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ABSTRACT

We present a taxonomy of human-centered collaborative XR tasks.
XR technologies have extended into the realm of collaboration,
improving the quality and accessibility of teamwork. However,
after a comprehensive assessment of the literature on the interac-
tion between XR technologies and collaboration, no comprehensive
method that emphasizes task actions and properties exists to clas-
sify collaborative tasks. Thus, our suggested taxonomy represents
a classification system for collaborative tasks. After conducting
a thorough literature review across different research venues, we
conducted several exhaustive classification and review cycles for
over 800 papers collected, which resulted in 148 papers retained to
create the taxonomy. We dissected the actions and properties that
the collaborative endeavors and tasks of these papers encompass as
well as the types of categorizations and relations these papers illus-
trate. We expand on the design choices and usage of our taxonomy,
followed by its limitations and future work. We built this taxonomy
in order to reduce ambiguities and confusion regarding the design
and comprehension of human-based collaborative tasks that use XR
technology, which could prove useful in aiding the development and
understanding of these tasks. Our taxonomy reveals a framework
for understanding how collaborative tasks are designed and a sys-
tematic way of classifying different methods by which people can
collaborate and interact in environments that involve XR, while still
promoting efficient communication, teamwork, goal achievement
and productivity.

Index Terms: Human-centered computing—Human computer
interaction (HCI)—Interaction paradigms—Virtual reality; Human-
centered computing—Collaborative and social computing design
and evaluation methods; Human-centered computing—HCI design
and evaluation methods;

1 INTRODUCTION

Collaboration is the process in which people work together to re-
alize a common goal [25, 86, 97, 146, 160]. Such a practice has
been common since the dawn of mankind, and with the combina-
tion of advanced technological devices, the field of extended reality
(XR) collaboration has emerged [88, 100, 163]. Collaboration us-
ing XR technologies involves individuals engaging in cooperative
endeavors in virtual environments (VE), such that with XR, a large
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array of different modern co-creation and collaboration tasks (def-
inite pieces of work that are meant to be completed by multiple
individuals) was created over the past three decades across several
domains [13, 30, 32, 48, 50, 127, 172]. It was found that through the
incorporation of XR in collaboration processes several key advan-
tages were uncovered: better communication, remote and real-time
collaboration facilitation, immersive simulations, more accessibility
and inclusion along with better contextualization and information
exchange, etc. [88, 126] As the research work in collaboration is
ongoing, the characteristics and properties of collaborative tasks
evolve, which brings about a harder categorization process, and even
designing efficient collaborative tasks using XR becomes challeng-
ing considering that new collaboration elements and properties are
introduced [77, 113, 114, 191].

In this paper, we aim to analyze existing collaboration tasks that
use XR technologies and classify their elements under the umbrella
of a collaborative task taxonomy. To achieve this, we analyzed 148
papers picked from an initial pool of over 800 papers in the extended
reality collaborative space to synthesize various collaborative tasks
and their properties. The resulting comprehensive taxonomy details
actions and properties associated with collaborative tasks. The
classification system we propose for tasks performed collaboratively
in extended reality expands on the XR collaboration literature by
providing a taxonomy that encompasses other related taxonomies
and reviews into a central classification for tasks that covers XR-
related paradigms.

This paper contributes to XR collaboration by providing a classi-
fication of mixed reality tasks. The presented taxonomy through this
work affords a classification regardless of the system employed, as
well as identifying key actions and properties that XR collaborative
tasks possess. We created this taxonomy to create a clearer depiction
of these types of tasks to help people have a greater understanding
of how they are structured and what they entail.

2 RELATED WORK

Extended Reality technologies afford the facilitation of different
forms of collaboration through the different realities in the mixed
reality continuum [13, 84]. In such collaborative settings, several
elements make up the collaborative task, which can be separated into
properties and actions of a task. Prior work that details collaborative
task design considerations suggests that the actions taken during a
task can consist of environmental observation, locomotion, object
selection/manipulation, etc. whereas the properties of a task include
task location (virtual and physical) if the task is synchronous or
asynchronous, roles of each entity partaking in the task, and the
relation between the sub-tasks that constitute a task, etc. [71, 84, 93,
119, 136, 172, 189].

Prior work has shown that collaborative tasks using XR tech-
nologies are employed across several industries due to the benefit
of having collaborative simulations and experiences similar to real-
world scenarios [18, 70, 71, 172]. As the development and research
in XR-based collaboration is progressing numerous classifications
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of related collaborative tasks have been proposed. One such classifi-
cation system which acts as the basis of many other classifications
is the Mixed Reality Spectrum developed by Milgram et al. [100].
Other early classifications which encompass the types of environ-
mental interactions which are fundamental to collaborative scenarios
include Bowman’s taxonomy of selection/manipulation techniques,
which specifies the components of selection, manipulation, and
release of objects in VEs [17] and Poupyrev’s taxonomy of manip-
ulation techniques which are based on exocentric and egocentric
metaphors [125].

Prior work also shows that task analysis systems and methods are
in place to aid the design of systems that pertain to tasks in general,
not just for collaborative tasks. For example, Annett et al. [4] de-
scribe task analysis in a broad sense which applies to all types of
tasks, not just ones that exist solely on the mixed reality spectrum.
This specific method of task analysis is meant to decompose a task
in order to identify the source of its cognitive or physical shortcom-
ings so solutions can be devised for applications such as training
scenarios, control tasks, etc. Along the same vein is the guide for en-
gineering and design proposed by Stanton et al. [151], which focuses
on using task analysis methodologies for design and evaluation of
products and systems. Another example is the guidelines for design
and evaluation of VEs proposed by Gabbard et al. [40], which lays
out guidelines for environment and interaction design fueled by task
analysis. More recent methods of VE design and evaluation have
been introduced by Raimbaud et al. [128, 129], which also uses task
analysis to drive the evaluation of virtual reality interaction design
for construction and Building Information (BIM) related scenarios.

One of the most recent literature reviews on collaborative mixed
reality was conducted by Schafer et al. [138] which discusses syn-
chronous remote XR collaborative systems as well as a taxonomy
of such systems, but not on the classification of tasks performed
using these systems. The survey done by Wang et al. [172] was
also conducted with a focus on AR and MR tasks, but these tasks
were only physically-based tasks despite them being extracted from
different fields (e.g. industrial, medical, etc). Other surveys and
classifications conducted discuss other aspects of collaboration such
as how collaboration is carried out synchronously or asynchronously
in VR and AR [120], user experience in collaborative extended
reality [105], how systems are structured for specific types of real-
ity [95], the aspects of collaborative VEs [192], the general state
of collaborative work in augmented reality [144], and remote assis-
tance and training in mixed reality environments in relation to what
components such scenarios are composed of [34]. These classifi-
cations and reviews focus essentially on the systems or aspects of
the collaboration instead of classifying the related tasks that people
work on using XR collaboration means.

The existing taxonomies and classifications of collaboration using
technologies on the XR spectrum provided insight into XR collabora-
tion with a focus on the individual tasks, and the different technical
features and aspects that relate to them. While this is beneficial,
those taxonomies and classifications do not elaborate comprehen-
sively on tasks across multiple realities. Through our taxonomy,
we narrow down the scope to human-to-human collaboration in or-
der to offer a comprehensive classification of the task actions and
properties that promote better collaboration between individuals.

3 METHODOLOGY

Through iterating over prior work, we noticed the presence of an
extensive collection of research work related to XR technology usage
for collaborative tasks. Accordingly, we crafted a taxonomy of
collaborative tasks that rely on XR-related interactive technologies,
which serves also as a classification that affords to categorize current
literature to comprehend different types of collaborative tasks using
interactive technologies and understand advancements, potential
improvement areas, and determine future work within the field. In
this section, we list the procedure and steps taken to curate an archive

of applicable publications used to create the taxonomy.

Before moving forward with gathering papers, we first created
a taxonomy amongst ourselves to create categories in which to
classify information obtained while reading each relevant paper.
This part of our methodology was loosely based on the process
used by Fagerholm et al. [28] in order to create a basis for our
classifications since no relevant task-based taxonomy existed in
the first place, as well as to create a starting point for the actual
taxonomy. This initial taxonomy was further modified after the
information extraction step in order to arrive at the final taxonomy
state. We note that the methodology used shares similar elements to
the one developed by Moher et al. [102].

To curate an archive of research work and publications to interpret
and analyze, we first conducted a systematic search in different rele-
vant digital libraries and repositories, which include IEEE Xplore,
ACM Digital Library, and Springer. In order to fine-tune our search
to obtain the most relevant results, we chose search keywords that in-
cluded ”collaboration”, ”collaboration Tasks”, ”Asynchronous Col-
laboration”, ”Synchronous Collaboration”, ”Collaboration Frame-
work”, ”Collaborative Interaction”, ”Collaborative Virtual Reality
Environment”, ”CVRE”, ”Virtual Reality”, ”Augmented Reality”,

”Mixed Reality”, and ”Extended Reality”.

We performed several search queries, yet for ease of result replica-
bility, we share the base query format we followed through a sample
query, where the Boolean ”AND” joins main terms, and ”OR” en-
ables the inclusion of either specified terms or synonyms surround-
ing it: ”Collaboration” AND ”Collaboration Task” AND (”Virtual
Reality” OR ”Augmented Reality” OR ”Mixed Reality” OR ”Ex-
tended Reality”). Moreover, we not only varied the keywords and
their order when querying, but we also used search queries where
the keywords had their initials lowercase, search queries where all
the keywords were uppercase, and also other queries where we used
keyword acronyms instead of full words. The searches in these
databases generated 800 to 6000 papers each.

After obtaining all these papers, we worked together to filter
the papers that would be irrelevant to the taxonomy. We initially
defined explicit criteria to determine the relevance of a paper to
decide whether it would be excluded or not, and we refined the
inclusion and exclusion (EX) criteria as the iteration process went
through. We excluded a paper if: (EX-1) The paper was not written
in English. (EX-2) The paper’s full-text could not be accessed.
(EX-3) The paper was a poster or a short paper or was not peer-
reviewed. (EX-4) The paper had no contribution relevant to the XR
collaboration field. (EX-5) The paper was not focused on human-
centered collaboration (i.e. robot centered collaboration, etc.).

In the second iteration, we read every paper’s title and abstract
and then excluded the paper if it was deemed as irrelevant to our
investigation, and we also used some exclusion criteria from the ones
listed above in the second iteration, and in case we had doubts, we
proceeded with exploring the remaining parts of the paper to make a
more justified and decisive choice regarding keeping or excluding
the paper. If the paper was to be excluded, yet had some slight
correlation with our topic or had an important impact in relation
to interactive technologies and their usage or just collaboration in
settings other than XR, we took extra notes about it to be reviewed
later if needed, yet it was still excluded. After this second filtering
round, our final corpus of relevant research papers from all the
research venues investigated consisted of 847 papers.

After obtaining a comprehensive set of relevant research papers,
we extracted and classified information based on the categories
of the pre-existing taxonomy. The classification components that
were gathered from each paper included basic paper components
such as Paper Title, Paper Link, Include Paper (Y/N), and the
other collaboration-related classification components include ac-
tions taken, information communicated, input and output com-
munication, entities and their roles/statuses, locomotion method,
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Figure 1: A taxonomy of human-to-human XR collaborative tasks.
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temporal state, physical and virtual location(s), physically or vir-
tually co-located, tasks, theory/model/framework, extra notes (if
any), measures collected, and potential research gap/limitations.

The reading of the 847 papers was done individually by each au-
thor and also through group discussions, and we took detailed notes
on each paper based on the pre-existing classifications. Emerging
patterns, key components of each paper, and key findings were as-
sessed continuously, and discussed by all the authors. Additionally,
if anyone of the authors had some remarks regarding the technology,
collaboration task, or content of the paper, an extra notes section
was available for each paper considering that those remarks could
influence the structure of the taxonomy. While reading each pa-
per, papers that still did not have relevance to the taxonomy were
discarded. The final pool of papers consisted of 148 papers.

The purpose of this taxonomy was to present a survey and com-
prehensive assessment of the collaboration tasks that involve XR
interactive technologies present in the literature. Our methodology
to build the taxonomy was set based on different methodologies for
taxonomies and surveys present in prior work. Additionally, during
the multiple filtering phases, we diligently and carefully selected pa-
pers to avoid redundant and low-impact references. Furthermore, we
collaboratively modified the taxonomy as the filtering and surveying
were ongoing, and relied on using Inter-Rater Reliability (IRR) [36]
to modify the structure of the taxonomy; as additional categories
were proposed to be added to the taxonomy, the authors used IRR to
add or discard them. We emphasized getting related work published
during the past two decades as older papers would not provide much
relevant insight to build a state-of-the-art taxonomy of collaborative
tasks in the context of our investigation.

We hope that other researchers that plan to expand on the taxon-
omy or use it will contribute to expanding the dataset and its content,
along with suggesting changes to the classification if present, and
overall maintain a dynamic discussion about collaborative tasks and
how our presented taxonomy can be updated especially when more
collaboration tasks are created and published. Our research ques-
tions are ”What specific actions can we classify XR collaborative
tasks under?” and ”What specific properties can we classify XR
collaborative tasks under?”

4 TAXONOMY ON HUMAN-CENTERED XR COLLABORATIVE
SCENARIOS

The taxonomy of human-centered collaboration in XR is divided
into two main components: Actions taken related to the task, and
the Properties of the collaborative task, in which we explain each
node in depth in the following subsections.

4.1 Actions
During any arbitrary task, individuals that participate in it and choose
to progress through it and reach some sort of outcome or goal,
achieve this by performing actions related to the task. To this end,
such actions can be classified under three main categories: Environ-
mental Engagement, Locomotion, and Communication.

4.1.1 Environmental Engagement
Environmental Engagement refers to the methods by which the
user can interact and modify the VE, which we classify into two
types: Active (e.g. object manipulation) and Passive (e.g. observing
the environment only)

Active environmental engagement is the interaction with objects
in the environment and its components. These manipulations can
be achieved through selection, manipulation, release, spawning,
destroying, and/or distortion.

Passive environmental engagement occurs when the individual
assumes a more passive role and is mostly an observer of the VE,
or when they are immersed in the VE and experiencing its con-
tent without direct input or active impact on the VE aspects and
components.

4.1.2 Navigation

Navigation is the process by which individuals navigate around an
environment. Navigation can be split into two components: Plan-
ning (where an individual determines a location where they want
to move) and Locomotion (where an individual moves to a desired
location). Locomotion can be further classified into three types:
Natural (e.g. walking), semi-natural (e.g. scaled walking), and
non-natural (e.g. use of joysticks).

4.1.3 Communication

Communication refers to the sharing of information between in-
dividuals. This can be classified as either Input or Output. Input
refers to the method used to send information to other individuals
(e.g. voice, hand gestures, etc.). Output communication refers to the
method used to receive and present information, which can either be
visual, auditory, haptic, etc.

4.2 Properties

Every task has some sort of collection of aspects that define the
nature of the task, from how individuals perform the task to where
the task is performed, among other details. As such, these aspects
or properties can be classified under multiple categories: Temporal,
Dependency, Location, Requirements, Individual, Environment,
Structure, and Intended Population.

4.2.1 Temporal State

Temporal state refers to when individuals are actively working on
a task, which can be classified as either Synchronous or Asyn-
chronous. Synchronous temporal state means that individuals are
actively working on a task together at the same time (simultane-
ously) while Asynchronous temporal state means that individuals
are actively working on a task at different times [120].

4.2.2 Dependency

Dependency refers to the reliance that a task has on other tasks,
which can be classified as either Dependent or Independent. Depen-
dent tasks are ones which are dependent on the outcomes of other
task(s), while independent tasks are ones which are not dependent
on the outcomes of other task(s).

4.2.3 Location

Location refers to the placement setting of individuals when per-
forming a task. Location can be partitioned into two main categories;
the physical location and the virtual location of the task.

The physical location refers to where individuals are located in
the real world. This can be further broken down into individuals
being distanced or co-located, and also into individuals having to be
in either a specific or arbitrary location.

The virtual location refers to where individuals are located in a
VE (if they happen to be in one). This can be further broken down
into individuals being either distanced or co-located virtually.

4.2.4 Requirements

Requirements are the specific qualifications or abilities that individ-
uals must possess to perform the task. This can be broken down into
two types of requirements: Knowledge and Physiological require-
ments.

Knowledge requirements refer to the intellect or experience that
an individual needs to complete a task. This can be further broken
down into two types: educational (e.g. knowing a specific subject or
topic in-depth) and social (being acquainted with a specific culture).

Physiological requirements refer to the physical capabilities that
an individual needs to complete a task (e.g. being able to walk, use
both hands, etc.)
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4.2.5 Individual
The individual participating in a task possesses properties of their
own in relation to the task. These properties are classified as the
individual’s Purpose and Role.

Purpose refers to what an individual is meant to do in regards to
a task. This is broken down into the individual either performing a
task or advising/instructing another individual to complete the task.

Role refers to the part that an individual plays in a task. Roles
can either be hierarchical (where individual(s) has/have authority
over others e.g. a mentor and mentee) or non-hierarchical (where
individuals have equal roles, e..g. peers working on a project).

4.2.6 Environment
Environment refers to the place where a task takes place. Every en-
vironment can be broken down into three elements: Space, Objects,
and Type.

Space refers to the area in which individuals are located. This
area can be classified as either Shared (individuals are in the same
area) or Different (individuals are not in the same area).

Objects include all the entities in the environment. Objects pos-
sess the elements of Fidelity and Activity Level. Fidelity refers to
the quality or exactness of an object compared to the real world. An
object’s fidelity can either be realistic or synthetic. Activity Level
refers to the degree to which an object can be manipulated in an en-
vironment. An object may either be static (stays constant throughout
a task and does not change), automated (meant to move or change
at some point during a task), or interactive (individuals can interact
with the object).

Type refers to where the environment exists on the mixed reality
spectrum. An environment’s type can either be virtual, augmented,
mixed, or real.

4.2.7 Structure
Structure is the order in which sub-tasks of a task must be completed.
Tasks can either be Ordered (sub-tasks must be completed in a
specific order to reach an intended goal) or Unordered (sub-tasks
may be completed in any order to accomplish an intended goal).

4.2.8 Intended Population
Intended Population refers to the specific group of individuals that
a task is meant to be performed by. Tasks can either have a General
intended population (e.g. anyone is able to participate in the task) or
a Special/Specific population (e.g. firefighters engaging in a training
task to prepare for actual fires).

5 RESULTS

In this section, we elaborate using our findings on each node in the
taxonomy. We show the classification of tasks from our corpus under
the nodes of the actual taxonomy (see Table 1). We note that while
we specify percentages for most nodes, they do not always add up
to one hundred percent, e.g. ordered and unordered task percentages
add up to 100% but synchronous and asynchronous do not; this is
because tasks can possess multiple qualities of a property/action.

5.1 Actions
5.1.1 Environmental Engagement
Active environmental engagement involves many specific actions
that can be carried out, which are detailed as manipulation (86.5%
of tasks) [24, 26], spawning (21.6% of tasks) [67, 140], destroying
(20.3% of tasks) [48, 60], distortion (11.5% of tasks) [29, 181],
selection (86.5% of tasks) [101, 122], and release (86.5% of tasks)
[104, 137]. However, not all objects necessarily go through the
process of selection, manipulation, and release. Some objects can
undergo only manipulation if they are indirectly manipulated by
other objects, e.g. a ball thrown by an individual hits and moves
another object when they collide.

Passive environmental engagement, on the other hand, involves a
more passive role and is mostly observance of the VE, or immersion
in the VE and experiencing its content without direct input or active
impact on the VE aspects and components (100% of tasks). Such
an action happens in every task as individuals retrieve information
from the environment to make decisions on what to do next, e.g.
being a mentee in a collaborative MR-based surgical procedure
would closely observe the state of the patient to perform the surgery
successfully [43, 155, 156, 161].

5.1.2 Navigation
Navigation allows users to interact, explore, move, and be spatially
present in the VE, such that in several collaborative tasks it facilitates
moving through multiple environments, searching for critical objects
or information, and coordinating with others in the VE to complete
tasks, etc. [87]

Our paper corpus is classified under the three classifications ac-
cordingly: Natural (e.g. walking, 57.4% of tasks) [38, 131], Semi-
Natural (e.g. scaled walking, 4.1% of tasks) [38, 111, 150], and
Non-Natural (e.g. joysticks, 6.8% of tasks) [37, 42]

We note that some prior work did not describe the locomotion
method used for their task, or simply did not have any, such that the
task individuals remained stationary or had very minimal locomotion.
Accordingly, we found walking to be the most predominant form
of locomotion, as many tasks involved augmented or mixed reality
and were more so focused on the development of other actions to
complete tasks (such as manipulations) rather than locomotion.

It should be noted that during our initial review of our paper
corpus, we had considered placing Navigation as a sub-node un-
der Passive Environmental Engagement. As traversing through an
environment of any reality medium could fall within Environment
Observation, there are some nuances that warrant its respective
node and sub-nodes. For example, planning the route of traversal is
Passive Environmental Engagement while Locomotion may lead to
Active Environmental Engagement should the participants interact
with objects during their task(s),

5.1.3 Communication
Communication allows the sharing of information and feedback be-
tween the individuals participating in the collaborative task (94.6%
of tasks) [54, 56, 70, 164, 190]. Additionally, communication pro-
motes better teamwork, productivity, collaborative learning and
problem-solving, and coordination, which drives reaching set com-
mon end goals through collaboration. We classify communication
as an action composed of two main elements: Input and Output
Information. Input Information refers to the various methods the
communication initiator or sender uses to send information to others,
which include voice, hand gestures, visual feedback, text, media, etc..
On the other hand, Output Information refers to how the informa-
tion sent is then received and presented to the receiver, which can be
visual, auditory, haptic, etc..

5.2 Properties
5.2.1 Temporal State
Synchronous tasks tend to rely on real-time interaction and problem-
solving, active engagement, live feedback, communication, and
coordination between individuals [78, 165, 188] (98% of tasks).
Conversely, Asynchronous tasks allow the individuals partaking in
it to work without synchronous and simultaneous engagement and
presence, which potentially allows for more flexibility for complet-
ing tasks since individuals are able to actively work in their own
time. [21, 60, 159] (5.4% of tasks). Many tasks can be performed
both synchronously and asynchronously (e.g. working on a shared
text document), which extends tasks efficiency, especially if a task
that users cannot perform simultaneously at a particular moment can
be completed in parallel at different times.
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5.2.2 Dependency
If a participant’s task success and completion depends on the output
and or completion of another task or multiple others, we classify
it as Dependent (54.7% of tasks) [73, 81, 92]. Such tasks tend to
rely on synchronization, communication, and clear planning and
coordination amongst individuals with the aim of reaching the ex-
pected goals without delays or increased wait times for the tasks that
follow. On the other hand, other collaborative tasks can be achieved
irrespective of other tasks without heavy reliance on the outcome or
completion of other tasks, such tasks are classified as Independent
(45.3% of tasks) [76,80,118], and they tend to afford more room for
individual autonomy and contribution.

After reviewing our paper corpus, we discovered that many vari-
ous papers whose tasks which were Dependent in nature also pos-
sessed the Synchronous property. As participants were interacting
in real-time with each other, the overall task completion required
various exchanges of outputs from other tasks.

5.2.3 Location
In terms of Physical Reality, every individual exists in a discrete
space in the real, physical world in which they perform any task; in
that case, the task can either be conducted in an arbitrary physical
location (e.g. at one’s home) (95.9% of tasks) [26, 183, 186] or
may require being in a specific location (e.g. a lab room or training
facility) (4.1% of tasks) [12, 182]. Moreover, when individuals
are collaborating, regardless of who is in a VR setting or not, the
individual(s) can be either in the same physical area (60.1% of
tasks) [2, 14] or at different physical locations (45.3% of tasks) [42,
74].

In contrast, for Virtual Reality, if there are multiple individuals
located and immersed in a VE where the collaborative task is oc-
curring, if the entities partaking in the collaboration are located in
the same VE, this qualified as co-located (49.3% of tasks) [46, 141].
However, in the case where those entities are placed in different VEs,
or in the same VE but at different locations in it, in that case, the
location is qualified as distanced [21, 85] (15.1% of tasks).

5.2.4 Requirements
In many cases, individuals may have to possess specific skills or
abilities in order to complete certain tasks, else they may have dif-
ficulty or even the inability to complete the task. Thus, this is why
we sought to classify such requirements based of if they are Physi-
ological (47.3% of tasks) [177, 188] or Knowledge-Based (13.5%
of tasks) [19, 115]. Physiological requirements can be associated
heavily with natural and semi-natural locomotion techniques since
individuals would have to perform some form of bodily movement
to locomote; this means that they must have the physiological capa-
bility to do this.

5.2.5 Individual
Hierarchical Roles represent roles where specific knowledge or lead-
ership initiatives are required such that having these roles promotes
better collaborative guidance between individuals, better structure,
and chain of command, which can ensure the provision of enough
task guidance to others, clear accountability, and appropriate allo-
cation of responsibilities (52% of tasks) [115, 121, 152]. On the
other hand, Non-Hierarchical Roles consist of roles attributed to
individuals such that they are not distinguishable by the amount
of responsibility, authority, or power one has compared to others
(62.2% of tasks) [63, 108, 177].

5.2.6 Environment
Objects in the environment have a certain level of detail, which
especially depends on whether it is real or virtual and what kind
of purpose it serves. By this logic, we classify objects as having a
Fidelity that is either more realistic (43.9% of tasks) [123, 169] or

more synthetic/virtual [47, 111] (100% of tasks), and also having an
Activity Level related to the amount of interaction a specific object
would undergo, with it either being static (100% of tasks) [135,145],
automated, or interactive (84.5% of tasks) [162,187] to some degree.

The environment where the task takes place exists on some part of
the mixed reality spectrum, and the tasks involving multiple places
may necessitate environments that belong to multiple parts of the
mixed reality spectrum [58,103]. For example, the task might require
an environment place that is AR based only, and require another
environment that is VR based. Thus, we classify the environment
Type as being either Virtual (57.4% of tasks) [58, 76], Augmented
(27% of tasks) [141, 175], Mixed (17.6% of tasks) [5, 158], or Real
(22.3% of tasks) [11, 158].

It should be noted that for VE types, individuals would only be
classified as virtually co-located or distanced if multiple individuals
are in a VE. For example, if there is a task with one individual in
VR and the other in AR, there would be no question of whether
individuals are virtually co-located or distanced.

5.2.7 Structure
In a collaborative endeavor, some tasks can follow a certain structure
whereas others can be executed without following a pre-defined
or set structure. This dissimilarity in the type of structure of col-
laborative tasks brings about a classification of Ordered (62.2%
of tasks) [49, 121] and Unordered (37.8% of tasks) [66, 68] tasks
structures.

It is worth mentioning that collaborative tasks that possess the
Ordered property may have their individual sub-tasks be Unordered.
This means that the sub-tasks can be completed in any order, but
progressing through the order of the broader task requires that all of
those are to be completed.

5.2.8 Intended Population
We classify the intended population in collaborative tasks as the
group of people that the task is aimed toward, either General (83.1%
of tasks) or Specific/Special (16.9% of tasks). If the task can be
executed by any type of individual(s), then the intended population
is general [107, 122]. On the other hand, if the task has specific
requirements, for example, a task designed to help enhance learning
in elementary school teaching, in that case, the intended population
is specific and mainly relates to elementary school students and
teachers [35, 48].

6 DISCUSSION

While existing taxonomies within the collaborative space encompass
the various environment types (Virtual, Augmented, Mixed, and
Real) individually, they do not consider categorizing them in a
comprehensive manner. In our taxonomy, we made sure that we
are able to provide classification for tasks under the whole mixed
reality spectrum. Moreover, to ensure that we have made a valid
classification system for any given human-to-human collaborative
task, we focused on first defining the two larger aspects (actions
and properties) for which we can create sub-nodes that can branch
further in the specification.

One of the purposes served by utilizing the taxonomy is to high-
light the clarity regarding the characterization of collaborative tasks.
In addition, the proposed taxonomy provides a solid foundation to
structure different elements in regard to conducting research within
this space. Being able to dissect the different elements of a collabo-
rative task, would help with clarity, foster future reproductions of
the research conducted, and transfer novel discoveries. With col-
laborative tasks entailing high levels of contextual data and through
different reality perspectives, it is imperative that there should be
guidelines and metrics used to classify both the main task and its
sub-components. Thus, the evaluation of collaborative task charac-
teristics would be effectively facilitated through our taxonomy. We
note that our proposed taxonomy is not meant to be definitive, but
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Action ⇒ Environmental Engagement ⇒ Active ⇒ Manipula-
tion

[1–3, 5, 7–12, 14–16, 20, 22–24, 26, 27, 29, 31, 33, 35, 37–39, 41, 42, 44–49, 51–55, 57–59, 61, 62, 62, 64–68, 70, 74–76,
78–83, 85, 90, 92, 94, 96, 98, 99, 101, 104, 106, 108, 109, 111, 112, 115–118, 121–124, 131–134, 137, 139–143, 147–150,
153–159, 161, 162, 164–171, 173–176, 178, 179, 181–188, 190]

Action ⇒ Environmental Engagement ⇒ Active ⇒ Spawn [11, 19, 24, 38, 42, 46, 48, 49, 60, 67, 68, 79, 83, 99, 109, 110, 112, 140, 143, 150, 156, 158, 159, 165, 168, 169, 182–185,
188, 190]

Action ⇒ Environmental Engagement ⇒ Active ⇒ Release [1–3, 5, 7–12, 14–16, 20, 22–24, 26, 27, 29, 31, 33, 35, 37–39, 41, 42, 44–49, 51–55, 57–59, 61, 62, 62, 64–68, 70, 74–76,
78–83, 85, 90, 92, 94, 96, 98, 99, 101, 104, 106, 108, 109, 111, 112, 115–118, 121–124, 131–134, 137, 139–143, 147–150,
153–159, 161, 162, 164–171, 173–176, 178, 179, 181–188, 190]

Action ⇒ Environmental Engagement ⇒ Active ⇒ Destroy [11,19,24,38,42,46,48,49,60,67,69,79,83,99,109,110,112,140,143,156,158,159,165,168,169,183–185,188,190]

Action ⇒ Environmental Engagement ⇒ Active ⇒ Distort [14, 20, 29, 39, 46, 48, 52–54, 67, 82, 99, 115, 130, 152, 181, 188]

Action ⇒ Environmental Engagement ⇒ Active ⇒ Select [1–3, 5, 7–12, 14–16, 20, 22–24, 26, 27, 29, 31, 33, 35, 37–39, 41, 42, 44–49, 51–55, 57–59, 61, 62, 62, 64–68, 70, 74–76,
78–83, 85, 90, 92, 94, 96, 98, 99, 101, 104, 106, 108, 109, 111, 112, 115–118, 121–124, 131–134, 137, 139–143, 147–150,
153–159, 161, 162, 164–171, 173–176, 178, 179, 181–188, 190]

Action ⇒ Environmental Engagement ⇒ Passive ⇒ Environ-
ment Observation

[1–3, 5–12, 14–16, 19–24, 26, 27, 29, 31, 33, 35, 37–39, 41, 42, 44–49, 51–62, 62–70, 72–76, 78–83, 85, 89–92, 94, 96,
98, 99, 101, 103, 104, 106–112, 115–118, 121–124, 130–135, 137, 139–143, 145, 147–150, 152–159, 161, 162, 164–171,
173–188, 190]

Action ⇒ Navigation ⇒ Locomotion ⇒ Natural [2, 3, 5, 7, 9, 11, 12, 14, 15, 19, 21–24, 26, 31, 38, 39, 41, 42, 46, 48, 52, 55, 56, 58, 60, 62, 62, 65, 70, 73–75, 80–83, 85, 89,
90, 92, 94, 101, 103, 104, 107–109, 115–117, 121–124, 130–132, 137, 139, 142, 143, 145, 153, 155–159, 161, 165–167,
169, 170, 174, 177–179, 182, 184–186, 190]

Action ⇒ Navigation ⇒ Locomotion ⇒ Semi-Natural [38, 61, 70, 111, 150, 177]

Action ⇒ Navigation ⇒ Locomotion ⇒ Non-Natural [12, 37, 38, 42, 83, 94, 122, 157, 177, 183]

Action ⇒ Communication ⇒ Input and Output [1–3, 5–9, 11, 12, 14–16, 19–24, 26, 27, 29, 31, 33, 35, 37, 39, 41, 42, 44–49, 51–57, 59, 61, 62, 62–70, 72–76, 78–83, 85,
89–92, 94, 96, 98, 99, 101, 103, 106–112, 115–118, 121, 123, 124, 130–135, 139–143, 145, 147–150, 152–159, 161, 162,
164–171, 173–181, 183–188, 190]

Properties ⇒ Temporal ⇒ Synchronous [1–3, 5–12, 14–16, 19–24, 26, 27, 29, 31, 33, 35, 37–39, 41, 42, 44–49, 51–59, 61, 62, 62–70, 72–76, 78–83, 85, 89–92,
94, 96, 99, 101, 103, 104, 106–109, 111, 112, 115–118, 121–124, 130–135, 137, 139–143, 145, 147–150, 152–159, 161,
162, 164–171, 173, 174, 176–185, 185–188, 190]

Properties ⇒ Temporal ⇒ Asynchronous [21, 39, 60, 98, 110, 159, 175, 182]

Properties ⇒ Dependency ⇒ Dependent [1, 5–8, 12, 14–16, 20, 22, 23, 29, 31, 39, 41, 44–46, 48, 51, 52, 57, 59, 64–66, 70, 72, 73, 79, 81, 82, 89, 90, 92, 96, 99, 101,
104, 106, 107, 110, 112, 115, 117, 121, 123, 131–135, 137, 141–143, 147–150, 152–154, 158, 159, 161, 164, 165, 167,
169, 170, 173, 175, 176, 179, 181, 182, 184, 185, 188]

Properties ⇒ Dependency ⇒ Independent [2,3,9–11,19,21,24,26,27,33,35,37,38,42,47,49,53–56,58,60–62,62,63,67–69,74–76,78,80,83,85,91,94,98,103,
108,109,111,116,118,122,124,130,139,140,145,155–157,162,166,168,171,174,177,178,180,183,186,187,190]

Properties ⇒ Location ⇒ Virtual Reality ⇒ Distanced [21, 31, 33, 39, 42, 81, 82, 85, 89, 90, 98, 103, 110, 124, 139, 145, 150, 159, 175, 176]

Properties ⇒ Location ⇒ Virtual Reality ⇒ Co-Located [2, 6–8, 10, 12, 15, 19, 22–24, 26, 27, 29, 37–39, 41, 45–47, 52–54, 56, 57, 62, 62–64, 66, 67, 69, 70, 72, 75, 76, 83, 92, 94,
96, 99, 101, 103, 104, 106, 107, 109, 111, 112, 115–117, 121, 122, 131–134, 137, 141, 147, 157, 161, 166, 167, 171, 177,
179, 183, 186, 187, 190]

Properties ⇒ Location ⇒ Physical Reality ⇒ Distanced [1, 5, 9, 12, 16, 22, 23, 26, 33, 35, 39, 42, 44, 48, 49, 51, 57, 59, 62, 62, 65, 66, 68, 69, 72–76, 79–81, 85, 90, 92, 94, 98, 99,
103, 106, 110–112, 123, 124, 133–135, 143, 145, 147, 148, 150, 152, 153, 155–158, 162, 165, 169, 173, 182, 185–187]

Properties ⇒ Location ⇒ Physical Reality ⇒ Co-Located [2, 3, 5–8, 11, 12, 14, 15, 19–22, 24, 27, 29, 31, 37–39, 41, 45–47, 52–56, 58, 60–64, 67, 70, 78, 82, 83, 89, 91, 94, 96, 101,
103, 107–109, 115–118, 121, 122, 130–133, 137, 139–142, 149, 150, 154, 159, 161, 164, 166–168, 170, 171, 174–181,
183, 184, 187, 188, 190]

Properties ⇒ Location ⇒ Physical Reality ⇒ Arbitrary [1–3, 5–11, 14–16, 19–24, 26, 27, 29, 33, 35, 37–39, 41, 42, 44–49, 51–59, 61, 62, 62–70, 72–76, 78–83, 85, 89–92, 94,
96, 98, 99, 101, 103, 104, 106, 108–112, 115–118, 121–124, 130–135, 137, 139–143, 145, 147–150, 152–159, 161, 162,
164–171, 173–175, 177–181, 183–188, 190]

Properties ⇒ Location ⇒ Physical Reality ⇒ Specific [12, 31, 60, 107, 176, 182]

Properties ⇒ Requirements ⇒ Knowledge [1, 12, 19, 22, 23, 35, 39, 48, 60, 63, 67, 82, 99, 106, 107, 115, 171, 175, 176, 188]

Properties ⇒ Requirements ⇒ Physiological [2,5,9,11,12,14,19,21,24,29,33,35,38,39,41,42,47,49,58,60,62,65,69,73,75,76,79–81,83,85,89,101,103,106,107,
109,112,116,123,124,130–132,140,141,143,145,150,155–159,161,168,169,174,175,177–182,184–186,188,190]

Properties ⇒ Individual ⇒ Role ⇒ Hierarchical [1,2,5,7,9–12,15,19,23,26,37,41,42,44,48,49,53,54,58,59,61,62,62,65,68,73–75,78–81,89,90,94,98,101,106–
112,115,121,123,124,134,135,139,141,143,145,148–150,152–158,161,162,164,165,167–169,173,178,185,188]

Properties ⇒ Individual ⇒ Role ⇒ Non-Hierarchical [3,3,6,8,14,16,19–22,24,27,29,31,33,35,38,39,41,45–47,51,52,52–57,57,60,63,64,66,67,69,69,70,72,76,82,
83, 85, 91, 92, 96, 99, 103, 104, 106–108, 111, 112, 115–117, 117, 118, 122, 130–133, 137, 140–142, 147, 153, 157, 159,
166, 167, 170, 170, 171, 174, 176, 177, 179, 180, 180–187, 190]

Properties ⇒ Environment ⇒ Objects ⇒ Fidelity ⇒ Realistic [1, 5, 9, 11, 16, 19, 42, 44, 46, 48, 49, 55, 56, 58–60, 65, 68, 73–76, 78–82, 96, 98, 103, 107, 108, 110, 117, 118, 121–123,
130, 140–143, 145, 148, 152–156, 158, 159, 161, 165, 169–171, 173–175, 179, 182, 184, 185, 188]

Properties ⇒ Environment ⇒ Objects ⇒ Fidelity ⇒ Synthetic [1–3, 5–12, 14–16, 19–24, 26, 27, 29, 31, 33, 35, 37–39, 41, 42, 44–49, 51–62, 62–70, 72–76, 78–83, 85, 89–92, 94, 96,
98, 99, 101, 103, 104, 106–112, 115–118, 121–124, 130–135, 137, 139–143, 145, 147–150, 152–159, 161, 162, 164–171,
173–188, 190]

Properties ⇒ Environment ⇒ Objects ⇒ Activity Level ⇒
Static

[1–3, 5–12, 14–16, 19–24, 26, 27, 29, 31, 33, 35, 37–39, 41, 42, 44–49, 51–62, 62–70, 72–76, 78–83, 85, 89–92, 94, 96,
98, 99, 101, 103, 104, 106–112, 115–118, 121–124, 130–135, 137, 139–143, 145, 147–150, 152–159, 161, 162, 164–171,
173–188, 190]

Properties ⇒ Environment ⇒ Objects ⇒ Activity Level ⇒
Interactive

[1–3, 5, 7–12, 14–16, 20, 22, 24, 26, 27, 29, 31, 33, 35, 37–39, 41, 42, 44–49, 51–55, 58, 59, 61, 62, 62, 64–68, 70, 74–76,
78–83, 85, 90, 92, 94, 96, 98, 99, 101, 104, 106, 108, 109, 111, 112, 115, 116, 118, 121–124, 131–134, 137, 139–143, 147–
150, 153–159, 161, 162, 164–171, 173–176, 178, 179, 181–188, 190]

Properties ⇒ Environment ⇒ Type ⇒ Virtual [1, 2, 6–8, 10, 12, 15, 19, 21–24, 26, 27, 29, 35, 37–39, 41, 45, 47, 52–54, 56–58, 62, 62–64, 66, 67, 69, 70, 72, 76, 78, 82,
83,85,89–92,94,96,99,101,103,104,106,109,111,112,116,117,124,131,132,134,137,139,145,147,149,150,154,
157, 159, 162, 164, 166, 167, 171, 176–179, 183, 186, 187, 190]

Properties ⇒ Environment ⇒ Type ⇒ Augmented [1, 3, 14–16, 19, 49, 55, 56, 58–61, 65, 68, 73, 75, 80, 103, 107, 110, 118, 123, 140–143, 145, 148, 150, 152, 153, 165, 168,
170, 174, 175, 182, 184, 188]

Properties ⇒ Environment ⇒ Type ⇒ Mixed [1, 5, 9, 11, 23, 42, 44, 48, 68, 74, 79, 81, 82, 121, 122, 154–156, 158, 159, 161, 169, 173, 174, 185, 185]

Properties ⇒ Environment ⇒ Type ⇒ Real [1, 3, 5, 9, 11, 14–16, 37, 42, 61, 65, 68, 73, 74, 78, 79, 96, 103, 109, 123, 142, 143, 153, 154, 158, 168, 170, 174, 179, 182,
184, 185]

Properties ⇒ Structure ⇒ Ordered [1, 5–9, 12, 15, 21–24, 27, 29, 31, 33, 35, 37–39, 41, 42, 47, 49, 51–54, 56, 58–60, 63–65, 70, 72, 73, 75, 76, 79, 83, 85, 90,
92, 94, 96, 101, 103, 104, 106, 108–112, 116–118, 121–124, 131, 132, 137, 140, 142, 143, 145, 147, 149, 150, 153, 155–
157, 159, 164, 166, 167, 169, 170, 176–179, 183, 185–187, 190]

Properties ⇒ Structure ⇒ Unordered [2, 3, 10, 11, 14, 16, 19, 20, 26, 44–46, 48, 55, 57, 61, 62, 62, 66–69, 74, 78, 80–82, 89, 91, 98, 99, 115, 130, 133–135, 139,
141, 148, 152, 154, 158, 161, 162, 165, 168, 171, 173–175, 180–182, 184, 185, 188]

Properties ⇒ Intended Population ⇒ Specific/Special [1, 2, 5, 6, 12, 16, 19, 22, 23, 31, 35, 39, 48, 53, 54, 67, 99, 115, 118, 130, 166, 176, 180, 181, 188]

Properties ⇒ Intended Population ⇒ General [3, 7–11, 14, 15, 20, 21, 24, 26, 27, 29, 33, 37, 38, 41, 42, 44–47, 49, 51, 52, 55–62, 62–66, 68–70, 72–76, 78–83, 85, 89–
92, 94, 96, 98, 101, 103, 104, 106–112, 116, 117, 121–124, 131–135, 137, 139–143, 145, 147–150, 152–159, 161, 162,
164, 165, 167–171, 173–175, 177–179, 182–187, 190]

Table 1: Full classification of collaborative tasks from our paper corpus under nodes of the taxonomy.
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rather a milestone in the categorization efforts of collaborative tasks
among all environment types and to fill in a gap in the literature in
terms of the classification of collaborative tasks in the XR spectrum.
Further elaboration, expansion, and refining by the community are
welcomed in order to take full advantage of what we have proposed.

Our taxonomy can still benefit from being developed based on
collaborative tasks using interactive XR that can be obtained through
marketed apps and other non-scholarly sources. Furthermore, we
emphasize that our goal in this work was to provide a meaningful,
valuable, and comprehensive assessment and structure to better un-
derstand the field of human-centered XR collaborative tasks. Thus,
the core insights and relations established through our taxonomy
remain insightful and valuable as a representation of what is estab-
lished in the field even if potential minor variations to the taxonomy
can emerge if dissimilar assessment criteria are used.

In order to use the taxonomy provided, the main step that must
be followed is to remember that every arbitrary task that is to be
classified under the taxonomy will always have actions and proper-
ties, so tasks will always possess attributes from subnodes of both
actions and properties. After considering this step, classification is a
matter of asking the question of if the task qualifies of possessing
the attribute of the subnode in question. This is demonstrated in
Table 1, which shows the classifications of papers into most nodes
on the taxonomy itself.

6.1 Limitations and Future Work
This taxonomy focused solely on human-to-human collaboration,
without considering other entities such as machines or animals. Con-
sequently, future research should consider incorporating such entities
in future classifications of collaborative tasks. Another type of clas-
sification that is worth mentioning for the future is that of the types
of systems or software/hardware that tasks require, which might
reduce some ambiguity in terms of the types of technologies that
an arbitrary task would normally require (e.g. if the task was AR-
based, it may use either a head-mounted display or a smartphone,
or even be applicable to both). Additionally, to maximize the usage
and value of our taxonomy to the research community, we plan to
evaluate uncommon features of collaborative task properties, for
example, graphics dependency, the degree/possibility of the task
being executed by individuals outside the specified population for
the task, and the possibility of the task to be executed across different
devices/XR technologies, and so on.

It is also worth mentioning that the initial collection of research
papers required using a different set of keywords by our authors
for optimized results, and we suspect that if new combinations of
keywords were used, different results could have been obtained.
Thus, keyword selection in order to conduct literature reviews is
of essential matter for future investigations to reduce initial biases
even if minimal, and future investigations could consider producing
standards for keyword selection.

Furthermore, classifications for automated objects and indirect
manipulation were not displayed in Table 1 as these attributes existed
subtly in many papers and were ambiguously talked about; therefore,
it was difficult to pinpoint an exact number of papers that existed for
these classifications and thus they were excluded. Classifications for
shared and different environments were also excluded from the table
as they are inferred by co-location either virtually or physically.

It should also be noted that there is some degree of subjectivity to
how every individual would classify a task for some nodes on the
taxonomy, and as such there would be instances of disagreeability
for some classifications among individuals.

6.2 Under-Researched Areas
Important advancements were made in collaborative XR. However,
there are research directions in this field that could use more attention
based on our observations while synthesizing task information for

the constructed taxonomy from the paper corpus we went through,
which could improve the overall quality of XR collaboration.

6.2.1 Asynchronous Tasks
As described before, tasks can either be classified as synchronous
or asynchronous, or even both. However, most tasks observed were
synchronous, with only 5.4% of all papers being partially or fully
asynchronous. Asynchronous tasks can be particularly useful in sce-
narios where individuals have difficulty in working simultaneously
e.g. being in different time zones or having to work on a separate
subtask. Asynchronous capabilities would provide solutions to these
cases, with work being done in this area helping to identify which
practices would best improve XR collaboration overall.

6.2.2 Navigation
Navigation is a primitive action that any individual undertakes in
numerous tasks, with over 50% of all tasks encountered in the cor-
pus having some sort of navigation. Even though navigation widely
exists in collaborative scenarios, not much research has been con-
ducted to investigate the use of navigation in these tasks, especially
locomotion techniques, as only 2 of the papers in our corpus directly
investigated navigation techniques. Expansion on the use of various
navigation techniques, especially natural ones, in these scenarios
would be useful as they would allow people to navigate with more
ease, especially with the arbitrary nature that a task may be of.

6.2.3 Communication Output
Communication is the method of transferring information between
entities, and humans can receive that information through multiple
senses; sight, hearing, touch, taste, and smell. While visual and
auditory output channels of information reception are very com-
mon for receiving information in XR collaboration and have been
researched extensively, other methods (haptic, olfactory, gustatory)
are not as common; few papers used haptics to deliver information
to individuals, and only one paper investigated the use of a gusta-
tory interface for communication, but as an input method. These
lesser-used methods of communication output have the potential to
provide information to individuals in a subtle and even natural way
in addition to the more commonly used senses, which can increase
the collaborative capabilities of individuals.

7 CONCLUSION

Through this work, we created a taxonomy of collaborative tasks in
the realm of XR technologies. Our taxonomy serves as an illustration
of the main components of collaborative tasks based on the actions
taken when performing the task, and the properties of each task.
The taxonomy we present is the outcome of a thorough literature
review, classification, and thematic analysis of the research work
on XR collaboration. Our dataset of papers analyzed was gathered
from principal research venues, while not necessarily complete, it
has permitted us to expand beyond what is already known about
collaborative tasks by producing a comprehensive collaboration
taxonomy across the mixed reality spectrum.

We hope that our research work will contribute to advancing
research efforts on the intersection of collaboration and interactive
technologies. Our taxonomy can be extended to future investigations,
and additional classifications and strategies could be extracted based
on our methodology and later be applied to different datasets, or
after adding newer papers to our existing dataset, or even to uncover
and reach other goals expected from collaboration.
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