality and aesthetics,
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but limitations include testing of the system in elderly subjects only.

Finally, Millington et al., conducted a qualitative assessment of different commercially available

wearables available for posture detection and correction through real-time feedback systems [144].

They compared the effectiveness of postural monitoring using the LUMO Lift (IMU: triaxial

accelerometer, triaxial gyroscope and magnetometer), Lumo Back (IMU: accelerometer), and Prana

(IMU sensor and breathing). The Lumo Lift delivered real-time feedback via haptic vibrations,

while the Lumo Back and Prana delivered visual feedback via smartphone applications. Their study

concluded that vibro-tactile feedback based on real-time monitoring enabled detecting poor posture

and subsequently delivering real-time feedback to the user to correct themselves. However, all the

above-mentioned posture detection and feedback techniques focus only on alerting the user through

vibro-tactile, visual, or auditory feedback mechanisms, and require a conscious effort by the user to

self-correct themselves. This places a cognitive load on the users engaged in a task and rely solely

on the user’s intent or desire to correct their posture based on the received feedback.

2.1.3.1 Slouching Preventive Healthcare/Alert Mechanisms

Currently, several different passive medical orthotic posture braces illustrated in Figure 2.1 are

available for purchase. However, they primarily focus on maintaining posture during every day

at-home, and work activities, and must be worn at all times. Although they prevent poor postures in

the users, they do not dynamically detect and correct poor slouched posture and are not aimed at

reversing slouching postural degeneration.
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Figure 2.1: Passive medical orthosis braces for posture correction.

The above literature on slouching detection presents a gap in research for the design and development

of an autonomous slouching detection and correction system for dynamically correcting slouched

posture, and preventing poor slouched posture for maintaining good spinal health.

2.2 Asymmetric Weight Distribution

Owing to increasing awareness of workplace injuries, and health and wellness, there has been a

renewed interest on the relationship between postural control and cognitive load in recent times [10].

Although, postural sway corrections to certain extent are affected automatically and not consciously

in response to visual, vestibular, and proprioceptive information, additional cognitive load demands

for extra resources, and balance monitoring and correction techniques [11, 97, 107, 138, 187].

Previous research on AWD monitoring and detection can be classified into two main categories:

Balance and stability monitoring, and AWD detection with real-time feedback solutions.
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2.2.1 Balance and Stability Monitoring

Balance and stability monitoring has primarily been an area of research for detecting neurological

disorders, gait imbalance, and injury and post-surgery rehabilitation. Traditionally, the measurement

of impaired balance and AWD employed highly specialized equipment such as force plates [13, 80],

electrogoniometers [157], video motion analysis [44], electromyography [142] and magnetic

tracking systems [183]. Balance and stability monitoring techniques using force plates often

measure the center of pressure/gravity, while IMUs, and video analysis techniques rely on computed

angular changes. However, the expensive equipment developed for medical rehabilitation, and

clinical research was found to be cumbersome due to the attachment of markers and sensors to the

skin/clothing. This resulted in difficulties in conducting easy, non-invasive data collection with

respect to AWD.

There have been numerous studies on postural sway, and standing balance monitoring using force

plates. Force plates contain an array of load/pressure sensing load cells or pressure sensing elements

to monitor postural sway. Goldie et al., evaluated the reliability, and validity of force plates by

investigating steadiness in four different stances (two-legged, step, tandem and one-legged), and

concluded that the center of pressure (COP) was the best predictor of steadiness [66]. Further,Le

Clair et al., assessed the repeatability of force plate postural stability measurements using COP in

open/closed eyes, five different test durations, and one/two-legged stances, and found that postural

sway increased with test duration [110]. Developing upon this, Benvenuti et al., investigated

severity, and nature of postural disturbances during quiet standing positions in patients [19]. Their

study indicated that COP measurements using force plates could expose impairments leading to

disequilibrium, and evaluate compensatory strategies. Additionally, Prado et al., utilized force plates

to investigate the effect of dual tasks (staring at a blank target, and counting letters) on standing

balance among young and older adults by investigating the COP displacement [166]. Their results
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indicated that performing dual tasks had a significant effect on postural sway in older adults. Further,

Stoffregen et al., investigated body sway on land and sea [183].

Standing balance has also been evaluated using a Wii Balance Board (WBB) by Clark et al., where

they compared postural sway using the center of gravity (COG) and center of pressure in different

conditions such as one-leg stance, two-leg stance, and open/closed eyes. Further, Gil-Gomez et al.,

and Young et al., also evaluated standing balance using the WBB. While Gil-Gomez et al. conducted

a clinical trial in brain injury patients to determine the effectiveness of balance rehabilitation [65],

Young et al., assessed standing balance in older adults for prediction of fall risks [209]. Additionally,

other researchers also investigated postural sway and standing balance in a quiet standing condition

among young [12, 117, 162], elderly [16, 47, 48], athletes [104, 112], and patients [61, 173, 188].

Alternatively, the wide availability, and low cost of IMUs have enabled researchers to employ

IMUs for monitoring postural sway, and AWD in clinical rehabilitation for patients suffering from

Parkinson’s disease (PD), and diagnosing sports-based impairments. Baston et al., investigated

the effects of altered postural control, and balance on the ankle and hip in PD patients [15]. They

utilized two Xsens MTX IMUs placed on the lower spine, and right shank to quantify postural

control strategy of the participants in quiet standing (30 seconds) tasks. Their results indicated that

posture correction through the ankle adjustments was preferred by the participants. Building upon

this, Bonora et al., conducted an instrumented one leg stance (OLS) test to investigate anticipatory

postural adjustments in patients with PD [27]. They positioned three Opal APDM IMUs on the

lower spine, and right and left legs to monitor the change in acceleration and angular velocity. Their

study concluded that a wearable system of IMUs could potentially be utilized for quick balance

assessments in clinical settings. Further, Pollind et al., developed a low-cost MEMS based IMU

wearable for sway assessment and detecting balance impairments [164]. They utilized ICM-20498

IMUs placed on the knees and feet to assess static balance in open/closed eyes conditions. Their

results indicated that postural sway was greater in an eyes-closed condition. Postural sway has also
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been studied in athletic populations for diagnosing balance impairments. Alternatively, Grafton et

al., utilized a wireless IMU-based head-mounted wearable for detecting irregularities in athletes at

risk of AWD [70]. Their study showed that IMU-based systems can be utilized to quantify balance

impairments and head impacts in different populations.

Further, Guo et al., evaluated the accuracy of IMUs for measuring base of support, and the effect

of task complexity on the accuracy [74]. They utilized Xsens MVN BIOMECH system with 17

IMUs placed on the head, shoulders, upper arms, forearms, pelvis, upper and lower legs, and feet.

Their results indicated that the accuracy of the IMU system in detecting postural sway had an error

ranging between (-12.6 % to +64.6%). Postural sway and balance impairment studies have also been

conducted by different researchers for postural control in concussion patients [45], neurological

disorders [211], and injury prevention [170]. However, the above-mentioned research studies are

focused only on the assessment, and monitoring of balance and postural sway for diagnosis of

balance impairments, and development of rehabilitation protocols for balance training and not on

providing posture correction feedback to the users.

Computer vision-based systems have also been employed by researchers for video analysis of clinical

research footage to analyze and diagnose postural sway, and imbalanced gait in patients [86, 92].

Gait analysis studies have also been conducted by different researchers for gait recognition in

2D [84, 212], and 3D [22, 143] using expensive cameras, and markers placed on the users. Recently,

the emergence of low-cost depth cameras has enabled a renewed interest in their utilization in gait

monitoring, and rehabilitation. Maudsley et al., utilized a Microsoft Kinect to detect postural sway

by using the skeletal output for determining the center of mass of the user [137]. Their results

indicated that static balance assessment in open/closed eyes using the Microsoft Kinect performed

equally well in comparison to a clinical posturography system (NeuroCom SMART balance Master).

Similarly, Clark et al., conducted a study to assess the validity of the Microsoft Kinect in detecting

postural sway [35]. Their study validated the Microsoft Kinect against a multiple-camera 3D motion
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analysis system in different postural control tasks such as forward reaching, lateral reaching, and

eyes closed OLS. Further, the Microsoft Kinect has also been utilized by Mazumdar et al., for

developing a screening tool for assessment of stability in geriatric patients [140], and by Barry et

al., for developing exergames for postural control in healthy adults [14]. However, the limitations of

computer vision-based technologies include occlusions, noisy environments, and tracking multiple

humans.

2.2.2 Asymmetric Weight Distribution with Feedback

Maintaining balance and stability is a complex activity that is accomplished by a synergy between

the brain, and different sensory information from the vestibular, somatosensory, and visual systems.

Postural instability or abnormal postural sway coincides with asymmetric weight distribution or

weight bearing asymmetry when feedback from sensory systems is inaccurate. However, this loss

or absence of sensory information can be compensated by providing additional external sensory

feedback to the brain for effecting posture correction, and maintaining balance [82, 147]. Due

to the advancements in sensor technology, and smarter algorithms, the past decade has seen an

increased interest in the design and development of biofeedback based postural control devices for

maintaining balance. This has led researchers to develop wearable posture control systems which

primarily focus on improving effectiveness of postural feedback, usability, and portability [88].

Dozza et al., developed an audio biofeedback system for improving balance in patients suffering

from bilateral vestibular loss [50]. They presented users with a generated stereo sound that encoded

the COP with respect to the postural sway obtained from a AMTI OR6-6 force plate. In a quiet

standing task with eyes closed, when users swayed left or right, audio feedback with increasing pitch

and volume was presented to the participants to the respective ear via over-the-ear headphones, and

required the users to self-correct, and restore their balance. Their results indicated that their system
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was able to reduce the sway area by 23%, and increased the time duration of the users in a balanced

state by 195%. Additionally, they also utilized stabilogram diffusion analysis and EMG activity to

support their hypothesis that audio feedback would be able to actively help the brain with increased

postural awareness for maintaining balance [49]. Building upon this, they further compared the

effect of visual senses, and environmental conditions on postural control [51]. They tested the users

under different conditions such as with/without audio feedback, open/closed eyes, and firm/foam

surface, and concluded that audio feedback was utilized by the brain differently depending on

the environmental conditions, and visual information for controlling postural imbalance. Balance

improvement using audio feedback was also investigated by Chiari et al., where they developed an

IMU-based wearable prototype [34]. Their prototype monitored the trunk position and delivered a

varying auditory tone corresponding to the postural sway to the users via headphones in real-time.

The audio tone varied in its modulation, frequency, and volume corresponding to the sway in the

users’ trunk position. Their results in a quiet standing task showed that users’ balance greatly

improved by their audio biofeedback prototype in comparison to absence or unreliable sensory

feedback. Further, Santarmou et al., developed an audio feedback prototype insole embedded with

pressure sensors for improving balance and postural sway in a balancing task on a wooden roller

with open/closed eyes [176].

Effectiveness of human balance improvement was also investigated through visual feedback by

Halicka et al., using force plates, and IMUs placed on the lower spine to monitor the trunk

position [75]. Their visual feedback approach was investigated in a quiet standing task where a

moving red point corresponding to the users’ sway was displayed in a 2D graph on a monitor, and

users were required to control postural sway, and maintain balance such that the red point was

stable and at the center of the monitor. Their results confirmed that visual feedback had a stabilizing

effect while decreasing body sway by activating voluntary postural control for maintaining balance.

Further, Grewal et al., studied the effect of interactive balance training based on IMU sensors, and
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visual feedback on postural stability in daily physical activities in diabetic patients over a 4-week

period [72]. The users’ COP, ankle and hip joint sway were monitored with Biosensics LegSys

during a virtual game. The users were required to shift their weight to move a virtual marker to

reach and cross virtual objects in the game. Their results showed a significant improvement of

postural balance using wearable sensors, and visual feedback training. Developing upon this, they

developed a balance rehabilitation strategy based on ankle movement to compensate for impaired

joint proprioception in diabetic patients [73]. Their findings showed higher training gains in postural

stability through the integration of IMUs, and visual feedback systems.

Augmented sensory feedback through visual, and auditory bio-feedback was further explored by

Hasegawa et al., to investigate relative effectiveness of the two types of feedback on improving

postural control [78]. Their study monitored the COP from a force plate when users swayed forward

and backward corresponding to a target moving in sinusoidal fashion. While visual feedback was

presented by increasing or decreasing the size of a target when the user was further or closer to

their COP, auditory feedback was presented by increasing or decreasing volume when the user was

further or closer to their COP. Their results concluded that audio feedback was more effective in

comparison to the visual feedback for motor learning, and maintaining balance. Researchers have

also explored the use of virtual reality in developing balance training rehabilitation protocols, and

biofeedback for minimizing fall risks [98, 195], improving standing balance in patients suffering

from hemiplegia [24], and PD [63]. While Virk et al., developed virtual reality strategies to minimize

fall risks through visual feedback, and training [195], Keshner et al., investigated the influence of

moving visual immersive environments on postural control and balance [98].

However, all the above-mentioned balance and stability detection techniques focused on alerting the

user through audio or visual feedback and relied entirely on the users’ ability to process the feedback,

and their willingness to self-correct their AWD. Although, these AWD detection techniques enabled

minimization of postural sway, and restoration of balance using different types of feedback, no
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posture correction feedback response times, and user perception parameters have been reported.

They also place a cognitive load on the user by relying solely on the user’s intent and desire to

correct their posture based on the received feedback. This presents a gap in research for the design

and development of an autonomous AWD detection and correction system for preventing fall risks,

gait imbalance, and proper rehabilitation after injury and surgery.

2.3 Improper Loading Posture

Previous research on improper loading posture monitoring, and detection can be classified into

two main categories: improper loading monitoring and detection without feedback, and improper

loading detection with real-time feedback solutions.

2.3.1 Improper Loading Monitoring and Detection Without Feedback

A system for monitoring, detecting improper lifting habits, and providing correctional feedback

would greatly benefit workers and employers. Improper loading posture detection and analysis has

primarily been a domain of research in occupational therapy for investigating ergonomics of worker

safety, and health. Researchers have utilized computer vision, and IMU-based monitoring systems

to track workers posture to obtain important information about the workers torso, knees, and ankles

during different lifting activities.

Ergonomic monitoring systems using computer vision have been developed by researchers for

preventing lower back injuries, and supporting proper loading posture while lifting. Wells et al.,

developed an automatic visual tracking algorithm for analysis of lifting techniques [199]. The main

components of their algorithm included silhouette extraction, torso identification, lift characteristics,

and classifying proper and improper lifting technique. Their algorithm analyzed video sequences

28



from different lifting scenarios and concluded that system performance decreased with size of the

objects being lifted. Alternatively, Greene et al., utilized computer vision for estimating trunk angles

during lifting [71]. Their method analyzed moving images of lifting, and extracting features for

estimating angular acceleration of trunk flexion during lifting actions. Their training sets were

synthetically generated based on mannequins representing a range of loading postures and were

validated against human posture data obtained from synchronized video recordings of motion

capture systems. Their results indicated limited precision as the difference between the predicted

and the motion captured data showed a difference of 14.7° for the trunk angle. Similarly, Mehrizi

et al., developed a deep pose estimation algorithm for predicting lower back load during lifting

activity [141]. Their framework evaluated different lifting data sets to capture full 3D body pose

using a deep neural network and estimated the body pose by calculating the force exerted on

the lower back. Their approach performed equally well against expensive marker-based motion

capture systems, and demonstrated the viability of their system for bio-mechanical assessment of

occupational lifting. However, these systems utilized post-hoc algorithms to the images, and video

footage and hence do not provide any real-time feedback to the user.

Computer vision-based tracking systems have also been developed for tracking improper loading

posture for manufacturing, industrial workers, and for healthy living at home. Martin et al.,

developed a training protocol to analyze employees’ current lifting, and carrying methods using a

Microsoft Kinect. Their training protocol measured strain on workers’ torso and recommended safe

lifting weight limits [135] to the users. Additionally, Delpresto et al., utilized a Microsoft Kinect

to develop an adaptive training system for factory workers to lift weights in a safe manner [42].

They utilized the Kinect’s skeletal, and joint tracking abilities to observe human lifts, and provide

recommendations on proper lifting techniques based on bio-mechanical models to maximize safety.

Their system tracked 7 body parts- knee, hip, spine, elbows, feet, hands and neck and determined

safe lifting angles with hip bend (45− 90°) and knee bend(< 90°). Although they developed a
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real-time tracking system, their system relied only on delivering safety recommendations for further

lifting. Developing upon this, Zhao et al., developed a Kinect based system for encouraging healthy

posture at home [213]. Their system integrated the Kinect tracking with wearable computing devices

to enable tracking of users’ activity and detecting poor postures that could lead to back injuries

and/or sedentary conditions that could contribute to unhealthy lifestyle. Their system computed

torso inclination angles from the skeletal, and joint information to detect poor loading posture, and

delivered real-time alerts to the user via their smart watch when poor postures or inactivity was

detected. However, all the above-mentioned visual tracking systems do not provide any correctional

feedback to the user and are expensive to setup, time-consuming in process, sensitive to occlusions,

field of views, and surrounding environment.

IMU-based wearables have also been utilized for investigating into work-related musculoskeletal

disorders surrounding the lower back. The limitations of the vision-based systems such as occlusion,

and cost have been overcome by the low cost wireless IMUs. A real-time IMU-based self-awareness

system was developed by Yan et al., for assessing high risk postures, and warning workers while

performing hazardous operations [208]. Their system integrated wireless IMUs with workers’

helmets, and safety vests to track the head and torso movements, and delivered real-time feedback

via a custom smartphone application. However, the proposed method was only tested in a small

population and feedback correction response times, and user perception parameters were not

investigated. IMU-based systems have also been utilized to automatically classify different ways of

picking up objects, object positions, and walking while carrying objects using supervised machine

learning algorithms [69]. They developed a wearable vest with embedded Xsens MVN IMUs

along the trunk, biceps, and forearms. Additionally, they placed IMUs on the thighs, legs, and in a

headband on the forehead. Their algorithm differentiated between frontal, unilateral, and side load

positions with an accuracy of 96%. Further, O’Reilly et al., also developed an IMU-based tracking

system for assessing body weight squat techniques and for delivering exercise performance feedback
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to the users [156]. To extract squat features for detection of poor posture, they utilized Shimmer

IMUs on the lower spine, thighs, and legs, and reported an improper squat posture detection accuracy

of 80%. Although, their system was able to detect improper squatting posture, their system does not

provide the feedback directly to the user in real-time.

Reducing risk of improperly lifting loads through wearable IMUs and machine learning have been

evaluated by different researchers [29, 38, 114, 152, 192]. Conforti et al., proposed postural pattern

recognition using machine learning, and IMUs placed on the thighs, shin, feet, and upper and lower

spine, to classify improper and proper loading posture using different weights [38]. Nath et al.,

developed a low-cost body posture monitoring technique for identifying potential work-related

ergonomic risks using smartphone sensors [152]. While Conforti et al, classified improper loading

postures with an accuracy of 99.4% utilizing a supervised machine learning algorithms on the

measured trunk kinematics and range of motion of lower limbs, Nath et al., measured trunk and

shoulder flexion to demonstrate applicability of their approach for workers in various occupations.

Building upon individual worker posture monitoring, Valero et al., developed a data processing

framework for delivering diagnostics on worker posture, and health risks based on IMU information

from a group of workers in an area [194]. Their system illustrated the use of machine learning, and

data processing of motion data acquired from a group of individuals to assess high risk working

postures under demanding circumstances.

To understand the physical, and bio-mechanical demands of various construction related tasks, and

their effect on lower back disorders, Umer et al., compared differences in lumbar biomechanics

during stooping, one-legged kneeling, and squatting [192]. They developed a hybrid posture

monitoring system using electromyography and accelerometers. They placed accelerometers along

the trunk and surface electrodes to measure the trunk kinematics and muscle activity respectively.

Their results indicated that stooping demonstrated a reduction in the lumbar muscle activity which

may cause a shift in loading to the passive spinal structures, and a high-risk factor for development
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of lower back disorders. Further, Brandt et al., also developed a hybrid improper posture loading

detection technique using surface electromyography, and accelerometer measurements on the trunk

to classify lifting techniques in to low and high-risk categories [29]. While the accelerometers

placed on the upper and lower spine monitored the trunk inclination, the surface electromyography

electrodes were placed on the trapezius, and erector spinae to monitor muscle activation during

lifting tasks. However, their system was only able to deliver a classification accuracy of about

65%. Although IMU-based systems solve the issues of occlusion, and are relatively less expensive

compared to visual based technologies, the above-mentioned studies focus primarily on obtaining

diagnostic information on improper loading posture, gait for developing preventive awareness, and

rehabilitating protocols for occupational hazards.

2.3.2 Improper Loading Posture Detection with Feedback

Although several studies have examined the trunk, hip, and knee stability during occupational lifting,

and classified improper loading postures, relatively few studies have dealt directly with providing

correction feedback to the user. An IMU-based Smart garment was developed for patients with

spinal disorders to help facilitate rehabilitation therapy by providing continuous posture monitoring,

and a real-time audio feedback when a poor loading posture was detected [204]. Their study

indicated that their approach had a high accuracy with less than 1° error in detecting poor loading

posture in static and dynamic lifting positions. Additionally, their study also indicated that their

smart garment enabled patients to reduce time spent in poor postures by at least 40%. Similarly,

“Lift Alert” was developed by Safety Alert Systems, to provide postural biofeedback to the user [54].

Lift Alert, a small battery-operated device worn on the users’ collar contained a mercury switch

with five different sensitivity settings to detect trunk angle, and provide an auditory feedback tone

when poor trunk posture is detected. Although the study concluded that Lift Alert was reliable in

detecting trunk flexion angles, their system addressed only a single component of safe lifting i.e.,
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only trunk flexion while the knee position which also plays a crucial role in safe lifting, was not

considered.

Alternatively, real-time vibro-tactile feedback for correcting poor posture has also been investigated

by researchers. An analysis of ergonomic human lifting behaviors was conducted using “CareJack”,

an IMU-based vibro-tactile feedback system designed for detecting poor loading posture, and pre-

senting correction feedback to the user [106]. Their system classified ergonomic, and unergonomic

lifting movements using the angular acceleration, and velocity from the 5 IMUs placed on the users’

spine. Their study also evaluated the effectiveness of their classification for slow (4.5 seconds),

and fast (2 seconds) lifting movements. Although their system was able to provide feedback using

a vibro-tactile belt when improper loading postures were detected, posture correction still relied

completely on the users’ willingness to correct their posture. Other limitations of their system

include a small study population (8 participants), and performance of the classifiers. Even though

the above-mentioned feedback techniques using audio and vibro-tactile modalities have been known

to improve posture by mitigating the incidence of improper loading posture, and reduce the time

spent in poor posture, they still relied on the speed of correction feedback presented to the user, the

users’ readiness, and desire to correct their position when feedback was presented.

This has led researchers to also develop passive, and active lift assist wearable exoskeletons for

preventing improper loading posture, and effecting controlled lifting strategies, respectively. Passive

exoskeletons have been designed using spring-based mechanisms to store energy during the lowering

phase of a lift, and leverage the stored energy to support the lifting phase of the lifting activity.

These systems have proven to be effective in reducing stress and strain on the spine, and lower

back while performing lifting activities [1–3, 131, 136, 198, 200]. Despite the effectiveness of the

passive exoskeletons, their limitations include lack of versatility for different lifting tasks, and

unreliable force and torque generation in the systems. These systems are also known to hinder

movement during normal daily activities such as walking, and could cause increased leg muscle
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activity, discomfort, and deconditioning [40].

To address the limitations of passive exoskeletons, researchers designed and developed active

exoskeletons to mitigate the risk of spinal, and lower back injuries. Active exoskeleton systems

developed for lift assistance, and increasing the versatility employed control systems, actuators, and

external power sources for mitigating risk of injury by preventing improper loading posture [8, 89,

99, 100, 116, 149, 151, 186, 210]. These systems were able to demonstrate reduced effort, stress,

and strain on the back muscles [116, 149]. However, these control systems are not autonomous,

and cannot detect the users’ intentions prior or during the lifting activity which does not enable

them to activate or trigger the delivery of feedback to the actuators at the right moment. Power

assistance through these exoskeletons is usually triggered manually using extra buttons or joysticks.

Kobayashi et al., employed two buttons to control pneumatic actuators [101]. The button controller

was embedded into the user’s belt to enable the user to reach and trigger the power assistance when

performing a lifting activity. Building upon this, Muramatsu et al., employed two switches on the

users’ fingers to enable control of the power assistance systems [149]. Although these approaches

simplified the operation of exoskeleton systems, they had certain limitations. First, extra devices

need to be placed on the users’ body which increases the physical load on the user while performing

an already demanding lifting activity. Second, these devices require manual control of the actuators

which places an additional cognitive load on the user, and inconveniences the user. Third, this

approach makes the lifting tasks intermittent, and reduces the work efficiency, and acceptability

in work environments. Finally, most active exoskeleton systems require triggering the actuators

manually, and may cause mistaken operations while lifting heavy loads.

In summary, the majority of these wearable exoskeleton systems have relatively bulky form-factors

making them less practical for at-home daily use, or use in other business, and social settings. These

exoskeletons are often designed with components that protrude along the length of the spine and

legs which can interfere with common daily activities (e.g., sitting, climbing stairs, and work or
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home environment navigation). Further, users are generally required to wear these exoskeleton

systems conspicuously over their clothing, which can be undesirable. For all these reasons, the

development of autonomous improper loading posture detection and correction system capable of

automatically detecting improper lift posture as soon as it starts and subsequently correcting this

posture can turn out to be crucial. This presents a gap in the research for developing an autonomous

detection and correction of improper loading posture during lifting activities to mitigate the risk of

injury to the lower back, knees, and ankles.

2.4 Electrical Muscle Stimulation (EMS)

Electrical Muscle Stimulation is a non-invasive technique for delivering pre-programmed trains

of electrical stimuli to muscles, nerves, and joints via surface electrodes positioned on the skin

to deliver an acute/chronic therapeutic effect. Traditionally, electrical stimulation was utilized

for therapeutic pain management to alleviate chronic muscle strain, acute muscle spasms, and in

rehabilitation to regain muscle strength, and normal movement after injury or surgery. Depending

on the simulation characteristics, and location of the electrodes, three main electrical stimulation

modalities exists:

1. Trans-cutaneous Electrical Nerve Stimulation (TENS) employs the application of continuous,

low-intensity electric current to the cutaneous nerve fibers. This modality does not target

muscles and mainly used for acute and chronic pain treatment alleviating pain during and

after stimulation therapy.

2. Neuromuscular Electrical Stimulation (NMES) involves the application of intermittent high-

intensity electrical stimulation to generate strong bursts of muscle contractions. This modality

is mainly used for neuromuscular rehabilitation/strength training ,and the benefits are experi-
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enced after numerous repeated sessions.

3. Functional Electrical Muscle Stimulation (FES) utilizes the application of a cyclical mod-

erate intensity electrical stimulation to selected muscles for physiological responses. This

modality is mainly used for generating functional movements that resemble voluntary muscle

contractions, and to restore functions that have been lost through injury, surgery, or muscle

disuse. The electrodes are strategically placed above specific motor points that are responsi-

ble for limb movement, which allows invocation of an involuntary physiological response

through muscle contraction and relaxation patterns. The benefits are mainly obtained during

stimulation, and improve muscle memory in the long term.

2.4.1 EMS in Rehabilitation

EMS was primarily used in rehabilitation [28] to assist disabled or paralyzed people in restoring

motor functions such as hand grasp, walking, swallowing, standing ,and obstacle avoidance. EMS

was utilized in rehabilitation therapy to rejuvenate injured muscles or to enable muscle activation

after surgery [184]. De Marchis et al., utilized functional electrical muscle stimulation (FES) for

developing rehabilitation protocols to evoke hand opening through muscle synergies [41]. Popovic et

al., developed an FES rehabilitation system for neuroprostheis control to enable patients with spinal

injuries to regain hand grasp, and walking functions [165]. Whereas Riebold et al., utilized FES

intra-muscularly to target larynx to stimulate reflexes while swallowing in patients with dysphagia

(Swallowing disorders) [172]. FES was also utilized by Previdi et al to develop rehabilitation

training programs for standing up and sitting down in patients suffering from spinal injuries [167].

The past decade has witnessed novel interaction systems integrated with EMS for Human-computer

Interaction (HCI) research. However, applications of EMS in HCI are different and primarily

designed and developed to present spatial interaction techniques through involuntary muscular
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contractions on the user’s body based on computer feedback. This section focuses on the applications

and interaction techniques based on EMS from the HCI community.

2.4.2 EMS in Human Computer Interaction

EMS which has traditionally been utilized for rehabilitation therapy in patients after injury or surgery

to regain muscle strength and function, has found new interest in Human computer interaction

(HCI) for applications in gaming, augmented reality, and virtual reality training [102,119–122,181].

This presents an opportunity for developing novel interaction techniques using adaptive wearable

interfaces. Interactive applications of the EMS technology can be classified in to three main

categories:

• Activity Training

• Input/Output Interfaces

• Feedback based Immersive Technology

2.4.2.1 EMS in Activity Training

• In PossessedHand, EMS was utilized by Tamaki et al., to enable learning physical skills such

as playing string musical instruments [185]. They utilized EMS on the users’ forearm to

control the users’ timing and speed of hand movements to help enable novice users to learn

how to play musical instruments such as Piano, and Koto (Stringed instrument).

• In Affordance++, Lopes et al., demonstrated extending the affordance of objects by allowing

the objects to actuate the users arm using EMS, and performing required movements when the

user approaches the objects [126]. They demonstrated (i) actuating motion such as shaking a
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spray can when touched before use, and (ii) staying away from cups filled with hot liquids.

Their prototype integrated optiTrack (a vision-based system), and EMS to enable detection of

the object and the position of users’ arms, and subsequently stimulating the users’ arms to

provide affordance.

• In Preemptive Reflexes, Nishida et al., demonstrated the preemptive force feedback systems

to accelerate human reaction time using EMS [93, 153]. They performed a psychophysics

experiment by actuating the users’ finger muscles to press the trigger to take a photo of a

high-speed moving object. They determined that actuating the users finger muscles in a

precise time window of approximately 80 ms prior to the users’ actual reaction time allows

the user to feel in control while capturing a photo of the high-speed moving object.

2.4.2.2 EMS in Input/Output Interfaces

Adding input interfaces to EMS based system allows for the development of a closed loop in-

put/output platform that enables a novel communication technique. Input/Output systems based on

EMS are described below:

• In Actuated Navigation, Pfeiffer et al., communicated an EMS actuation signal to the sartorius

(thigh) muscle to influence walking direction, and avoid obstacles, and uneven ground in a

park with crowded areas ,and distractions [161]. Their results show that their system was able

to steer the users left and right, thereby changing their walking direction by approximately

16° per minute.

• In Muscle Plotter, Lopes et al., developed a pen-based input, and EMS based output system

to enable the user’s hand to render curves in an interactive 2D wind tunnel simulation of a

car [130]. The user requests a wind tunnel simulation by writing “Wind Tunnel” with an
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anoto pen, and the muscle plotter computes the streamline of the simulation in response to

a car sketch and responds by actuating the user’s wrist with electrical stimulus. They also

investigated the use of EMS in enabling the user to draw on an X-Y plot, and EC- Circuit

simulator to plot the RC filter characteristics. Lopes et al., further developed ”Let your body

move” to demonstrate haptic feedback using muscle stimulation [127]. They developed a

mobile application integrated with EMS to enable waving a user’s hand.

• In Notifications and Conversations, Schneegass et al., devised ”Embodied Notifications” a

novel technique of gaining the users attention by utilizing the human body as a feedback

channel to receive notifications [180]. They utilized EMS to communicate the source of

the notification to the user from their smart device. Due to the nature of the notification

feedback system being embodied and implicit, their system was able to effectively attract

users to important information such as upcoming meetings reminders, and incoming messages

by stimulating different parts of the body. On the other hand, Hanagata et al., developed

”Paralogue”, a remote conversation system using EMS [76]. The Paralogue (Parasitic +

dialogue) utilized users arm and hand position to enable a remote conversation. One user’s

hand was fitted with a camera to record head positions (forward, backward, sideways, twist),

and these were mapped to different hand poses in another user through EMS thereby enabling

a remote conversation.

• In EMS Painter, Colley et al., developed an interaction technique to enable an audience to

influence a painter, and co-create visual art works [37]. They placed EMS electrodes on the

painter’s arm and enabled integration with a tablet device controlled by the audience to cause

deviation of the brush strokes.

• In Raising Temperature, Fortin et al., demonstrated the use of EMS to deceive users into

perceiving a surface or object as dangerously hot even while it is below 50°C [60]. They

accomplished this by inducing an artificial heat withdrawal reflex through involuntary con-
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traction of the user’s bicep immediately after contact with a virtual hot surface. Their results

suggest that EMS could be potentially utilized to modify temperature perception in AR/VR

applications and emergency response, and workplace training systems.

2.4.2.3 EMS in Feedback based Immersive Technology

The above-mentioned interactive applications demonstrate that EMS provides more defined, implicit,

and strong sensations than visual, auditory and haptic feedback mechanisms. These applications

also exhibit miniaturization of feedback hardware compared to actuated motors in exoskeletons.

EMS based feedback systems integrated with immersive technology are described below:

• In Impacto, Lopes et al., developed an EMS based application designed to provide the haptic

sensation of hitting, and being hit in virtual reality. Impacto simulated a hit by decomposing

the feedback stimulus in to tactile and impulse components [123]. The tactile aspect of being

hit was simulated by employing a solenoid that taps on the user’s skin, and the impulse of

being hit was simulated by contracting the user’s triceps and forearm backwards using EMS.

• In Kinesthetic Feedback, Nishida et al., developed a wearable stimulation device for sharing

and augmenting kinesthetic feedback through EMS [154]. Their primary application is to

facilitate virtual experiences of hand tremors in PD patients. They utilized EMS for providing

shared experiences between users, and for preempting reaction times in users.

• In Actuating Emotions, Kono et al., developed ”In-Pulse” which attempted to increase realism

in virtual reality applications by inducing fear and pain [103]. “In-pulse” utilized EMS, and

mechanical solenoid actuators in the design of a head mounted device to induce emotions

such as fear and pain in virtual reality experiences. They integrated an Oculus with a

solenoid placed on the forehead, and electrodes placed on the orbicularis oculi (facial muscles
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responsible for closing eyelids) to invoke tactile feedback, and involuntary closure of the

eyelids respectively in response to a punch delivered to the head by an avatar in virtual reality.

Alternatively, Hassib et al., developed an ”Emotion Actuator” to investigate the transfer of

emotional states between users [79]. The System utilizes Electroencephalography (EEG) to

interpret emotional states such as happy, sad, angry, and neutral from one user and transmits

it to another user using EMS to generate an involuntary response. Their study revealed that

participants liked the discreet sharing of emotions, and the embodied output using EMS to be

more immersive in nature.

• In Realistic Physical Experiences in VR, Lopes at al., developed realistic physical experiences

in VR by providing haptic feedback to walls, and obstacles [124, 128]. They utilized EMS

to stimulate the user’s forearm and triceps muscles in response to user interaction with wall

surfaces in virtual reality. They also developed force feedback for mobile devices [130]

by employing EMS to invoke involuntary muscular contraction to tilt the device sideways.

The users perceive force feedback as they resist this motion with their other arm. They

demonstrated this through a mobile game in which the users are required to steer an airplane

through the winds simulated through EMS based force feedback. Further, they extended

EMS based force feedback to mixed reality gaming where they added physical forces to

virtual objects [129]. They demonstrated this through a mixed reality “balance the marble

game” where the user had to move a virtual ball to a designated area. The user’s forearm was

stimulated to maintain or balance the ball on a tray. Similarly, Fabriz et al., utilized EMS

to simulate impact in an augmented reality tennis game by stimulating the forearm muscles

upon impact with a tennis ball to deliver a more immersive experience [56].

• In Proprioceptive Interaction, Lopes et al., developed ”Pose-IO” that served as eyes-free

interaction technique that allowed users to interact without visual and auditory senses and

completely rely on proprioceptive sense [125]. Pose-IO demonstrated this by recognizing a
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user’s wrist gesture, and utilized EMS to stimulate their wrist muscles to generate the same

pose involuntarily with an average accuracy of 5.8°.

The current literature suggests that postural correction utilizing EMS has not been fully explored,

and thereby presents an opportunity for the development of wearable intervention technology based

on EMS feedback for the detection and correction of slouching, AWD and improper loading posture.

As part of this research, the following chapter details the design and development of an automatic

slouching detection and correction system utilizing EMS.

42



CHAPTER 3: AUTOMATIC DETECTION AND CORRECTION OF

SLOUCHING

Figure 3.1: Improper posture can have long term health ramifications. Presented here are images of
slouched and corrected posture using Electrical Muscle Stimulation: (A) Mobile Gaming - Slouched
posture, (B) Mobile Gaming - Corrected posture, (C) Text Entry - Slouched posture, (D) Text Entry
- Corrected posture.

Slouching is one of the most common sedentary poor posture affecting people from all walks of life.

From the literature, the current intervention technology offers only slouch detection and requires

users’ conscious effort to correct improper slouched posture, and the interactive applications and

adaptability of EMS based technology demonstrate its capability in delivering implicit, discrete,

and more defined feedback compared to audio, visual and haptic feedback mechanisms. This has

presented an opportunity for the design and development of a wearable intervention technology

with automatic capabilities for slouched posture detection and subsequent correction through EMS

based involuntary muscular contractions to restore healthy upright posture.
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Figure 3.2: Physiological Feedback Loop: Automatic Slouching Detection and Correction System.

To address the problem of detecting and correcting slouching, we developed a physiological

feedback loop-based wearable intervention prototype relying on IMU sensors and EMS (illustrated in

Figure 3.2). Our prototype employed three Metawear MMC wireless sensors for measuring angular

changes, and the openEMSstim package [121] for presenting the EMS feedback. We developed

a user interface using the Metawear C# SDK and integrated the EMS hardware to complete the

physiological feedback loop. As slouching was mainly characterized by torso inclination and

forward rolling of the shoulders [90], IMU 1 was placed at the center of the collar bone above the

chest (illustrated in Figure 3.3 (B)) and the other IMU’s 2 and 3 were placed on the center of each

deltoid (illustrated in Figure 3.3 (A) & (C)).
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The change in posture was calculated from the angular information obtained from the IMU sensors.

The user’s torso inclination angle was calculated from the pitch of IMU1, and the roll angles on the

shoulders were calculated from the roll of IMU’s 2 and 3. Our system detected slouching when

the user’s current torso inclination and shoulder roll angles both approached and remained at a

threshold level for a period of 5 seconds. The threshold level is preset as −3° of the torso inclination

and shoulder roll angles recorded in the slouched position during calibration. −3° was chosen

to overcome measurement errors without increasing false positives and a 5 second time duration

ensured random movements do not lead to false positive slouch detection. These design choices

were validated during our pre-study trials. The threshold angle of −3° was used to initiate the

5 seconds timer, and the slouch angles detected were recorded at the end of the timer when the

feedback was presented. The purpose of the timer was to ensure false positives due to participant

behavior do not trigger the feedback response.

Figure 3.3: Wireless IMU sensor placement for posture monitoring and detecting slouched pos-
ture:(A) Side view showing sensor placement on left deltoid, (B) Front view showing sensor
placement below center of collar bone above the chest, (C) Side view showing sensor placement on
right deltoid.
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3.1 Correction Feedback

When slouching was detected, the automatic correction feedback was presented by applying

electrical stimulus to the rhomboid muscles (illustrated in Figure 3.4) for generating a pulling

force in the opposite direction from the slouched posture and thereby, generating a physiological

response to bring the user back to the upright or correct position. Two pairs of electrodes were

utilized for contraction of the rhomboid muscles which causes the shoulders blades to be pulled

back, thus unrolling the shoulders and bringing the torso back to the upright posture. IMU and EMS

calibration play a crucial role in the effectiveness of the system. The calibration process included

correcting IMUs offset value in the upright position of the user and recording the angular change in

the slouched posture with respect to the upright position.

Figure 3.4: EMS electrode placement on rhomboid muscles for auto-correction using EMS feedback.

The EMS intensity calibration was manually incremented to deliver an intensity that was optimal

for generating involuntary muscular contraction and avoid any pain. This EMS intensity provided to

the user for generating the necessary pulling force for correcting the slouched posture and restoring

the upright position was recorded and utilized during the experiment. The TENS device was able to

deliver intensities between (0-100mA). A continuous 75 Hz square wave pulse at the recorded EMS
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intensity and a pulse width of 100 µs was supplied as the electrical stimulus to the users.

3.2 Operation

Figure 3.5: Automatic Detection and correction of Slouching: Graph showing EMS activation and
deactivation. When torso inclination and shoulder roll angles cross the threshold and remain there
for a duration of 5 seconds, EMS is activated. EMS is deactivated when upright posture is restored.

Figure 3.5 illustrates the activation and deactivation of EMS when slouched posture is detected and

upright posture is restored during a test scenario. During calibration, the recorded torso inclination

angle was 23° and shoulder roll angle was 15°, while the EMS intensity recorded for correcting

slouched posture was 40mA. When the current angles crossed the threshold of 20° for the torso

inclination and 12° for the shoulder roll, the 5-second timer was initiated. Upon completion of the

timer, if the current angles still remained above threshold angles, the EMS was activated to supply a

stimulus of 40 mA (recorded during calibration) to the rhomboid muscles to cause an involuntary
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muscular contraction to restore the upright posture. The EMS was deactivated immediately after the

upright posture was restored.

3.3 Methods

The goal of our study was to evaluate the overall effectiveness and user perception of an automatic

slouch detection and correction feedback system (EMS) compared to traditional audio and visual

feedback modalities requiring self-correction by the user based on audio and visual notifications,

respectively. We also identified two common causes of slouching in day-to-day activities such as

computer related workplace tasks, and mobile gaming [90, 159], and investigated our automatic

approach using EMS across these common causes of slouching. Our objective was to determine if

our automatic posture detection and correction system using EMS would be a viable technique for

correcting slouched posture as compared to the visual and the audio feedback channels while being

engaged in a computer related workplace task and playing a mobile game.

3.3.1 Subjects and Apparatus

We recruited 36 Participants (Male=31, Female=5) for the study with 18 participants for each

application- text entry and mobile game. All participants recruited were above the age of 18 years

and the mean age of participants was 22.05 years (S.D.= 3.13). All participants were able bodied

and had corrective 20/20 vision. We used three Metawear MMC IMU sensors for monitoring the

torso inclination angles and the shoulder roll angles. The EMS was generated with an off-the-shelf

Tens unit and controlled by the openEMSstim package for activating and modulating the intensity of

the electrical stimuli supplied to the muscles. The hardware used for the text entry application was

a 14” Intel i7 Laptop, and a 2nd generation iPhone SE was used for the mobile game application.
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From the pre-questionnaires, participants’ ranking of their prior exposure to posture alert devices

and EMS, and experience with posture problems and slouching are noted and illustrated in Table 3.1.

Participants ranked their exposure and experience on a 7-point scale with 1 meaning never/no

experience and 7 meaning frequently/very experienced.

Table 3.1: User ranking on posture awareness, devices, and EMS. User ranking on a 7-point Likert
scale.

User Experience Application Mean S.D

Exposure to posture Text Entry 1.61 1.16

alert devices Mobile game 1.89 1.09

Exposure to EMS Text Entry 2.33 1.37

Mobile game 2.06 1.43

Experienced posture problems Text Entry 4.22 1.55

Mobile game 4.33 1.49

Experienced slouching Text Entry 5.06 1.50

Mobile game 5.4 0.96

3.3.2 EMS hardware operation

The openEMSStim package used in this study contains an arduino Nano micro-controller which

has the capability to control MOSFET switches utilized to turn on/off the EMS signals generated

from a TENS device. MOSFET switches enable fast switching on and off of EMS signals and

also allow for digital control for HCI applications. The openEMSStim package also contains a
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Figure 3.6: EMS Hardware Block Diagram.

digital potentiometer whose resistance can be varied to increase or decrease the intensity of the

EMS signals from the TENS device. A system block diagram of the EMS hardware used in this

study is illustrated in Figure 3.6. The openEMSStim package also has the ability to interface with

sensors and computer/mobile based applications. In this case, we interfaced wireless Metawear

IMU sensors with the openEMSStim package via a C# application.

3.3.3 Calibration Process

A step-by-step description of the calibration process is illustrated in the Figure 3.7. This calibration

process was employed in all the human subject studies conducted as part of this research and

determined optimal EMS intensity for delivering a smooth and comfortable experience to the

user while invoking an involuntary muscular contraction and achieving the desired physiological

response.
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Calibration: Start

1. Identify Muscle Location
2. Place Electrodes on Muscle 
3. Connect Electrodes to TENS

Increment EMS intensity in steps of 5 mA

Increment EMS intensity in steps of 5 mA

1. Set EMS Intensity to 0 mA
2. Activate EMS
3. Notify user that EMS has been activated

Does user feel 
haptic/tingling 

sensation? 

Yes

No

Does user experience 
any pain?

No

Yes

Does user feel any 
discomfort? 

No

Yes

Does user feel 
involuntary muscular 

contraction?

Yes

No

Is desired posture 
correction acheived?

Yes

Calibration: Stop

Decrement EMS intensity in steps of 5 mA

No

Record EMS Intensity as optimal for 
user

Figure 3.7: A step-by-step description of the calibration process for optimal EMS intensity
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In the case of slouching, the desired physiological response was the torso stabilization. The

calibration process was employed for the rhomboid in automatic correction of slouching. We

employed an user-in-the-loop approach for calibrating the optimal EMS intensity where the user

was required to verbally respond to the research moderators’ questions during the calibration process.

At each increment of the EMS intensity, the user was specifically required to respond to their level of

comfort, indications of any pain in the stimulated muscle area, and if they experienced involuntary

muscular contractions. When involuntary muscular contractions were experienced by the user,

the moderator confirmed if the user was comfortable at this EMS intensity and if any pain was

experienced. When the user was comfortable with the EMS intensity, no pain was experienced, and

involuntary muscular contractions were achieved for desired posture correction, the EMS intensity

was recorded for use in the EMS feedback part of the study experiment and the calibration process

was completed.

3.3.4 Experimental Design

A 2 by 3 mixed subjects experiment with 36 participants was conducted to investigate the perfor-

mance and feasibility of our approach. The within subject factor was feedback type (visual, audio,

and EMS) and the between-subject factor was application type (text entry, and mobile game tasks).

We compared the performance of automatic slouching correction using the EMS feedback against

the self- correction in the visual and audio feedback techniques. Average correction response times

and user perception of the system across the two applications and three feedback types were also

evaluated. In the text entry application, users were required to complete a text entry task and the

mobile game application required the users to play a mobile based Battle Royale game called

”PlayerUnknown’s Battlegrounds (PUBG) Mobile1”. PUBG was selected based on its popularity

1https://www.pubg.com/
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(400 million players), level of engagement and demographics (people aged between 15-35 years

who may be prone to long working and gaming sessions). In both applications, the users were

required to complete all three modalities:

• Modality 1: Visual alert feedback and self-correction

• Modality 2: Audio alert feedback and self-correction

• Modality 3: EMS feedback and automatic correction

In each application, participants were required to complete all three modalities in a counterbalanced

order to minimize learning effects. The independent variables in the study were the three different

modalities and the dependent variables were the average correction response times, and user percep-

tion parameters such as overall experience, accuracy of correction feedback, engagement and task

disruption, and comfort. Each study session lasted approximately 75 minutes and the participants

were compensated $15 for their participation. This study was approved by the Institutional Review

Board of the University of Central Florida.

3.3.5 Research Hypotheses

Our study was designed to determine the effects of automatic or self-posture correction on user

experience across the two applications, and three modalities. As such, we expect significant

differences across the three modalities which could influence user experience. For investigating into

the user perception, we have five research hypotheses with two parts namely, (a) in text entry, and

(b) in mobile game.
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• H1: In the text entry (a) or the mobile game (b), the average correction response time to

slouching feedback will be faster in EMS feedback compared to the visual and audio alert

feedback.

• H2: In the text entry (a) or the mobile game (b), the user perception of accuracy of slouching

posture correction in EMS feedback will be greater than visual and audio alert feedback.

• H3: In the text entry (a) or the mobile game (b), comfort in EMS feedback will not be

significantly different compared to visual and audio alert feedback.

• H4: In the text entry (a) or the mobile game (b), no evidence will be found for a difference in

task disruption across the visual, audio, and EMS feedback

• H5: In the text entry (a) or the mobile game (b), automatic correction using EMS feedback

delivers better user experience compared to visual and audio alert feedback.

3.3.6 COVID-19 Considerations

Due to the ongoing COVID-19 pandemic, we wanted to ensure safety for the participants and

researchers. Following our institutions guidelines, all individuals were required to always wear face

masks. Between each participant, we sanitized all devices and surfaces that the participants and

researchers would be in contact with, to ensure safety during the study. Furthermore, all users were

required to wear a face mask to participate in the study. We also provided hand sanitizer, cleaning

wipes, and latex gloves to reduce risk of contracting the disease. Though we cleaned all surfaces

between participants, we allowed participants to clean devices as desired.
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3.3.7 Experimental Procedures

Prior to starting the experiment, participants reviewed the consent form that details the experiment,

safety, risks, compensation, and compliance, and were required to provided verbal consent for the

study session to start. Participants then completed a survey on their knowledge and experience

on workplace related posture issues, intervention technology and EMS. Next, IMU sensors were

placed on the participants on their deltoids and center of the collar bone above the chest (as shown

in Figure 3.3) for detecting slouched posture and data collection. Adhesive EMS electrodes were

placed on the rhomboid muscles prior to the EMS feedback session for correcting slouching (as

shown in Figure 3.4). Subsequently, IMU sensors were corrected for offset, and calibrated with

participants seated in upright and slouched positions and with their hands placed on the keyboard or

holding the smartphone. During calibration, participants emulated slouched positions by inclining

their torso and rolling their shoulders forward. These upright and slouched posture angles were

recorded.

Before the EMS feedback session, an EMS intensity calibration process was done manually for each

participant, and moderators incremented the intensity until an involuntary muscular contraction

causing posture correction is affected. The participants were calibrated manually only once for EMS

intensity to generate a physiological response of sitting upright. During calibration, participants

were asked to slouch, and moderators manually incremented the EMS intensity. As EMS also

produces a tactile or haptic effect even at low intensities, participants were asked to not respond to

the tactile or haptic effect to ensure the haptic/tactile component of EMS does not contribute to the

automatic correction process in any way. Moderators additionally asked participants to verbally

respond specifically to the following questions during calibration to ensure rhomboid muscular

contraction and participant comfort: 1) when they initially felt the stimulation (haptic sensation),

2) when the intensity was generating an involuntary muscular contraction and/or when they are
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experiencing the pulling force towards the upright posture, 3) when any pain is experienced. For each

participant, when involuntary muscular contraction was confirmed verbally by the participant and

visually verified by the moderators, the optimal EMS intensity that was generating an involuntary

muscular contraction to correct the slouched posture, was recorded, and selected for the EMS part

of the study.

The above steps are similar for both the text entry and the mobile gaming applications. In the text

entry task, participants were asked to read from a PDF document and type into a word document.

The PDF and word documents were presented in a 50-50 split screen. For the purpose of conducting

the study, the PDF zoom was set to 40% to promote or cause slouching while reading (illustrated

in Figure 3.8). In the mobile game task, participants were asked to play PUBG mobile (illustrated

in Figure 3.9). In both applications, the user’s posture was monitored for slouching. The study

comprised of three parts: visual, audio, and EMS feedback. Each part of the study is 15 minutes in

duration and all participants were required to finish all three parts to complete the study. Participants

completed a survey about their experience after each part and a comparative survey on their overall

experience at the end of the study. All data from sensors and EMS were recorded for analysis and

reporting.

3.3.7.1 Visual feedback and self-correction

• Text Entry Application: When slouching was detected by the system based on the IMU

sensor feedback, a Windows 10 visual popup notification ”Please correct your posture” is

displayed on the bottom right corner of the monitor (illustrated in Figure 3.10a) and the users

were required to sit upright and self-correct their slouched posture till a second visual popup

notification ”Posture corrected” is displayed to the user (illustrated in Figure 3.10b). The

response times for correcting the slouched posture were recorded.
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Figure 3.8: Text entry study showing 50-50 split screen with a PDF document (zoom set to 40%) on
the left and a Microsoft Word document (zoom set to page width) on the right. Participants were
required to read from the PDF document and type in to the Word document.

Figure 3.9: Mobile game study showing lobby area of PUBG mobile prior to start of the game.
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Figure 3.10: Text entry study-visual feedback: showing Windows 10 pop-up visual notification on
the bottom right of the screen. (A) To correct posture when slouching is detected. (B) After posture
has been corrected.

Figure 3.11: Mobile game study-visual feedback: showing visual notification badges drop down
from the top of the display. (A) To correct posture when slouching is detected. (B) After posture
has been corrected.

• Mobile Game Application: When slouching was detected by the system based on the IMU

sensor feedback, an SMS is sent from the C# application to the smart phone with the message
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”Posture alert: Please correct your posture” and is displayed as a drop down badge notification

on the smartphone (illustrated in Figure 3.11a). After receiving the visual alert notification,

the users were required to sit upright, and self-correct their slouched posture till another SMS

containing the message ”Posture corrected” is displayed to the user (illustrated in Figure

3.11b). The response times for correcting the slouched posture were recorded.

3.3.7.2 Audio feedback and self-correction

• Text Entry Application: When slouching was detected by the system, an audio notification

”Please correct your posture” is activated and the users were required to sit upright, and

self-correct their slouched posture till an another audio notification ”Posture corrected” is

presented to the user. The response times for correcting the slouched posture were recorded.

• Mobile Game Application: When slouching was detected by the system, an audio notification

bell sound is activated and the users were required to sit upright, and self-correct their slouched

posture till another audio notification bell is activated for the user. The response times for

correcting the slouched posture were recorded.

3.3.7.3 EMS feedback and auto-correction

• Text Entry and Mobile Game Applications: When slouching was detected by the system,

the EMS is activated to apply the recorded EMS intensity to the rhomboid muscles to invoke

an involuntary muscle contraction. This muscle contraction produces a pulling force in

the opposite direction to the slouched posture and to generate the physiological response

of sitting upright by correcting the torso inclination and shoulder roll caused by slouching.

Figure 4.1(A) and (C) illustrate the slouched posture during the mobile game and the text entry

studies respectively. Figure 4.1(B) and (D) illustrate the corrected posture after EMS has been
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applied in the mobile game and the text entry studies respectively. The EMS is deactivated

once the upright position is detected. The response times for correcting the slouched posture

were recorded.

3.4 Results

The average number of slouches in the text entry condition was (7.72, 10, and 8.72) for the audio,

visual and EMS feedback modalities respectively and (7.05, 9.11, and 8.38) for the audio, visual and

EMS feedback modalities, respectively in the mobile game condition. The average torso inclination

and shoulder roll angles were recorded for slouched posture during the calibration process and

utilized for detection of slouching which are illustrated in Table 3.2. For text entry, mean torso

inclination angle was 21° (S.D = 3.88°), while the mean shoulder roll angle was 15.1° (S.D = 3°).

For the mobile game, the mean torso inclination angle was 18.24° (S.D = 2.8°), while the mean

shoulder roll angle was 13.84° (S.D = 2.22°). For the text entry application, the mean electrical

stimulation intensity required to correct slouched posture was 39.72 mA (S.D = 13.17 mA) while

for the mobile game task, the mean electrical stimulation was 47.22 mA (S.D = 11.08 mA).

To address H1, a one-way repeated measures ANOVA was performed on the influence of correction

feedback type on the average correction response times taken for correcting detected slouched

postures after correction feedback is presented to the user in the text entry and the mobile game

tasks separately. To address H2 through H5, non-parametric Friedman tests of differences among

repeated measures were conducted on the users’ ranking of effectiveness of correction feedback,

comfort, task disruption and overall experience. Wilcoxon signed rank tests were performed if

significant differences were found. The results were consolidated and presented in Table 3.3.

For H1(a), all effects were statistically significant at the .05 significance level. The main effect for
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Table 3.2: Average Slouching Angles (degrees).

Slouch Angle Application Mean S.D

Torso Inclination Angle Text Entry 21.00° 3.88°

Mobile game 18.24° 2.80°

Shoulder Roll Angle Text Entry 15.10° 3.00°

Mobile game 13.84° 2.22°

the correction feedback type yielded F(2,34) = 5.382, p < .05, indicating a significant difference

between visual feedback (M = 3.86,S.D = 1.27), audio feedback (M = 3.9,S.D = 1.28) and

EMS feedback (M = 2.89,S.D = 1.74). The average correction response times were faster for

EMS feedback than the visual feedback (t17 = −0.961, p < 0.05), but no significant differences

were found between EMS and audio feedback types, and between visual and audio feedback

types. For H1(b), all effects were statistically significant at the .05 significance level. The main

effect for the correction feedback type yielded F(2,34) = 20.66, p < .001, indicating a significant

difference between visual feedback (M = 5.98,S.D = 2.4), audio feedback (M = 4.44,S.D = 0.75)

and EMS feedback (M = 2.70,S.D = 1.04). The average correction response times were faster

for audio feedback than the visual feedback (t17 = −1.538, p < 0.05), the EMS feedback was

faster than Visual feedback (t17 = −3.276, p < 0.01), and also faster than the audio feedback

(t17 =−1.737, p < 0.001). The post-hoc analysis between the three feedback types shows that the

hypothesis H1(a) tested false in that the average correction response times were faster in the EMS

feedback type compared to the visual feedback but not the audio feedback. In the case of H1(b),

the hypothesis tested true, in that the average correction response times were faster in the EMS

feedback type compared to the visual, and audio feedback types as illustrated in Figure 3.12 (A)

and (B).
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Figure 3.12: Average Correction Response Times (in Seconds) across (A) Text Entry and (B) Mobile
Game for all correction feedback types - (1) Visual, (2) Audio, (3) EMS. Error Bars: 95% CI.

Table 3.3: Friedman test results on the user ranking for H2-H5.

User perception Application χ2 p

Accuracy of Correction Feedback Text Entry 3.592 0.166

Mobile game 7.259 0.027∗

Comfort Text Entry 1.345 0.510

Mobile game 4.550 0.103

Task Disruption Text Entry 0.092 0.955

Mobile game 5.607 0.061

Overall Experience Text Entry 0.407 0.816

Mobile game 0.400 0.819
Note: ∗ indicates significant difference P < 0.05.
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For H2(a) and (b), the test rendered χ2 = 3.591, p = 0.166 which was insignificant (p > .05) for

the text entry application, while for the mobile game application, the test rendered (χ2 = 7.259, p =

0.027) which was significant (p < .05). A post-hoc analysis with Wilcoxon signed-rank tests was

conducted for the mobile game application with a Bonferroni correction applied, resulting in a

significance level set at p< 0.017. Median perceived accuracy of slouching correction for the Visual,

Audio, EMS feedback were 6,6,7 respectively. There was a statistically significant difference

between the visual and the EMS correction feedback type (Z = −2.591, p = 0.010), and also

between EMS and audio correction feedback type (Z =−2.585, p = 0.010). However, there was no

significant difference between audio and visual correction feedback types (Z =−0.942, p = 0.346).

Therefore, H2(a) tested false and indicated that the users perceived all three feedback types equally

accurate in the text entry application. Whereas H2(b) tested true and indicated that the users

perceived that the accuracy of EMS correction feedback was more effective than the visual and the

audio feedback in the mobile game application.

For H3(a) and (b), the test rendered χ2 = 1.345 and p = 0.510 which was insignificant (p > .05)

for the text entry application, while for the mobile game application, the test rendered χ2 = 4.550

and p = 0.103 which was insignificant (p > .05). Therefore, both H3(a) and (b) tested true and

indicated that users perceived all three feedback types equally comfortable in the text entry and the

mobile game application. For H4(a) and (b), the test rendered χ2 = 0.092 and p = 0.955 which was

insignificant (p > .05) for the text entry application, while for the mobile game application, the test

rendered χ2 = 5.607 and p = 0.061 which was insignificant (p > .05). Therefore, both H4(a) and

(b) tested true and indicated that users perceived EMS correction feedback’s disruption no worse

than the other two feedback types in the text entry and the mobile game application. For H5(a) and

(b), the test rendered χ2 = 0.407 and p = 0.816 which was insignificant (p > .05) for the text entry

application, while for the mobile game application, the test rendered χ2 = 0.400 and p = 0.819

which was insignificant (p > .05). Therefore, both H5(a) and (b) tested false and indicated that
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users perceived overall experience across all feedback types equally well in the text entry and the

mobile game application.

Participants ranked their shared responsibility with auto-correction utilizing EMS on a 7-point

scale where 1 means not at all and 7 means completely. The mean shared responsibility exhibited

by the users was 2.77 (S.D = 1.7) in the text entry task, while for the mobile game condition,

users reported that they helped/aided auto-correction with a mean shared responsibility of 2.5

(S.D = 0.95). Participants also ranked how interesting the EMS concept was to use for posture

correction on a 7-point scale where 1 means not at all and 7 means completely. The mean ranking

received for EMS concept being interesting was 6.58 (S.D = 1.01). 27 out of 36 users reported

that they would purchase EMS feedback for slouched posture correction if it were commercially

available. Participants’ responses when asked to comment on their experience with EMS showed

that EMS feedback felt “more natural”, “not easily ignorable” and better than audio and visual

modalities as they cause “over/under correction” of posture. Additionally, participants also reported

about the EMS feedback that “the system accurately initiated the stimulus when slouched and

stopped after posture was corrected.” and that EMS “would enable me to not worry about my

posture during highly engaging tasks.” One user responded that EMS is “unobtrusive and discrete

method of auto-correcting posture.” and EMS was the“least disruptive”. Further, users reported “I

cannot listen to some one while i am trying to read and type.”, and “the visual notifications were

annoying and distracting when i was typing.” indicating that the audio and visual feedback were

placing a cognitive load on the user. Other user comments include “this can be a good training

device but EMS requires getting used to”, “it actively and immediately corrected my slouched

posture”, “training device for maintaining proper posture”, “the tingling sensation feels weird but

good”, “this can seriously help people with posture problems.”
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3.5 Discussion

While slouching detection and alert systems were designed and tested, we note that posture cor-

rection response times and user perception of the systems have not been measured or reported.

Therefore, our study focused on evaluating the performance, and user perception of our autonomous

system for detecting and correcting slouching. Our automatic slouching correction using the EMS

feedback system outperformed the visual and audio feedback types based on the average correction

response times suggesting that visual and audio feedback place an additional cognitive load on the

user while being engaged in their task and rely completely on the user’s willingness to self-correct

their posture. However, as EMS feedback does not require the user’s attention, this has made it

significantly faster than the other two feedback types.

Users also perceived that EMS feedback corrected their posture more accurately than the other two

feedback types that required self-correction. Users reported that self-correction in the visual and the

audio feedback types caused them to always over-correct their posture as their awareness of it was

minimal while being engaged in the task at hand. Whereas EMS feedback did not require the user’s

attention and always accurately activated when the slouched posture was detected and deactivated

after a posture had been corrected. The user rankings on accuracy of EMS feedback indicated that

EMS feedback was perceived to be more accurate in the mobile game application than the text

entry application. This interesting finding may have been due to different factors such as nature of

the two applications, complexity of the task, users’ connection to the device and varied range of

motion involved in auto-correction using EMS feedback across the two applications. It was also

interesting to note that EMS feedback and auto-correction were perceived equally comfortable and

no more disruptive than traditional visual and audio alert feedback but with the added advantage

of automatic correction. This may have been because EMS feedback relied entirely on the user’s

physiology and careful EMS intensity calibration with user feedback on their level of comfort to
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deliver a somatosensory feedback that discretely enabled posture awareness without disruption.

With regards to comfort, users reported that their awareness of the IMUs and EMS electrodes on

their body was minimal suggesting that our prototype could be a viable wearable intervention device

for posture correction.

Further, shared responsibility in aiding the auto-correction using EMS was exhibited and reported

by the users suggesting that the sensory confirmation delivered by activation and deactivation of

EMS encouraged their involvement in the posture correction process and increased their posture

awareness. This demonstrated that users can adapt to the system and gradually utilize it as a training

device for development of good postural habits in the long run. The EMS intensity required for

auto-correction in the mobile game task was higher than the text entry task, suggesting that the task

type, level of engagement, range of motions involved in the correction process influence the EMS

intensity required for correcting different levels of slouching. As shown in the results section, the

EMS intensity varied across the study population. This could be due to factors such as different

body types, muscle physiology, and activity levels.

Finally, users perceived that EMS was an interesting concept to use for automatic posture correction

while they were engaged in their tasks. 20 out of 36 users reported that EMS feedback and auto-

correction was their most preferred feedback type while 75% of the study population was willing

to purchase the automatic correction using EMS feedback if it were a commercially available

product. Therefore, our autonomous system could be a valuable alternative or an addition to existing

environment, health, and safety (EHS) protocols at workplaces for enhancing productivity, worker

health and in preventive health care.

In conclusion, we have demonstrated that our physiological feedback loop based on automatic

slouching detection and correction with EMS is a viable approach to supporting posture correction.

Our auto-correction system utilizing EMS feedback demonstrated significantly faster posture
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correction response times compared to the self-correction in the visual and audio feedback. Our

approach also showed that users perceived EMS feedback to be more accurate, just as comfortable

and produced no more disruption than the alternative techniques it was tested against in both the text

entry and the mobile game applications. Therefore, automatic slouching detection and correction

utilizing EMS shows promising results and can be developed as an alternative method for posture

correction. Our approach could prove useful in preventive healthcare to avoid workplace related

RSI and be particularly beneficial to people involved in highly engaging tasks such as gaming,

diagnostic monitoring, and defense control tasks.

The next chapter presents the design and development of an automatic AWD detection and correction

utilizing EMS and human subject study conducted to evaluate the effectiveness of our automatic

approach.
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CHAPTER 4: AUTOMATIC DETECTION AND CORRECTION OF

ASYMMETRIC WEIGHT DISTRIBUTION (AWD)

Figure 4.1: Impaired balance can have long-term health ramifications. Presented here are images of
asymmetric weight distribution (AWD) due to prolonged standing and restored balance conditions
using electrical muscle stimulation (EMS): (A) AWD right, (C) AWD left, (B) & (D) EMS feedback
based stabilization and restoration of balanced posture. The red arrows indicate direction of
progressive AWD and green arrows indicate a counter-weight shift balance stabilization due to EMS
feedback correction to the tibialis muscle.

Asymmetric weight distribution is another very common static moderate activity poor posture af-

fecting people especially from the working population. From the literature, the existing intervention

technology only offers postural sway detection and alerts, and requires the users’ willingness and

effort to self-correct their AWD posture. Additionally, EMS demonstrated its capability to correct

slouched posture through involuntary muscular contractions. This has presented an opportunity

to extend the automatic posture correction capabilities of EMS based feedback for the design and
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development of a wearable intervention technology with automatic AWD detection and subsequent

AWD correction to restore balanced posture.

For automatic detection and correction of AWD, we developed an intervention prototype based

on a physiological feedback loop that relied on load sensors and EMS (illustrated in Fig 4.2).

Our prototype employed a wireless Wii Balance Board (WBB) for measuring changes in weight

distribution across the two legs using the balance ratio of the weights displaced by the two legs

separately, and the openEMSstim package [121] for presenting the EMS correction feedback. A

C#-based user interface using a Wii-mote library was developed to integrate the WBB with the

EMS hardware to complete the physiological feedback loop. AWD is mainly characterized by

progressive and/or unusual leaning to either side [90], our system was designed to detect these

changes in weight distribution across the two legs using the shift in balance ratio representing the

AWD conditions.

4.1 Time and Balance Thresholds

Asymmetrical leg loading can be detected from the shift in balance ratio calculated from the

weight displacement information obtained from the load sensors in the WBB. Our proposed system

detected AWD when the user’s balance ratio approached and crossed preset balance ratio and time

thresholds. To improve our system robustness and tune our system for optimal performance, we

collected ecologically valid balance ratio data from 10 participants performing 10 typical actions

one performs consciously or unconsciously when they are standing idly (illustrated in Figure 4.3).

These 10 unique actions were identified based on general movement observations of employees

taking breaks from standing. These actions were interleaved with moderate and extreme leaning

actions to ensure AWD conditions were embedded in each session. The balance ratio patterns of

the 10 actions are shown in Figure 4.4. A grid search was then employed to find the balance ratio
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Figure 4.2: Physiological feedback loop: Automatic asymmetric weight distribution detection and
correction system. Asymmetric weight distribution posture (top) illustrates leaning to either side
and the auto-corrected posture (bottom) illustrates the restored balanced posture achieved through a
counter-weight shift strategy using EMS.

and time thresholds that optimized the accuracy of AWD detection. Since our primary concern was

the impact of false positives on user perception and to prevent unwarranted correction feedback,

we selected thresholds that minimized false positives first, maximized true positives second, and

maximized the per-frame Jaccard index of similarity [168] with the manually marked per-frame

ground truth third. With valid data collected from 10 participants, using a leave-one-subject-out

protocol, we found that at a time threshold of 2.9 seconds and balance ratio threshold of 1.25, our

system achieved high accuracy of 96% for true positive AWD detection, 0.1% for false-positive

AWD detection, and 0.3% for false rate. The balance ratio of 1.25 translates to a left-to-right or

right-to-left AWD balance ratio of 55.5 : 44.5.

70



Figure 4.3: Some examples of typical actions performed during standing activities based on
movement observations of employees taking breaks after standing. (A) Lean slight left, (B) Lean
slight right, (C) Balanced, (D) Calf raise and reset, (E) Lift left leg and reset, (F) Scratch leg and
reset, (G) Sway and reset, (H) Lean extreme right, (I) Lift right leg and reset, (J) Lean extreme left.

The preset time and balance ratio thresholds obtained through our tuning process allowed the AWD

detection system to overcome measurement errors, mitigate false positives, and ensured that typical

movements such as actions illustrated in Figure 4.3 did not lead to false-positive AWD detection or

activate unwarranted correction feedback. When the user’s balance ratio approached and crossed

the preset balance ratio threshold of 1.25, a countdown timer set to the preset time threshold value

of 2.9 seconds was initiated to provide correction feedback after the time threshold had elapsed.

The purpose of the timer is to ensure that false positives due to participant behavior do not trigger a

correction feedback response.
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Figure 4.4: Balance ratio patterns of the 10 actions performed by users (illustrated in Figure 4.3)
for the tuning process to determine balance and time thresholds for AWD detection. The lean
actions representative of AWD exhibited higher balance ratios and for prolonged time durations in
comparison to the other actions.

4.2 Correction Feedback

When AWD is detected, automatic correction feedback would be presented to the user by applying

electrical stimulus to the tibialis muscles for generating a counter-weight shift force in the opposite

leg to the direction of the AWD leaning and thereby, generating a physiological response to stabilize

the user back to a 50:50 balanced weight distribution position. A pair of electrodes on each leg

(illustrated in Fig 4.8b) would be utilized for contraction of the tibialis muscle which causes the foot

to roll outward, thus generating a physiological response of a counter-weight shift. This generated

counter-weight shift attempts to redistribute the weight more evenly across the two legs, thereby

stabilizing the user back to the balanced 50:50 weight distribution position. Calibration of the

WBB and EMS intensity play a crucial role in the effectiveness of the system. The calibration

process includes correcting offset values of the load sensors in the WBB prior to start of the study

session. The users’ balance ratio in balanced position and emulated AWD leaning positions relative
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to the balanced position are monitored to ensure WBB is calibrated. For the EMS calibration, the

EMS intensity would be manually incremented to deliver an intensity that is optimal for generating

involuntary muscular contraction, comfortable, and avoid any discomfort or pain to the user. This

EMS intensity, provided to the user for generating the necessary force for correcting AWD posture

and restoring the balanced position, would be recorded and utilized during the experiment. The

Trans-cutaneous electrical stimulation (T ENS) device can deliver intensities between (0-70 mA).

A continuous square wave at a pulse width of 100 µs with a frequency of 75 Hz at the recorded

EMS intensity would be presented as EMS feedback to the users. The EMS calibration procedure is

described in detail in section 4.4.5.

4.3 Operation

Our Physiological feedback loop for detecting and correcting AWD relied on the changes in balance

ratio along with the total weight distributed on each leg. This allowed our system to detect AWD

left/right conditions when the balance and time thresholds have been crossed. AWD occurs when

a user unevenly distributed body weight across the two legs. This places an additional stress on

the ankle, knee, hip, and lower back. To detect these AWD conditions, our system utilized the

balance and time thresholds determined in Section 4.1. Figure 4.5 illustrates the activation and

deactivation of EMS correction feedback when an AWD left condition was detected and corrected

for a participant during the study. Initially, under a balanced posture condition, the EMS left leg

and EMS right leg remain deactivated. A timer with preset time threshold of 2.9 Seconds was

activated when the user’s balance ratio gradually increased and crossed the preset threshold of 1.2.

Upon completion of the timer, if the balance ratio still remained above the threshold, the EMS was

activated to apply a stimulus of 50 mA to invoke a muscular contraction on the right tibilais muscle

(EMS Right Leg) for generating a counter weight shift and restore balanced posture. The EMS was
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deactivated immediately after the balanced posture is restored. A correction response time of 1.2

Seconds was recorded between activation and deactivation of the EMS Right Leg. The AWD right

condition is similarly detected and corrected by activating and deactivating EMS Left Leg.

Figure 4.5: Automatic Detection and correction of AWD: Graph showing EMS activation and
deactivation. When the user’s balance ratio approached and crossed preset balance ratio and time
thresholds, EMS was activated for AWD correction. EMS was deactivated when 50:50 balance was
restored.

4.4 Methods

The goal of this study was to evaluate the overall effectiveness and user perception of our automatic

AWD detection and correction feedback system using EMS compared to traditional audio and

vibro-tactile feedback modalities. The audio and vibro-tactile feedback modalities required self-

correction by the user based on audio and vibro-tactile notifications delivered to them, respectively.

We also identified two common use cases of everyday activities with varying levels of engagement

and posture awareness such as quiet standing and playing a mobile game to investigate the effect

of cognitive demand on posture awareness, AWD occurrence, and type of correction feedback.
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Our objective was to determine if our automatic AWD detection and correction system using

EMS feedback would be a viable technique for correcting AWD as opposed to the audio and the

vibro-tactile feedback types while standing idly or being engaged in cognitively demanding task.

4.4.1 Subjects and Apparatus

We recruited 36 users (Male = 29, Female = 7) for the study with 18 users for each application-

quiet standing, and mobile game. All users were aged 18 years and above with mean age of

24.67 years (S.D. = 3.98 years), mean weight of 71.1 Kg (S.D = 10.88 Kg), and mean height

of 167.3 cm (S.D = 8.94 cm). All users were able-bodied and had corrective 20/20 vision. For

monitoring the balance ratio along the medial lateral axis, a Wii balance board was utilized. A Grove-

vibration motor with double-sided disposable adhesives was utilized for delivering the vibro-tactile

feedback (illustrated in Fig 4.8a). An off-the-shelf TENS unit (T N SM MF2), and openEMSStim

package [120] was utilized for generating the EMS feedback and controlling the activation and

modulation of the intensity of the electrical stimuli supplied to the muscles, respectively. A 14” Intel

i7 laptop was utilized for the study user interface and an iPhone SE 2nd generation was employed

for the mobile game application. Qualitative data from the pre-questionnaire survey on participants’

prior exposure to balance alert devices and EMS, experience with posture problems, and AWD is

illustrated in Table 4.1. Participants ranked their exposure and experience on a 7-point Likert scale

with 1 meaning never/no experience and 7 meaning frequently/very experienced.
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Table 4.1: User ranking on posture awareness, devices, and EMS. User ranking on a 7-point Likert
scale. QS: Quiet standing, MG: Mobile game.

User Experience Application Mean S.D

Exposure to balance QS 1.44 0.70

alert devices MG 2.11 1.28

Exposure to EMS QS 2.56 1.39

MG 1.94 1.25

Prolonged standing QS 4.39 1.87

MG 4.11 1.67

Experienced AWD QS 4.33 2.01

MG 3.67 2.08

Figure 4.6: Participants played PUBG mobile in the mobile game condition. Image shows the lobby
area of the game prior to starting.
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4.4.2 Experimental Design

To investigate the performance and feasibility of our approach, a 2 by 3 mixed subjects experiment

with 36 users was conducted. The within-subject factor was the feedback type (audio, vibro-tactile,

and EMS) and the between-subject factor was the application type (Quiet standing (QS) and

Mobile game (MG)). The performance of our automatic AWD correction using the EMS feedback

was compared against the self-correction in the audio and vibro-tactile feedback techniques. A

quantitative evaluation of the average correction response times and a qualitative evaluation of the

perceived usability of our system were conducted across the three feedback and the two application

types. In both applications, participants were required to stand on the WBB without shoes for

three 15-minute sessions, one for each of the three modalities listed below. In the quiet standing

application, participants were required to stand quietly (illustrated in Fig 4.7 (A), (B), & (C)), while

participants played a mobile version of ”PlayerUnknown’s Battlegrounds (PUBG)”1”in the mobile

game application (illustrated in Fig 4.7 (D), (E), & (F)). PUBG mobile is an engaging battle royale

game (illustrated in Fig 4.6) and was selected for this study due to its high engagement level and

popularity amongst people aged between 15−35 years, who may be more prone to AWD due to

prolonged standing hours at work or mobile gaming sessions. In both applications, users were

required to complete the following three modalities:

• Modality 1: Audio alert feedback and self-correction

• Modality 2: Vibro-tactile alert feedback and self-correction

• Modality 3: EMS feedback and automatic correction

1https://www.pubg.com/
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Figure 4.7: Evaluation of the effectiveness of our automatic approach across 2 different application
types- Quiet Standing (A), (B), (C) and Mobile Game (D), (E), (F). Quiet Standing: (A) AWD Left,
(B) Balanced, (C) AWD Right. Mobile Game: (D) AWD Left, (E) Balanced, (F) AWD Right.

In both applications, the order in which the participants were introduced to the modalities was

counterbalanced to minimize learning effects. The three different modalities in the study were the

independent variables and the dependent variables were the average correction response times, and

user perception parameters such as accuracy of correction feedback, task disruption, comfort, and

posture awareness. Each study session lasted approximately 60−75 minutes and the users were

compensated $15 for their participation.

4.4.3 Research Hypotheses

Our study was designed to determine the effects of automatic or self-posture correction on user

experience across the two applications, and three feedback modalities. As such, we expect to find

the main and interaction effects of modality and application type on the average correction response

times. We also expect to find main effects across modality or application types for user perception

parameters such as correction feedback accuracy and posture awareness while no evidence of main

or interaction effects is expected for comfort and task disruption. We have five research hypotheses:
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• H1: Average correction response times to EMS feedback will be the fastest among all three

modalities.

• H2: Correction feedback accuracy in the EMS feedback modality will be greater in compari-

son to the other modalities.

• H3: EMS feedback modality will be equally comfortable as the alternative traditional

feedback types and across both application types.

• H4: No evidence will be found for a difference in task disruption across the three modalities.

4.4.4 COVID-19 Considerations

Due to the ongoing COVID-19 pandemic, we wanted to ensure safety for the users and researchers.

Following our institution’s guidelines, all individuals were required to always wear face masks.

Between each user, we sanitized all devices and surfaces that the participants and researchers would

be in contact with, to ensure safety during the study. Furthermore, all users were required to wear a

face mask to participate in the study. We also provided hand sanitizer, cleaning wipes, and latex

gloves to reduce the risk of contracting the disease. Though we cleaned all surfaces between users,

we allowed users to clean devices as desired.

4.4.5 Experimental Procedures

Before the start of the study session, participants were required to review the consent document

and provide their consent for participating in the research. Participants then completed a pre-

questionnaire survey on knowledge and experience with balance-related intervention technology,

AWD, and EMS. Upon completion of the pre-questionnaire survey, participants were required to
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complete a validation study where they performed a set of the 10 typical actions on the WBB as

illustrated in the Figure 4.3 to ensure the AWD detection system with the preset balance threshold

(1.25) and time threshold (2.9 seconds) (obtained from the optimization process described in

section 3.1) was able to detect the AWD conditions (Lean slight right/left, Lean extreme right/left)

accurately and to mitigate the possibility of false-positive correction feedback. Next, participants

were required to stand without shoes on the WBB for calibration. For the vibro-tactile alert modality,

Grove vibration motors were placed on each leg with double-sided adhesives as illustrated in

Figure 4.8a. Adhesive EMS electrodes were placed on each leg along the tibialis muscles before the

EMS feedback session for correcting AWD as illustrated in Figure 4.8b.

Before the EMS feedback session, users were required to stand on the WBB and were calibrated

for an optimal EMS intensity that affected balance stabilization and corrected AWD posture. Each

user’s optimal EMS intensity level was manually calibrated by the study moderator only once. Users

were asked to emulate an AWD condition of leaning left or right and the moderators incremented

the EMS intensity on the opposite leg until an involuntary muscular contraction is felt by the user

and generated a physiological response of a counter-weight shift in an attempt to stabilize the

balance ratio. The above process was repeated for both AWD left and AWD right conditions to

deliver the user with an optimal user experience in the EMS feedback session. As EMS has been

known to produce a haptic effect at low intensities, users were asked to ignore the haptic effect

to ensure the haptic component did not contribute to the automatic AWD correction process in

any way. Additionally, during this calibration process, moderators also asked users to specifically

respond verbally to the following questions to ensure tibialis muscular contraction and user comfort:

1) If and when they initially felt a haptic sensation of the EMS, 2) If and when they felt the EMS

intensity generating an involuntary contraction in the leg and/or when they are experiencing the

counter-weight shift force towards restoring their balance, 3) If and when they felt any pain or

discomfort. For each user, this involuntary muscular contraction affecting AWD correction was

80



visually verified by the moderator and verbally confirmed by the user. The optimal EMS intensity

which generated the counter-weight shift effect to correct AWD and was also comfortable to the

user was recorded to be used for the EMS feedback session of the study (Refer Section 3.3.3 for

more details on the step-by-step calibration process).

The above steps are similar in both the quiet standing and the mobile game applications. In the quiet

standing application, users would be asked to stand quietly, while for the mobile game application,

users would be required to play PUBG. In both applications, users would be required to stand

without shoes on the WBB, and their balance ratio would be monitored for AWD (illustrated in

Fig 4.7). The study comprises three parts: audio, vibro-tactile, and EMS feedback. Each part of

the study is 15 minutes in duration and all users were required to finish all three parts to complete

the study. The users were given a 5-minute seated break after each part of the study, where users

were required to remain seated to rest their legs. Participants then completed a survey about their

experience after each part. All data from WBB, correction response times, and EMS intensity were

recorded for analysis and reporting.

4.4.5.1 Audio feedback and self-correction:

Upon AWD detection based on balance ratio from the WBB, an audio notification ”Leaning

le f t/right-please correct imbalance” is activated and the users were required to self-correct their

AWD posture and stabilize their balance till another audio notification ”Stabilized” is presented to

them.
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(a) Haptic motor unit placement. (b) EMS electrode placement.

Figure 4.8: Haptic motor unit and EMS electrode placement on the tibialis muscle. (a) Vibro-tactile
feedback is delivered to the legs through the haptic motor units placed on each leg. (b) EMS
feedback is delivered through EMS Electrodes placed on the tibialis muscle on each leg.

4.4.5.2 Vibro-tactile feedback and self-correction:

Upon AWD detection based on balance ratio from the WBB, a vibro-tactile notification in the form

of vibration from the haptic motor is activated on the opposite leg, indicating the direction that

the user was required to shift to self-correct their AWD and stabilize their balance ratio. When

users’ balance is stabilized the vibro-tactile notification stops, indicating a 50 : 50 balance has been

achieved.
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4.4.5.3 EMS feedback and Auto-correction:

Upon AWD detection, the EMS feedback is activated to apply the recorded EMS intensity to the

tibialis muscles in the opposite leg to the AWD lean. This invokes an involuntary muscle contraction

to produce a counter-weight shift force in the opposite direction to the AWD lean for stabilizing the

balance. Fig 4.1(A) and (C) illustrate the AWD left and right-leaning posture, respectively. Figures

4.1(B) and (D) illustrate the automatically corrected posture after EMS has been applied. The EMS

is deactivated when the balance ratio stabilization has been achieved.

4.5 Results

The average number of AWD conditions observed per participant in the quiet standing application

was (12.38, 13.05, and 14.11) for the audio, vibro-tactile, and EMS feedback modalities, respec-

tively, and (12.22, 13.83, and 12.66) for the audio, vibro-tactile, and EMS feedback modalities,

respectively in the mobile game application. For the quiet standing application, the mean EMS in-

tensity required to correct AWD condition and stabilize balance posture was 50.55 mA (S.D = 9.05

mA) while for the mobile game task, the mean EMS intensity was 51.94 mA (S.D = 8.25 mA). To

analyze the performance of our approach, we used repeated-measures 2-Factor ANOVA to determine

the influence of modality and application types on each dependent variable and the consolidated

results are presented in Tables 4.2, 4.3, 4.4, 4.5. For the non-parametric user perception Likert

scale data, we utilized the Aligned Rank Transform (ART) tool [203] and performed repeated

measures 2-Factor ANOVA tests on the aligned ranks for the user perception Likert scale data.
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4.5.1 Average Correction Response Times

For H1, the main effect for modality type yielded an F(2,68) = 125.16, p < 0.001, indicating a

significant difference between Audio (M = 2.58, S.D = 0.63), Vibro-tactile (M = 1.8, S.D = 0.45),

and EMS modalities (M = 1.32, S.D = 0.29) as illustrated in Figure 4.9a (a). The main effect for

application type yielded an F(1,34) = 2.744, p > 0.05, indicating that the effect of application

type was not significant between quiet standing (M = 1.8, S.D = 0.6), and mobile game (M = 2,

S.D = 0.79) as illustrated in Figure 4.9b. The interaction effect was significant F(2,68) = 5.803,

p < 0.05. Significant differences were found in the system performance with regards to average

correction response times between different feedback modalities with EMS feedback delivering the

fastest correction. As a result, we were able to accept H1.

Table 4.2: 2-Factor ANOVA: Average Correction response times (ACRT). M: Modality, A: Applica-
tion.

Source ACRT p

M F(2,68) = 125.16 < 0.001∗

A F(1,34) = 2.744 0.107

M X A F(2,68) = 5.803 0.016∗

Note: ∗ indicates significant difference p < 0.05.
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(a) ACRT Modality. (b) ACRT Application.

Figure 4.9: Average correction response times (ACRT) across (a) Modality, & (b) Application type.
Error bars:95% CI. A: Audio, V:Vibro-tactile modality, QS: Quiet Standing, MG: Mobile Game.

4.5.2 User Perception of Correction Feedback Accuracy

For H2, the main effect for modality type yielded an F(2,68) = 4.113, p < 0.05, indicating a

significant difference between Audio (M = 5.83, S.D= 1.03), Vibro-tactile (M = 6.44, S.D= 0.69),

and EMS modalities (M = 6.67, S.D = 0.53) as illustrated in Figure 4.10a. A pairwise comparison

of the means showed significant differences between the audio and vibro-tactile, and audio and

EMS feedback types but no evidence of significant differences between the vibro-tactile and EMS

feedback. The participants perceived EMS feedback to be more accurate than the audio, but not

vibro-tactile feedback and hence we were not able to accept H2. The main effect for application

type yielded an F(1,34) = 0.052, p > 0.05, indicating that the effect of application type was not

significant between quiet standing (M = 6.3,S.D= 0.82), and mobile game (M = 6.33, S.D= 0.81)

as illustrated in Figure 4.10b. The interaction effect was not significant F(2,68) = 2.988, p > 0.05.
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Table 4.3: 2-Factor ANOVA: User Perception-Correction feedback accuracy (CFA). M: Modality,
A: Application.

Source CFA p

M F(2,68) = 4.113 0.021∗

A F(1,34) = 0.052 0.82

M X A F(2,68) = 2.988 0.057

Note: ∗ indicates significant difference p < 0.05.

(a) CFA Modality. (b) CFA Application.

Figure 4.10: User perception of correction feedback accuracy across (a) Modality, & (b) Application
type. Error bars: 95% CI. A: Audio, V:Vibro-tactile modality, QS: Quiet Standing, MG: Mobile
Game.
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4.5.3 User Perception of Comfort

For H3, the main effect for modality type yielded an F(2,68) = 1.376, p > 0.05, indicating no

significant difference between Audio (M = 6.3, S.D = 0.98), Vibro-tactile (M = 6.36, S.D = 0.96),

and EMS modalities (M = 5.91, S.D = 1.23) as illustrated in Figure 4.11a. The main effect for

application type yielded an F(1,34) = 1.364, p > 0.05, indicating that the effect of application

type was not significant between quiet standing (M = 6.43,S.D = 1.02), and mobile game (M = 6,

S.D = 1.08) as illustrated in Figure 4.11b. The interaction effect was not significant F(2,68) =

2.027, p > 0.05. As no significant differences were found in the main effects for modality or the

application type, neither modality nor application had any influence on the user comfort. As a result,

we accept H3.

Table 4.4: 2-Factor ANOVA: User perception-Comfort. M: Modality, A: Application.

Source Comfort p

M F(2,68) = 1.376 0.259

A F(1,34) = 1.364 0.251

M X A F(2,68) = 2.027 0.14

Note: ∗ indicates significant difference p < 0.05.

87



(a) Comfort Modality. (b) Comfort Application.

Figure 4.11: User perception of Comfort (a) Modality, & (b) Application type. Error bars: 95% CI.
A: Audio, V:Vibro-tactile modality, QS: Quiet Standing, MG: Mobile Game.

4.5.4 User Perception of Task Disruption

For H4, the main effect for modality type yielded an F(2,68) = 0.036, p > 0.05, indicating no

significant difference between Audio (M = 2, S.D = 1.37), Vibro-tactile (M = 2.11, S.D = 1.30),

and EMS modalities (M = 2.28, S.D = 1.65) as illustrated in Figure 4.12a. The main effect for

application type yielded an F(1,34) = 0.280, p > 0.05, indicating that the effect of application type

was not significant between quiet standing (M = 1.7, S.D = 1.05), and mobile game (M = 2.51,

S.D = 1.67) as illustrated in Figure 4.12b. The interaction effect was not significant F(2,68) =

1.427, p > 0.05. As no significant differences were found in the main effects for modality or the

application type, neither modality nor application had any influence on task disruption. As a result,

we accept H4.
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Table 4.5: 2-Factor ANOVA: User Perception-Task disruption (TD). M: Modality, A: Application.

Source TD p

M F(2,68) = 0.036 0.965

A F(1,34) = 0.280 0.6

M X A F(2,68) = 1.427 0.247

Note: ∗ indicates significant difference p < 0.05.

(a) TD Modality. (b) TD Application.

Figure 4.12: User perception of Task Disruption (a) Modality, & (b) Application type. Error bars:
95% CI. A: Audio, V:Vibro-tactile modality, QS: Quiet Standing, MG: Mobile Game.
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4.5.5 User Perception and Preference

Figure 4.13: User perception mean rankings for correction feedback accuracy, posture awareness,
comfort, and task disruption across all modality and application types. Likert Scale: 1-meaning not
at all, 7-meaning completely. QS:Quiet Standing, MG:Mobile Gaming. Error bars: 95% CI.

Mean rankings for user perception of correction feedback accuracy, posture awareness, comfort, and

task disruption are shown in Figure 4.13. Participants ranked their posture awareness on a 7-point

scale where 1 means not at all aware and 7 means completely aware. Participants’ ranking indicated

higher posture awareness (M = 5.46, S.D= 1.61) in the quiet standing task, while posture awareness

was significantly reduced for the mobile game condition (M = 2.33, S.D = 1.27). Additionally,

when participants were asked about their preferred modality for correcting AWD, 55.56% of the

study population reported that EMS feedback was their preferred correction feedback technique,

while 36.11% preferred the vibro-tactile feedback and 8.33% preferred the audio feedback. However,

29 out of 36 participants reported that they would be willing to purchase EMS feedback for AWD

posture correction if it were a commercially available product. Participants also ranked their

shared responsibility with auto-correction utilizing EMS on a 7-point scale where 1 means not

at all and 7 means completely. The mean shared responsibility exhibited by the participants was

2.00 (S.D = 1.08) in the quiet standing task, and 1.72 (S.D = 0.75) for mobile game condition.
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Participants ranked EMS feedback to be a highly interesting concept for automatic AWD correction

with a mean ranking of 6.33 (S.D = 1.39) on a 7-point Likert scale.

4.6 Discussion

Given the recent developments of EMS feedback in accelerating preemptive reflexes [93, 94, 153],

and slouching posture correction [95], we were interested in understanding if EMS feedback could

be utilized for correcting AWD. In comparison to the alternative techniques, we find there are

several benefits to automatic correction using EMS. Our approach was able to achieve significantly

faster correction at a high accuracy while delivering an equally comfortable user experience across

different tasks with different levels of engagement and posture awareness. Although research

on postural control, sway analysis, and AWD alert systems have been conducted, the system’s

correction responsiveness and user perception have not been measured or reported. Therefore, our

study primarily focuses on evaluation of the performance and user perception of our EMS feedback

based automatic AWD detection and correction technique against traditional audio and vibro-tactile

feedback mechanisms.

Correction response times were measured from the time correction feedback is activated until

balance has been restored. The average correction response times were significantly faster for the

EMS feedback modality in comparison to the audio and vibro-tactile modalities. In both application

types, the EMS modality delivered faster AWD corrections leading to faster stabilization and

restoration of balance as illustrated in Figure 4.14. This was also reflected in the participants’

comments on EMS: “the fastest feedback and made me correct the best”, “liked the fast response”,

and “Perfect response, subtle but noticeable”. The faster correction response times to EMS feedback

could be mainly due to the automatic stabilization and balance restoration which does not require

the user to place emphasis on processing audio or vibro-tactile feedback prior to engaging in a
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self-assessment and self-correction process. This self-assessment and self-correction process in

the audio and vibro-tactile feedback mechanisms place an additional cognitive load on the user

while being engaged in their task and rely entirely on the user’s willingness or intent to self-correct

their posture. One participant’s comment attests to this fact: “Audio-took me time to process the

feedback command and then correct, Vibration- got my attention, EMS-pulling quickly didn’t need

my attention”. On the contrary, EMS feedback which does not require the participants’ attention

in the correction process, thereby allowing one to continue leveraging the cognitive or attentional

resources for the primary task which would have otherwise been required for auditory, visual or

sensory processing for postural control. Results also indicate that application type had no effect on

the correction response times suggesting that EMS would be capable of delivering faster correction

responses across a range of applications with varying levels of engagement and posture awareness.

This frees up the cognitive demand of the visual, vestibular and proprioception placed on the user

and makes it especially beneficial as a smart intervention technique for athletes in post-operative

rehabilitation to prevent unnecessary AWD conditions that prohibit or impede recovery, mitigating

risk of re-injury, rebuilding strength and motion, and restoring normal function thereby ensuring

proper recovery and safer return-to-sport.

Figure 4.14: Average Correction Response times across all modality and application types. Error
bars:95% CI.
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Participants’ ranking of their perceived accuracy of correction feedback indicated that EMS feedback

was more accurate than the audio, and equally accurate in comparison to the vibro-tactile feedback.

Some of the participants’ comments reflected this fact: “Audio was most distracting”, “EMS was

a better form of feedback, was strong and detected even the slightest imbalance”, “EMS gave

me best feedback, I couldn’t hear the audio feedback over the game”, “EMS most accurate and

best for correction, but could be uncomfortable for some people”. The participants perceived

accuracy of EMS and vibro-tactile feedback equally well and this may have been due to the nature

of explicit somatosensory confirmation provided by these two feedback types during delivery and

termination of correction feedback when AWD is detected and AWD is corrected, respectively. This

illustrates that participants perceived both vibro-tactile and EMS feedback equally accurately due to

the distinct and discrete somatosensory experience they offered.

Participants’ ranking of their perceived level of comfort and task disruption, indicated neither

modality nor application had any influence on the user comfort or task disruption. Although, both

EMS and vibro-tactile feedback types are non-invasive in nature, EMS feedback has been known to

produce a stronger somatosensory experience due to its ability to produce an involuntary muscular

contraction along with a vibro-tactile effect. However, participants perceived all three modalities

to be equally comfortable and equally disruptive. This could be due to careful calibration for

an optimal EMS intensity that provides the user with a comfortable experience while generating

a physiological response to effect a counter-weight shift. This user perception of comfort and

task disruption illustrates participants’ acceptance of EMS feedback as a viable alternative to the

traditional feedback mechanisms with the additional advantage of automatic posture correction

freeing up cognitive resources to focus on more important tasks. Participants comments show that

EMS “took time getting used to. It is like an Assisted PUSH, very useful when physical awareness

is lacking” and “The pulling effect surprised me a bit but it was fine after”. This acceptance shows

EMS feedback’s potential to be developed as a commercial product not only for rehabilitation,
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intervention, and preventive health care sectors, but also for everyday use by people who are prone

to long standing hours due to work or recreational activities. This fact was also supported by the

participants’ willingness (80.55% of healthy study population) to purchase EMS based wearable

AWD intervention technology if it were available as a commercial product.

Participants’ ranking of their posture awareness during the two applications indicated that posture

awareness was significantly lacking in the mobile game application in comparison to the quiet

standing application due to the higher level of engagement and was not affected by the influence

of modality type. This finding illustrates the fact that participants perceived EMS feedback as a

potential alternative intervention technique in both highly posture aware and highly engaging tasks.

This allows our system to be developed into a smart wearable intervention such as smart shoes

or socks with capabilities to deliver discrete feedback and correct posture at the same time. Also,

this would allow EMS-based smart intervention wearable technology to be available for everyday

use especially by younger adults engaging in the use of mobile devices for gaming, social media

consumption while standing, and older adults engaging in work related activities in industrial,

manufacturing or customer service sectors that require long standing hours.

It was also interesting to note that the EMS intensity required for effecting counter-weight shift by

stimulating the tibialis muscles was higher in comparison to another study on automatic detection

and correction of slouching [95] where slouched posture was corrected by stimulating the rhomboid

muscles (Mean EMS intensity : Tibialis= 51.25 mA, Rhomboid = 43.47 mA). This may be because

the trapezius muscle is more accessible physiologically in comparison to the tibialis muscle which

is regarded as more deeper muscle group and thereby necessitating higher EMS intensity to recruit

the motor neurons to cause an involuntary muscular contraction and generate a physiological

response for producing the counter-weight shift effect with the desired magnitude and in the

desired direction. Participants also reported shared responsibilities in helping/aiding the correction

process during the EMS feedback session. This illustrates the participants’ adaptability to new
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technology and demonstrates the positive learning effect produced by the EMS feedback towards

better postural control. Further, it also demonstrates that EMS feedback with its somatosensory

feedback encouraged the participants to get involved in the correction process. One participant

reported that EMS was “much faster than the other feedbacks, tingling sensation helps understand

the message”, while another user commented that “It’s like trainer wheels on a bicycle”. Finally,

some participants commented that EMS “Felt amazing”, “Auto-correction is good”, “the fastest

feedback and made me correct the best”, and “correction happens without thinking about it”.

Our system could be particularly beneficial in preventive health care and the development of

rehabilitation protocols for recovery post-knee/ankle surgery as it would allow the healthcare

specialists to develop customized recovery protocols for different individuals by varying the balance

and time thresholds, and EMS intensity parameters as prescribed. This would ensure precision

control of the weight distribution on the operated leg at different stages of recovery to maximize

rebuilding strength and mobility, and minimizing the time duration for return-to-sport in case of

athletes or return-to-normal function in case of non-athlete patients. Also, our EMS feedback system

when integrated with load sensors and IMUs to be embedded in to shoes, could be utilized to detect

AWD and dangerous tilt angles for automatic fall prevention in older adults, and PD patients who

present a higher risk of injury due to falls experienced through the loss of balance. Therefore, our

autonomous AWD detection and correction system could be a useful alternative or inclusion to the

existing environment, health, and safety (EHS) guidelines for mitigating risk of workplace injury,

improving employee health, and in rehabilitation and preventive health care.

In conclusion, we have demonstrated that our physiological feedback loop based on automatic

AWD detection and correction with EMS is a viable approach to supporting AWD correction, and

stabilizing balance through a counter-weight shift approach. Our auto-correction system utilizing

EMS feedback demonstrated significantly faster posture correction response times compared to the

self-correction in the audio and vibro-tactile feedback. Our approach also showed that participants
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perceived EMS feedback to be highly accurate, equally comfortable, and produced no more

disruption than the alternative techniques it was tested against in both the quiet standing and the

mobile game applications even though the posture awareness across the application types were

significantly different. Therefore, automatic AWD detection and correction utilizing EMS shows

promising results and can be developed as an alternative method for AWD correction.

The next chapter presents the design and development of an automatic ILP detection and correction

utilizing EMS and human subject study conducted to evaluate the effectiveness of our automatic

approach.
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CHAPTER 5: AUTOMATIC DETECTION AND CORRECTION OF

IMPROPER LOADING POSTURE (ILP)

Figure 5.1: Improper loading posture can lead to lower back injuries and pain. Presented here
are images of improper loading posture (A) & (B), corrected posture using Electrical Muscle
Stimulation (C), and completion of the lifting activity (D-I).

Improper loading posture is one of the most significant dynamic poor postures, is the leading

cause for lower back injuries, and is experienced by nearly 80% of the population at some point in

their lives. From the literature, the existing wearable intervention technology for ILP only offer
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detection and alert through traditional feedback mechanisms, or provide lift assistance through

motorized exoskeletons. As a result, users’ are required to either self-correct their ILP when alerts

are presented to them or wear relatively bulky assistive exoskeleton systems conspicuously over

their clothing, which can be undesirable. For all these reasons, the development of an autonomous

improper loading posture detection and correction systems capable of automatically detecting

improper lift posture as soon as it starts and subsequently correcting this posture can turn out to

be crucial in preventing risk of injury. Additionally, EMS demonstrated its capabilities to correct

torso posture in Chapter 3, and restore balance through correcting lower body posture in Chapter 4.

This has presented an opportunity to extend the posture auto-correction capabilities of EMS to a

dynamic activity poor posture such as ILP during lifting activities to mitigate the risk of injury to

the lower back, knees, and ankles.

To address the issue of detecting and automatically correcting ILP, we developed a physiological

feedback loop-based wearable intervention prototype relying on IMU sensors and EMS (illustrated in

Figure 5.2). Our prototype employed three Metawear MMR wireless sensors for measuring angular

changes in human posture, and the openEMSstim package [121] for presenting the EMS correction

feedback for restoring healthy posture during lifting activities. To complete the physiological

feedback loop, a C#-based user interface using Metawear C# SDK was developed for monitoring the

posture information from the IMUs and integrated with the EMS hardware for presenting correction

feedback when poor lifting postures are detected. Improper loading posture is mainly characterized

by an excessive inclination of the torso, and insufficient knee bending [90] (illustrated in Figure 5.1

(A). To monitor the torso inclination, IMU 1 is placed at the center of the collar bone above the

chest (illustrated in Figure 5.3 (A)), and to monitor the knee bend angles, the other IMU’s 2 and 3

were placed on each knee (illustrated in Figure 5.3 (B) & (C)).

The change in posture is calculated from the angular information obtained from the IMU sensors.

The user’s torso inclination angle is calculated from the pitch of IMU1, and the knee bend angles
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Figure 5.2: Physiological Feedback Loop: Automatic Improper Loading Posture Detection and
Correction System. Improper loading posture (top) illustrates excessive torso inclination and
insufficient knee bending that can lead to long term low back pain and the auto-corrected posture
(bottom) illustrates the restored proper lifting posture achieved through using EMS.

are calculated from the average of pitch of IMU’s 2 and 3. To determine the extent of ILP in young

adults, we collected ecologically valid data from 10 participants (Male=7, Female 3) and mean age

of 21.8 years (S.D= 3.9 years). We measured their maximum torso inclination and maximum knee

bend angles in a task involving lifting 4 different boxes of different sizes and weights illustrated in

Table 5.1 below. All participants were required to lift the four boxes three times in a random order.

and their maximum torso inclination and knee bend angles were recorded. The torso inclination and

knee bend angular patterns of young adults while lifting each of the four boxes are illustrated in the

Figure 5.4.
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Figure 5.3: Wireless IMU sensor placement for improper loading posture detection: (A) Front view
showing sensor placement below center of collar bone above the chest, (B) Front view showing
sensor placement above each knee, (C) Front view showing sensor, box placement and experiment
set up.

Table 5.1: Size and Weight of Boxes.

Box Weight (Kg) Weight (lbs) Size (LxWxH) cm Size (LxWxH) in

Box1 2.27 5 25.4 x 25.4 x 16.5 10 x 10 x 6.5

Box2 4.54 10 38.1 x 30.48 x 25.4 15 x 12 x 10

Box3 6.8 15 43.18 x 27.94 x 27.94 17 x 11 x 11

Box4 9.07 20 53.34 x 38.1 x 40.64 21 x 15 x 16
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Figure 5.4: Torso inclination and knee bend angular change patterns exhibited by young adults
while lifting each of the four boxes.

The average maximum torso inclination angles and maximum knee bend angles among young adults

from a general population are calculated and illustrated in figures 5.5 and 5.6 below.
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Figure 5.5: Average maximum torso inclination angles exhibited by young adults while lifting
different boxes of different weights and sizes. Error bars:95% CI.

Figure 5.6: Average maximum knee angles exhibited by young adults while lifting different boxes
of different weights and sizes. Error bars:95% CI.
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5.1 Torso Inclination and Knee Bend Angle Thresholds

Improper loading posture can be detected from measuring the offset between actual, and ideal

torso inclination and knee bend angles. Our proposed system detected ILP when the user’s torso

inclination is greater and knee bend angles is lower than the ideal torso inclination and knee bend

angles. To determine the ideal torso and knee bend angles for each box, we collected ecologically

valid torso inclination and knee bend angles during the same task from five certified fitness trainers

(Male=3, Female=2) at the Recreation and Wellness Center at University of Central Florida with a

mean age of 21.4 years (S.D=1.9 years). All trainers were certified by the following organizations:

AFAA 1, NASM 2, NSCA 3, and ACSM 4. All trainers were required to perform the same task of

lifting the four different boxes of different weights and sizes illustrated in the table 5.1. Each trainer

performed the task of lifting the four boxes three times in a randomized order. The trainers were

required to maintain good lifting posture during their lifting tasks and their torso inclination and

knee bend angles were recorded for each box. The trainer torso inclination and knee bend angular

patterns during lifting each of the boxes is illustrated in Figure 5.7. The average maximum torso

inclination and knee bend angles of the trainers for each box are illustrated in Figures 5.8 and 5.9

below.

The two validation studies indicate a contrast in lifting techniques by young adults and certified

trainers. The certified trainers demonstrated good lifting techniques with torso inclination angles

of 47°, 47.3°, 38°, and 38.67° for boxes 1, 2, 3, and 4 respectively while the young adults had

torso inclination angles of 85.23°, 87.8°, 80.76°, and 76.4° for boxes 1, 2, 3, and 4 respectively.

The knee bend angles of the trainers was 88.33°, 84.67°, 81.67°, and 63.33° for boxes 1, 2, 3, and

1https://www.afaa.com/
2https://www.nasm.org/
3https://www.nsca.com/
4https://www.acsm.org/

103



4 respectively while the young adults had torso inclination angles of 57.83°, 58.23°, 46.73°, and

39.43° for boxes 1, 2, 3, and 4 respectively.

Figure 5.7: Torso inclination and knee bend angular change patterns exhibited by certified trainers
while lifting different boxes of different weights and sizes.
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Figure 5.8: Average maximum torso inclination angles exhibited by certified trainers while lifting
different boxes of different weights and sizes. Error bars:95% CI.

Figure 5.9: Average maximum knee angles exhibited by trainers while lifting different boxes of
different weights and sizes. Error bars:95% CI.
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The ideal angles demonstrated by the trainers using good lifting posture showed lower torso

inclination ranging between 38° to 48° and the higher knee bend angles ranging between 63° to

88°. The lower torso inclination angles are representative of straight and upright torso position

and the higher knee bend angles indicate greater knee bending which allows the user to leverage

the weight of the load using the stronger hamstring muscles. On the contrary, the young adults

exhibited high torso inclination angles ranging between 76° to 88° and low knee bend angles 38° to

57°. The higher torso inclination angles are representative of a bent over improper loading posture,

and the lower knee bend angles place higher stresses on the relatively less stronger lower back

muscles and vertebrae to complete the lift and hence present a higher risk of injury to the lower back.

The difference in the measured torso inclination and knee bend between the trainers and young

adults indicated that young adults normally exhibited bent over poor lifting techniques with greater

torso inclination and insufficient knee bend. The average maximum torso inclination and knee

bend angles exhibited by the certified trainers for the different boxes were recorded and utilized

to preset thresholds as ideal torso inclination and knee bend angles in our ILP detection system to

improve the detection of poor lifting posture or ILP. These thresholds were chosen to overcome

measurement errors and ensure random movements do not lead to false positive improper loading

posture detection. The threshold torso inclination and knee bend angles were used to initiate the

feedback loop and present the correction feedback.

5.2 Correction Feedback

Subsequently, when improper loading posture was detected, we employed two separate posture

correction strategies to automatically restore proper loading posture by applying EMS to the two

different affected locations separately as follows:

• Torso Inclination Correction
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• Knee Bend Correction

The torso inclination correction is achieved by applying EMS to the rhomboid muscles through a

pair of electrodes (illustrated in Figure 5.10a). The knee bend correction is achieved by applying

EMS to the hamstring muscles through a pair of electrodes (illustrated in Figure 5.10b).

(a) Electrode placement on Rhomboid muscles. (b) Electrode placement on Hamstring muscles.

Figure 5.10: EMS electrode placement on (a) Rhomboid muscles for torso inclination correction, &
(b) Hamstring muscles for Knee bend correction.

5.2.1 Correction Strategies

5.2.1.1 Torso Inclination Correction

In the torso inclination correction strategy, improper loading posture was detected when the users’

current torso inclination and knee bend angles were below ideal torso inclination and knee bend

angles recorded from the trainers, and automatic correction through EMS was applied to the
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rhomboid muscles to restore ideal torso inclination angles. An involuntary rhomboid muscle

contraction generates a pulling force in the opposite direction from the improper torso inclination

posture and thereby generates a physiological response to stabilize the torso inclination. As a result

of this torso inclination correction, ideal knee bend is effected by the user in order to the reach and

pick up the load. Two pairs of electrodes would be utilized for contraction of the rhomboid muscles

which causes the shoulders blades to be pulled back and to restore an upright torso at the ideal torso

inclination angles.

5.2.1.2 Knee Bend Correction

Alternatively, in the knee bend correction strategy, improper loading posture was detected when

the users’ current torso inclination and knee bend angles were below ideal torso inclination and

knee bend angles, and automatic correction through EMS was applied to the hamstring muscles to

cause an involuntary contraction to produce necessary bend angles at the knees. As a consequence

of achieving the ideal knee bend angles, the users’ torso inclination is also restored back to ideal

torso inclination angles. Two pairs of electrodes would be utilized for contraction of the hamstring

muscles (one pair for each hamstring) to cause the knees to bend and cause the knees to bend toward

the ideal bend angles. The preset torso inclination and knee bend angle thresholds were determined

from the validation study described above in Section 5.1.

Additionally, IMU and EMS calibration play a crucial role in the effectiveness of the system. The

calibration process includes correcting IMUs offset value in the upright position of the user and

monitoring the angular change in the proper and improper loading posture with respect to the upright

position. The EMS intensity calibration would be manually incremented to deliver an intensity that

is optimal for generating involuntary muscular contraction and avoid any pain. This EMS intensity

provided to the user for generating the necessary involuntary contraction for correcting the improper
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loading posture and restoring the proper loading posture would be recorded and utilized during the

experiment. The TENS device can deliver intensities between (0-100mA) based on requirement and

user comfort. A continuous 75 Hz square wave pulse at the recorded EMS intensity and a pulse

width of 100 µs is supplied as the electrical stimulus to the users.

5.3 Operation

Our physiological feedback loop for detecting and correcting ILP relied on the angular changes

from the sensors placed on the torso and knees to measure torso inclination and knee bend angles

respectively. ILP occurs when a user attempts to perform the lifting task with a high torso inclination

and low knee bend angles. This would be representative of a bent over lifting posture which places

an unnecessary stress on the lower back and increases the risk of injury. To detect these improper

loading postures, our system utilized the torso inclination and knee bends angles obtained from the

trainers as ideal threshold angles for each box. Figure 5.11 illustrates the activation and deactivation

of EMS correction feedback when ILP was detected and corrected for a participant during the torso

correction strategy part of the study. The participant exhibited ILP (as in Figure 5.1(A)) while lifting

Box 3. For Box 3, the ideal torso inclination and knee bend angles (determined in Section 5.1)

were 38° and 81.67°, respectively. When the participant’s torso inclination exceeded the ideal torso

inclination threshold, and the knee bend was sufficiently lower than the ideal knee bend angle for

Box 3, ILP was detected. The ILP detection automatically activated the EMS correction feedback

by applying a stimulus of 60 mA to invoke an involuntary contraction of the rhomboid muscles for

generating a physiological response of stabilizing the torso in an upright position towards the ideal

torso inclination angles and this in turn causes the user to bend knees to the ideal knee bend angles

in order reach and lift the box with good lifting posture. The EMS was automatically deactivated

when the ideal torso inclination and knee bend angles are achieved. A correction response time of
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1.3 Seconds was recorded between activation and deactivation of the EMS for torso stabilization.

The knee bend correction strategy works similarly to achieve the ideal knee bend angles, which

in turn cause the torso to stabilize towards ideal torso inclination angles to establish good lifting

posture.

Figure 5.11: Automatic Detection and Correction of ILP: Graph showing EMS activation and
deactivation. When ILP is detected from the user’s high torso inclination and low knee bend angle,
EMS was activated on the torso/knees for ILP correction. EMS was deactivated when ideal torso
inclination and knee bend angles are achieved.

We conducted two studies to evaluate the effectiveness of our automatic ILP detection and correction

based on EMS feedback, and also the effect of the two correction strategies on user perception. In

the first study, participants emulated ILP while performing the lifting task to receive the correction

feedback for determining the effectiveness of our automatic approach. In the second study, the

participants performed ecologically valid lifting where participants were free to perform the lifting

tasks in their own natural way. In both studies, we compared our automatic approach against two

alternative feedback systems (audio and vibro-tactile) requiring self-correction, and across both

correction strategies. In both studies, we also evaluated the user perception of correction feedback,

comfort, disruption, posture awareness, and preferences.

110



5.4 Methods: Study 1

The first study was a 2 by 3 within subjects study (24 participants) where all participants were

required to complete the lifting tasks with all 3 feedback modalities (Audio, Vibro-tactile, and

EMS) across the 2 correction strategies (Torso inclination correction, and Knee bend correction).

In this study, participants emulated improper loading posture with high torso inclination and low

knee bend (as illustrated in Figure 5.1 (A)), and self/auto-corrected their posture by achieving ideal

torso inclination and knee bend angles (as illustrated in Figure 5.1 (C)) when correction feedback

was presented. The objective of this study was to determine the effectiveness and accuracy of

the ILP detection and automatic correction in an emulated task of moving four different sized

boxes with different weights from one location to another. The experimental set up is illustrated in

Figures 5.12a & 5.12b.

5.4.1 Subjects and Apparatus

We recruited 24 participants (Male=17 , Female=7). All participants were aged 18 years and above

with a mean age of 22.7 years (S.D = 4), mean weight of 71.2 Kg (S.D = 9.72Kg), and mean height

of 171.5cm (S.D = 9.6cm). All participants were able bodied and had no upper and lower body

injuries. For monitoring the torso inclination and the knee bend angles, three Metawear MMR IMU

sensors were utilized. The Metawear MMR IMU sensors contain an inbuilt vibration motor for

delivering vibro-tactile feedback notifications. The EMS would be generated with an off-the-shelf

Tens unit and controlled by the openEMSstim package for activating and modulating the intensity

of the electrical stimuli supplied to the muscles. The hardware used for the study user interface

was a 14” Intel i7 Laptop, and a Microsoft Surface 50 inch display screen was utilized to display

commands to the participants. Four boxes of different sizes and weights were utilized for the study.

The size and weight of the boxes are illustrated in the Table 5.1. From the pre-questionnaires,
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(a) Experimental Setup.

(b) Experimental Setup - Side view.

Figure 5.12: Experimental setup showing the four different sized boxes with different weights that
need to be moved from zone A to B, and vice versa based on instructions presented to them via a
Microsoft Surface 50 inch display placed in front of them.
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participants’ ranking of their prior exposure to posture alert devices and EMS, experience with

posture problems, and improper loading posture was noted and illustrated in Table 5.2. Participants

ranked their exposure and experience on a 7-point scale with 1 meaning never/no experience and 7

meaning frequently/very experienced.

Table 5.2: User ranking on lifting tasks, ILP, alert devices, and EMS. User ranking on a 7-point
Likert scale.

User Experience Mean S.D

Lifting Tasks/Dead Lift/Squats 3.2 2.08

Experienced ILP 3.7 1.26

Exposure to ILP alert devices 2.5 1.74

Exposure to EMS 1.79 1.10

5.4.2 Experimental Design

A 2 by 3 within subjects experiment with 24 participants was conducted to investigate the perfor-

mance and feasibility of our approach. The within subject factor was the feedback type (Audio,

Vibro-tactile, and EMS) and the between-subject factor was the correction strategy (Torso inclination

correction, and Knee bend correction). We compared the performance of our automatic improper

loading posture correction using the EMS feedback against the self- correction in the audio and

vibro-tactile feedback techniques. Average correction response times and user perception of the

system across the two correction strategies and the three feedback types were evaluated.
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5.4.2.1 Task

To determine the effectiveness of our approach, all participants had to perform the following

task with improper lifting posture to experience the different correction feedbacks and correction

strategies:

• Lift each box from zone A, move to Zone B, and place box in Zone B.

• Lift each box from zone B, move to Zone A, and place box in Zone A.

The order in which the participants moved the boxes from Zone A to Zone B was randomized and

the participants were given instructions on performing a bent over improper loading posture with

high torso inclination and low knee bend as illustrated in Figure 5.13(A). Figure 5.13 illustrates an

example of participant following the instructions to lift, move and place a random box.

Figure 5.13: An example of participant performing the task: (A) Lifting box 3 with ILP from Zone
A, (B) Receiving correction feedback to restore proper torso inclination and knee bend lifting angles,
(C) Completing the lift, and (D) Moving to Zone B and placing it in Zone B.
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The participants were required to lift each of four boxes separately and complete all three feedback

modalities and across the two correction strategies as follows.

Modalities

• Modality 1: Audio alert feedback and self-correction

• Modality 2: Vibro-tactile alert feedback and self-correction

• Modality 3: EMS feedback and automatic correction

Correction Strategies

• Torso inclination Correction

• Knee bend correction

In each of the six combinations (2 correction strategies x 3 feedback modalities), participants were

required to pick up all the four different boxes in a randomized order to minimize learning effects.

The independent variables in the study were the three different feedback modalities and the two

different correction strategies. The dependent variables were the average correction response times,

and user perception parameters such as overall experience, accuracy of correction feedback, task

disruption, comfort, and posture awareness. Each study session lasted approximately 60 minutes

and the participants were compensated $10 for their participation.
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5.4.3 Research Hypothesis

The study was designed to determine the effectiveness of automatic or self-posture correction on

user experience across the two correction strategies and the three modalities. As such, we expect

significant differences between the three modalities and the two correction strategies which could

influence user experience. For investigating into the system performance and user perception, we

have four research hypotheses.

• H1: Automatic EMS based correction feedback will deliver a faster correction to ILP in

comparison to the self-correction based audio, and the vibro-tactile feedback across the two

correction strategies.

• H2: User perception of correction feedback accuracy in the automatic EMS based correction

feedback will be greater than audio, and vibro-tactile feedback across the two correction

strategies.

• H3: Automatic EMS based correction feedback will deliver an equally comfortable user

experience in comparison to audio, and vibro-tactile feedback across the two correction

strategies.

• H4: No evidence will be found for a difference in task disruption across the audio, vibro-

tactile, and EMS correction feedbacks across the two correction strategies.

5.4.4 COVID-19 Considerations

Due to the ongoing COVID-19 pandemic, we wanted to ensure safety for the participants and

researchers. Following our institutions guidelines, all individuals were required to always wear face

masks. Between each participant, we sanitized all devices and surfaces that the participants and
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researchers would be in contact with, to ensure safety during the study. Furthermore, all users were

required to wear a face mask to participate in the study. We also provided hand sanitizer, cleaning

wipes, and latex gloves to reduce risk of contracting the disease. Though we cleaned all surfaces

between participants, we allowed participants to clean devices as desired.

5.4.5 Experimental procedures

5.4.5.1 Preparation and Calibration

Prior to starting the experiment, participants were required to review the consent form that details

the experiment, safety, risks, compensation, compliance, and provide consent for the study session

to start. Participants then completed a survey on their knowledge and experience on workplace

related posture issues, intervention technology, and EMS as illustrated in Table 5.2. Next, IMU

sensors were placed on the participants knees and center of the collar bone above the chest (as shown

in Figure 5.3 (A) & (B)), for detecting improper loading posture and data collection. Adhesive EMS

electrodes were placed on the rhomboid or hamstring muscles prior to the EMS feedback session

for torso inclination correction strategy or knee bend correction strategy respectively. Subsequently,

IMU sensors were calibrated for each participant and corrected for offset. Correct IMU sensor

functioning and operation were verified during the calibration by monitoring the angular changes

when participants were in upright, proper, and improper loading positions.

Before the EMS feedback session in both torso inclination and knee bend correction strategies, an

EMS intensity calibration process would be done manually for each participant on the respective

locations. After electrode placement on the rhomboid or hamstring muscles, moderators would

increment the intensity until an involuntary muscular contraction causing posture correction occurs.

The participants would be calibrated manually only once for EMS intensity to generate a physio-
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logical response of correcting the torso inclination and knee bending for restoring proper loading

posture while picking up the box.

In the case of the torso inclination correction strategy, EMS was applied to the rhombus muscles

to invoke an involuntary contraction which generates a physiological response of stabilizing the

torso in an upright position. Alternatively, in the case of the knee bend correction strategy, EMS

was applied to the hamstring muscles to invoke an involuntary muscular contraction that generates

a physiological response of bending the knees. During EMS calibration, participants were asked

to emulate an improper loading posture, and moderators manually incremented the EMS intensity

applied to the torso and knee independently to cause torso inclination correction, or knee bend

correction. As EMS also produced a tactile or haptic effect even at low intensities, participants were

asked to not respond to the tactile or haptic effect to ensure the haptic/tactile component of EMS

does not contribute to the automatic correction process in any way. Moderators additionally asked

participants to verbally respond specifically to the following questions during calibration to ensure

rhomboid or hamstring muscular contractions and participant comfort: 1) when they initially felt

the stimulation (haptic sensation), 2) when the intensity was generating an involuntary muscular

contraction and/or when they experienced a pulling force on their torso in the opposite direction

in case of torso inclination correction, and when a downward pulling force causing their knees to

bend is experienced due to contraction of their hamstrings in case of knee bend correction, and

3) when any pain was experienced. For each participant, when involuntary muscular contractions

were confirmed verbally by the participant and visually verified by the moderators, the optimal

EMS intensity that was generating the involuntary muscular contraction to correct the improper

loading posture was recorded and selected for the EMS part of the study (Refer section 3.3.3 for

more details on the step-by-step calibration process).
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5.4.5.2 Experiment

The study comprises of six parts: audio, vibro-tactile, and EMS feedback for torso inclination

correction, and audio, vibro-tactile, and EMS feedback for knee bend correction. Each part of

the study is 5 minutes in duration and all participants were required to finish all parts to complete

the study. The participants were given a 5-minute break after each part of the study. Participants

then completed a survey about their experience after each part and a comparative survey on their

overall experience at the end of the study. Participants completed the six parts of the study in

a counterbalanced order. In all six parts, participants were required to pick up each of the four

boxes separately while emulating improper lifting posture with high torso inclination and low knee

bend. The order of the boxes that participants were required to lift were randomized and command

prompts were presented using the C# user interface on a Microsoft Surface 50 inch display placed

in front of them (illustrated in Figures 5.14a and 5.14b).

(a) Participant view. (b) C# User interface display.

Figure 5.14: Experimental setup showing instructions presented to participant. (a) Participant view,
(b) C# User interface display on Microsoft Surface 50 inch display. Commands to lift and move
boxes are displayed in the green display box.
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Participants were required to follow the commands presented to them and complete the task as de-

scribed in section 5.4.2.1. Their loading posture was monitored for ILP detection and application of

correction feedback with respect to the modality and correction strategy as illustrated in Figure 5.13.

Part 1

• Correction Strategy: Torso inclination correction

• Feedback Modality: Audio feedback and self-correction

When ILP was detected by the system based on the IMU sensor feedback, an audio notification

in the form of a distinct auditory tone was presented to the users, and the users were required to

self-correct their ILP by stabilizing their torso towards the ideal torso inclination angle until a

second auditory tone indicating corrected posture (with ideal torso inclination and knee bend angles)

is presented to the user. The response times for self-correcting ILP were recorded.

Part 2

• Correction Strategy: Torso inclination correction

• Feedback Modality: Vibro-tactile feedback and self-correction

When ILP was detected by the system based on the IMU sensor feedback, a haptic notification in

the form of vibration was activated on IMU1 placed on the torso and the users were required to

self-correct their ILP by stabilizing their torso towards the ideal torso inclination angle until the

haptic vibration notification stops, indicating restoration of proper loading posture (with ideal torso

inclination and knee bend angles). The response times for correcting the ILP were recorded.
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Part 3

• Correction Strategy: Torso inclination correction

• Feedback Modality: EMS feedback and automatic correction

When ILP was detected by the system, the EMS feedback was activated to apply the recorded EMS

intensity to the rhomboid muscles to invoke an involuntary muscle contraction. The rhomboid

muscle contraction produces a pulling force in the opposite direction to torso inclination. This

generates the physiological response of stabilizing the torso to an upright position towards the

ideal torso inclination angle for restoring proper loading posture. Figure 5.13 (A) illustrates the

improper loading posture, and Figure 5.13 (B) illustrates the corrected loading posture. The EMS

was deactivated immediately when proper loading posture with the ideal torso inclination and knee

bend angles have been achieved or restored. The response times for correcting the improper loading

posture were recorded.

Part 4

• Correction Strategy: Knee bend correction

• Feedback Modality: Audio feedback and self-correction

When ILP was detected by the system based on the IMU sensor feedback, an audio notification

in the form of distinct auditory tone was presented to the users, and the users were required to

self-correct their ILP by bending their knees towards the ideal knee bend angles until a second

auditory tone indicating corrected posture (with ideal torso inclination and knee bend angles) is

presented to the user. The response times for self-correcting ILP were recorded.
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Part 5

• Correction Strategy: Knee bend correction

• Feedback Modality: Vibro-tactile feedback and self-correction

When ILP was detected by the system based on the IMU sensor feedback, a haptic notification in

the form of vibration was activated on IMU2 and IMU3 placed on the knees and the users were

required to self-correct their ILP by bending their knees towards the ideal knee bend angles until

the haptic vibration notification stops, indicating restoration of proper loading posture with ideal

torso inclination and knee bend angles). The response times for correcting the ILP were recorded.

Part 6

• Correction Strategy: Knee bend correction

• Feedback Modality: EMS feedback and automatic correction

When ILP was detected by the system, the EMS feedback was activated to apply the recorded EMS

intensity to the hamstring muscles to invoke an involuntary muscle contraction. The hamstring

muscle contraction produces a downward pulling force. This generates a physiological response of

bending the knees towards the ideal knee bend angles restoring proper loading posture. Figure 5.13

(A) illustrates the improper loading posture, and Figure 5.13 (B) illustrates the corrected loading

posture. The EMS was deactivated immediately when proper loading posture with the ideal

torso inclination and knee bend angles have been achieved or restored. The response times for

correcting the improper loading posture were recorded. The results from the study are presented in

section 5.6.1.
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5.5 Methods: Study 2

The second study was a 2 by 3 mixed subjects study (36 participants) with 18 participants for

each correction strategy (Torso inclination correction and Knee bend correction). Participants were

required to complete the lifting tasks with all 3 feedback modalities (Audio, Vibro-tactile, and EMS)

in one of the correction strategies. In this study, the participants performed the lifting task in an

ecologically valid manner without any instructions on lifting techniques. When ILP was detected

by the system, the participants were presented with corresponding correction feedback and were

required to self/auto-correct their ILP by achieving ideal torso inclination and knee bend angles (as

illustrated in Figure 5.1 (C)) when correction feedback was presented. The objective of the study

was to determine the best modality and/or the correction strategy in an emulated task of moving

four different sized boxes with different weights from one location to another. The experimental set

up is illustrated in Figures 5.12a & 5.12b.

5.5.1 Subjects and Apparatus

We recruited 36 participants (Male=22 , Female=14). All participants were aged 18 years and above

with a mean age of 22.6 years (S.D = 3.6), mean weight of 70.4 Kg (S.D = 11.8Kg), and mean

height of 170.4cm (S.D = 11.2cm). All participants were able bodied and had no upper and lower

body injuries. The hardware used in this study are the same as used in study 1. Refer to section

5.4.1 for hardware details. From the pre-questionnaires, participants’ ranking of their prior exposure

to posture alert devices and EMS, experience with posture problems, and improper loading posture

were noted and illustrated in Table 5.3. Participants ranked their exposure and experience on a

7-point scale with 1 meaning never/no experience and 7 meaning frequently/very experienced.
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Table 5.3: User ranking on Lifting task, ILP, alert devices, and EMS. User ranking on a 7-point
Likert scale. T:Torso inclination correction strategy, K: Knee bend correction strategy.

User Experience Strategy Mean S.D

Lifting tasks/Dead lifts/Squats T 3.22 2.41

K 3.44 1.69

Experienced ILP T 3.78 1.21

K 3.83 1.29

Exposure to ILP alert devices T 2.33 1.28

K 1.94 0.94

Exposure to EMS T 1.83 1.09

K 1.89 0.90

5.5.2 Experimental Design

A 2 by 3 mixed subjects experiment involving 36 participants with 18 participants for each correction

strategy was conducted to investigate the performance and feasibility of our approach. The within

subject factor was the feedback type (audio, vibro-tactile, and EMS) and the between-subject factor

was the correction strategy (Torso inclination correction, and Knee bend correction). We compared

the performance of our automatic ILP correction using the EMS feedback against the self-correction

in the audio and vibro-tactile feedback techniques. Average correction response times and user

perception of the system across the two correction strategies and the three feedback types were

evaluated.
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5.5.2.1 Task

To determine the effectiveness of our approach, all participants had to perform the following task

to experience the different correction feedbacks and correction strategies:

• Lift each box from zone A, move to Zone B, and place box in Zone B.

• Lift each box from zone B, move to Zone A, and place box in Zone A.

The order in which the participants moved the boxes from Zone A to Zone B was randomized. The

participants were required to lift each of four boxes separately and complete all three feedback

modalities in one of the two correction strategies allotted to them as follows:

• Modality 1: Audio feedback and self-correction

• Modality 2: Vibro-tactile feedback and self-correction

• Modality 3: EMS feedback and automatic correction

In each modality, participants would be required to pick up all the four different boxes in a

counterbalanced order to minimize learning effects. The independent variables in the study are the

three different modalities and the dependent variables are the average correction response times,

and user perception parameters such as overall experience, accuracy of correction feedback, task

disruption, comfort, and posture awareness. Each study session lasted approximately 20-30 minutes

and the participants were compensated $10 for their participation.

125



5.5.3 Research Hypothesis

The study was designed to determine the effectiveness of automatic or self-posture correction on

user experience across the two correction strategies and the three modalities. As such, we expect

significant differences between the three modalities and the two correction strategies which could

influence user experience. For investigating into the system performance and user perception, we

have four research hypotheses:

• H1: Automatic EMS based correction feedback will deliver a faster correction to ILP in

comparison to the self-correction based audio, and the vibro-tactile feedback across the two

correction strategies.

• H2: User perception of correction feedback accuracy in the automatic EMS based correction

feedback will be greater than audio, and vibro-tactile feedback across the two correction

strategies.

• H3: Automatic EMS based correction feedback will be deliver an equally comfortable user

experience in comparison to audio, and vibro-tactile feedback across the two correction

strategies.

• H4: No evidence will be found for a difference in task disruption across the audio, vibro-

tactile, and EMS correction feedbacks across the two correction strategies.

5.5.4 COVID-19 Considerations

The same COVID-19 considerations were followed as in Study 1. Refer to section 5.4.4 for more

details.
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5.5.5 Experimental procedures

5.5.5.1 Preparation and Calibration

The preparation and calibration phase is the same as in study 1 (refer to 5.4.5.1 for detailed

description).

5.5.5.2 Experiment

The study comprises of three parts: audio, vibro-tactile, and EMS feedback for torso inclination

correction strategy or knee bend correction strategy. Each part of the study is 5 minutes in duration

and all participants were required to finish all parts to complete the study. The participants were

given a 5-minute break after each part of the study. Participants then completed a survey about their

experience after each part and a comparative survey on their overall experience at the end of the

study. Participants completed all three parts of the study in a counterbalanced order. In all three

parts, participants were required to pick up each of the four boxes separately in their own natural

lifting technique. The order of the boxes that the participants were required to lift was randomized

and command prompts were presented to the participants from a C# user interface displayed on a

Microsoft Surface 50 inch display placed in front of them (illustrated in Figures 5.14a and 5.14b).

Participants were required to follow the commands presented to them and perform the task described

in 5.5.2.1. Their loading posture was monitored for ILP detection and application of correction

feedback with respect to the modality and correction strategy.

127



Part 1: Audio feedback and self-correction

When ILP was detected by the system based on the IMU sensor feedback, an audio notification

in the form of distinct auditory tone was presented to the users, and the users were required to

self-correct their ILP. In the case of torso inclination correction strategy, participants were required

to correct their ILP by stabilizing their torso towards the ideal torso inclination angle until a second

auditory tone indicating corrected posture (with ideal torso inclination and knee bend angles) was

presented to the user. In the case of the knee bend correction strategy, participants were required to

correct their ILP by bending their knees towards the ideal knee bend angles until a second auditory

tone indicating corrected posture (with ideal torso inclination and knee bend angles) was presented

to the user. The time between the two auditory notifications was recorded as response times for

self-correcting ILP.

Part 2: Vibro-tactile feedback and self-correction

When ILP was detected by the system based on the IMU sensor feedback, a haptic notification in

the form of vibration was activated on IMU 1 placed on the torso, or IMU 2 and IMU 3 placed

on the knees, and the users were required to self-correct their ILP. In the case of torso inclination

correction strategy, participants were required to correct their ILP by stabilizing their torso towards

the ideal torso inclination angle until the haptic vibration notification on IMU 1 stops, indicating

restoration of proper loading posture (with ideal torso inclination and knee bend angles). In the case

of knee bend correction strategy, participants were required to correct their ILP by bending their

knees towards the ideal knee bend angles until the haptic vibration notification on IMU 2 and IMU

3 stops, indicating restoration of proper loading posture (with ideal torso inclination and knee bend

angles) was presented to the user. The time between the activation and deactivation of the haptic

notifications was recorded as response times for self-correcting ILP.
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Part 3: EMS feedback and automatic correction

When ILP was detected by the system, the EMS feedback was activated to apply the recorded EMS

intensity to the rhomboid/hamstring muscles to invoke an involuntary muscle contraction in the

torso inclination/knee bend correction strategy respectively.

In the case of torso inclination correction strategy, the rhomboid muscle contraction produces a

pulling force in the opposite direction to torso inclination. This generates the physiological response

of stabilizing the torso in to an upright position towards the ideal torso inclination angle for restoring

proper loading posture. Figure 5.1 (A) & (B) illustrate the improper loading posture and Figure 5.1

(C) illustrates the corrected loading posture. The EMS was deactivated immediately when proper

loading posture with the ideal torso inclination and knee bend angles have been achieved or restored.

The response times for correcting the improper loading posture were recorded.

In the case of knee bend correction strategy, the hamstring muscle contraction produces a downward

pulling force. This generates a physiological response of bending the knees towards the ideal knee

bend angles restoring proper loading posture. Figure 5.1 (A) & (B) illustrate the improper loading

posture and Figure 5.1 (C) illustrates the corrected loading posture. The EMS was deactivated

immediately when proper loading posture with the ideal torso inclination and knee bend angles

have been achieved or restored. The response times for correcting the improper loading posture

were recorded. The results from the study are presented in section 5.6.2.
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5.6 Results

5.6.1 Study 1

In the torso inclination correction strategy, the mean EMS intensity required for stabilizing the

torso and correcting ILP was 40.34 mA (S.D = 8.6 mA). In the knee bend correction strategy,

the mean EMS intensity required for bending knees and correcting ILP was 36.7 mA (S.D = 7.5

mA). To analyze the performance of our approach and to test the hypothesis in 5.4.3, we used

repeated-measures 2-Factor ANOVA to determine the influence of feedback modality and correction

strategy types on each dependent variable and the consolidated results are presented in Table 5.4,

5.5, 5.6, and 5.7. For the non-parametric user perception Likert scale data, we utilized the Aligned

Rank Transform (ART) tool [203] and performed repeated measures 2-Factor ANOVA tests on the

aligned ranks for the user perception Likert scale data.

5.6.1.1 Average Correction Response Times

Average correction response times are calculated as a mean of the correction response times

across all the four boxes for each modality for each participant. For H1, the main effect for

feedback modality type yielded an F(2,46) = 125.72, p < 0.001, indicating a significant difference

between Audio (M = 2.17, S.D = 0.32), Vibro-tactile (M = 1.75, S.D = 0.41), and EMS feedback

modalities (M = 1.17, S.D = 0.29). A pairwise comparison between the three modalities indicated

that EMS feedback modality delivered faster correction response times than both the audio and

vibro-tactile modalities as illustrated in Figure 5.15a. The main effect for correction strategy type

yielded an F(1,23) = 0.087, p > 0.05, indicating that the effect of correction strategy type was not

significant between torso inclination (M = 1.69, S.D = 0.56), and knee bend correction strategies

(M = 1.7, S.D = 0.52) as illustrated in Figure 5.15b. The interaction effect was not significant
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F(2,46) = 0.294, p > 0.05. Significant differences were found in the system performance with

regards to average correction response times between different feedback modalities with EMS

feedback delivering the fastest correction. As a result, we were able to accept H1.

Table 5.4: 2-Factor ANOVA: Average Correction response times (ACRT). FM: Feedback Modality,
CS: Correction Strategy.

Source ACRT p

FM F(2,46) = 125.72 < 0.001∗

CS F(1,23) = 0.087 0.77

FM X CS F(2,46) = 0.294 0.75

Note: ∗ indicates significant difference p < 0.05.

(a) ACRT Feedback Modality. (b) ACRT Correction Strategy.

Figure 5.15: Average correction response times (ACRT) across (a) Feedback Modality, & (b)
Correction Strategy. Error bars: 95% CI. A: Audio, V: Vibro-tactile, T: Torso Inclination Correction
Strategy, K: Knee Bend Correction Strategy.
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5.6.1.2 User Perception of Correction Feedback Accuracy

For H2, the main effect for feedback modality type yielded an F(2,46)= 5.56, p< 0.01, indicating a

significant difference between Audio (M = 5.88, S.D= 1.23), Vibro-tactile (M = 6.04, S.D= 1.44),

and EMS feedback modalities (M = 6.54, S.D = 0.74) as illustrated in Figure 5.16a. A pairwise

comparison of the means showed significant differences between the audio and vibro-tactile, and

audio and EMS feedback types but no evidence of significant differences between the vibro-tactile

and EMS feedback. The participants perceived EMS feedback to be more accurate than the audio,

but not vibro-tactile feedback and hence we were not able to accept H2. The main effect for

correction strategy type yielded an F(1,23) = 3.09, p > 0.05, indicating that the effect of correction

strategy type was not significant between torso inclination (M = 6.28,S.D = 1.02), and knee bend

correction strategies (M = 6.03, S.D = 1.32) as illustrated in Figure 5.16b. The interaction effect

was not significant F(2,46) = 2.22, p > 0.05.

Table 5.5: 2-Factor ANOVA: User Perception-Correction feedback accuracy (CFA). FM: Feedback
Modality, CS: Correction Strategy.

Source CFA p

FM F(2,46) = 5.56 < 0.01∗

CS F(1,23) = 3.09 0.09

FM X CS F(2,46) = 2.22 0.12

Note: ∗ indicates significant difference p < 0.05.
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(a) CFA Feedback Modality. (b) CFA Correction Strategy.

Figure 5.16: User perception of correction feedback accuracy across (a) Feedback Modality, & (b)
Correction Strategy. Error bars: 95% CI. A: Audio, V: Vibro-tactile, T: Torso Inclination Correction
Strategy, K: Knee Bend Correction Strategy.

5.6.1.3 User Perception of Comfort

For H3, the main effect for feedback modality type yielded an F(2,46) = 2.53, p > 0.05, indicating

no significant difference between Audio (M = 6.13, S.D= 1.16), Vibro-tactile (M = 6, S.D= 1.48),

and EMS feedback modalities (M = 5.6, S.D = 1.62) as illustrated in Figure 5.17a. The main

effect for correction strategy type yielded an F(1,23) = 1.96, p > 0.05, indicating that the effect

of correction strategy type was not significant between torso inclination (M = 5.84,S.D = 1.5),

and knee bend correction strategies (M = 5.98, S.D = 1.39) as illustrated in Figure 5.17b. The

interaction effect was also not significant F(2,46) = 0.71, p > 0.05. As no significant differences

were found in the main effects for modality or the correction strategy type, neither modality nor

correction strategy had any influence on the user comfort. All three feedback modalities across both

correction strategies delivered an equally comfortable user experience. As a result, we accept H3.
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Table 5.6: 2-Factor ANOVA: User perception-Comfort. FM: Feedback Modality, CS: Correction
Strategy.

Source Comfort p

FM F(2,46) = 2.53 0.09

CS F(1,23) = 1.96 0.18

FM X CS F(2,46) = 0.71 0.5

Note: ∗ indicates significant difference p < 0.05.

(a) Comfort-Feedback Modality. (b) Comfort-Correction Strategy.

Figure 5.17: User perception of Comfort across (a) Feedback Modality, & (b) Correction Strategy.
Error bars: 95% CI. A: Audio, V: Vibro-tactile, T: Torso Inclination Correction Strategy, K: Knee
Bend Correction Strategy.
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5.6.1.4 User Perception of Task Disruption

For H4, the main effect for feedback modality type yielded an F(2,46) = 2.68, p > 0.05, indicating

no significant difference between Audio (M = 2.34, S.D = 1.83), Vibro-tactile (M = 1.97, S.D =

1.67), and EMS modalities (M = 2.31, S.D = 1.46) as illustrated in Figure 5.18a. The main

effect for correction strategy type yielded an F(1,23) = 0.69, p > 0.05, indicating that the effect

of correction strategy type was not significant between torso inclination (M = 2.4, S.D = 1.86),

and knee bend correction strategies (M = 2.03, S.D = 1.42) as illustrated in Figure 5.18b. The

interaction effect was also not significant F(2,46) = 0.19, p > 0.05. As no significant differences

were found in the main effects for feedback modality or the correction strategy type, neither feedback

modality nor correction strategy had any influence on task disruption. All three feedback modalities

across the two correction strategies disrupted the participants task equally. As a result, we accept

H4.

Table 5.7: 2-Factor ANOVA: User Perception-Task disruption (TD). FM: Feedback Modality, CS:
Correction Strategy.

Source TD p

FM F(2,46) = 2.68 0.12

CS F(1,23) = 0.69 0.51

FM X CS F(2,46) = 0.19 0.83

Note: ∗ indicates significant difference p < 0.05.
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(a) TD Feedback Modality. (b) TD Correction Strategy.

Figure 5.18: User perception of Task Disruption across (a) Feedback Modality, & (b) Correction
Strategy. Error bars: 95% CI. A: Audio, V: Vibro-tactile, T: Torso Inclination Correction Strategy,
K: Knee Bend Correction Strategy.

5.6.1.5 User Perception and Preferences

Mean rankings for user perception of correction feedback accuracy, ILP correction assistance,

comfort, and task disruption are shown in Figure 5.19. Participants ranked their ILP correction

assistance on a 7-point scale where 1 means not at all, and 7 means completely assisted to restore

proper lifting posture. Participants’ ranking indicated that EMS feedback modality delivered

best ILP correction assistance ((M = 6.02, S.D = 1.36)), followed by the vibro-tactile feedback

(M = 5.6, S.D = 1.36), and audio feedback delivered lowest (M = 5.04, S.D = 1.74). Additionally,

the participants’ ranking of ILP correction assistance across the two correction strategies indicated

that both torso inclination (M = 5.58, S.D = 1.4), and knee bend correction strategies (M = 5.53,

S.D = 1.68) delivered equally good assistance in correcting ILP.
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Figure 5.19: User perception mean rankings for correction feedback accuracy (CFA), ILP correction
assistance (CA), comfort, and task disruption (TD) across all feedback modalities and correction
strategy types. Likert Scale: 1-meaning not at all, 7-meaning completely. T: Torso inclination
correction strategy, K: Knee bend correction strategy. Error bars: 95% CI.

Further, when participants were asked about their preferred feedback modality for correcting ILP,

54% of the study population reported that EMS feedback was their preferred correction feedback

technique, while 25% preferred the vibro-tactile feedback, and 21% preferred the audio feedback

Figure 5.20a. When participants were asked about their preferred correction strategy, 67% of the

study population preferred torso inclination correction strategy while 33% preferred the knee bend

correction strategy Figure 5.20b. However, 17 out of 24 participants reported that they would be

willing to purchase an EMS feedback based ILP posture correction device if it were a commercially

available product. Participants also ranked their shared responsibility with auto-correction utilizing

EMS on a 7-point scale where 1 means not at all and 7 means completely. The mean shared

responsibility exhibited by the participants was 2.16 (S.D = 0.99) in the torso inclination correction

strategy and 2.5 (S.D = 0.86) in the knee bend correction strategy. Participants ranked EMS

feedback modality to be a highly interesting concept for automatic ILP correction on a 7-point

Likert scale with a mean ranking of 6.67 (S.D = 0.84) for torso inclination correction strategy, and
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a mean ranking of 6.33 (S.D = 1.14) for knee bend correction strategy.

(a) Feedback Modality Preference. (b) Correction Strategy Preference.

Figure 5.20: User preference of (a) Feedback Modality, & (b) Correction Strategy.

5.6.2 Study 2

For the torso inclination correction strategy, the mean EMS intensity required for stabilizing the

torso and correcting ILP was 43.3 mA (S.D = 7.3 mA). For the knee bend correction strategy,

the mean EMS intensity required for bending knees and correcting ILP was 35.8 mA (S.D = 6.5

mA). To analyze the performance of our approach and to test the hypothesis in 5.5.3, we used

repeated-measures 2-Factor ANOVA to determine the influence of feedback modality and correction

strategies types on each dependent variable and the consolidated results are presented in Table 5.8,

5.9, 5.10, and 5.11. For the non-parametric user perception Likert scale data, we utilized the

Aligned Rank Transform (ART) tool [203] and performed repeated measures 2-Factor ANOVA tests

on the aligned ranks for the user perception Likert scale data.

138



5.6.2.1 Average Correction Response Times

Average correction response times are calculated as a mean of the correction response times

across all the four boxes for each modality for each participant. For H1, the main effect for

feedback modality type yielded an F(2,60) = 24.69, p < 0.001, indicating a significant difference

between Audio (M = 1.43, S.D = 0.52), Vibro-tactile (M = 1.17, S.D = 0.38), and EMS feedback

modalities (M = 0.71, S.D = 0.27). A pairwise comparison between the three modalities indicated

that EMS feedback modality delivered faster correction response times than both the audio and

vibro-tactile feedback modalities illustrated in Figure 5.21a. The main effect for correction strategy

type yielded an F(1,30) = 0.20, p > 0.05, indicating that the effect of correction strategy type

was not significant between torso inclination (M = 1.08, S.D = 0.57), and knee bend correction

strategies (M = 1.12, S.D = 0.48) as illustrated in Figure 5.21b. The interaction effect was not

significant F(2,60) = 5.80, p > 0.05. Significant differences were found in the system performance

with regards to average correction response times between the different feedback modalities with

the EMS feedback delivering the fastest correction. As a result, we were able to accept H1.

Table 5.8: 2-Factor ANOVA: Average Correction response times (ACRT). FM: Feedback Modality,
CS: Correction Strategy.

Source ACRT p

FM F(2,60) = 24.69 < 0.001∗

CS F(1,30) = 0.20 0.66

FM X CS F(2,60) = 5.80 0.096

Note: ∗ indicates significant difference p < 0.05.
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(a) ACRT Feedback Modality. (b) ACRT Correction Strategy.

Figure 5.21: Average correction response times (ACRT) across (a) Feedback Modality, & (b)
Correction Strategy. Error bars: 95% CI. A: Audio, V:Vi bro-tactile, T: Torso Inclination Correction
Strategy, K: Knee Bend Correction Strategy.

5.6.2.2 User Perception of Correction Feedback Accuracy

For H2, the main effect for feedback modality type yielded an F(2,68) = 11.32, p< 0.01, indicating

a significant difference between Audio (M = 5.14, S.D = 1.36), Vibro-tactile (M = 5.92, S.D =

0.81), and EMS feedback modalities (M = 6.08, S.D = 0.84) as illustrated in Figure 5.22a. A

pairwise comparison of the means showed significant differences between the audio and vibro-

tactile, and audio and EMS feedback types but no evidence of significant differences between the

vibro-tactile and EMS feedback. The participants perceived EMS feedback to be more accurate

than the audio, but not vibro-tactile feedback and hence we were not able to accept H2. The main

effect for correction strategy type yielded an F(1,34) = 0.15, p > 0.05, indicating that the effect

of correction strategy type was not significant between torso inclination (M = 5.67,S.D = 1.18),
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and knee bend correction strategies (M = 5.76, S.D = 1.03) as illustrated in Figure 5.22b. The

interaction effect was not significant F(2,68) = 1.7, p > 0.05.

Table 5.9: 2-Factor ANOVA: User Perception-Correction feedback accuracy (CFA). FM: Feedback
Modality, CS: Correction Strategy.

Source CFA p

FM F(2,68) = 11.32 < 0.001∗

CS F(1,34) = 0.15 0.71

FM X CS F(2,68) = 1.70 0.19

Note: ∗ indicates significant difference p < 0.05.

(a) CFA Feedback Modality. (b) CFA Correction Strategy.

Figure 5.22: User perception of correction feedback accuracy across (a) Feedback Modality, & (b)
Correction Strategy. Error bars: 95% CI. A: Audio, V: Vibro-tactile, T: Torso Inclination Correction
Strategy, K: Knee Bend Correction Strategy.

141



5.6.2.3 User Perception of Comfort

For H3, the main effect for feedback modality type yielded an F(2,68) = 0.67, p > 0.05, indicating

no significant difference between Audio (M = 5.81, S.D = 1.35), Vibro-tactile (M = 6.03, S.D =

0.99), and EMS feedback modalities (M = 5.75, S.D = 1.05) as illustrated in Figure 5.23a. The

main effect for correction strategy type yielded an F(1,34) = 0.14, p > 0.05, indicating that the

effect of correction strategy type was not significant between torso inclination (M = 5.91,S.D= 1.2),

and knee bend correction strategies (M = 5.81 S.D = 1.08) as illustrated in Figure 5.23b. The

interaction effect was also not significant F(2,68) = 0.5, p > 0.05. As no significant differences

were found in the main effects for modality or the correction strategy type, neither modality nor

correction strategy had any influence on the user comfort. All three feedback modalities across both

correction strategies delivered an equally comfortable user experience. As a result, we accept H3.

Table 5.10: 2-Factor ANOVA: User perception-Comfort. FM: Feedback Modality, CS: Correction
Strategy.

Source Comfort p

FM F(2,68) = 0.67 0.52

CS F(1,34) = 0.14 0.71

FM X CS F(2,68) = 0.5 0.66

Note: ∗ indicates significant difference p < 0.05.
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(a) Comfort Feedback Modality. (b) Comfort Correction Strategy.

Figure 5.23: User perception of Comfort across ((a) Feedback Modality, & (b) Correction Strategy.
Error bars: 95% CI. A: Audio, V: Vibro-tactile, T: Torso Inclination Correction Strategy, K: Knee
Bend Correction Strategy.

5.6.2.4 User Perception of Task Disruption

For H4, the main effect for feedback modality type yielded an F(2,68) = 0.68, p > 0.05, indicating

no significant difference between Audio (M = 2.58, S.D= 2), Vibro-tactile (M = 2.25, S.D= 1.40),

and EMS modalities (M = 2.44, S.D = 1.18) as illustrated in Figure 5.24a. The main effect for

correction strategy type yielded an F(1,34) = 0.07, p > 0.05, indicating that the effect of correction

strategy type was not significant between torso inclination (M = 2.37, S.D = 1.63), and knee bend

correction strategies (M = 2.48, S.D = 1.50) as illustrated in Figure 5.24b. The interaction effect

was also not significant F(2,68) = 0.39, p > 0.05. As no significant differences were found in the

main effects for feedback modality or the correction strategy type, neither feedback modality nor

correction strategy had any influence on task disruption. All three feedback modalities across the

two correction strategies disrupted the participants task equally. As a result, we accept H4.
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Table 5.11: 2-Factor ANOVA: User Perception-Task disruption (TD). FM: Feedback Modality, CS:
Correction Strategy.

Source TD p

FM F(2,68) = 0.68 0.51

CS F(1,34) = 0.07 0.79

FM X CS F(2,68) = 0.39 0.68

Note: ∗ indicates significant difference p < 0.05.

(a) TD Feedback Modality. (b) TD Correction Strategy.

Figure 5.24: User perception of Task Disruption across (a) Feedback Modality, & (b) Correction
Strategy. Error bars: 95% CI. A: Audio, V: Vibro-tactile, T: Torso Inclination Correction Strategy,
K: Knee Bend Correction Strategy.
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5.6.2.5 User Perception and Preferences

Participants ranked their ILP correction assistance on a 7-point scale where 1 means not at all, and 7

means completely assisted to restore proper lifting posture. Participants’ ranking indicated that EMS

feedback modality delivered best ILP correction assistance (M = 6.17, S.D = 0.97), followed by

the vibro-tactile feedback (M = 5.86, S.D = 1.09), and audio feedback delivered lowest (M = 4.67,

S.D = 1.41). Additionally, the participants’ ranking of ILP correction assistance across the two

correction strategies indicated that both torso inclination (M = 5.89, S.D = 1.28), and knee bend

correction strategies (M = 5.54, S.D = 1.32) delivered equally good assistance in correcting ILP.

(a) Torso Inclination Correction Strategy. (b) Knee Bend Correction Strategy.

Figure 5.25: User preference of feedback modality in (a) Torso inclination correction strategy & (b)
Knee bend correction strategy.

Further, when participants were asked about their preferred feedback modality for correcting ILP in

the torso inclination correction strategy, 56% of the study population reported that EMS feedback

was their preferred correction feedback technique, while 39% preferred the vibro-tactile feedback,
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and 5% preferred the audio feedback (illustrated in 5.25a). When participants were asked about

their preferred feedback modality for correcting ILP in the knee bend correction strategy, 28% of

the study population reported that EMS feedback was their preferred correction feedback technique,

while 55% preferred the vibro-tactile feedback, and 17% preferred the audio feedback (illustrated

in 5.25b). However, 14 out of 18 participants in the torso inclination correction strategy type

reported that they would be willing to purchase an EMS feedback with torso inclination correction

strategy for ILP posture correction if it were a commercially available product, and 12 out of

18 participants in the knee bend correction strategy type reported that they would be willing to

purchase an EMS feedback with knee bend correction strategy for ILP posture correction if it

were a commercially available product. Participants also ranked their shared responsibility with

auto-correction utilizing EMS on a 7-point scale where 1 means not at all and 7 means completely.

The mean shared responsibility exhibited by the participants was 2.25 (S.D = 1.36). Participants

ranked EMS feedback modality to be a highly interesting concept for automatic ILP correction with

a mean ranking of 6.71 (S.D = 0.46) on a 7-point Likert scale.

5.7 Discussion

Although previous research on ILP detection and alert mechanisms has been conducted, feedback

responsiveness and user experience with the feedback mechanisms have not been measured or

reported. As a result, we conducted two studies to compare our automatic ILP detection and

correction approach against traditional audio and vibrotactile feedback systems. Our studies mainly

focussed on the evaluation of system performance and user perception of our automatic ILP detection

and correction system against the alternative feedback systems.

The correction response times were measured as the time between the activation and deactivation of

the feedback after ILP was detected and corrected respectively. Average correction response times
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were calculated from the mean of the correction response times to ILP across all the boxes. Across

both correction strategies, our automatic correction with EMS feedback delivered the fastest ILP

correction with an average correction response time of 1.17 Seconds in Study 1, and 0.71 Seconds in

Study 2 (illustrated in Figure 5.26a), while the vibro-tactile feedback delivered significantly slower

corrections at 1.75 Seconds, and 1.17 Seconds for Study 1, and Study 2 respectively. The audio

feedback was the slowest at delivering corrections at 2.17 Seconds, and 1.43 Seconds for Study 1,

and Study 2 respectively. As a result, H1 was accepted across both the studies. The EMS feedback

was fastest due the fact that the correction was automatically affected with out any effort from the

participant, while the audio, and vibro-tactile feedbacks placed a cognitive load on the user to asses

their torso and knee bend posture while being engaged in the process of performing the lifting

tasks. This cognitive load on the user to understand the received feedback, assess the current torso

inclination, and knee bend angles, and making a conscious effort to self-correct the ILP resulted

in additional correction time. Alternatively, both torso inclination correction strategy and knee

bend correction strategy across all three modalities delivered equally fast ILP corrections at 1.68

Seconds, and 1.7 Seconds respectively in Study 1 and 1.09 Seconds, and 1.14 Seconds for torso

inclination correction strategy and knee bend correction strategy respectively in Study 2 indicating

no significant differences between the two correction strategies (illustrated in Figure 5.26b). Due to

the dynamic nature of the ILP, and being one of the leading risk factors of lower back pain, faster

corrections through EMS would prove to be crucial in preventing the onset of a long term RSI, and

reinforce healthy posture for better lifting techniques.

It was interesting to note the significant differences in the correction response times across the two

studies for all feedback modalities and across both correction strategies. This can be attributed

primarily to the nature of the two studies, the range of motion of the torso and knees in the correction

strategies across the studies and learning effects. In Study 1, participants emulated ILP with bent

over posture resulting in higher torso inclination angles and lower knee bend angles which required
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(a) Feedback Modality (b) Correction Strategy

Figure 5.26: Average Correction Response Times of the different modalities and correction strategies
across Study 1 and Study 2. A: Audio, V: Vibro-tactile feedbacks. T: Torso Inclination Correction,
K: Knee Bend Correction strategies. Error bars: 95% CI.

slightly more correction time to stabilize the torso and bend the knees, while in study 2, participants

performed the tasks in a more ecologically valid manner where the participants were free to perform

the lifting task in their natural way. Additionally, Study 1 required participants to perform ILP

during each lift while Study 2 had no such requirements which allowed participants to consciously

or subconsciously learn and improve their posture as they go about completing the lifting tasks. The

learning effects of the first ILP correction received by the participants enabled them to re-assess

their lifting posture and improve their posture with lower torso inclination and greater knee bend.

This in turn required lesser range of motion for corrections to stabilize the torso and bend knees

in the subsequent lifts they performed. The results also indicate that EMS would be capable of

delivering faster ILP corrections across different boxes of different sizes and loads, and makes it

especially advantageous to be developed as a smart wearable intervention device for manual workers

in construction, factories, and shipping, who handle a range of loads in different sizes everyday.
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(a) Feedback Modality (b) Correction Strategy

Figure 5.27: Mean User Ranking for Correction Feedback Accuracy of the different modalities and
correction strategies across Study 1 and Study 2. A: Audio, V: Vibro-tactile. T: Torso Inclination
Correction, K: Knee Bend Correction strategies. Error bars: 95% CI.

Participants ranked their perception of the correction feedback accuracy across all modalities and

correction strategies. In both studies, the EMS and the vibro-tactile feedbacks were perceived to

be highly accurate, while the audio feedback was perceived to be the least accurate among the

three modalities (illustrated in Figure 5.27a). As a result, H2 was not accepted across both studies.

Additionally, participants perceived both correction strategies to be equally highly accurate with

mean rankings of 6.27 and 6.02 for torso inclination and knee bend correction strategies respectively

in Study 1, and 5.67 and 5.76 for torso inclination and knee bend correction strategies respectively

in Study 2 (illustrated in Figure 5.27b). The high rankings for the EMS and vibro-tactile feedbacks

may due to the distinct somatosensory confirmation offered through the activation and deactivation

of vibrotactile and EMS feedbacks allowing the user to better respond to feedback.
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(a) Feedback Modality (b) Correction Strategy

Figure 5.28: Mean User Ranking for Comfort of the different modalities and correction strategies
across Study 1 and Study 2. A: Audio, V: Vibro-tactile. T: Torso Inclination Correction, K: Knee
Bend Correction strategies. Error bars: 95% CI.

Participants ranked their comfort and disruption across the three modalities and the two correction

strategies across the two studies as illustrated in Figures 5.28a, 5.28b, 5.29a, 5.29b. In both Studies,

neither the feedback modality nor the correction strategy had any influence on the user comfort

or task disruption. In comparison to the audio and vibro-tactile feedback types, EMS feedback

produces are stronger somatosensory effect through its involuntary muscular contractions. However,

participants ranked all three modalities equally comfortable and equally disruptive. As a result, we

accepted H3 and H4 in both studies. Careful EMS calibration played an important role in achieving

the desired ILP correction in both torso inclination and knee bend correction strategies with an

acceptable level of comfort and disruption similar to the comfort and disruption delivered in the

audio and vibro-tactile feedback mechanisms. The participants’ rankings showing similar level

of comfort and disruption across the feedback modalities and correction strategies indicating an

acceptance of EMS feedback as a potentially equal alternative to the traditional feedback systems
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along with an additional benefit of automatic ILP correction.

(a) Feedback Modality (b) Correction Strategy

Figure 5.29: Mean User Ranking for Task Disruption of the different modalities and correction
strategies across Study 1 and Study 2. A: Audio, V: Vibro-tactile. T: Torso Inclination Correction,
K: Knee Bend Correction strategies. Error bars: 95% CI.

Participants’ ranking of their ILP correction assistance during the two correction strategies indicated

that EMS feedback delivered the best correction assistance followed by the vibro-tactile feedback,

and audio feedback offered the worst correction assistance. Both the torso inclination and knee

bend strategies offered an equally good correction assistance. This may be due to the fact that both

strategies are linked towards delivering ideal lifting angles for the torso inclination and knee bend.

This finding illustrates the fact that participants perceived both EMS feedback based correction

strategies as a potential alternative intervention technique to correct ILP. This also presents an

opportunity to develop a smart wearable ILP intervention device that delivers a fast and discrete

feedback capable of correcting ILP. Also, this would make EMS-based smart intervention wearable

technology accessible for use especially by manual laborers and construction workers who are

involved with handling procurement and shipment of boxes of different sizes and loads.
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Across the two studies, the EMS intensity required for effecting torso correction, and knee bend

were approximately 43 mA, and 36 mA respectively. The torso correction EMS intensity was similar

to the torso stabilization EMS intensity in case of correcting slouching [95]. The EMS intensity for

knee bend correction was slightly lower than the torso correction. This may be due to the fact that

the rhomboid muscles in the torso are more active and relatively less sensitive to EMS than the less

active and more sensitive hamstring muscles. Participants also reported their shared responsibility in

helping/aiding the automatic ILP correction process in the EMS feedback mechanism. This indicates

the learning effects of ILP detection and correction on the participants, and their willingness to get

involved in the correction process for achieving better posture control while lifting. Further, it also

demonstrates that EMS feedback with its somatosensory feedback encouraged the participants to

get involved in the correction process.

In conclusion, we have demonstrated that our physiological feedback loop based on automatic

ILP detection and correction with EMS is a viable approach to supporting ILP correction while

stabilizing torso and knee bending towards ideal lifting angles to prevent risk of injury. Our auto-

correction system utilizing EMS feedback demonstrated significantly faster ILP correction response

times compared to the self-correction in the audio and vibro-tactile feedback. Our approach also

showed that participants perceived EMS feedback to be highly accurate, equally comfortable, and

produced no more disruption than the alternative techniques it was tested against in both the torso

inclination and knee bend correction strategies. Therefore, our autonomous ILP detection and

correction system utilizing EMS shows promising results and could be a useful alternative or

inclusion to the existing environment, health, and safety (EHS) guidelines for mitigating risk of

workplace injury, improving employee health, and preventive health care.

The next chapter presents a discussion on the results and scope of our automatic poor posture

detection and correction systems for correcting slouching, AWD, and ILP.
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CHAPTER 6: DISCUSSION

With the recent advancements, and interest in EMS for interactive HCI applications, and EMS

feedback for accelerating preemptive reflexes [93, 94, 153], we were interested in understanding

the capabilities of EMS feedback in automatic poor posture correction across a range of activity

levels from sedentary (slouching), moderate (AWD), and dynamic activity (ILP). In comparison

to the alternative traditional feedback systems, we found several benefits to automatic posture

correction using EMS feedback. Our automatic approach utilizing EMS feedback was able to

achieve significantly faster correction at a high accuracy while delivering an equally comfortable

user experience across the different posture problems, tested under varying levels of engagement,

posture awareness, and activity levels. Even though research has been conducted on detecting

poor posture and alerting users through traditional feedback systems, the system’s correction

responsiveness and user perception parameters have not been measured or reported. Therefore, our

research primarily focused on evaluation of the system performance and user perception of our

EMS feedback based automatic poor posture detection and correction technique against traditional

audio, visual, and vibro-tactile feedback mechanisms requiring self correction by the user.

6.1 EMS Intensity

Our research on automatic posture correction through involuntary muscular contractions relied

primarily on the intensity of the EMS being applied to the different muscles for generating a

corrective physiological response to effect posture correction and restoring and maintaining good

posture. Table 6.1 illustrates the different muscles stimulated for correcting slouching, AWD and

ILP, and the corresponding mean EMS intensity applied to the muscles to generate an involuntary

muscular contraction. Torso stabilization for correcting slouching, and ILP (torso inclination
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Table 6.1: Mean EMS Intensity utilized for stimulating different muscles for correcting poor posture

Poor Posture Stimulated Muscle Task EMS Intensity (mA)

Slouching Rhomboid Text Entry 39.72

Mobile Game 47.22

AWD Tibialis Quiet Standing 50.55

Mobile Game 51.94

ILP Rhomboid Lifting Boxes 40.34

Hamstring Lifting Boxes 36.7

correction strategy) through the stimulation of the rhomboid muscle required approximately 39

mA to 47 mA, while ILP knee bending correction through hamstring muscle stimulation required

approximately 36 mA, and counter-weight shifting for AWD correction through the tibialis muscle

stimulation required approximately 50 mA to 52 mA. The different intensities required for correcting

the different poor postures may be primarily due to the difference in muscle physiology, and their

accessibility. The rhomboid, and the hamstring muscles are more accessible physiologically in

comparison to the tibialis muscles which are regarded as a more deeper muscle group requiring

higher EMS intensities for achieving muscular contractions. Additional factors may be the level of

engagement during tasks, and the constraints to their range of movements while performing the

tasks. It was interesting to note that EMS feedback was able to correct poor postures across range

of activity levels from sedentary activity in the case of slouching correction, to moderate activity in

AWD correction, and dynamic high activity in ILP correction. It was also interesting to note that

the slouching correction in the text entry task and ILP torso inclination correction strategy required

lesser EMS intensity to stabilize the torso in comparison to the slouching correction in the mobile

game task. This may be due to the level of engagement in the mobile game task, and the constraints

it places on the users’ torso while being tethered to a smart phone device, and a highly engaging

game.
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6.2 Correction Response Times

The correction response times were measured as the time between the activation and deactivation of

the feedback after poor posture was detected, and proper posture was restored respectively. The

results from our studies indicated that EMS delivered the fastest posture correction across all three

poor postures (illustrated in Figure 6.1) that were studied, with a mean correction response time of

2.79 Seconds for slouching correction, 1.32 Seconds for AWD correction, and 0.92 Seconds, and

0.99 seconds for ILP correction in the torso inclination correction strategy and knee bend correction

strategy respectively. Our EMS based automatic approach also outperformed the traditional audio,

visual, vibrotactile feedback systems across different tasks with varying levels of engagement and

activity levels. It was interesting to note that the correction response times for EMS feedback are

greater for slouching posture correction, and fastest for ILP correction. This indicates that EMS

feedback correction in sedentary slouched posture takes longer to correct in comparison to the

dynamic high activity ILP correction.

It was interesting to note that the correction response times for EMS feedback decrease with

increased activity level (illustrated in the Figure 6.1) with sedentary slouched posture correction

being the slowest to dynamic high activity ILP correction being the fastest, and moderate activity

AWD correction in between. This may be due to the fact that the sedentary slouched posture places

constraints on the range of lumbar motion which in turn affects the speed of torso stabilization.

Alternatively, the ILP being a more dynamic poor posture places no physical constraints on the torso

stabilization prior to the lift phase, and thereby allows for faster torso stabilization and correction.

To summarize, our automatic approach using EMS feedback was approximately 43% faster than the

visual feedback, 44% faster than the audio feedback, and 33% faster than the vibro-tactile feedback.

Finally, the speed of posture correction can be increased with higher EMS intensities, however, this

may negatively affect the user experience with respect to comfort and disruption. As a result, an
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Figure 6.1: Average correction response times for correcting Slouching, AWD, ILP Torso Inclination,
ILP Knee Bend across different modalities. Error bars: 95% CI.

optimal trade off between the speed of correction, and user experience may be achieved through

careful calibration of the EMS intensity required for affecting posture correction, and being as

comfortable as possible at the same time. The speed and effectiveness of posture correction plays a

crucial role in reinforcing healthy posture, and preventing poor postural habits that may result in

RSI and eventually long term health conditions that affect productivity.

6.3 Accuracy of Correction Feedback

The perceived accuracy of correction feedback played an important role in determining users

perceived level of confidence in our EMS based automatic approach, and to establish EMS feedback

as a viable alternative to traditional feedback mechanisms. From our studies, it was evident that

the accuracy of correction feedback for EMS feedback was perceived to be more accurate than

the audio and visual feedbacks, and equally accurate in comparison to the vibro-tactile feedback

(illustrated in Figure 6.2). This may be due to the fact that both vibro-tactile and EMS feedbacks

offered a somatosensory confirmation to the participants when improper posture was detected, and
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Figure 6.2: User Perception of Correction Feedback Accuracy for correcting Slouching, AWD, ILP
Torso Inclination, ILP Knee Bend across different modalities . Error bars: 95% CI.

subsequently corrected while the audio and visual feedbacks required more attention, and cognitive

processing to understand the feedback information, assess their current posture, self-correct their

posture, and receive confirmation feedback that posture had been corrected. It was also interesting

to note that user perception of correction feedback accuracy for the audio and visual feedbacks

was affected by the level of engagement in the tasks especially in the mobile game tasks in the

slouching, and the AWD correction studies due to the presence of in-game sounds. However, the

vibro-tactile, and EMS feedback accuracy was relatively unaffected by the task engagement due to

their somatosensory confirmations of poor and corrected postures. This illustrates that participants

perceived both vibro-tactile and EMS feedback equally accurately due to the distinct and discrete

somatosensory experience they offered. This also demonstrated EMS feedbacks’ viability as an

alternative feedback mechanism with an added advantage of automatic correction in a varied range

of tasks with different levels of engagement and posture awareness.
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6.4 Comfort and Task Disruption

Figure 6.3: User Perception of Comfort for correcting Slouching, AWD, ILP Torso Inclination, ILP
Knee Bend across different modalities . Error bars: 95% CI

Comfort and task disruption are two important user experience parameters used to determine the

usability and feasibility of a technique. From our studies, it was clear that EMS feedback was

perceived equally comfortable, and disruptive as the alternative traditional feedback mechanisms. It

was interesting to note that the tasks with different levels of engagement and posture awareness had

no influence on the perceived level of comfort and disruption of the participants in the EMS feedback.

Although a non-invasive feedback mechanism, EMS was known to deliver strong somatosensory

experiences to the participants due to its inherent ability to produce muscle contractions involuntarily.

However, careful calibration of EMS to an optimal level allows a beneficial trade off between

comfort, and desired level of muscular contraction for affecting involuntary posture correction.

It was also interesting to note that the level of comfort shared an inverse relationship with task

disruption as illustrated from Figures 6.3 and 6.4. Additionally, participants also reported shared

responsibilities in helping/aiding the EMS based auto-correction feedback with a mean ranking of

2.29 on a 7-point Likert scale where 1 means not at all and 7 means completely. This indicated the
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participants adaptability to new technology, willingness to get involved in the correction process,

and also demonstrated the fast learning effects produced by EMS feedback for maintaining, and

developing healthy postural habits. EMS being perceived equally comfortable and disruptive as the

other alternative feedback mechanisms illustrates the users’ adaptability to new technology, and an

acceptance of new techniques for maintenance of healthy posture. This shows EMS feedback based

posture correction devices’ potential to be developed as a commercial product for rehabilitation,

preventive health care, and every day use during work and recreational activities.

Figure 6.4: User Perception of Task Disruption for correcting Slouching, AWD, ILP Torso Inclina-
tion, ILP Knee Bend across different modalities . Error bars: 95% CI

6.5 Frequency of Correction

To determine if EMS-based automatic feedback enabled posture awareness and learning effects, we

investigated the frequency of corrections delivered to the participants across different modalities in

each of the studies. In the slouching study, the average frequency of slouching corrections delivered

to the participants across the text entry and the mobile game applications was (7.39, 9.56, 8.56) for

the audio, visual, EMS modalities respectively (illustrated in Figure 6.5 (A)). In the AWD study, the

average frequency of AWD corrections delivered to the participants across the quiet standing and
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the mobile game applications was (12.3, 13.45, 13.3) for the audio, vibro-tactile, EMS modalities

respectively (illustrated in Figure 6.5 (B)). In the ILP study, the average frequency of ILP corrections

delivered to the participants across both correction strategies was (3.72, 4.52, 3.83) for the audio,

vibro-tactile, EMS modalities respectively (illustrated in Figure 6.5 (C)).
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Figure 6.5: Frequency of Corrections: (A) Slouching, (B) AWD, (C) ILP. Error bars: 95% CI.

Further, to investigate the learning effects produced by EMS-based automatic feedback, one-way

repeated measures ANOVA were performed on the influence of correction feedback type on the

time between the delivered corrections for correcting slouching, AWD, and ILP separately. All

effects were statistically significant at the .05 significance level.

In the case of slouching, the main effect for the correction feedback type yielded F(2,70) =

4.133, p < 0.05, indicating a significant difference in the time between corrections between the vi-
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sual feedback (M = 2.16,S.D = 1.03), audio feedback (M = 1.93,S.D = 0.82), and EMS feedback

(M = 2.36,S.D = 0.77) (illustrated in Figure 6.6 (A)). The EMS feedback demonstrated longer

times between the corrections in comparison to the audio and visual feedbacks, and hence shows

signs of a learning effect towards maintenance of upright posture.
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Figure 6.6: Time between Corrections: (A) Slouching, (B) AWD, (C) ILP. Error bars: 95% CI.

In the case of AWD, the main effect for the correction feedback type yielded F(2,70) = 0.686, p >

0.5, indicating no significant difference in the time between corrections between the audio feedback

(M = 1.47,S.D = 0.61), vibro-tactile feedback (M = 1.3,S.D = 0.44), and EMS feedback (M =

1.41,S.D = 1.13) (illustrated in Figure 6.6 (B)). The EMS feedback demonstrated similar times

between corrections as the other two feedback mechanisms.

In the case of ILP, the main effect for the correction feedback type yielded F(2,70) = 3.81, p< 0.05,
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indicating a significant difference in the time between corrections between the audio feedback (M =

34.36,S.D = 19.68), vibro-tactile feedback (M = 34.35,S.D = 19.33), and EMS feedback (M =

47.58,S.D = 35.47) (illustrated in Figure 6.6 (C)). The EMS feedback demonstrated approximately

25% longer times between the corrections in comparison to the audio and vibro-tactile feedbacks,

and hence shows positive signs of a learning effect towards maintenance of good lifting posture

with low torso inclination and high knee bend. Additionally, this learning effect may also be due to

the fact that each modality in the ILP Study lasted 5 minutes and participants may have become

more aware of their posture and retained information about proper lifting posture after they received

the first few ILP corrections.

6.6 Feasibility

Due to its relatively compact size, minimal hardware, and compatibility with wireless technology,

EMS based feedback can be made portable to allow everyday use in work and home settings.

Additionally, EMS demonstrated its ability to perform across posture problems in a range of activity

levels ranging from sedentary (Slouching), moderate (AWD), and highly dynamic (ILP) indicating

its ability to deliver fast , automatic, and comfortable posture correction under different scenarios

such as typing, gaming, standing, and lifting, with different levels of engagement, and posture

awareness. Participants ranked very highly for EMS feedback being an interesting approach for

automatic posture correction with mean ranking of 6.53 for slouching correction, 6.63 for AWD

correction, and 6.69 for ILP correction on 7-point Likert scale where 1 means not at all interesting,

and 7 means highly interesting. Additionally, in each of our studies, nearly 55% of our study

populations preferred EMS feedback for correcting their poor posture. However, interestingly,

approximately 75% of our slouching study population, 80.55% of our AWD study population, and

72% ILP study population were willing to purchase an EMS based wearable automatic slouching,
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AWD, and ILP intervention devices respectively, if it were commercially available products. All

these factors indicate a strong acceptance and potential for developing EMS feedback as a feasible

wearable intervention technology for automatic posture correction.

Finally, our EMS based automatic posture control systems could be particularly beneficial as a

wearable intervention device for mitigation RSI, and incidents of work place injury while improving

employee health, and safety. Our automatic slouching detection and correction system would

be particularly beneficial to students and employees working long hours in sedentary positions,

while our automatic AWD detection and correction system would be advantageous for development

of rehabilitation protocols for recovery in post-knee/ankle surgery to minimize time duration for

return-to-sport in case of athletes or return-to-normal function in case of non-athlete patients. Our

automatic ILP correction system would be particularly useful for manual laborers, and construction

workers who are involved with lifting and moving loads. Further, our EMS based automatic

posture control systems can also be extended to solve posture and gait problems, fall prediction and

prevention systems, and interactive applications for delivering kinesthetic experiences in VR, AR

and mixed reality applications.

The next chapter discusses the limitations of our work, and proposals for future work.
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CHAPTER 7: LIMITATIONS AND FUTURE WORK

7.1 Limitations

The main limitations of our EMS feedback approach include sensor and electrode placement,

calibration, muscle fatigue, and mobility. These limitations are discussed below.

7.1.1 Sensor and Electrode Placement

One prominent limitation was sensor and electrode placement. Identifying sensor placement, and

electrode placement locations presented challenges as each participant was different with different

physiology, and muscular density. EMS electrode placement locations played an important role in

invoking the desired involuntary muscular contraction. For more pronounced and accurate muscular

contractions, EMS electrodes were required to be placed on the motor points of the target muscle

group to generate a desired physiological response of correcting the poor posture. To resolve this,

we plan to integrate the sensors and electrodes into wearable clothing designed to suit a majority of

the population.

7.1.2 Calibration

Another limitation is that calibration of the EMS intensity needs to be done carefully with em-

phasis on user comfort, and safety while achieving the desired muscle contraction to generate a

physiological response necessary for correcting the poor posture. Calibrating each individual for

optimal EMS intensity plays a crucial role in ensuring the correct stimulation intensity for invoking

muscular contraction, and also deliver a comfortable and smooth experience to the user. For some
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participants manual calibration of EMS intensity took longer due to participant unresponsiveness,

and also presented the need for constant verbal interaction with the participant to determine the

optimal EMS intensity for invoking an involuntary muscular contraction. At each increment of the

EMS intensity, participants were required to verbally respond to the researcher’s questions on their

level of comfort, pain, and how strong the EMS intensity felt at that increment. To address this

issue with calibration, an AI based auto-calibration system that can customize to each individual’s

comfort and responsiveness needs to be developed.

7.1.3 Muscle Fatigue

As this work was primarily focussed on the capabilities of EMS feedback to correct poor posture

through involuntary muscular contractions and the effectiveness of our automatic approach, the

effects of EMS on muscle fatigue for longer durations and in long term regular usage have not

been investigated. A longitudinal study on the benefits of using an automatic EMS feedback based

poor posture detection and correction system needs to be conducted to determine if EMS based

posture correction was able to prevent poor postural habits and reinforce new good posture habits in

the long run. Additionally, longitudinal studies on the effects of EMS based posture correction on

productivity, and health and well being also need to be investigated.

7.1.4 Mobility

As our research experiments were constrained to the study area, our systems did not require wireless

capabilities. All communication between the user interface application and the EMS module was

through wired USB cables. However, this may not be practically viable in a fast paced working

environment or at home during every day activities. The addition of a wireless communication

protocol to the modules will greatly enhance the mobility and portability of our system and allow
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for integration into wearable intervention devices that can be utilized in everyday work or home

settings.

7.1.5 Gender Imbalance in the Study Population

Another limitation of our research was the gender imbalance in our human subject study populations.

The male to female ratio in the slouching study was approximately 6:1, while in the AWD study it

was approximately 4:1, and in the ILP study 1 it was 2.5:1 and in ILP study 2 it was 1.5:1. A total

of 33 females participated in all our studies combined in comparison to 99 male participants. As all

our studies were conducted during the COVID-19 pandemic, we saw more male participants who

were willing to participate in the studies in comparison to the female participants, in spite of the

COVID-19 protocols and safe distancing practices in place. However, the male to female participant

ratio gradually improved from 6:1 in the slouching study (July 2020) to 1.5:1 in the ILP study 2

(November 2021) during the later stages of the pandemic. Additionally, the physical nature and long

study durations of our studies could have been an influencing factor for less female participation.
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7.2 Future Work

We have demonstrated the capabilities of EMS based feedback systems in affecting posture correc-

tion and this has presented more opportunities for developing exciting and interactive systems in the

future. Some of our other future work are described below.

7.2.1 Further investigation

As all our research was conducted with a young adult population in the age group of 18-35 years,

further research needs to be conducted on different age group brackets of 35-50 years, and 50-65

years to fully understand the effects of EMS on automatic posture correction. Additionally, our

automatic posture correction through EMS feedback needs to be investigated in a comparative study

between healthy and poor posture affected populations.

In the case of slouching, our automatic correction approach was evaluated through two different

contexts and levels of engagement. Our future work includes evaluating our automatic approach

through EMS feedback under different physical contexts such as standing and walking with different

loads on their backs, and under different levels of engagement such as being idle, using social media

on a smart phone, and low/highly engaging games.

In the case of AWD, our EMS-based automatic correction was evaluated under two different contexts

and levels of posture awareness. Our future work includes evaluating our EMS-based automatic

approach different physical contexts such as carrying different loads on their backs, and under

different levels of engagement such as being idle, having a conversation, social media use, watching

a presentation, and low/highly engaging games.

In the case of ILP, we evaluated our ILP automatic correction with four different boxes of different
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sizes and loads. Our future work includes investigating EMS-based ILP correction under different

types of loads such as boxes, and weighted bags, under different weights ranging from 20-100 lbs,

and for different kinds of lifting techniques.

7.2.2 Voice activated EMS

Figure 7.1: Voice activated EMS prototype responding to specific voice commands recognized by
the speech recognition engine for (A) Activation of EMS on hand, (B) EMS invoking involuntary
contraction of hand muscles for grasping object, (C) EMS invoking involuntary contraction of Bicep
muscles for lifting object, (D) Deactivation of EMS on bicep for dropping object.

To extend the capabilities of EMS and its ability to enable motor function in quadriplegic or

paralysed patients, we integrated EMS with a speech recognition engine to activate EMS to extend

mobility to the hand for performing grasp and lifting functions. Our prototype employed a Microsoft

Speech recognition engine to recognize device wake-up words, phrases and sentences. Our speech

recognition engine was integrated with a speech library and programmed to recognize specific voice
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commands such as “Activate hand”, “Grab the object”, “Lift the object”, “Drop the Object”, and

“Deactivate hand”. Our prototype was able to demonstrate activating EMS on the muscles of the

hand and arm to perform grasping and lifting actions when the correct commands were delivered as

illustrated in Figure 7.2. The integration of speech recognition with EMS presents opportunities for

developing rehabilitation protocols for remote physiotherapy and products to extend motor function

in paralysed, stroke, and PD patients.

7.2.3 Human Tele-Operation

Figure 7.2: Human Tele-operation EMS prototype demonstrating the transfer of muscle activity
from Operator to Performer. (A) The operators’ bicep fitted with EMG sensors records muscle
activity during a bicep flex action. (B), (C), and (D) The operators’ EMG signal representative of
the bicep muscle activation is applied as an electrical stimulus to the bicep muscle performer to
generate the same physiological response of the bicep flex action.
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We further extended the capabilities of EMS to develop a novel interaction technique for human

tele-operation and for dynamic activity training using electromyography (EMG) and electrical

muscle stimulation. We explored the transference of muscle activity between people to enable

remote tele-operation. This technique presents new possibilities and applications in rehabilitation

and dynamic activity training in physical reality and virtual/augmented reality applications.

Our system utilized EMG sensors to record muscle activity on one person (Operator) and reproduced

the same muscle activity on another person (Performer) through the application of the EMG signal

as an EMS stimulation pattern to the same muscles on the performer. The EMS applied to the same

muscle on the performer invokes an involuntary muscular response which mimics the original muscle

activity from the operator in real-time. This presents an opportunity to develop sports training

protocols for learning new movements and improve muscle memory to enhance performance.

Human tele-operation may also allow development of art, dance, martial arts programs to transfer

muscle activity from a coach/teacher to an athlete/student to develop fast learning capabilities.

7.2.4 Automatic Detection and Correction of Wrist Extension

RSI to the wrist represent significant risk factors leading to serious long-term injuries, such as

carpal tunnel syndrome, shoulder, and neck pain. Wrist extension is a common posture related issue

experienced by many young adults, desk job employees, and programmers who are prone to working

for long durations at their computers for work/gaming activities. We developed ”Correct-Me”, a

real-time physiological feedback system that employed bend sensors to actively detect stress on the

wrist and dynamically correct improper wrist posture and extension utilizing EMS. We developed a

novel flexible 3D printed glove instrumented with embedded bend sensors for detection of wrist

positions and integration with EMS (illustrated in Figure 7.3).
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Figure 7.3: Correct-Me: A flexible 3D printed glove with embedded bend sensors to automatically
detect and correct wrist extension.

(a) Wrist in extended position. (b) Wrist extension corrected using EMS

Figure 7.4: Correct-Me: Automatic detection and correction of wrist extension.

Correct-Me continuously monitors the wrist for extension which is obtained from bend sensors

placed strategically in the glove on the back of the hand at the wrist joint. When wrist extension is

detected (illustrated in Figure 7.4a), EMS was automatically applied to the forearm to invoke an

involuntary muscular contraction which generates a physiological response of restoring the wrist

back to neutral position and thereby correcting wrist extension (illustrated in Figure 7.4b). Future

work includes conducting a human subject study to determine the effectiveness of our automatic

approach against traditional audio, visual, vibrotactile feedback systems in an ecologically valid

setting such as typing, drawing, and gaming.
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7.2.5 Automatic Detection and Correction of Poor Neck Posture

RSI to the neck present risk factors that lead to strain, soreness, intense pain in the neck muscles.

We further extended our Correct-Me system to detect and correct neck cradling, and forward neck.

Poor neck posture is a common posture related issue experienced by people who are prone to

long durations at their computers/smartphones for work, gaming, and social media activities. We

developed a real-time physiological feedback system that employed bend sensors to actively detect

stress on the neck and dynamically correct improper neck posture and utilizing EMS. An array of

bend sensors placed around the neck detected neck cradling or forward neck by the stress placed

on them. When poor neck posture was detected, EMS was automatically applied to the trapezius

muscles to invoke an involuntary muscular contraction that generates a physiological response

of straightening the neck. Future work includes conducting a human subject study to determine

the effectiveness of our automatic approach against traditional audio, visual, vibrotactile feedback

systems in an ecologically valid setting such as gaming or typing.

Our other future work includes:

• Design, development, and evaluation of a fall prediction and prevention system utilizing

EMS.

• Design, development, and evaluation of a system to automatically protect the head in case of

slips or falls.

• Design, development, and evaluation of gait irregularities correction systems.

• Design, development, and evaluation of a multi-array EMS system to simultaneously support

more muscles of the hand, torso, legs to increase mobility and functional capabilities.

• Design, development, and evaluation of a mobile application to allow participants to customize
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their preferences of sensor thresholds, and EMS intensity to their sensitivity and comfort.

• Design, development, and evaluation of an interactive virtual assistant to recognize a series

of commands, and develop AI capabilities for multi-array muscle stimulation to accomplish

more complex tasks and even multi-tasking.
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CHAPTER 8: CONCLUSION

We have demonstrated the integration of sensor based poor posture detection with automatic EMS

feedback based correction, and the design and development of a physiological feedback loop based

on automatic poor posture detection and correction systems for slouching, AWD, and ILP. Our

automatic EMS based correction systems delivered approximately 30% to 45% faster corrections in

comparison to the alternative traditional feedback systems. Our automatic EMS feedback approach

was also perceived to be highly accurate, equally comfortable and disruptive, and was highly

effective across a range of applications with varying levels of engagement and posture awareness.

For automatic slouching detection and correction, our auto-correction system utilizing EMS feed-

back demonstrated faster posture correction response times compared to the self-correction in the

visual and audio feedback. Our approach also showed that users perceived EMS feedback to be

more accurate, just as comfortable and produced no more disruption than the alternative techniques

it was tested against in both the text entry and the mobile game applications. Approximately 75%

of the study population was willing to purchase an automatic EMS based wearable intervention

for correcting slouching. Therefore, automatic slouching detection and correction utilizing EMS

shows promising results and can be developed as an alternative method for posture correction.

Our approach could prove useful in preventive healthcare to avoid workplace related RSI and be

particularly beneficial to people involved in highly engaging tasks such as gaming, diagnostic

monitoring, and defense control tasks.

For automatic AWD detection and correction, our auto-correction system utilizing EMS feedback

delivered significantly faster corrections compared to the self-correction in the audio and vibro-

tactile feedback. Our approach also showed that participants perceived EMS feedback to be highly

accurate, equally comfortable, and produced no more disruption than the alternative techniques
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it was tested against in both the quiet standing and the mobile game applications even though the

posture awareness across the application types were significantly different. Approximately 82% of

the study population was willing to purchase an automatic EMS based wearable intervention device

for correcting AWD. Therefore, automatic AWD detection and correction utilizing EMS shows

promising results and can be developed as an alternative method for AWD correction especially in

preventive health care, for the development of rehabilitation protocols for recovery post-knee/ankle

surgery, and everyday use especially by younger adults engaging in the use of mobile devices for

gaming, social media activities while standing, and older adults engaging in work related activities

in industrial, manufacturing or customer service sectors that require long standing hours.

For automatic ILP detection and correction, we have demonstrated that our physiological feedback

loop based on automatic ILP detection and correction with EMS feedback is a viable approach to

supporting ILP correction while stabilizing torso and knee bending towards ideal lifting angles to

prevent risk of injury. Our auto-correction system utilizing EMS feedback demonstrated significantly

faster ILP correction response times compared to the self-correction in the audio and vibro-tactile

feedback. Our approach also showed that participants perceived EMS feedback to be highly accurate,

equally comfortable, and produced no more disruption than the alternative techniques it was tested

against in both the torso inclination and knee bend correction strategies. Approximately 72% of the

study population was willing to purchase an automatic EMS based wearable intervention device

for correcting ILP. Therefore, our autonomous ILP detection and correction system utilizing EMS

shows promising results and could be a useful alternative or inclusion to the existing environment,

health, and safety (EHS) guidelines for mitigating risk of workplace injury, improving employee

health, and preventive health care.

In conclusion, we have demonstrated that our physiological feedback loop based on automatic poor

posture detection and correction with EMS is a viable approach to supporting posture correction and

shows promising potential for the development of embedded sensor based wearables intervention
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technology for detecting and correcting poor postures.
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[25] Z. Bogdanović and Z. Marković. Relations between morphological characteristics and

postural status of elementary school students. Original scientific paper Sport Science, 2(2),

2009.

[26] N. Bogduk. Clinical anatomy of the lumbar spine and sacrum. Elsevier Health Sciences,

2005.

[27] G. Bonora, M. Mancini, I. Carpinella, L. Chiari, M. Ferrarin, J. G. Nutt, and F. B. Horak.

Investigation of anticipatory postural adjustments during one-leg stance using inertial sensors:

evidence from subjects with parkinsonism. Frontiers in neurology, 8:361, 2017.

[28] M. Bortole, A. Venkatakrishnan, F. Zhu, J. C. Moreno, G. E. Francisco, J. L. Pons, and J. L.

Contreras-Vidal. The h2 robotic exoskeleton for gait rehabilitation after stroke: early findings

from a clinical study. Journal of neuroengineering and rehabilitation, 12(1):54, 2015.

[29] M. Brandt, P. Madeleine, A. Samani, M. D. Jakobsen, S. Skals, J. Vinstrup, and L. L.

Andersen. Accuracy of identification of low or high risk lifting during standardised lifting

situations. Ergonomics, 61(5):710–719, 2018.

[30] L. Brianezi, D. Cajazeiro, and L. Maifrino. Prevalence of postural deviations in school

of education and professional practice of physical education. Journal of Morphological

Sciences, 28(1):0–0, 2017.

[31] G. Cajamarca, I. Rodrı́guez, V. Herskovic, and M. Campos. Straightenup: Implementation

and evaluation of a spine posture wearable. In International Conference on Ubiquitous

Computing and Ambient Intelligence, pp. 655–665. Springer, 2017.

209



[32] D. B. Chaffin and K. S. PARK. A longitudinal study of low-back pain as associated with

occupational weight lifting factors. American Industrial Hygiene Association Journal,

34(12):513–525, 1973.

[33] E. Charry, M. Umer, and S. Taylor. Design and validation of an ambulatory inertial system

for 3-d measurements of low back movements. In 2011 Seventh International Conference on

Intelligent Sensors, Sensor Networks and Information Processing, pp. 58–63. IEEE, 2011.

[34] L. Chiari, M. Dozza, A. Cappello, F. B. Horak, V. Macellari, and D. Giansanti. Audio-

biofeedback for balance improvement: an accelerometry-based system. IEEE transactions

on biomedical engineering, 52(12):2108–2111, 2005.

[35] R. A. Clark, Y.-H. Pua, K. Fortin, C. Ritchie, K. E. Webster, L. Denehy, and A. L. Bryant.

Validity of the microsoft kinect for assessment of postural control. Gait & posture, 36(3):372–

377, 2012.

[36] P. Coenen, I. Kingma, C. R. Boot, J. W. Twisk, P. M. Bongers, and J. H. van Dieën. Cumu-
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