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ABSTRACT 

This work presents a system for the design and implementation of tools that support the 

editing of room-scale scans within a virtual reality environment, in real time.  The moniker 

REVRRSS (“reverse”) thus stands for Real-time Editing (in) Virtual Reality (of) Room Scale 

Scans.  The tools were evaluated for usefulness based upon whether they meet the criterion of real 

time usability.  Users evaluated the editing experience with traditional keyboard-video-mouse 

compared to a head mounted display and hand-held controllers for Virtual Reality.  Results show 

that users prefer the VR approach.  The quality of the finished product when using VR is 

comparable to that of traditional desktop controls.  The architecture developed here can be adapted 

to innumerable future projects and tools. 
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CHAPTER ONE: INTRODUCTION 

The project described in this Master’s thesis, Real-Time Editing in Virtual Reality of Room 

Scale Scans (REVRRSS), is an effort to produce a VR system for making changes to room-sized 

scans so that they look and behave more like a real room.  While there is no shortage of desktop-

based editors that can achieve this goal, we feel that a more natural editing environment using 

virtual reality can be realized.  We would like to produce tools and interfaces that are modular, so 

that any input/output devices could be accommodated, and any tools added or modified without 

rewriting the entire system. 

If the end goal of users is a fully featured room, it would make sense to edit the scan from 

inside, as if it were a real room.  Doing so will give the user a sense of scale and proportion 

unmatched by desktop monitors.  Architects already display their work to prospective clients in 

3D using head mounted displays in the form of goggles and a smart phone.  The client may wish 

to make changes to the plan, and send it back to the architect for making changes to the technical 

drawings.  Simple tools in the 3D environment will make this more natural for those who are not 

comfortable with 2D plans.  Game developers may find a room which they can scan and modify, 

saving time in development.  If the game is intended for VR, doing the editing work inside the 

virtual room saves the effort of designing on a desktop, checking it in VR, then going back to the 

desktop for changes. 

A VR editor would consist of user output in the form of stereoscopic all-around viewing 

capability, some natural user input in the form of open air gestures, data gloves, or control devices 

held in the hands, and the software necessary to affect changes to the scanned room. 
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The possibilities for editing three-dimensional (3D) mesh-based content are nearly infinite, 

as evidenced by the profusion of desktop 3D graphical editors in industry.  The desire for more 

natural control interfaces is evident in the array of 6-degree-of-freedom controllers used by 

drafting professionals.  Expanding what was already a plentiful set of choices for designers, 

drafters, and hobbyists, the advent of economical and powerful Virtual Reality (VR) systems give 

the user a new way of operating the software tools for 3D modelling and editing. 

This work has three main goals.  First, the creation of tools for editing mesh models in a 

3D environment. Second, the development of a system architecture that can easily accommodate 

new tools, to be operated by any user input device.  Finally, user testing compares a set of tools 

used on a desktop system to the same set of tools used in a VR environment for time required, 

accuracy of work, and user preference. 

Tools 

The current set of tools in REVRRSS includes methods for selecting portions of the mesh 

that makes up a 3D model.  Selectors include single vertex, spider (connected vertices) and 

enclosures (shaped like a cube, cylinder, and sphere) selectors for sub-mesh, and whole mesh. 

Individual vertices or triangles can be selected for alteration with single select.  An enclosure 

selects a group of vertices or triangles within some defined region.  Vertices connected by triangle 

edges can be selected with a “spider” that traverses those edge.   

Any editor must be capable of deforming the mesh surface through a number of methods 

driven by user actions, and REVRRSS gives us tools for doing so.  The surface can be altered to 

conform to a selected shape using hammers, or selected regions moved at will.  A set of tools may 
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remove portions of the mesh, or duplicate selected regions of mesh.  Most tools can be scaled and 

rotated by simple user actions. 

Items can be added to the model, or removed from the model.  An item might be a copied 

part of the original mesh, a new mesh from some other source, or a shape built on demand.  

Replacing items is useful when the scan is just too poor to correct any other way.  Removing or 

adding items may be done if game development requires a room which is not quite like the scanned 

room, or by interior designers to show how different furniture can fit an existing room. Users can 

scale, rotate, and position items within the model.  The beginnings of methods to color the surfaces 

in the model, and to apply textures, are under development. Adding color and texture to a blank 

white room will make it much more realistic. 

Architecture 

A major motivation was to build a system that was modular, allowing any user input device 

to be used with any tools, on any model.  The driving notion was anonymity – no portion of the 

system needs an understanding or knowledge of other parts of the system.  To that end, REVRRSS 

is divided into main sections for the USER, the TOOL and the ROOM.  The user section takes 

button presses, gestures, or spoken commands from the user input device, and converts them to a 

uniform set of action commands.  These actions are routed to the currently active tool by a central 

HUB.  Tools act through the hub on the mesh and items in the scanned room.  Information about 

the room, and from the tools, travels through the hub to the user. A large amount of information is 

maintained in a mesh manager, to be accessed by the tools. 
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User Testing 

We tested individual tools for applicability.  A tool was chosen for inclusion in the tool set 

based on the function it provides, and whether it meets responsiveness conditions.  Testing with 

live participants was done to compare the experience of using the tools on a desktop system (KVM) 

to the experience of using the tools with a head-mounted display and hand-held controllers (VR).   

A set of survey questions provides user feedback, and comments by the users and observations by 

the experimenters provide some context and subjective evaluation. 

It is our contention that the users will strongly prefer working in VR. Further, we expect to 

show that the time required to complete tasks, and the quality of the final product, will be no worse 

in VR than with KVM.  To show this, the tools in REVRRSS were instrumented to provide a time 

stamped file with locations of objects placed in the room.  The time required and the placement of 

the items compared to a theoretical “perfect location” provides an objective measure of the 

suitability of the tools. 

Hypothesis 

Our hypothesis, then, is threefold.  We contend that it is possible to build simple tools for 

editing mesh models in 3D; that it is possible to create a flexible architecture that accommodates 

any tool and any user input device; that users will show a preference for VR while producing work 

comparable in time and accuracy to that done with a traditional desktop system. 
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Document Guide 

The remainder of this thesis will provide the reader with an understanding of the 

REVRRSS system.   Related Work in chapter 2 shows how it benefits from existing work and 

where it goes beyond them.  In chapter 3 we describe the REVRRSS architecture, and show how 

the parts work separately yet fit together.  A thorough explanation of the tools currently available 

makes up chapter 4.  The design of and results from the user study are in chapter 5.  Chapter 6 will 

give some thoughts about a possible future for REVRRSS.  Finally, in chapter 7 we bring the thesis 

to a conclusion. 
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CHAPTER TWO: RELATED WORK 

There are thousands of scholarly articles written on every aspect of 3D graphical 

representations, on modifying a mesh, and on user interfaces in general.  There are also many 

commercially available products that employ these techniques.  Products that alter meshes are 

available now for VR systems as well as for desktops.  Countless how-to web sites have provided 

information, code samples, and inspiration for the tools implemented in REVRRSS. 

Industry Products for the Desktop 

We feel it important to acknowledge here that there are many products available for three-

dimensional design work.  Most of these are expensive and complex, with rich features that could 

not be duplicated by a small team with limited time.  A few notable desktop editors are freely 

available, and yet have an enormous and complicated set of features and capabilities.  Some are 

beginning to see extensions that allow editing using a VR headset, while others remain thoroughly 

on the desktop.  These products have influenced the creation of the tools for this thesis by providing 

examples of tools that are effective, work quickly, and are easy to use.  In some cases, poor tools 

or confusing tools have spurred us to create more natural tools.  The look and feel of indicators is, 

in some cases, emulated in REVRRSS. 
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AutoCAD 

 

Figure 1  AutoCAD, from https://www.autodesk.com/products/autocad/overview 

Perhaps the first product that comes to mind for drawing and design, AutoCAD is a large 

and complex set of tools used by industry professionals all over the world.  AutoCAD’s maker, 

AutoDesk, has been in business for decades and has grown and changed over the years.  This 

software can be used for 2D and 3D architectural and mechanical drawing, project cost estimation, 

and more.  Other examples of large, complex commercial products widely in use are SolidWorks, 

Turbo CAD, Vectorworks, and many, many more. 
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Blender 

 

Figure 2  Blender, complex and customizable.  From LO4D.COM 

Blender is an open-source drawing and design tool that many use for creating and 

animating mesh-based 3D objects.  Like most design software, the learning curve is steep and the 

possibilities are endless.  One can make a quick 3D object, animate it, and make a movie or a game 

all in one package.  As with the paid commercial applications, there are many tools available. With 

Blender, all are free and open source. 
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SketchUp 

 

Figure 3  A screenshot from SketchUp including a car from their warehouse 

SketchUp is a simple but capable tool that can generate 3D objects for use in architectural 

and mechanical drawings. Once a product of Google, it has been spun off into a separate product 

owned by Trimble, Inc.  Despite having a small set of tools, impressive objects have been 

constructed by users, many of which are available in an online warehouse.  These objects make 

good candidates for inclusion in the model during REVRRSS edits. 

Industry Products for VR systems 

When this project had its quiet beginning, there were only a couple of virtual reality and 

head mounted display productivity tools available.  Now there are several products for VR 

available, with a wide variation in operating methods and purposes.  Some of these were useful 

guides in designing and implementing the tools and user interface in REVRRSS.   
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Kodon 

 

Figure 4  Kodon, from the Steam Store.  A clay modelling technique 

This is an interesting take on modeling tools.  Kodon behaves like a clay modeling studio, 

with tools that mimic squashing, pinching, smoothing, and extruding a big blob of clay.  Still in 

development, it makes for a standout by being different.  Someday REVRRSS may deform a 

surface as rapidly as Kodon. Despite some interface issues, it is a fun and useful tool.  
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TiltBrush 

 

Figure 5  Tilt Brush in use, from indianexpress.com 

Google’s Tilt Brush is another outstanding art productivity tool.  The user interface is clean, 

responsive, and straightforward.  Using it is like having an unlimited supply of gooey paint, 

ribbons, and fire that stay put as the artist squirts them into the air.  
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MeshLab – A Product of Academia 

 

Figure 6  a screenshot from MeshLab.  From “Basic MeshLab” at debian.net 

Originally a course assignment at the University of Pisa in 2005, MeshLab [1] is an open 

source and free collection of tools for mesh creation, distortion, and modification.  Written in C, 

with source code available, MeshLab is a gold mine of tools, good candidates for the future.  

Scholarly Works 

A number of journal articles had an influence on the creation of REVRRSS.  Some 

provided a basis for the tools and methods, and others point the way to future tools.  Chief among 

the guides is the book 3D User Interfaces Theory and Practice [2].  Chapters 5 Selection and 

Manipulation, 6 Travel, 8 System Control provide a very good overview and introduction to the 

techniques used and troubles overcome in building REVRRSS.  In trying to come to grips with 

how mesh structures are represented, and how they can be manipulated, we found “What’s in a 

Mesh? [3]” to be very instructive.   



13 

 

During editing, the environment may become filled with objects such as furniture, and 

we’ll need more capable selection techniques.  There are numerous methods available for making 

selections, but none work well in all scenarios.  Previous work at UCF [4] shows how the best 

among these for a given set of conditions can be applied automatically. Some of the selector 

methods [5] appear more suited to a desktop system than VR.  Selecting and manipulating more 

than one object at a time is possible in REVRRSS by making multiple single selections.  Selecting 

objects which are out of reach of the user [6] is handled in our system by the pointing ray extended 

from the main hand, 

Many of the more interesting mesh deformation techniques [7] operate too slowly for our 

VR system’s high refresh rate requirement.  Incorporating mesh simplification, deformation, and 

then reconstituting the original works well for large meshes where high frame rates are not as 

important, such as a graphics workstation.  One useful approach [8] to speeding up this process is 

to limit the actions to a portion of the mesh. Their use of the term “submesh” to mean a chosen 

portion of a larger mesh should be distinguished from our use of “sub-mesh” here, in which we 

mean a section of mesh that is not connected to other parts of the same mesh data structure.  

Correcting problems with the mesh from Hololens is a main goal.  There are numerous 

holes, many disconnected single triangles, and the onerous difficulty of having the mesh divided 

into cubical regions that do not share vertices at the overlaps.  Many of these problems can be 

corrected in MeshLab, or by an application of ReMesh [9] tools.  The sheer number of polygons 

in even a small room had us looking for simplification algorithms [10] [11] but it was determined 

that we wished to keep detail, and instead replace areas with too high a vertex density with simple 

shapes, such as with our flat surface analyzer tool.   
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While considering how best to find connected vertices, we came across a recursive divide-

and-conquer approach [12] which produces a binary tree.  This is quite different from our method, 

which produces a graph representation by inspecting the mesh’s triangle list. 

To simplify the coding, often an object to be manipulated is made a child of a transform 

box, and user input is applied to the box instead of the object or objects.  This is a somewhat similar 

notion to a real box [13] used in CAVE systems.  

There seemed to be few published accounts of mesh editing systems for VR in existence, 

but we did find some interesting systems that incorporate force feedback and haptic interfaces [14] 

[15] to deform and paint a mesh. One system [16] operates on captured data from color and depth 

cameras, which would need to be converted to a mesh representation before editing in REVRRSS.  

We feel that our system goes beyond what we have found in its plug-in component design, which 

makes changing user interfaces and adding tools relatively simple.  
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CHAPTER THREE: REVRRSS ARCHITECTURE 

The development of REVRRSS followed an incremental design approach.  Small, single-

purpose tools were developed individually with the main goal of understanding how the 3D mesh 

works, and how it can be modified.  Simple tools sparked ideas for more complex ones, and 

informed of the need to develop data about the mesh which could be used for even more powerful 

tools.  In order to make changes to the scanned mesh, we needed to understand how meshes 

represent the model, how the Hololens forms the scan of the room, and how the Unity game engine 

handles the data.  

Soon it became apparent that we would need to develop an architecture that could manage 

the tools, the various forms of user input, and to keep data about the mesh ready for use by other 

parts of the system.  Three main sections of the system architecture divide the functionality into 

sections related to the USER, the ROOM, and the TOOL.  Central to all of these is the HUB which 

acts to route information and commands. 

Hardware & Software 

Due to the popularity and familiarity it enjoys in our lab, the Unity game engine was chosen 

for development, with code written in C-sharp.  The Microsoft Hololens was available in our lab, 

and therefore served as the source device for making scans. We chose the HTC Vive head worn 

display and hand controllers for the hardware portion of our user interface. 
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Mesh Representation in Unity 

A mesh is a set of points in 3D space (vertices) connected by lines (edges) to form triangles 

(polygons) that lie on or near the surface of some object.  Each mesh may be composed of sub-

meshes that share a data structure, but have no edges connecting vertices between them.   Each 

mesh data structure also stores information about the direction of a surface normal at the vertices 

to aid in the smooth lighting on the final rendered image. Each also has information that serves to 

identify a location in 2D images for color and texture information to be applied to the area 

surrounding each vertex.  The Unity game engine uses these mesh data structures to provide 

information to the graphics card which renders the objects as graphical images on some viewing 

device.  There is an unfortunate limitation in older graphics cards, and in earlier versions of Unity, 

which sets a maximum size of about 65,000 triangles per mesh.  It was necessary to develop code 

that circumvented this limitation.  Newer graphics cards and later versions of Unity may overcome 

these limitations, but the technique is still useful because it can handle cases where the environment 

is composed of many different parts from more than one source. 

    

Figure 7  Left: a wireframe mesh outline and rendered model car, a Unity standard asset.  

Right, texture UV mapped to a 3D object, from htps://en.wikipedia.org/wiki/UV_mapping 
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Microsoft HoloLens 

The room scan used in this project originates from Microsoft HoloLens, an Augmented 

Reality (AR) headset device.  The HoloLens overlays virtual objects on a real world, rather than 

building an entire virtual world.  While in use, the HoloLens continuously scans the surrounding 

environment and compares the current scan to stored scans to determine the user’s position and 

orientation within a space.  To do this work quickly, the scans are purposely kept small and not 

terribly detailed.  A scan produced by a LIDAR system stores millions of colored dots in a point 

cloud that when converted to a mesh may have millions of triangles.  By contrast, the HoloLens 

scan of a living room size area may have around 100,000 points and triangles. 

To speed the recognition of room features, the Hololens scan is broken into cubes about  

two meters in size.  The meshes at the adjoining edges of these cubical regions do not meet 

perfectly, they overlap slightly.  There are also numerous smaller sub-meshes which may be 

updates to the scan. These features introduced a few problems to overcome. 

 

Figure 8  A comparison of a HoloLens scan rendered in white, and with wireframe.  The 

gold and green colors indicate that there are two separate mesh objects.  Clearly noticeable are 

the overlaps between non-connected regions in the scan. 
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HTC Vive 

The Vive is a head-mounted display with a pair of hand controllers.  It was chosen because 

of its quality, excellent hand controllers, and reasonable cost.  Any decent gaming computer is fast 

enough to drive the Vive at rates needed to combat simulator sickness.   

The Vive controllers are shaped somewhat like bicycle handgrips, with a pressure-sensitive 

trigger button at the user’s index finger, grip buttons along the handle that can be operated with 

fingers and/or the thumb, a pair of small thumb-operated buttons on top (one of which is reserved 

for the Vive system, unfortunately) and a trackpad operated by the thumb. 

The trackpad can detect touch, and the location of the touch, as well as respond to pressing 

like a button.  Developers can use this control in an infinite variety of ways.  Early in the 

development of this project, we designed a rotary menu system that used the trackpad like a knob 

on a washing machine that could be turned to select tools.  Ultimately, this was too uncertain in 

operation, and users too easily changed tools when not intending to. 
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The REVRRSS HUB 

 

Figure 9  REVRRSS Architecture: command and communication flow 

The hub is a central component of the REVRRSS architecture, though it takes no active 

role in the actions performed.  Data is fed to the hub from the user, tool, and room sections.  Those 

sections access the information as needed, without direct access to other sections.  This supports 

anonymity, with no section reliant on an understanding of any other section. 

Current Tool Interface 

One critical component in the hub is the Current Tool Interface which routes user input to 

the tool currently in use – this is a C-sharp interface, and it behaves like a function pointer in C.  

When a call is made to currentTool.action() with currentTool set to BoxSelector, that call is routed 

directly from the user to the tool as if the call were BoxSelector.action(). 
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Mesh Management 

Another critical section in the hub is for mesh management.  A tool, or the user, does not 

access the mesh directly, but calls a function in the hub. These hub functions then make calls to 

each of the mesh objects that make up the scanned room. So, a request from the BoxSelector to 

highlight the vertices it surrounds is made to hub.PreselectedVertexListFill()  and the hub iterates 

through a list of mesh managers, calling mm.colorPreselect() on each mesh. The mesh queries 

hub.currentTool.isItInSelector(vertex) which, in this example, asks the BoxSelector to determine 

if that vertex is inside the selector.  The result makes its way back to the mesh, which sets the 

highlight status of the vertex appropriately. 

Messages 

The hub also stores text messages sent from the tools and room.  The user section accesses 

those message only if it is desired to display them.  Likewise, notes from any part of the system 

may be sent to the hub to be saved in a time-stamped text file.  This is used for instrumenting the 

tools for user testing. 

Tool Control Panels 

The line between sections can be a bit blurry.  The tool control panels are directly accessed 

by the user, and act directly on a tool.  Logically, then, they are a part of the hub.  

Programmatically, it really makes no difference where the control panel code is placed, so scripts 

can be kept with the tools for convenience.  For proper positioning for the user, the visual element 

of the control panel is a child object of the user. 
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The REVRRSS ROOM 

The group of data and functions that most closely aligns with scanned meshes, inserted 

meshes, and primitive items is held in the room section of the system.  Any objects created are 

kept in sub-sections of the room for easy differentiation: created shapes are kept as an ITEM; 

scanned meshes are held as a SCAN; replacements for flat surfaces are QUADs.  Each of these 

components of the room has a set of behaviors that allow operations, and provide information. 

ITEM 

An ITEM can be moved, scaled, and rotated. An ITEM cannot be modified by the mesh 

deformation tools.  An ITEM may be a shape built from scratch by computer code, or a mesh from 

a file.  Items can be destroyed at will by simply grabbing them and then releasing them at a point 

behind the user’s gaze in VR, or with a delete button in KVM. 

SCAN 

A SCAN can be deformed, have parts of it removed or duplicated, but cannot be scaled or 

rotated, as it was desired to preserve the size and aspect ratios of the original scan.  The scan is a 

3D mesh object which may be in one large piece, or several smaller pieces.  The scan may even 

be composed of mesh objects from different sources.  The REVRRSS mesh management system 

treats them all as one single large mesh, hiding the gymnastics required to overcome limitations 

imposed by Unity, Hololens, and the graphics card. 

Numerous useful data structures are kept up-to-date for each mesh, and accessed through 

the hub.  There are lists of vertices with coordinates transformed from mesh-specific internal 
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coordinates to world coordinates so that they need not be repeatedly transformed for every test.  

There are lists of vertices indicating their highlighted and selected status. For development, and 

for users who want to know, the number of vertices and triangles in a mesh, which mesh is 

currently hit by the main aiming ray, and other bits of information are kept about the mesh. 

One very useful feature is a graph structure that represents connectivity among vertices.  A 

list of lists, with the index of the outer list equal to the vertex index is first built.  Then the list of 

triangles is read through.  For each vertex of a triangle, the other two vertices are added to the 

inside list for that vertex.  In this way, every vertex has a list of vertices it is connected to by an 

edge.  The count of vertices gives the degree of connectivity for each vertex, should it be needed 

for some feature.  This vert-graph is used by the selectors to highlight connected portions by the 

spider selector, detailed later.   

This graph structure also generates a list of sub-meshes with lists of all vertices contained 

within, and a list of vertices showing the sub-mesh to which it belongs.  Another list with vertex 

number as the index contains lists of triangle indices of which that vertex is a part.  Another 

structure keeps information about edges as pairs of vertices.  When an edge belongs to exactly one 

triangle, that edge is a boundary of the mesh.   

QUAD 

A quad is a flat plate with four vertices and two triangles.  In REVRRSS, quads are used 

as replacements for flat surfaces such as the walls, floor, and ceiling.  Quads can be subdivided by 

a special tool, and removed by another.  Quads are made by specifying all four corners, or dragging 

out a rectangle constrained to a surface, or automatically by the WFC toolset. 
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The REVRRSS TOOL 

In REVRRSS, a tool is anything that can accept some user command and then affect 

changes upon the scanned room.  Any tool may also send a command to another tool.  Each tool 

has a control panel that initiates actions, is capable of displaying which tool is chosen, and what 

that tool is configured to do.  The control panels are designed such that a user activates a control 

which then sends a command to the tool.  The tool then sends a command back to the control to 

indicate that it has been activated.  It is permissible to directly access the tool, command some 

action, and the tool will then activate the indicator on the control panel.  It should be noted that the 

tools will do their work properly even if the control panels are hidden from the user.  The actuation 

and indicator methods are not important to the usage of the tool. 

 

 

Figure 10  Tool control panels, with the VR main control panel nearest the sun icon. 
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There are currently tools for selecting vertices, deforming the mesh, splitting triangles, and 

choosing different “skins” for the mesh.  There are tools for deleting, copying, and inserting 

sections of mesh.  There are tools for painting and decorating the mesh. There are tools for 

removing small-vertex-count sub-meshes, for finding boundary edges, and for identifying co-

located vertices.  There are tools for creating and subdividing flat plate quads.  There are tools for 

finding large flat surfaces, and marking room corners, and several other tool types. These are 

detailed in chapter 4, the REVRRSS tool set. 

The REVRRSS USER 

The user section of the architecture hides the actual actions of the user from the rest of the 

system.  Any form of action the user may take, such as mouse click, gesture, or voice command is 

translated to action families, with each having a starting, doing, and ending segment.   

Thus a CTRL-Left-Click on the mouse will generate three behaviors:  CLC_down(), 

CLC_hold(), CLC_up().  The hold behavior will trigger repeatedly for each frame in game engine 

parlance – about 90 times per second with a good gaming computer.  The action of squeezing the 

grips on a Vive controller may generate the same sequence of behaviors.  A voice command or 

gesture could do the same. 

The user section also pushes information up to the hub for use by other tools.  A main aim 

ray stores the origin and direction of either the mouse’s onscreen location projected into the scene, 

or the user’s main hand origin and pointing direction in VR.  On the main aim ray is a point, at a 

user-adjustable distance, called the main aim point. The main aim point is where tools are attached.   

In VR there are also aiming rays for the secondary hand, and the user’s view. 
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The Vive controllers are handed – that is, the software in Unity knows which hand is the 

left and which is the right.  It would be unfair to left-handers everywhere to force them to perform 

actions with the wrong hand.  REVRRSS takes care of this by abstracting the idea into a main 

hand, and a secondary hand.  A main hand takes input from either the left or right, whichever is 

the dominant hand for the user.  The secondary hand takes its input from the other.  There is a user 

control for swapping hands.  The rest of the system has no interest in which hand is which, and 

takes its input from main or secondary as desired by the developers. 

Control Activation 

Activating a control on the desktop means clicking a mouse button or pressing a key.  In 

VR, the user aims their secondary hand at a button, and pulls the trigger.  Control activations could 

be done in any possible way; designers need only call the proper method in the tool control panel.  

The panel itself could be of any design, as long as it implements the control methods.  The panel 

need not even be visible to the user, as would be the case for voice command with sound or voice 

response. 

Control Indicators 

Indicators displaying tool status are treated however the user interface designer wishes.  In 

the current incarnation, REVRRSS simply shows the control panels as movable dialog boxes on 

the desktop screen, and as floating widgets attached to the user’s main arm in VR.  Lighted buttons 

indicate which tool is in use, and which function that tool is engaged in.  Messages, such as number 

of selected vertices from the scan, can be ignored or displayed in whatever way the user interface 
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designer desires – these are simply text message held in the hub and accessed or not by the user 

section. 

Maneuvering 

The user needs to see what they are doing while editing the scan.  Corners, furniture, and 

distance can hide important features.  The user must be able to move about the room.  In the KVM 

system, the keyboard arrow keys provide for panning and tilting.  The numeric keypad 2, 4, 6, 8 

allow for translation down, left, up, and right.  The numeric keypad - and + keys travel into and 

out of the screen.  In VR, the Vive system allows for actual walking in a limited area (maximum 

of 5 meters by 5 meters).  Beyond that, a teleport feature is available by pressing the touchpad on 

the secondary hand.  Any locomotion technique can be used without regard for any other part of 

the REVRRSS system, as it acts only on the user section. 

User Scale 

For work in very large or very small scanned areas, it may be beneficial to change the size 

of the user.  A giant can work quickly in a vast building without needing to move about as much, 

while a Lilliputian may be able to more delicately do fine work.  While user scale is implemented 

in REVRRSS, there are currently no VR controls for it. Adding a control is trivial.  User scaling, 

like maneuvering, is independent from all other parts of REVRRSS; it initiates in, and acts only 

on, the user.  A user can change their location, orientation, or size and have no effect on any tool, 

and no effect on the room. 
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CHAPTER FOUR: REVRRSS TOOL SET 

The tools available in REVRRSS fall into categories based on the severity of their impact 

on a mesh.  Inconsequential changes are those where the surface appearance changes, or the 

object’s position, scale, and rotation may change, but the mesh remains intact and does not deform.  

A simple change is one involving deformation of a surface.  A complex change alters the mesh 

topology by adding or removing vertices and triangles. 

Mesh Appearance 

The View tools allow an inconsequential change in the appearance of the mesh. We can 

set the entire mesh to display as a wireframe image, which is handy for understanding the way the 

mesh is built, and how it is divided into sections and subsections. There is a setting used to show 

highlighted and selected portions of the mesh.  The painted setting shows how the mesh has been 

decorated with paint and texture tools.  Another setting, used only in testing, colors the sub-meshes 

according to how many vertices are contained within it.  Any number of textures could be added 

to the set presented here. 

 

Figure 11  Scan fully rendered, wireframe, and color for number of sub-mesh triangles 
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Paint and Texture 

The Decorate set of tools includes the ability to place stickers on any mesh, and to paint on 

its surface.  This ability is courtesy of Unity Asset RealTime Painting.  Decoration tools are less 

than useful at the moment, until a suitable method for “unrolling” the complicated mesh is 

implemented.  It is trivial to flatten out a cube, fairly simple to flatten out spheres, cylinders, or 

capsules, or any regular geometric shape.  Finding a way to flatten out the unruly mesh formed by 

scanning a real room has so far eluded us. Though not yet helpful, there is a set of painting tools 

that include a pencil and brush with adjustable size, a bucket for entire mesh coloring, and a sticker 

that places an adjustable size image on the mesh. 

Warehouse 

The Warehouse group gives us the ability to bring in objects, which may be meshes or 

shapes.  Currently, the warehouse is a simple set of buttons in both VR and KVM.  The shapes are 

a collection of primitive elements that can be created at run time.  The cube, sphere, capsule, and 

plane are all part of the Unity primitive objects.  Others, such as the cone, are created in software 

as needed.  Any shape could be added. Transforms allow positioning, scaling, and rotating the 

warehouse objects.  
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Figure 12  a truncated cone has been added, and then rotated using the transforms 

Transforms 

For the desktop, transforms are handled by a Unity asset called RTH, Runtime Transform 

Handles.  In REVRRSS this is implemented so that when users hold the SHIFT key, a selected 

object is moved.  Arrows appear to cue the user to the tool.  To produce a rotation, users hold the 

CTRL key, and a set of circles appear.  For scaling, the ALT key results in the appearance of the 

3-cube scaling tool. 

The VR version of REVRRSS handles rotation, scaling, and positioning a little differently.  

When the grip buttons on the main hand are held, a chosen object becomes attached to the hand so 

that moving and rotating happen together.  Holding the grip buttons of both hands activates scaling, 

and by moving the hands together or apart, acts to squash or stretch the object in three dimensions.  

The RTH widgets appear to help the user understand the transform mode. 
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Vertex Selectors 

While not terribly useful alone, selectors form an important part of other tools.  Selectors 

in REVRRSS were developed as need arose to choose vertices in greater numbers, and in 

connected groups.  They were developed in roughly the order given in the explanations below.  

For each of these, users perform some action that causes the vertices to be added to a list kept by 

the mesh manager, and to be highlighted. An anti-action removes vertices from the list, and un-

highlights them. The selectors are usually attached to the user’s pointing device, so there is no 

special action for positioning.  On the desktop, a regular left-click selects, and a right-click 

deselects.  The same actions on the Vive are made by pulling the trigger on the main hand to select, 

and pushing the small top button to deselect. 

The attachment point can be moved toward or away from the user by spinning the scroll 

wheel on the desktop, or by pressing on the track pad on the Vive controller.  This behavior is 

commonly referred to as a “fishing reel” in the field.  On the desktop, scaling is accomplished by 

holding the ALT key and dragging handles that look like small cubes.  Rotations are performed by 

holding the CTRL key and dragging a virtual trackball.  With the Vive controllers, the grip buttons 

grab the selectors for rotation.  Both grip buttons can be held and the hands moved about to scale 

the selector.  

Early work on the selectors placed spheres at the chosen vertices, but it was found that this 

technique was too slow with more than a few dozen vertices.  Work to understand the mesh texture 

UV maps led to a giant improvement in highlighting.  Now a simple texture map is used, and lists 

are kept that indicate the highlighted and selected status for each vertex.  By adjusting the UV 
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coordinates for each vertex, the coloring for highlight and selected status can be shown in real 

time.  Regions currently inside the selector are highlighted in purple, and regions that have been 

selected are colored gold. 

Single Select 

The single select is exactly what it sounds like.  Users aim at the surface of a mesh, and 

trigger a selection action.  The nearest vertex to the aiming point is highlighted.  The anti-action 

will deselect a vertex.  Holding the action or anti-action causes vertices to be continually added or 

removed from the appropriate list as the selector is swept over the surface. 

Spider Select 

We wanted a method to select vertices that were connected by edges, and to select the 

vertices connected to those by edges, and so on to some reasonable number of hops.  Thus the 

“spider selector” was born.  A graph structure to accomplish this is detailed above, in the mesh 

manager section.  Named for the creepy crawly appearance as it is swept along the mesh as well 

as the web of connected edges that it forms, the spider selector works quite well.  The user aims a 

pointer at a vertex, and the spider collects all the points within a specified number of hops. Distance 

(number of hops) from center is stored, so that a tool may deform the mesh into shapes based on 

distance from center if desired by implementers.   
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Figure 13  The original spider selector finding connected vertices out to three hops. 

Smaller spheres indicate greater number of hops from the graph center 

Sub-mesh Select 

Taken to its extreme, the spider selector can collect all vertices connected by any number 

of hops.  This selects an entire sub-mesh.  The sample room used for testing has thousands of sub-

meshes, ranging in size from one triangle to thousands of triangles.  Since the data list is kept in 

the mesh manager, and there is also a list of member vertices for each sub-mesh, the spider is not 

needed.  The tool simply highlights all members of the sub-mesh list. 

Whole Mesh Select 

This tool selects an entire mesh – which may be the entire room, or just one of many 

scanned parts.  The action of selecting sets all of the vertices in the selected list of the target mesh 

to highlighted.  If the room is composed of more than one mesh, only one at a time will highlight 

using whole mesh select. 
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Enclosure Selectors 

Choosing connected vertices will fail at sub-mesh boundaries, and users will wish to select 

an entire region even if not connected – even if in different meshes altogether.  The enclosure 

selector family does this.  There are currently enclosures shaped like cubes, spheres, and cylinders.  

For any of them, a simple test of every vertex in the mesh reveals whether that vertex is within a 

bounding box of the enclosure.  For a cube, this is sufficient.  For a sphere, cylinder, or most other 

shapes, a little math determines if the vertex is inside the enclosing shape.   

To simplify the math, the vertices’ world coordinates are taken from the mesh manager, 

and transformed to coordinates relative to the enclosure.  Scaling the enclosure may change a cube 

to a thin plate, or a tall column, but still has internal max and min values of one unit in size.  

Rotations may change the orientation of the selector, but internally it is still a unit size sitting 

upright.  A sphere needs a check for distance from center.  A cylinder needs a check to see if the 

X and Z values are within the base circle of the cylinder.  Other shapes require similar checks. 

Selector tools do not act directly on the vertices.  The selector asks the hub to command 

the meshes to iterates through all vertices and ask the selector if the vertex is inside the selector.  

Rotation, scaling, and positioning are as explained at the top of the Vertex Selector section here. 

Any shape could be included, developers need only supply code to build the shape, and 

code to determine whether a coordinate lies within the intended shape, and to provide some simple 

controls for the new selector.  These enclosure selectors all have a wireframe texture applied so 

that users can see where the shape lies, and what is in or near it.  These shapes can select 

continuously, as does the single select, by repeating the select action. 
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Surface Analyzer 

It should be noted that there is a built-in feature that can correct the user’s placement of 

large flat surfaces.  In order to determine the theoretically correct position of a large flat area for 

the WFC tool set (detailed later), the surface analyzer finds the geometric center of the area by 

averaging all the vertices within a thin box selector.   

When the user gets close enough to the correct placement, the tool could be made to snap 

to the correct position by itself.  The surface analyzer method also finds the average normal 

direction of the surface, which can be used to snap to the proper orientation of any surface that is 

not quite aligned to the cardinal directions.  This can also be used to exclude vertices where a 

triangle’s normal is not within some window angle around the average surface normal direction. 

Surface Deformation Tools 

Perhaps the most common action to perform on a mesh is to deform the surface – to change 

a lumpy appearance to flat, to correct the curvature of a surface, or to sharpen a corner.  REVRRSS 

has a few tools for manipulating vertices so as to change the contours of surfaces in the mesh.  

Surface Deformation is a simple edit, meaning that the mesh is not torn or altered topologically, 

but the vertices will change relative position within the mesh.  After any deformation, some of the 

data held in the mesh manager must be updated.  This is handled automatically by the mesh 

manager. As with the selectors, the surface deformation tools do not change the mesh, but only 

indicate to the mesh manager how the vertices are to be moved.  This is usually done with vector 

deltas, which are added to each chosen vertex by the mesh manager. 
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Vertex Moves 

The easiest deformation is to simply move the chosen vertices in lock-step with the user’s 

pointing device.  This is called “follow me” in REVRRSS parlance.  Another method is to move 

the chosen vertices along isometric axes or surfaces.  On the desktop, these are performed with the 

positioning handles supplied by RTH; with VR a constrained movement technique is used. 

 

Figure 14  Early highlighting, and simple vertex moves 

Hammers 

Hammers are the result of experiments with tools that select mesh vertices and perform a 

deformation in one user action.  Each has a short green cylinder that highlights the mesh within it, 

and a gold hammer head that shows the final shape after deformation.  Any final shape could be 

added; in REVRRSS we have a flat surface, a cone, hemisphere, paraboloid, and sinusoid.  The 

hammers are always attached to the user’s pointing device, and can be rotated and scaled in the 

same way that selectors are manipulated. 
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Figure 15  a hammer in KVM, showing scale widgets and purple highlight 

The hammers are a descendant of an ironing board technique, which was designed so that 

a user could place a flat surface (the board) and then use a tool (the iron) to gradually smooth the 

surface.  This is a good idea in need of faster technique, and it was not included because updates 

were too slow, resulting in a terrible white-out condition which was not pleasant for the user. 

The desktop system has a control to set the separation between the selection disk and the 

final hammered shape, and to change the thickness of the selection disk.  This feature proved 

problematic with the VR system, so has not yet been implemented. 

The selection disk of the hammer is actually just a backdoor use of the selector tool, and 

operates in the exact same way.  As with other tools, the mesh manager iterates through the 

vertices, checks for inclusion in the selector portion, and asks the hammer to update the position 

if so.  The hammer action operates on local, inside-hammer, coordinates then transforms them 

back after manipulation.  The vertices are first set so that the local y-component of the vertex is 

zero, then a simple bit of math specific to each hammer head moves the vertex up or down to the 
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surface indicated by the shape.  The vertex coordinate is then transformed back to mesh-centered 

coordinates, and the mesh manager updates the mesh info. 

Straightest Line 

It was hoped that by using the vertex graph, we could find a shortest path through two 

vertices. The idea was to straighten the meandering intervening vertices by adjusting them to 

conform to the line between the chosen vertices.  This project was stymied by the discontinuity at 

sub-mesh boundaries.  It may be possible to resurrect this tool, once we have the ability to treat 

the mesh as a whole after joining sub-meshes. 

Mesh Topology Alteration 

Deforming the surface of a mesh keeps all of the triangles in the same relationship to one 

another, in the same way that crumpling a piece of paper keeps it intact.  Ripping a hole in the 

paper, or adding to it, is analogous to removing or adding vertices and triangles to a mesh. 

Cut, Copy, and Paste 

As is the case with most computer software, Cut, Copy, and Paste actions are useful 

features.  Here the user first selects a mesh region with any selector, or combination of selectors.  

Users then activate controls to remove the region, or to make a copy of the selected region while 

leaving the original in place.  Users can grab and move the new pieces as desired.  Transforms 

may be applied to rotate and scale the new mesh, too. 
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Figure 16  removing/copying a chair: selected, cut, copied. 

Triangle Splitting 

Splitting the triangles to add detail can be accomplished in several ways.  Splitting the 

triangle at its geometric center is simple, and does not affect other triangles.  Splitting a triangle 

on a single edge (usually the longest edge) requires splitting the adjacent triangle.  Splitting a 

triangle on all three edges requires the adjacent triangles to be split as seen below.  Splitting 

requires adding new vertices to the end of the vertex list, adding new triangles to the end of the 

triangle list, and then setting vertex indices in the correct triangle in the list. 

 

Figure 17  Triangle splitting techniques 
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Sub-mesh Join 

While working to understand the mesh formed by Hololens, it was thought that there must 

be a large number of vertices sharing the same coordinates due to the sub-meshes, and the division 

of the whole mesh into parts.  We wished to remove these redundant vertices and join together the 

sub-meshes.  A brute force method with O(n2) would have taken many hours to complete.  An 

octree could divide the vertices into sections, and make searches simpler.   

As an approximation to the octree, we divided the mesh into a set of boxes such that each 

dimension was divided by twenty to seventy, making 8,000 to 343,000 boxed sections.  Each 

vertex was assigned to the box surrounding its coordinates.  Subsequent O(n2) searches could then 

be done on a small number of vertices within a box. 

Table 1  Time to identify co-located vertices by divisions per axis, in seconds 

# divisions / 

dimension 

Seconds to complete # of compares 

20 6.45 3,884,687 

30 6.24 1,652,237 

40 6.26 924,227 

50 6.26 599,637 

60 6.25 435,985 

70 7.51 328,687 

 

Surprisingly, this technique took only a few seconds to complete, and was relatively 

insensitive to the total number of boxes within a range.  This may be due to the overhead of creating 

the boxes and assigning the vertices to them.  The speedup was very good, but not suitable for a 

real-time interface.  The co-located vertex finder is better suited to pre-processing the mesh.  
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Ultimately, the technique was deemed not yet useful, but may be resurrected for some future tool 

implementation. 

Other Triangle Modifications 

There is a control to remove all sub-mesh components formed by a single triangle.  The 

result of this action is to De-clutter the room, and requires no user action except to push a button.  

The tool could be altered to remove sub-meshes up to a user-specified number of vertices. 

Quad Creation 

A four-vertex, two-triangle quad can be a useful thing.  So far, the best use is for the WFC 

tool, described next.  During development, a couple of methods of creating quads were built.  These 

might be handy for some future application. 

One method is to set four corners, and then the tool fills in the space with a quad.  The 

finished product will not be flat if the four corners are not in a plane.  The final shape need not be 

square, or even rectangular.  As the name suggests, these are quadrangles.  A tool able to snap to 

existing vertices or surfaces would be quite handy in placing quads. 

A second method is the drag-out.  Users activate a control, placing one corner, then drag 

across space, releasing the control to place the opposite corner. This tool is constrained to work on 

an imaginary plane, which could be defined in any way. 

Walls, Floor, Ceiling 

The scanned mesh from Hololens was designed to quickly locate the device’s position in a 

real room.  Any identifiable feature in the room becomes a vertex, and triangles join those features.  
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The result is that large flat areas can have many more vertices than needed for a model of the room.  

Removing unneeded vertices decreases the size of the mesh, makes large flat areas smoother, 

cleans up extra clutter, and makes editing faster.  Removing extra vertices gives us space to add 

vertices where greater detail is desired, without slowing down the rendering. 

The WFC tool, (Walls, Floor, Ceiling) is used to replace the six (or more) surfaces with 

simple quad objects.  WFC is a compound tool made of other tools and slight variations on those 

tools.  The control panel used in development has buttons for each of the sub-tasks needed to 

replace the walls.  During user testing, a meta-control panel with a single “next” button operates 

the several parts of the WFC panel.  This shows some flexibility in the architecture, and how it can 

hide complexity. 

The WFC toolset guides users through a few tools in several stages to arrive at a finished 

result.  The box selector is used to find flat surfaces.  A corner-finding tool sets the rough outline 

of the room.  The box selector is again employed, this time to refine the surfaces for replacement.  

Finally, quad building and dividing tools refine the new replacement surface, and are then replaced 

by finished surfaces. 

First: Find the Floor 

The box selector was modified with an additional texture to make it transparent, curing a 

problem where the green wireframe hid the user’s view.  The selector appears near the floor, and 

users move it up and down to find the point where the floor is flooded with purple highlight, but 

without taking away wall area or furniture bases. On the desktop, users interact with the RTH 
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handles to move the selector.  On the Vive in VR, the grip buttons on the main hand grab the 

selector, and moving the hand moves the selector. 

 

Figure 18  WFC steps 1 and 2.  Left: Find the floor.  Right, mark the corners 

Second: Mark the Corners 

A corner finder tool has a target box that is constrained to the new found floor, and a pair 

of transparent walls to help align it into the corner.  Pulling the trigger or clicking the mouse drops 

a marker ball in the corner.  There is no need to be exact, as positions will be refined later.  Each 

subsequent corner mark also drops in a transparent tube connecting it to the previous corner.  When 

all corners have been marked, users activate the “next” control. 

Third: Find the Ceiling 

The same tool that was used for finding the floor is used in the same way to mark the 

ceiling.  The highlight floods the ceiling with purple, and users adjust the height to remove most 

of the ceiling without removing desired detail.  When users activate “next” a cage of transparent 

blue tubes appears, outlining the room. 
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Figure 19  WFC steps 3 and 4.  Left, Find the ceiling.  Right, Refine the walls. 

Fourth: Refine the Walls 

Next, the floor and ceiling finder (box selector) is used in the same fashion, but sideways, 

to flood the walls with purple highlight while keeping furnishings unaffected.  Users are guided 

wall by wall, and when all walls are complete they are given the chance to go around again.  The 

updated cage is constrained to move along only the appropriate dimension. This refinement means 

that corners do not have to be placed exactly.  A seasoned user will make use of this knowledge 

and place four corners in a few seconds. When the “next” control is activated, the corner markers 

disappear, and a gold highlight appears on the major surfaces, showing what has been selected for 

removal. 

Fifth: Refine the Selection 

There will be areas that have not been highlighted in gold, since the walls can be rough and 

have a thickness greater than the box selector.  There will be regions of useful mesh that the user 

wishes to keep, so as not to unduly remove detail.  An enclosure selector control panel appears, 

set at first to the unit box.  As described earlier, users may click the mouse or pull the trigger to 

add to the gold selected portions of the mesh.   To remove the gold selected marking, users may 
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right-click the mouse or hit the top button on the Vive wands.  Seasoned users will know how 

much detail and trim area to leave intact around windows and other features to avoid gaps in the 

final model.  Going ahead to the “next” part of the sequence deletes the selected mesh, and places 

one large quad on each of the flat surfaces defined earlier. 

 

Figure 20  WFC steps 5 and 6.  Left, refine the selection.  Right, new wall guides. 

Sixth: Divide and Delete Quads 

The large quads will undoubtedly cover doors, windows, and other room features. A pair 

of tools will cut the big quads into smaller pieces, and delete the small quads that are not wanted.  

Users can freely switch between these two tools by activating a control, or do all of the dividing 

and then do the deleting, it makes no difference. 

To divide, or split, a quad, a tool highlights the normally transparent blue quads in green 

when struck by the pointer.  A black rod appears across the quad, always perpendicular to the edge 

nearest the pointer.  Clicking the mouse or pulling the trigger splits the highlighted quad. 

Deleting a quad uses another tool with a red box on the pointer.  When aimed at a quad, 

the normally transparent blue quad highlights in green.  Clicking the mouse or pulling the trigger 

deletes the highlighted quad. 
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Figure 21  WFC steps 6 and 7.  Left, wall quads divided.  Right, finished product. 

Seven: Finish 

When the user is satisfied with the quads, the “next” control will change the texture on the 

transparent quads to the featureless white appearance, and the WFC replacement task is done. 
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CHAPTER FIVE: USER STUDY 

Now we turn to the user study, where we test our tools and get some feedback from the 

users .  Comparing a desktop interface with a VR interface made to use the same tools in the same 

task will determine which user prefer, and show that the time needed  and quality of work in the 

two methods.  We chose to test only a subset of the full tool suite.  The “Walls, Floors, and 

Ceilings” (WFC) tool contained everything that we needed to discover about preference and 

applicability of VR as compared to the desktop environment. 

Experiment Design 

For our testing, we would have subjects replace the walls, floors, and the ceiling of a 

scanned room.  The testing software was outfitted with the ability to record the time of several 

actions, and the final position of the flat surfaces in the room.  Control panels were limited to a 

single button labelled “Next.”  Users would take a paper survey about their preference, and 

comfort, with the editor system.  Each participant would try the desktop version and the VR 

version.  Since the choice of scanned rooms is limited to one good one, the subjects would be split 

into those who did the VR first, and those who did the KVM first.  We could collect meaningful 

between-subject information this way. 

Testing occurred in the ISUE lab.  After answering brief demographic questions, each 

participant was coached through the process by experimenters, and a set of text prompts on the 

control panel. After each trial, a set of questions was presented covering comfort and ease of use.  

After both trials were complete, the participant was presented with preference questions. 
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User Experience Surveys 

A total of ten users ran a test of the WFC tool. Of the ten, only one was female, and all had 

ages in the range of 18 to 23.  This makes for an unfortunately homogeneous group, but will suffice 

for these informative tests.  Studies with a wider range of tools and greater variety of subject, and 

with many more subjects, may reveal more interesting results about preferences. 

We derived statistic using SPSS for the five-point Likert scale surveys.  We ran Wilcoxon 

Signed Rank Tests for significance at α=0.05.  Type I errors inside the t-tests are controlled using 

Holm’s Sequential Bonferroni adjustment 

 

Figure 22  Survey responses by Task 
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Though the graph suggests that the VR experience was always rated more highly, the 

statistics package shows significance (p<0.05) only with a few questions. This is likely due to the 

small sample size of ten subjects.  More testing should be done to get more meaningful results. 

Table 2  Significance of responses, KVM vs VR 

 A/H B/I C/J D/K E/L F/M G/N 

Z -1.414 -1.310 -1.496 -2.333 -1.000 -2.214 -2.236 

p 0.157 0.190 0.135 0.020 0.317 0.027 0.025 

 

Questions D/K with p=0.020 show that the wands were better appreciated than the mouse 

and keyboard.  Maneuvering, with a p= 0.027 in questions F/M, shows that users were happier 

with the view and locomotion in VR.  Respondents also showed in question G/N with a p=0.025 

that they thought the finished product turned out better in VR. 
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After the users had completed both the VR method and the KVM method, a set of 

statements provoking a direct comparison were presented. Responses show that the users have a 

preference for the VR system for each of the following statements.

 

Figure 23  All users preference for KVM or VR 
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Performance Evaluation: Placement 

A measure of placement accuracy was taken by comparing the geometric center of the 

user’s final position of the walls, floor, and ceiling.  This was compared to the geometric center of 

the scanned vertices replaced by those surfaces.  The root-mean-square of the differences from the 

theoretically correct position is given here.  These values are in “Unity Units” which are 

approximately one meter, meaning placements were off by no more than a few centimeters. 

For measured placement errors, we again used the SPSS package.  A Shapiro-Wilks Test 

of Normality showed that some of our metrics were not normally distributed (p < .05).  For the 

parametric items, we ran pair-wise t-tests to test for statistical significance.  For the non-parametric 

metrics, we used Wilcoxon Signed Rank Tests, summarized in the table below. 

 

Figure 24  RMS Placement Error, by Group and Task 
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Figure 25  rms placement error for each surface, by task 

Though the graph seems to show the VR was slightly better in placement, the SPSS 

statistics results shows no significant difference in accuracy between the KVM and VR tasks.  

Finding no significant difference (p<0.05) in the two methods supports our contention that the VR 

is not worse than the KVM methods for accuracy.  By incorporating the surface analyzer’s snap-

to feature, these errors could be reduced to zero, leaving us with no difference at all between KVM 

and VR, though testing with more subjects is advised to avoid error. 

Table 3  Significance in placement error 
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Some odd problems crept in.  There is evidence in the data that some users were tilting the 

surface finding tool, or moving it laterally.  This is a behavior that can be forestalled by a little 

extra constraint in the code.  One user teleported while carrying the tool, and moved it to a position 

far from ideal, which took a little time to correct.   

Performance Evaluation: Time to completion 

 

Figure 26  Mean time to completion 
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Figure 27  Feature completion time, per Task 

The graph suggests that there is only a small difference in time required to complete each 

task for the two methods.  The statistics show no significant difference for KVM and VR.  A 
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Significance for all times disappeared after applying Holm’s Sequential Bonferroni adjustment. 

Table 4  Significance in time to complete tasks 

 Find 

floor 

Outline 

Floor 

Find Ceiling Refine 

Walls 

Refine 

Sel’n 

Repl. 

Surface 

Total Time 

Z -1.362  -2.803   -2.666  

t  2.13  -0.449 -2.791  -1.096 

p 0.151 0.066 0.0051 0.666 0.024 0.008 0.305 

HSB Adj. 0.0056 0.005 0.0038 0.017 0.0045 0.0042 0.0071 

 

0

50

100

150

200

250

300

find floor outline floor find ceiling refine walls refine selection replace surface

Section Mean Time, KVM vs VR, per task    in seconds

KVM VR



54 

 

This agrees with our prediction that there would not be a big time difference.  While VR 

seems faster for identifying items in the room, and navigating, users seem to be spending a little 

more time getting things just right when they can see better. 

Comments and Observations 

The comments made by the subjects tell us quite a bit about what they had trouble with, 

and what they liked.  Experimenters made a few notes while the subjects were using REVRRSS, 

and these notes will help refine what we’ve got, and suggest new things to try.  Some notes are 

just interesting observations.  These notes will help improve REVRRSS in the future. 

Most of the users worked the desktop controls from a point outside the room.  Almost all 

of the VR work was done inside the room, but one VR user teleported outside of the room for a 

better view of a corner.  There was quite a lot of maneuvering in both versions, something that an 

experienced user can limit by planning.  Only two of the VR users did actual walking around, 

while the others preferred to stay in a small area and teleport to move about the room. This may 

be due to the concern about running into things in the real world.  Perhaps a larger clear area would 

have spurred more people to walk.  One user noted worry about tangling in the headset cable.  A 

wireless headset system would be worth a try. 

A few said that viewing the room in VR was so much easier when all you have to do is 

turn your head.  One person went so far as to say “a million times better,” another said, “wow, lots 

better view,” while using VR. One claimed that splitting and deleting the wall quads was easier 

with the VR view. 
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A few kept a thumb on the teleport button, causing it to display all the time.  This should 

be changed so that the teleport appears when the button is pressed, and teleports when released. 

Most had some trouble with the grip buttons – this is just an awkward design of the Vive wands.  

A couple of people noted that the VR wand sensitivity seemed high, that a shaky hand was enough 

to throw off their aim.  Perhaps a bit of smoothing would help, but the users could simply stand 

closer to their work to reduce the lever arm.  A few subjects poked at the “next” button when in 

VR, where the control is meant to operate by a trigger pull.  Redesigning this interface to meet the 

user’s expectation is a very good idea.  

One, clearly a gamer, noted that the keyboard controls did not follow a standard game 

layout, and attempted to use key combinations that were meaningless or harmful in REVRRSS.  

Another thought that the keyboard navigation controls were hard to use, as they did not allow fine 

control like you could get in VR by moving your head or walking.   

Users who seemed to “get it” were allowed a bit of freedom to try rotating and scaling the 

selection cube, and thought it was a great feature in VR.  The rotate and scale features in KVM 

were not special enough to warrant comment, as they are like familiar software. 

There was one user with poor spatial awareness who needed much more coaching than 

others.  Two people needed almost no coaching, and seemed to understand what to do right away.  

Everyone was able to do better at placing objects after the first couple of tries, suggesting that even 

a little practice makes a big difference.  The ceiling was placed poorly on a couple of occasions, 

and once the floor was out of place.  It may be that users did not release a control before moving.  

In the end, nearly everyone did well.  
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A few people got an extra wall placement in VR, and one did with KVM.  This tells us that 

better feedback is needed.  Haptic feedback in VR would alert the user that a button has been 

pressed.  Better markers, and maybe a counter to show how many corners have been placed, would 

help.  There is an “undo” for the last corner placed, but users had already moved on to the next 

corner before the experimenter could coach them how the extra one could be removed.  A feature 

that allows the users to drag the current corner marker exists, but was used only once. 

Users spent a fair amount of time altering the selection of surfaces for replacement, but not 

much more than an experienced person would spend.  One user enjoyed using the cube selector to 

“paint” on the model for highlighting, and to push and pull the cube for positioning.  Those who 

were more adept were allowed to try scaling the selector cube, and found it very useful for finer 

selection work. 

Splitting and Deleting Quads was a bit of a problem, both in operation and understanding.  

For the future, we should change the way the control works.  Instead of pressing a button to switch 

between split and delete modes, there should be a button for each.  Hitting the “next” button instead 

of swapping tools happened on at least one occasion.  Understanding what would happen with a 

quad split, and why it was needed, took a fair bit of coaching.  The instructions need revising, and 

maybe some visual example would help. 

A few subjects found the front door in VR, where none did in KVM.  The ceiling vent was 

noted by a couple users, with one identifying it as an attic access hatch.  One user thought the 

rough wall surface might be shelves, another thought it may be a poster. 
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Most people were being careful, but a couple were sloppy and got poor placement, too 

much detail removal, or hit the wrong control.  At least one was simply trying to go too fast.  Most 

subjects erased much more detail than would an experienced user.  One user placed the edges of a 

to-be-removed quad inside the closet door space, a better strategy than the others who made the 

quad opening too large by marking quad edges outside the door opening.  About half deleted the 

front door detail.  Most removed too much window detail.  Most removed items that were in the 

room such as a lump that may be a vacuum cleaner near the front door, the bookcase and TV, or 

parts of the wall niche. 

We think that nearly all of the poor finished work could be cured with a few practice 

sessions.  Placement could be made perfect every time with the snap-to-surface analyzer. 
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CHAPTER SIX: DISCUSSION AND FUTURE WORK 

So far we have described the REVRRSS architecture, its tools, and detailed the user study 

that was done.  It is now time to compare an experienced user’s results to those of the neophyte, 

discuss how we might make objective measures of the quality of the finished product, cast our 

gaze into the future, and leave a few notes to those who will take the project forward. 

Expert Results 

 

Figure 28  expert results, niche and closet. 

Here we can see clearly the new smooth walls, floor, and ceiling after an experienced user 

has completed the study task.  New walls meet the niche area on the left cleanly, and closely match 

the wall opening for the closet.  The possible television atop two speakers or bookcases has been 

retained.  The rough wall area that might be shelves or some wall hanging has been kept in the 

final product. 
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Figure 29  expert results, closet, TV, door, window. 

From this angle we can see the front door has been kept largely intact, with just a little gap 

around the difficult floor and tight corner joint.  The window frame neatly matches the new walls, 

too.  Above the possible television, notice that a vent or attic access port is neatly fitted to the 

ceiling. 

 

Figure 30  expert results, blank wall and furniture. 
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From a vantage point near the door, we can see that the bed coverings touch the floor, and 

that there is just a little gapping along the edge of the niche.  The expert user has spent only 80 

seconds to find the floor, mark the corners, find the ceiling, and refine the wall placements.  The 

265 seconds spent adjusting the selection to keep or remove surface was well spent perfecting the 

final product.  Another 195 seconds was spent to split and delete quads.  Total, the expert used 539 

seconds, or just under nine minutes to finish the VR task. 

The average test subject required 13 minutes to complete the same task, and spent nearly 

4.5 times longer (80 seconds for expert, 355 seconds for average user) to find the floor, mark the 

corners, find the ceiling, and refine the wall placements.  The average user needed slightly longer 

than the expert to refine the selection for removal. (265 vs 253 seconds) 

Images of the finished product from users show large gaps around important features like 

the niche, closet, door, and window.  Most users removed useful detail like parts of the window, 

closet door details, and the ceiling hatch.  Most deleted front door detail and the TV. 

 

Figure 31  typical user has gaps near details, and removed the TV and door 
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Figure 32  user image from near front door showing big gaps, loss of bed detail 

A change to the method that removes triangles could improve these results.  Instead of 

removing every vertex that has been marked, the tool could be made to remove triangles only if 

two or more of the vertices were marked, and keep all vertices needed for any remaining triangle. 

Measuring Successfulness 

The visual comparison of the expert’s finished work to the typical user is a job for judges 

at this point, but it has us wondering if there may be some way to objectively measure the quality 

of the work.  This question seems like a big one, a research topic for the future.   

Perhaps shape recognizing software could be employed.  There may be a way to measure 

the gap between mesh boundaries and the nearest edge of a quad, assuming that the sub-meshes 

can be combined so that the boundaries are sensible.  We know of no method that may be able to 

determine what mesh details should remain as part of the room, and which should be removed as 

noise.  This is why we have humans guiding the computer. 
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REVRRSS in the Future 

The state of REVRRSS right now is similar to the karate student who has earned a black 

belt.  Rather than an achievement of success, the black belt denotes the student who is now ready 

to begin learning the art.  The architecture has begun to settle into a simple modular design, with 

a degree of anonymity in the way the parts interact.  There is a reasonable degree of separation of 

the parts.  There is much uniformity in the way information and commands flow.  But, there are 

also quick cheats put in place to get around some sticky problem.  There are some tools that do not 

yet fulfill their obligation to be uniform and anonymous.  The time has come for another round of 

ferreting out what does not comply, and of better unifying the whole of the system. 

Though REVRRSS has a set of tools that can get the job done, there are a few that need 

further development.  There are tools that we have imagined, but have not yet begun to develop.  

Some tools could work more efficiently to overcome slow response times. 

Decorating 

Painting the mesh is in development, and awaits some method of unrolling the mesh, so 

that it can be mapped to a flat texture image.  Vertex coloring might make this simpler, but does 

result in lo-fi coloration, with triangles lacking detail.  Mesh Colors [17] solves this by also 

coloring the triangle edges and faces.  This is a likely solution to painting in REVRRSS.  A nice 

real-world spray can interface is presented in My Virtual Graffiti [18].  

Viewing the mesh as a wireframe can aid in understanding the bones of the scan.  The 

wireframe texture in REVRRSS is a modification of an existing shader.  A much better approach 

[19] that can place wireframe lines on a fully painted render is worth a look. 
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Displaying the mesh as a faceted surface rather than a smoothly curving one reveals details 

that are otherwise hard to see.  This is a useful feature in MeshLab, and one we would like to 

include.  Surely this is just a matter of writing a shader that can be applied in Unity.    

Selection and Manipulation 

Several choices exist for removing triangles and vertices in MeshLab.  One can choose to 

remove everything that has been touched, or only those areas that are completely enclosed by the 

selection method.  One can also select edges, which REVRRSS cannot do. 

A contour sketching approach from GemSketch [20] allows the user to outline a shape on 

a 2D screen, so that the system can select the shape in a 3D environment.  Adopting the technique 

so that a user can define a shape with the hands for selecting a region would be more natural than 

making multiple selections with simple-shape enclosure selectors. 

We found a group selection technique [21] that considers gravity, following the innate 

expectation that picking up a platter also lifts the objects upon it.  This could be readily included 

in our VR system.  Such a technique improves the “actual room” feel of the VR environment.   

Manipulating objects in REVRRSS is still a bit non-uniform.  Objects such as the original 

scanned room do not allow rotation, scaling, and positioning.  This was done to preserve the 

original room as much as possible.  We should allow, at the minimum, rotation to make the room 

conform to the main axes in Unity, and positioning so that the center of the floor can lie at the 

origin in the coordinate system. If we allow scaling to correct real-world size, a tape measure tool 

could be used to get dimensions of objects in the virtual room. 
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Deformation 

The application Kodon, mentioned in the introduction, can deform and create surfaces in 

real time, and smoothly.  This is highly desirable in REVRRSS, and is a worthy goal to pursue.  

Making the mesh updates faster is the route to achieve this.  It may be necessary to do the updates 

outside the Unity framework which is designed for game play, not for mesh editing. 

Some deformation techniques were deemed too complex for easy implementation, such as 

those based on LaPlacian smoothing [22] [23], the Poisson equation [24], or by filtering schemes 

on surface normals. [25] These are certain to be targeted for inclusion in future tools.  Marking the 

region to be deformed by these methods is done by cutting planes or the like. A sketching interface 

[26] adapted for VR might be more natural, and is certainly more flexible. 

The hammer tools in the desktop version allow the selector thickness and relative position 

to be adjusted for user preference.  We must find some control technique that brings this feature 

to the VR version.  Perhaps wand buttons can be used to indicate that we wish to change these 

parameters.  If the tools more resembled some real-world device, controls could be placed on the 

tool for action by the user’s secondary hand.  This hearkens back to our early experiments with a 

rotary menu selection that mimic radio selector knobs or the settings on a clothes dryer. 

We wished to inflate a flat surface to more closely follow a rounded form, and were 

reminded of Teddy [27] which inflates childish drawings into puffy stuffed animal forms.  This 

would fit in with our desire for simple, real-world tool analogs for making changes to the mesh.  

Matching the whimsical nature of Teddy, we would use a bicycle pump as a tool analog. 
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3D scanned rooms are often pierced by a number of holes, where the scanner could not see 

to place mesh on a surface, and gaps at every boundary between cubical scan sub-meshes.  Ability 

to repair these problems is paramount in a full-fledged tool kit, and a set of slides [28] gives us a 

quick view of how we might proceed.  A more detailed method for hole filling [29] may become 

a tool in the near future.  The common tool metaphor for any of these would be a putty knife and 

a jar of spackle. 

In REVRRSS, we should allow mesh deformation of all objects, not just the original scan.  

If a new object does not quite match expectations, then users should be able to change it in any 

way possible.  Treating every object the same makes them anonymous, as are the tools.  If a 

truncated cone, used to replace a lamp shade, is not the correct slope, then we should have a tool 

to correct that. 

Topology Changes 

A method for combining the separate sub-mesh parts that Hololens creates seems a 

necessary tool.  This would allow development of other tools, such as the straight line tool which 

would move a wavering row of vertices along a connected path into a straight line, enabling the 

sharpening of corners in the model.  The boundary finding tool would become useful. 

The flat surface analyzer is capable, but we desire an analyzer that can recognize other 

surface contours, too.  Finding corners in between a wall and floor, picking out the spherical shape 

of a ball, or the truncated cone for a lampshade are examples of our mythical all-surface analyzer 

tool.  We imagine that this could be an extension of line and curve analyzing for pen-based 

displays, used in gesture recognition. 
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Utilities 

Future work could provide miniature 3D models to choose from the warehouse.  An entire 

warehouse could be implemented as a world-in-miniature, or even in full size with the ability to 

quickly move to warehouse departments with the desired models. 

The load control is intended to open any stored mesh, adding to or replacing the current 

one.  One good use for the load control is to remove the mesh of a bed, and replace it with a clean 

bed object which has been created elsewhere.  Another use could be to replace a badly scanned 

chair with a higher-quality scan of the same chair.  A save control must be added allowing the user 

to keep their work.  These features would need to be built from scratch or found somewhere, as 

Unity provides no method for this. 

To use models from other sources may require methods to convert them to a format useful 

to REVRRSS.  A point cloud from a LIDAR system, for example, is a list of vertices with color 

information.  Our system must either be able to handle that point cloud natively, or convert it to a 

mesh representation with texture files.  Adding a networked connection to a collection of models, 

such as the SketchUp warehouse, would be a welcome addition to a finished product. 

Some work has been done in recognizing objects in 3D meshes.  We’d like to borrow that, 

so that a user can enclose a bed or chair or table, and the recognizer would know it as such.  

Methods could then be employed to display similar items, either for replacing the existing mesh, 

or applying texture to change the color of what is already there. 
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User Interaction 

The Vive headset and hand controls seem a great improvement over the desktop experience 

to our test subjects, and also to the developers.  We would like to see much more developing and 

testing done.  There are so many possibilities here that this is a field all on its own. We have only 

barely used the capabilities of the Vive wand trackpads. 

Maneuvering has a number of existing methods that could be included.  We chose 

teleportation largely because it is simple to implement, and easy for newcomers to understand.  

Hand walking could be developed quickly.  Changing the size of the user could allow quicker work 

in large spaces, and finer work in detailed areas. 

Manipulation by grabbing an item is working well, but is a bit awkward due to the design 

of the grip handles in the Vive controllers.  There may be better alternatives to this hardware, or 

some other method of grabbing with Vive.   

The hand controls also suffer from too much sensitivity for some users, and maybe some 

motion filtering could be employed.  A part of this problem is that users often manipulate selectors 

from a distance by reeling it away from their hand.  If the users stepped closer, the motions would 

be finer.  It is also possible to change the tool, so that instead of being attached to a long pointer, 

it moves by action at a distance, as is the case with the “follow me” vertex mover from early trials.  

It may be possible to use a degree of isomorphism, where the hand motions are magnified or 

decreased appropriately.  We can see this at work in a mouse, where a quick flick moves the pointer 

a fair distance, while a slow motion is reduced to a small adjustment.   
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Notes For Developers 

As we prepare to release REVRRSS into the wild, we’d like to leave a few notes for future 

researchers and developers.  We would like to leave developers with a system that relieves them 

of as much tedium as possible, so that adding a tool is a simple matter of meeting design standards 

and plugging it in.  While the current state of the architecture isn’t quite up to that standard, we 

are certain that adding functionality can be done with a little work. 

There is a blank control panel, which serves to provide the basic code and visual elements 

for any control panel you may wish to create.  A look at the tool interface files will reveal what 

methods must be implemented.  Having a look at any of the selectors will provide examples for 

how they work. 

User interfaces can follow the general design of those for the Vive and the KVM, which 

should be largely self-explanatory.  Any new user interface need only be capable of sending a 

small number of actions to the tools through the hub, and of actuating some type of control panel 

to choose tools and operate features unique to the tool. 

The mesh manager has grown large and untidy, but does contain enough commenting to 

understand the algorithms used for things like the vertex-graph data.  No doubt better methods 

could be used for the data currently gathered. Any information about the mesh that would aid tools 

and techniques can be easily added to the pool already available.  Methods of removing unwanted 

triangles could be extended to several “flavors” that keep more or less at the edges. 
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CHAPTER SEVEN: CONCLUSION 

The goal of this work was to extend 3D editing from the desktop workstation to a VR 

environment.  Professionals already use 6-degree-of-freedom controllers on the desktop, and large 

monitors for a better view.  Giving professionals and casual users an entire world to work in, and 

tools that naturally fit the hand, is our underlying driving force. 

The purpose of this work covers three main points: That we would like a simple set of tools 

for editing a 3D mesh that even a novice could use; that we would like to build a system 

architecture allowing easy inclusion of future tools and that could accommodate any user input 

device; and that the results of user studies would show that people will prefer working in VR, the 

results of their work will take no more time than on a desktop, and that the finished product will 

be comparable to the finished product obtained on a desktop system. 

The set of tools currently available in REVRRSS allows selection and manipulation of the 

mesh surface.  Tools for deforming, deleting portions of the mesh, or copying a portion of it, exist. 

Tools to paint or texture the mesh surface are in development.  Items such as simple shapes or 3D 

mesh models obtained elsewhere can be added to the room environment.  Simple position, scale, 

and rotation of items and tools is possible.  A set of tools allowing the main flat surfaces of the 

walls, floor and ceiling to be replaced by simple flat planes reduces vertex count dramatically, 

making the model simpler and smaller without reducing desired detail.  While a reasonably good 

set of tools exists, there is always room for more, and our system makes it possible to add to the 

tool set without great difficulty. 
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The system architecture is capable of taking commands from any user input device and 

routing it to any tool, without regard for what the actual user action is, and without regard for what 

the tool accomplishes.  The mesh management section treats any number of scanned segments as 

one big mesh, and maintains information about the mesh which is useful to the tools and to the 

user.  The system has grown and changed, and could benefit from another refresh to more tightly 

integrate all the parts of it. 

User testing has shown a strong preference for VR over the desktop KVM interface.  

Measurement of placement of walls, floor, and ceiling shows that the VR accuracy was near the 

same as placement made using KVM.  Modifications to the tools could reduce any difference to 

zero.  The time required to complete tasks in VR was essentially the same as the time required to 

accomplish those same tasks on the desktop in KVM. 

With these several expectations met, it is possible to say that we have achieved our purpose.  

The future may see us meet our goals.  There is room for improvement, and we hope that a new 

wave of researchers “come play in our sandbox” and make our work their own. 
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