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ABSTRACT 
Gesture recognition systems using nearest neighbor pattern match-
ing are able to distinguish gesture from non-gesture actions by 
rejecting input whose recognition scores are poor. However, in the 
context of gesture customization, where training data is sparse, 
learning a tight rejection threshold that maximizes accuracy in 
the presence of continuous high activity (HA) data is a challeng-
ing problem. To this end, we present the Voight-Kampf Machine 
(VKM), a novel approach for rejection threshold selection. VKM 
uses new synthetic data techniques to select an initial threshold 
that the system thereafter adjusts based on the training set size and 
expected gesture production variability. We pair VKM with a state-
of-the-art custom gesture segmenter and recognizer to evaluate our 
system across several HA datasets, where gestures are interleaved 
with non-gesture actions. Compared to alternative rejection thresh-
old selection techniques, we show that our approach is the only 
one that consistently achieves high performance. 

CCS CONCEPTS 
• Human-centered computing → Gestural input; User inter-
face programming. 
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1 INTRODUCTION 
Gesture interactions have become an integral part of user inter-
face (UI) design, and, as such, researchers have put considerable 
efort into gesture analysis, design, synthesis, and recognition. One 
particularly useful branch of research focuses on customization, 
where end users, including designers and developers, are able to 
specify gestures by example [39]. In this way, one may train their 
system to activate software functions using motion patterns that 
are personal and memorable [34]. To accommodate both customiza-
tion and UI research, the community has developed a slew of light 
weight recognizers [2, 13, 23, 26, 44, 46, 48, 52, 53, 55, 57] referred 
to as the $-family and extended $-family. These recognizers col-
lectively emphasize simplicity and straightforwardness in a way 
that does not sacrifce performance but promotes and facilities 
adaptability. For these reasons, $-family recognizers have become 
exceedingly popular1. In another line of research, given that rec-
ognizer performance generally improves with the training set size, 
researchers have explored data augmentation through synthesis to 
overcome the minimal data problem associated with customization. 
Techniques using the kinematic theory of rapid human movement 
[25] and gesture path stochastic resampling [42] have been success-
fully applied to this problem. The community has also investigated 
recognition acceleration techniques [15, 16, 38, 50], data collection 
protocols [40], and, recently, continuous custom gesture recogni-
tion. Machete [43], for example, is a device agnostic segmenter 
that is able to identify candidate gestures in a continuous stream 
of input. Despite these advances, an area of inquiry that remains 
relatively unexplored is that of rejecting malformed gestures and 
non-gesture input patterns, which is the main issue we address in 
this work. 

The recognition techniques described above primarily use near-
est neighbor pattern matching, which is to say that a recognizer 
measures the (dis)similarity of a query sample against all template 
samples previously demonstrated by a user. The query-template 
pair that yields the best score is then said to belong to the same 
gesture class, and the query is therefore assigned the template’s 
gesture class label. One problem with this approach is that not all 
queries are gestures. This is especially apparent with continuous 
gesture recognition where the system must continuously decide 
with each new input device sample whether or not the user has 

1See, for example, https://depts.washington.edu/acelab/proj/dollar/impact.html 

https://doi.org/10.1145/3491102.3502000
https://doi.org/10.1145/3491102.3502000
https://depts.washington.edu/acelab/proj/dollar/impact.html
mailto:jjl@cs.ucf.edu
mailto:maslychm@knights.ucf.edu
mailto:permissions@acm.org
mailto:ryanghamandi1@gmail.com
mailto:etaranta@gmail.com


CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Taranta, et al. 

gesticulated. In such systems, one may accept or reject a candidate 
gesture depending on its recognition score. Selecting a suitable 
rejection threshold, however, is problematic for several reasons. 

First, it is difcult to estimate the within and between class score 
distributions with the amount of training data provided in cus-
tomization context. Progress has been made by using synthetic 
data to estimate score distributions [44], though, as we later dis-
cuss, current techniques do not yield tight thresholds. In situations 
dealing with high activity data, where gestural interactions are 
interleaved with non-gesture actions, loose boundaries can lead 
to high false positive rates and degrade user experience [21]. Sec-
ond, the optimal threshold depends, in part, on the training set 
size. With an infnite number of training samples, one could use 
an arbitrarily tight threshold, whereas, with only a single training 
sample, one must allow samples further away from the template to 
be matched. Third, Taranta et al. [40] recently showed that gesture 
production variability is application-dependent, even for the same 
gesture set using the same input device. As such, a threshold that is 
appropriate in one scenario may yield too many false negatives in 
another. Fourth, a threshold selection technique that works well for 
2D data may not work well for 3D data. Given that 3D interactions 
have become increasingly mainstream through advancements in 
AR and VR, for example, it has become ever more important that 
gesture customization techniques are cross-platform compatible. 
The Voight-Kampf Machine (VKM) is a new rejection threshold 
selection technique that begins to address these issues. VKM uses 
synthetic data to generate score distributions from which it selects 
an initial rejection threshold. VKM then uses simulation based on 
the training set size and expected gesture production variability 
to adjust the threshold. Further, in this work we focus specifcally 
on rejection threshold selection for continuous high-activity data 
where gesture candidates are evaluated using nearest neighbor 
pattern matching. 

As such, the main contribution of this paper is a new device 
agnostic rejection threshold selection technique for continuous 
data that includes the following novel features: 

• A new negative synthetic data generation method called 
Mincer for generating samples closer to the gesture boundary 
than prior techniques, 

• A method for selecting a rejection threshold based on applica-
tion-dependent gesture production variability, and 

• A threshold adjustment strategy based on the training set 
size. 

We frst evaluate VKM by employing a state-of-the-art device ag-
nostic segmenter (Machete) [43] and recognizer (Jackknife) [44] 
over high-activity data. The system is trained with custom ges-
tures and then put to the task of recognizing a series of gestures 
embedded within a stream of constant non-gesture motion. We 
compare our results against an oracle rejection-threshold selec-
tion system and several alternative rejection threshold selection 
techniques. Our fndings reveal that VKM is the only technique 
that achieves near optimal performance across all four input de-
vice types tested. In a second evaluation, we further compare our 

system against other state-other-art continuous gesture recogni-
tion approaches and show that VKM (with Machete and Jack-
knife) similarly outperforms its competition, thereby demonstrat-
ing that VKM is a powerful threshold selection solution. Source 
code, pseudocode, and additional information can be found at 
https://www.eecs.ucf.edu/isuelab/research/vkm/. 

2 RELATED WORK 
Our approach to rejection threshold selection is informed by several 
related areas of investigation, each of which we discuss throughout 
this section. 

2.1 Gesture Customization 
An early example of custom gesture recognition in HCI is Rubine’s 
use of linear discriminate analysis over trivial stroke features, such 
as the bounding box diagonal length, stroke duration, and total 
angle traversed, among others [39]. Although the method was pop-
ular, it still required large quantities of data to perform well and 
was inaccessible to non-expert user interface designers who aspired 
to integrate gesture recognition into their prototype software. Both 
problems were addressed when Wobbrock et al. [57] introduced 
their $1 recognizer, a method that employed straightforward nor-
malization techniques with nearest neighbor pattern matching. The 
success of $1 launched a branch of research into the suite of now 
widely used $-family and $-family like recognizers. A few examples 
include $N [1] for multi-stroke gestures; $P [53] and $P+ [52] for 
articulation invariant recognition; protractor [26], Penny Pincher 
[46], and $Q [55] for speed; and 1¢ [13], $3 [22], and Jackknife [44] 
for 3D gesture recognition. The philosophy of this work champions 
straightforwardness and simplicity so that such recognizers are 
accessible to non-experts and can easily be ported to new platforms. 
Although, we do not claim VKM is $-family principled, the tech-
niques we develop herein are derived from the $-family body of 
work, and, in our view, complements it. 

2.2 Gesture Production Variability 
Recent research has shown a number of factors can infuence ges-
ture production variability. For instance, gestures produced within 
a game environment tend to be more variable than those sampled 
using standard data collection protocols where a user gesticulates 
at their convenience [8, 40, 45]. Similarly, styling words such as 
“perform gesture faster" can infuence variability [20] as does mood 
[27, 30], gesture familiarity [5], and gesticulation speed [54]. It has 
been shown that gesture production can even vary from day to day 
[28]. As a result, training data variability will unlikely resemble true 
gesture production variability unless practitioners put efort into 
developing ecologically valid data collection methods. VKM takes 
this phenomenon into consideration when selecting a rejection 
threshold by using Monte Carlo simulation to infate the rejec-
tion threshold based on expected gesture production variability 
diferences. 

2.3 Synthetic Data Generation 
As noted, gesture recognizer accuracy generally improves with 
the training set size. To overcome data scarcity problems associ-
ated with gesture customization, synthetic data generation (SDG) 

https://www.eecs.ucf.edu/isuelab/research/vkm/
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techniques have been proposed to increase the training set size. 
Various forms of SDG have been developed and implemented to 
achieve this, including geometric transformations [10, 47], kernel 
flters [18], and random erasing [58]. Even in cases of extreme data 
scarcity we have services like Gestures à Go Go (G3) [25], a web 
service practitioners may use to generate synthetic samples from 
real gestures. G3 uses the kinematic theory of rapid movements 
[37] to learn a gesture’s sigma lognormal (SLM) model parameters 
[33], which G3 then varies to produce new samples. With this ap-
proach, one can accurately reproduce several population feature 
distributions from only a single example. A carefully selected SLM 
parameter perturbation strategy has also been used to recreate the 
variability of low vision users [52]. Two issues with SLM are that 
the technique is fairly complex and parameter extraction can have 
high latency. Gesture path stochastic resampling (GPSR) [42] is 
an alternative technique that is both $-family principled and per-
formant. GPSR synthesizes new samples by randomly resampling 
points along a given trajectory, randomly removing a subset of 
the points, and then normalizing the Euclidean distance between 
each remaining pair of consecutive points. It is also interesting to 
note that outside of gesture customization, [11] similarly saw suc-
cess with time series synthesis using random point removals and 
renormalization over their training data. Though SLM and GPSR 
have been shown to improve recognizer accuracy and fool human 
perception [24], we use GPSR in this work to generate positive 
synthetic samples since GPSR also works with 3D data [44]. How-
ever, one diference in our use of GPSR is that we defne a new 
resampling rate equation to replicate score (rather than feature) 
distributions. 

2.4 Rejection Threshold Selection 
When the training dataset is sufciently dense, there are a number 
ways in which one can learn a rejection threshold. Liu and Chua [29] 
identify three common approaches for rejecting negative samples: 
use a set of explicitly defned unwanted patterns to build a set 
of garbage models, use the distribution of scores between classes 
to learn a cut of, or form a universal background model (UBM) 
by generating mixture models from positive samples. Depending 
on which machine learning method is used, another option is to 
perform a grid search [41] or empirically tune the system through 
trial and error. Of course these options are difcult to apply with 
sparse data. For this reason, recent trends have looked to synthetic 
data to increase the training set size [6]. One such approach is 
Jackknife [44] that synthesizes gesture and non-gestures patterns 
from which a rejection threshold is learned. VKM takes a similar 
approach, though also takes factors that we previously considered 
into account. 

Because false negatives are often more desirable than false pos-
itives [21], certain techniques dynamically adjust the rejection 
threshold in response to given input patterns. For example, Kang et 
al. [18] temporarily lower their rejection threshold when a pattern 
was rejected but is near a gesture boundary. They assume that a 
user will immediately retry the gesture if intended. In the presence 
of noise or unreliable segmentation, one may require that a ges-
ture is detected over multiple frames before confrming recognition 
[4, 17, 35]. Such techniques are complementary to our work and to 

use VKM does not prohibit one from including these features into 
their system. 

2.5 User Experience 
User experience is central to gesture recognition as it determines 
whether a user will continue using gestures to interact with the 
system, or if they will revert to an input method that is more fa-
miliar and reliable. To this end, Freeman et al. [19] identify three 
considerations for building systems with gesture support: response 
times, algorithmic reliability, and economic constraints. In modern 
systems, latency and accuracy are usually the two main parameters 
one must balance, and, often times, one will sacrifce accuracy in 
favor of improved latency. For this reason, researchers have put 
considerable efort into accelerating recognition by employing hi-
erarchical methods [38], data reduction [36, 49, 51], pruning [50], 
lower bounding [44, 55] and more efcient measurement schemes 
[46, 55]. However, less attention has been given to rejection, which 
can also be used to improve accuracy and user experience. 

Katsuragawa et al. [21] note that false positives gestures can 
result in system state changes that are difcult or too time consum-
ing to recover from. They argue that eliminating false positives is 
more important than eliminating false negatives. In the context 
of continuous custom gesture recognition over high-activity data, 
it is therefore critical that patterns near gesture boundaries are 
not falsely recognized as belonging to the same gesture class. To 
accomplish this, VKM introduces a new negative synthetic data 
generation method that produces motion patterns similar to but 
not precisely from the same class as a given gesture. This helps 
VKM select tight rejection thresholds that maximize accuracy, and, 
consequently, improve user experience. 

3 THE VOIGHT-KAMPFF MACHINE 
The Voight-Kampf Machine shown in Figure 1 is inspired by the 
rejection threshold selection system used by Jackknife (JK) [44], 
whereby VKM uses synthetic data generation to synthesize posi-
tive and negative score distributions from which VKM estimates 
a rejection threshold. In more detail, to select an initial threshold, 
VKM uses a variant of gesture path stochastic resampling (GPSR) to 
generate a common within class score distribution. VKM similarly 
uses a new synthetic data generation technique called Mincer to 
generate a common non-gesture score distribution. We refer to 
these distributions as the positive and negative score distributions, 
respectively. Using these distributions, VKM thereafter selects as 
the rejection threshold the score which best separates the positive 
and negative distributions. Two adjustments are then made to this 
threshold. First, we reduce the threshold based on the training set 
size; since more of the gesture space is covered by the training data, 
this reduction helps to reduce false positive errors. Second, because 
it has been shown that gesture variability is application-dependent 
[8, 40, 45], we infate the threshold by an application-dependent 
gesture production variability value. 

Although VKM’s design is informed by Jackknife, there are sev-
eral key diferences. Both systems use GPSR to generate synthetic 
data; however, the JK authors used expert knowledge to select 
GPSR parameters. In our work, we use optimization to learn op-
timal GPSR parameters for several input device types. Another 
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Figure 1: Architecture diagram for the Voight-Kampf Machine. From left to right, VKM accepts a set of training samples. From 
each training sample, VKM generates a positive and negative synthetic data distributions using GPSR and Mincer, respectively. 
VKM then uses these distributions to estimate a rejection threshold that maximizes overall accuracy based on the F1-score. The 
threshold is then adjusted using simulation to take into account application-dependent gesture production variability and the 
template count. 

subtle diference is that we optimize the synthetic score distribution 
rather than feature distributions as was done with the original GPSR 
work. Both systems also use synthetic data generation to synthe-
size negative samples. JK uses a splicing technique that generates 
a reasonable distribution appropriate for low-activity data under 
window-based segmentation, but, as we show in our evaluation, 
this approach is inappropriate for high-activity data. VKM, on the 
other hand, introduces Mincer, which is able to generate negative 
samples near a given gesture class boundary. This approach leads to 
tighter rejection thresholds. Finally, unlike prior work, VKM adjusts 
the threshold based on training set size and expected gesture pro-
duction variability. These diferences yield high quality rejection 
thresholds. In the remainder of this section, we describe VKM in 
greater detail. 

3.1 Accuracy Measure 
To select a rejection threshold, we estimate Fβ -scores over distribu-
tions of synthetic data. Fβ -score is a well known measure commonly 
used throughout the machine learning community that combines 
precision and recall, both of which are important in gesture recog-
nition. Fβ -scores also have the desirable property that they do not 
include true negative results in their calculation. This property is 
important because continuous input comprises mostly non-gesture 
data, and optimizing a system for high true negative detection may 
result in poor threshold selection. Formally, the Fβ −score is defned 
as follows: 

� �
2 precision · recall 

Fβ = 1 + β · � � (1)
β2 · precision + recall 

precision = 
tp 

,
tp + f p 

(3) 

and 

recall = 
tp 

,
tp + f n 

(4) 

where β controls the relative weight between precision and recall. 
When β = 1, we have the traditional F1-score that uniformly bal-
ances both measures. In our framework, false positives and true 
negatives are those negative samples that fall respectively left and 
right of a given threshold. Similarly, true positives and false nega-
tives are those positive samples that fall left and right of the same 
threshold. We next describe our approach to positive synthetic data 
generating using GPSR, after which we introduce Mincer, our new 
negative synthetic data distribution method. 

3.2 Positive Synthetic Data Generation 
VKM uses GPSR [42] to generate synthetic positive score distribu-
tions. In other words, we synthesize gesture samples from training 
data and measure their dissimilarities from the seed sample, which 
results in a distribution of within class scores. Note that because we 
are concerned with customization, we only require that GPSR can 
sufciently reproduce within class variance from a single gesture 
sample. Since we combine per-class distributions into a common dis-
tribution, we do not require that individual class results are realistic 
or accurate, only that the fnal distribution represents the combi-
nation of all within class distributions. We next review GPSR and 
thereafter discuss how we extend GPSR to support device-agnostic 
positive sample generation. 

(β2 + 1) tp 
= , (2)
(β2 + 1) tp + β2 f n + f p 

where precision is the fraction of true positives (tp) over all true 
and false positive (f p) samples, and recall is the fraction of true 
positives over all true and false negative (f n) samples: 

3.2.1 Gesture Path Stochastic Resampling. In short review of GPSR, 
one frst spatially resamples a given trajectory so that the distance 
between selected points along a gesture path is random, rather 
than uniform. One then rescales the distance between points to 
uniform length. This process fundamentally alters the trajectory’s 
shape, but because the transformation preserves low frequency 
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information, its gesture class assignment remains valid. To simulate 
corner cutting and increase sloppiness, one may optionally remove 
points from the resampled trajectory before one rescales. The re-
sampling rate N is critical to GPSR performance—large values result 
in little variation, whereas small values generate too much varia-
tion. Further, the optimal resampling rate is trajectory dependent. 
An optimal-N solution for 2D gesture data based on gesture path 
density and openness was learned, but no such solution exists for 
3D data. Even for 2D data, though, we are concerned with repli-
cating score distributions rather than gesture property (feature) 
distributions. For these reasons, we require a new equation. 

3.2.2 Device Agnostic GPSR. We next describe our approach to 
fnding a new device-agnostic optimal-N equation, our optimization 
procedure, and the results. 

Approach: We sought to fnd an optimal resampling rate based 
on trajectory properties such that synthesized samples reproduce 
the within class variance when measured against their seed trajec-
tories. We are interested in properties like path length and density 
that are easy to understand and calculate. In the end, we consid-
ered a number of properties based on prior gesture recognition and 
synthesis work [3, 39, 42], including: 

(1) Traversed Angle: Summation of all angles (in radians) formed 
between consecutive vectors along the gesture path. 

(2) Sameness: Summation of dot products between consecutive 
normalized vectors. Similar to traversed angle, except with-
out an arccos conversion. We believe dot products are likely 
to be more robust to noise. 

(3) Density: Length of the gesture path divided by its diagonal 
length. A more dense gesture is likely to have more variabil-
ity. 

(4) Sharpness: Same as traversed angle, except angles are squared, 
giving emphasis to corners and cusps, which may drive up 
variability. 

(5) Inverse Sharpness: Sharpness result inverted, giving emphasis 
to straight lines. 

(6) Speed: Duration of gesture in seconds. 
(7) Inverse Speed: Speed result inverted. 
(8) Signal-To-Noise Ratio: A measure of what data remains after 

a low pass flter is applied to a trajectory. 
(9) DP Count: We apply angular Douglas-Peucker (DP) resam-

pling [43] and count the number of points. We had antici-
pated a relationship between variability and the number of 
points needed to adequately describe a gesture, which the 
angular DP count may indicate. 

Other properties we considered either violated our design crite-
ria or were thought to be irrelevant because, although they were 
appropriate for statistical analysis and classifcation, they would 
not make good optimal N predictors. Although we started with 
those properties listed above, we intended to investigate further if 
required, but found it unnecessary. 

Optimization: We now describe our optimization procedure. 
First, for each high-activity dataset training sample described in Sec-
tion 4.1, we fnd the within class distribution. Specifcally, for a given 
participant and training sample, we measure its distance against 
each remaining within class sample. Since our dataset contains 
fve training samples per gesture class, we take four measurements 

per training sample. These are combined into a single within class 
variance result called the target. We then perform a binary search 
over GPSR’s resampling rate space to fnd N whose distribution 
matches the target’s variability. We fnally then selected N that 
minimizes the synthetic and real within class variance diference. 

Once we had N for each training sample, we aggregated all 
data together and performed stepwise linear regression to fnd 
which trajectory properties most infuenced the optimal resampling 
rate. Analysis revealed that density and traversed angle were good 
candidate properties to exploit. We thereafter set out to fnd a 
solution for the following equation: 

n = x0 + x1 · density + x2 · angle + x3 · density · angle (5) 

We used Luus-Jaakola (LJ) optimization [31] to stochasticly search 
the local parameter space. Rather than attempt to ft our model 
to optimal N values per individual gesture, we instead optimize 
our model to reproduce the within score distribution. (Recall that 
our objective is to generate a representative score distribution, not 
to synthesize realistic samples.) In each LJ step, we frst randomly 
sample the local parameter space to generate new candidate coef-
cients. We then generate the real and synthetic within class score 
distributions and measure their statistical distance. Since the initial 
distributions are likely far apart, we begin with Wasserstein until 
they overlap, after which we switch to the Kolmogorov-Smirnov 
distance. 
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Figure 2: Cumulative probability distribution of the within 
class scores measured by Jackknife for real and GPSR syn-
thesized gestures. Results indicate by their similarity that 
GPSR is able to replicate the real score distribution us-
ing synthesis, especially for Kinect, Vive Quaternion, and 
Mouse data. Vive Position is less accurate as can be seen 
by the diference in distributions, though performance does 
not sufer as shown in our evaluation (Section 4). 
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Figure 3: Mean within class score of each training sample 
measured against every other sample (blue) and of each 
training sample measured against an equal number of syn-
thetically generated samples (orange). Gesture classes are 
enumerated and organized along the x-axis so that real and 
synthetic distributions are collocated their class. Similarly 
densities indicate that GPSR is able to replicate the real 
gesture class distributions. Results show that the synthetic 
and real distributions are similar for most gesture classes, 
though it is clear that further improvements are possible. 

Results: This process produced a unique set of coefcients per 
input device type. The resulting cumulative probability distribu-
tions are shown in Figure 2. Although all distributions are statis-
tically diferent because of sharp rises that result in moderate KS 
diferences (between .08 to .17), we see that within their respec-
tive domains, the distributions are relatively close. One exception 
is with Vive Position data where it can be seen that the distribu-
tions diverge, though the divergence does not degrade performance 
as shown in our evaluation. In Figure 3, we plot the within class 
score of every training sample from every dataset. Visual inspec-
tion of location and variance reveals that GPSR is able to produce 
scores that reasonably replicate real gestures. Still, some classes 
in particular have poor synthetic results. For example, synthetic 
fy-like-an-eagle2 (forth column) scores are signifcantly larger than 
real scores on Vive Quaternion data, whereas the synthetic left-
right-left and right-left-right jab gesture scores are notably less 
than real scores on Kinect. To address these diferences, we may 
require a third attribute beyond density and traversed angle that 
help decide optimal-N . However, since we primarily care about 

2Full-body gesture names from [43]. Fly-like-an-eagle - 3x movement with arms 
extended to the sides; left-right-left/right-left-right - jabs with respective hands in 
quick successions. 

aggregate score distributions (Figure 2), we believe the current 
equation meets our requirements. 

3.3 Negative Synthetic Data Generation 
VKM uses a new technique called Mincer to generate synthetic 
negative data, which is inspired by Jackknife’s splicing technique 
[44]. We frst describe splicing and thereafter our approach. 

Splicing: Jackknife [44] uses splicing to generate negative syn-
thetic data, whereby two samples are randomly drawn from the 
training set, after which a random subsequence from each gesture 
is extracted and concatenated together to form a single trajectory. 
The negative sample is then scored against each training sample, 
and each score is added to the common distribution. We fnd that 
this splicing techniques works well to generate a representative 
negative distribution. This can be seen visually in Figure 4 where 
there is little divergence between real and synthetic distributions. 
However, as we show in our evaluation, spliced distributions do 
not lead to tight thresholds. 

Mincer: In VKM, we take a diferent approach using a new tech-
nique we call Mincer. This approach generates gesture-specifc neg-
ative samples by inserting subsequences of other training samples 
into the given gesture sample. As a result, Mincer yields negative 
samples that are on or near the seed sample’s boundary. One fnal 
diference between Mincer and splicing is that minced samples 
are only measured against their seed gesture, rather than being 
measured against all samples. 

In more detail, we spatially resample all training data to high 
resolution trajectories to ensure we preserve local features, after 
which we min-max normalize each sample. We next convert each 
trajectory into a set of direction vectors, so that the gesture set 
is defned as a set of displacements rather than a set of positions. 
To generate a negative sample from a seed gesture via mincing, 
we randomly select a prepared sample from a diferent gesture 
class as well as two indices. We then copy the associated subset 
of direction vectors from the selected sample into the seed sample 
at the same location specifed by the indices. When the diference 
between indices is negative, we copy direction vectors in reverse 
order. We last perform a cumulative summation on the new vector 
set to convert these displacements into a set of positions. Figure 
5 illustrates example mincing of a 2D gesture dataset. One will 
notice similarities between the seed gestures and their negative 
sample variations. However, as can be seen, the sketches appear 
to be realistic strokes, which implies Mincer is able to generate 
negative samples near the gesture boundary. 

Initially, we believed it would sufce to uniformly sample in-
dices from the full range of allowable values. We found, however, 
that width matters. If the resulting distribution contains too many 
minced samples with negligible modifcations due to small width re-
placements (indices close together), the negative distribution shifts 
left as does the rejection threshold. Conversely, if the distribution 
contains too many signifcantly modifed samples due to large width 
selections (indices far apart), the distribution shifts right as does 
the rejection threshold. Our frst attempt to address this issue was 
to ensure the width fell within the middle third of possible val-
ues, following a Goldilocks-like assumption that we should avoid 
extreme widths. We later found that the ideal range depends on 



The Voight-Kampf Machine for Automatic Custom Gesture Rejection Threshold Selection CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA 

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

Pr
ob

ab
ilit

y

Kinect Vive Position

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

Pr
ob

ab
ilit

y

Vive Quaternion

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score

Mouse
Real
Synthetic

Figure 4: Comparison of real and splice-based negative 
score distributions over four high-activity datasets. Mea-
surements were made between training and real negative 
samples take from continuous session using Jackknife. Al-
though the real and synthetic distributions are statisti-
cally diferent from each other according to two-sample 
Kolmogorov-Smirnov testing, we see they are sufciently 
close. The issue with splicing, however, is that we must shift 
the distribution left in order to learn rejection thresholds 
that are near gesture boundaries. 

the dataset. For 2D input data, we allow widths from the lower 
two-thirds range, and for 3D data, we allow widths from the upper 
two-thirds range. It is currently unknown if this sampling strategy 
holds universally or must be tuned per input device or application. 
One possible explanation for our present fnding is that because 
handwriting, being higher frequency data, embeds more informa-
tion than full body motion, small changes in the trajectory move 
samples toward the gesture boundary faster than do small changes 
for full body gestures. We, however, leave this investigation for 
future work. Next, we tackle positive sample synthesis. 

3.4 Rejection Threshold Scaling 
We now address two issues that impact rejection threshold selec-
tion. First, the data collection protocol one uses to collect training 
data impacts gesture production variability [40]. A common data 
collection approach practitioners use is to collect isolated samples 
that users generate in a low-stress environment, one at a time, and 
if one is unhappy with their input, they can simply replace it. The 
variability of such data is likely to be less than that of the target 
application, where diferences in environment, stress, usage, and 
sloppiness collectively contribute to greater variability. Since our 
technique attempts to locate gesture class boundaries from given 

Figure 5: Example negative samples generated with Mincer. 
The frst column comprises training samples from the high-
activity Mouse datasets (Section 4.1) followed by its subse-
quent minced variants. Notice how signifcant portions of 
the original seed samples appear in their negative sample 
counterparts yet appear to be believable sketches. This sim-
ilarity allows us to better fnd identify gesture class bound-
aries when measured by a recognizer. 

training data, we propose to infate the threshold by a value deter-
mined a priori. This infation factor, unfortunately, is application 
dependent, and whether or not one can estimate it from training 
data remains unclear. How we infate the threshold will be clarifed 
shortly. 

Second, we must reduce the threshold as the training set size 
increases. As illustrated in Figure 6, thresholds must be sufciently 
large so as to provide adequate coverage over the application ges-
ture class space. Note, false positives increase as we train with more 
data but hold the threshold constant; conversely, we are able to 
improve accuracy by reducing the threshold as the training set 
size increases. To determine how we should scale the estimated 
rejection threshold, we use simulation. 

3.4.1 Simulation-based Rejection Threshold Adjustment. Our sim-
ulation accepts as input an initial threshold τ , an infation factor 
ι, and the training set size T . The simulation outputs an adjusted 
threshold. Our goal with simulation is to fnd a rejection threshold 
scaling factor λ that maximizes Fβ . We represent the gesture class 
training sample space as a hypersphere centered on zero whose 
radius is the given rejection threshold τ . The application space is the 
training space scaled up by the infation factor (τ ×ι). We also defne 
a test space centered on zero whose radius is the maximum of either 
the application space or training sample’s reach, max(τ , τ (1+λ)). (A 
sample drawn on the training space boundary extends to τ (1 + λ).) 

To generate a test case, we draw one point from the test space 
and T points from the training space. A test point is said to reside 
within the application space if its Euclidean distance from the origin 
is less than the infated rejection threshold (τ × ι). A test point is 
recognized if its distance from any training point is less than the 
adjusted rejection threshold τ × λ. We classify a test point as true 
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ing and application gesture class spaces, referred to as the 
inner and outer rings, respectively. Individual training sam-
ples are randomly drawn from the inner space and rendered 
as blue circles whose radii are equal to the rejection thresh-
old. False positive spaces are those enclosed by training sam-
ples that sit outside of the outer ring. False negatives areas 
are those areas within the outer ring not enclosed by a train-
ing sample. In the top row, we hold the rejection threshold 
constant as the training set size increases from one to fve. 
Just below, we fnd the scaled rejection threshold that opti-
mizes accuracy. Note how radial reductions lead to higher 
scores. 

positive if it is recognized and within the application space. A false 
negative point is one that falls within the application space but is 
not recognized. And a false positive point is one that is recognized 
but falls outside of the application space. To estimate an Fβ -score, 
we generate a large number of test cases, tally classifcation results, 
and estimate accuracy from the stated results. To select an adjusted 
threshold, we iterate over a number of scaling factors λ and select 
that which maximizes accuracy. 

One problem is that of how to select the hypersphere’s dimen-
sionality. Consider that if one spatially resample 63-component 
Kinect trajectories to 16 points, one will then have a 1008-dimensional 
point. Sampling points in this space is both computationally pro-
hibitive and unrepresentative of real gestures because it assumes 
complete independence between individual components. In real-
ity, data within trajectories are highly correlated—we need only a 
few points to identify a gesture’s class [49]. For example, Vatavu 
found that 2D gestures resampled to six points yield almost optimal 
recognition performance under Euclidean distance [49], and similar 
results were reported for 3D gestures [51]. We also observe via 
Figure 7 that the efect of dimensionality on scaling diminishes 
logarithmically as the dimensionality increases. For these reasons 
we use d = 6 in our evaluations, though we expect higher values 
will also work well. 

Figure 7: Reduction in scale as training set size increases 
over varying dimensions. Notice that the diference in scale 
declines as the number of dimensions increase. These re-
sults indicate that by using simulation we can estimate a 
scaling function that reduces the threshold as the training 
set size increases. 

4 EVALUATION: PART I 
In this section, we measure VKM’s efcacy relative to alterna-
tive techniques in selecting a rejection threshold that discrimi-
nates gesture from non-gesture actions embedded in continuous 
high-activity data. We refer to the continuous gesture recognition 
pipeline used in this evaluation as the Dollar General $-family 
techniques. Specifcally, we use Machete [43] to segment incom-
ing continuous data into gesture candidates and Jackknife [44] 
equipped with the inner product measure to evaluate said candi-
dates. Both Machete and Jackknife are $-family principled state-
of-the-art, device-agnostic, and computationally efcient nearest 
neighbor recognition techniques. In greater detail, for each training 
template, Machete uses continuous dynamic programming to esti-
mate where in time a gesture started if it ended on the current frame. 
Machete also estimates a similarity score; and so for each frame, 
Machete generates one gesture candidate per template. Using an 
internal heuristic to cull most gesture candidates, the majority of 
candidates are quickly discarded. However, since Machete is a seg-
menter (rather than a recognizer) its false positive rate is high. For 
this reason, any remaining gesture candidates are passed to Jack-
knife for further analysis, as was previously done [43]. Jackknife 
outputs a gesture recognition score for each remaining gesture 
candidate, which Dollar General then accepts or rejects based on 
the learned rejection threshold. In the remainder of this section, 
we describe the high-activity data, rejection thresholds selection 
techniques, and test protocol in more detail. 

4.1 High Activity Data 
To compare VKM against alternative rejection threshold selection 
techniques, we use the publicly available Machete high-activity 
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(HA) datasets [43]. To summarize the data, Taranta et al. collected 
fve training samples per gesture per input device type tested, using 
ten unique participants per device: Mouse, Vive, and Kinect. Mouse 
data consists of 10 unistroke gestures, Vive data includes 11 ges-
tures performed with both hands while standing, and Kinect data 
consists of 17 full body gestures. Vive data is further subdivided into 
position and orientation data so as to make four unique datasets. 
They thereafter collected continuous data from each participant us-
ing a Follow-The-Leader (FTL) protocol [40], whereby participants 
replicate the motions of a virtual actor, i.e., leader, who continuously 
performs random actions. Their data collection tool periodically 
interjected gesture requests via an on screen text prompt that the 
participant would immediately execute, regardless of the actor’s 
state. After gesticulating, the participant would, without pause, 
return to following the leader. In the end, they collected three ex-
amples of each gesture interleaved among a variety of actions that 
resembled puppeteering, direct object manipulations, and other 
non-gesture actions. Our penultimate goal is to recognize all em-
bedded gestures with no false positives using the pipeline described 
above. 

4.2 Rejection Threshold Selection Techniques 
We compare several rejection threshold techniques one may use 
based on familiar concepts and prior work as follows: 

(1) Optimal: This technique iterates over a range of rejection 
thresholds and selects that which maximizes accuracy over 
each user’s session data, for each level of every factor. There-
fore, manually labelled continuous ground truth data is used 
to select the optimal threshold, which serves as our maxi-
mum achievable target using the given custom gesture recog-
nition pipeline. 

(2) Mincer: VKM as described in the prior section whereby we 
use GPSR to construct a positive distribution and Mincer to 
construct a negative distribution, and from which we select 
the threshold that maximizes accuracy using simulation. 

(3) 3σ : Random samples are often assumed to follow a normal 
distribution. Under this assumption all scores will fall within 
three standard deviations (3σ ) of their mean to include 99.7% 
of all samples. Even when distributions are not normal, prac-
titioners sometimes use a 3σ pruning rule. For this reason, 
we consider using GPSR to estimate the positive distribu-
tion mean and standard deviation so that we may set to the 
rejection threshold to be 3σ above the mean. 

(4) 3σ -per-class: This technique is identical to 3σ , except esti-
mates and rejection thresholds are set per class, rather than 
globally. 

(5) Minimum Distance: In a pairwise manner, we calculate 
the distance between class samples and select the minimum 
distance to be our rejection threshold. This is similar to 
constructing an N-best list [57] on training data and selecting 
the distance between the frst and second class to be the 
rejection threshold. 

(6) Average distance: If we assume that some classes partially 
overlap such as a square, curly, and parenthesis, then we 
may require a looser rejection threshold. For this reason we 
include the average between-class score as one option. 

(7) Splicer: Similar to VKM except that we using the splicing 
technique proposed in Jackknife [44] instead of Mincer. 

Note, we informally investigated additional techniques derived from 
those above, but none led to interesting or unique results. Since 
they were led by trial and error eforts rather than by informed 
design, we do not include them. 

4.3 Test Procedure 
We engage in user-dependent (UD) recognition testing. Our UD test 
procedure follows. For a given technique, dataset, participant, and 
training count T , we randomly select T samples per gesture class. 
If there are G gesture classes, then we train Jackknife with G × T 
samples. Thereafter, we learn a rejection threshold using the speci-
fed technique. After training is complete, we play the participant’s 
session data through the continuous gesture recognition pipeline 
and record all recognition results. From hand-labeled ground truth 
data, we analyze classifcation results to generate an F1 score. This 
process is repeated ten times per participant and all results are 
averaged into a single accuracy measure. 

In Section 3.2.2, we wrote that a new optimal-N equation was 
learned from the high activity datasets used in our evaluation. It 
is important to note now that we use a leave one out cross valida-
tion strategy, where data from the target participant is left out of 
the optimization process and the resulting coefcients are in the 
participant’s evaluation. 

4.4 Analysis 
With only 10 participants per input device, power to detect difer-
ences between multiple conditions and levels is limited. For this 
reason we selected the four more accurate methods (Optimal, Min-
cer, 3σ , and 3σ -per-class), and with these performed our statistical 
analysis, although we do report all accuracy results. Our experiment 
was a 2-factor within-subjects repeated measures design, where the 
rejection threshold selection technique and template training count 
were the two factors. F1-score was the response measure. Because 
accuracy was not normally distributed, we performed ANOVA and 
post-hoc analysis with ART-C [12, 56]. To protect against multiple 
comparison type I errors, we used the Holm-Bonferroni step-down 
procedure [14]. 

4.5 Results 
4.5.1 Kinect. Average accuracy for each method over varying tem-
plate counts is shown in Figure 8. The rejection threshold selection 
method had a signifcant efect on overall accuracy (F3,171 = 58.47, 
p < .0001). Optimal achieved 94.1% (SD=3.3%) and was 0.7% more 
accurate than Mincer at 93.4% (SD=4.1%), though the diference was 
not signifcant (t(171) = 1.15, n.s.). However, Mincer was 4.3% more 
accurate than 3σ -per-class at 89.4% (SD=5.3%), which was signif-
cant (t(171) = 5.83, p < .0001). Further, 3σ at only 82.9% (SD=8.9%) 
was 7.8% less accurate than 3σ -per-class (t(171) = −4.66, p < .0001). 
On average, Mincer out performed all alternative methods, coming 
closest to Optimal performance. 

The efect of template count on overall performance was not 
signifcant (F4,171 = 2.02, n.s.), but a closer look at the efect of 
template count on the rejection threshold selection method revealed 
a signifcant interaction (F12,171 = 2.18, p < .05). From one to 
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Figure 8: F1-Score over varying methods and train set sizes 
for Kinect user-dependent test. Error bars are standard error 
(68%) for legibility. 

fve templates, Optimal performance increased by 4.6% from 91.1% 
(SD=3.4%) to 95.3% (SD=2.7%). Mincer increased by 4.9% from 90.3% 
(SD=4.3%) to 94.7% (SD=3.7%). 3σ -per-class barely improved—0.4% 
from 88.4% (SD=5.4%) to 88.7% (SD=6.2%0). And, 3σ saw a 6.8% 
decrease from 85.9% (SD=4.3%) to 80.0% (SD=10.6%). However, only 
the Optimal diference was signifcant (t(171) = −3.75, p < .05). It is 
also interesting to note that with one template loaded, the pairwise 
diference between each method is not signifcant. However, as the 
template count increases, Optimal is not signifcantly diferent from 
Mincer(t(171) = 0.51, n.s.), but 3σ -per-class is 6.3% less accurate 
than Mincer (t(171) = 4.34, p < .005), and 3σ is similarly 15.5% less 
accurate (t(171) = 6.85, p < .0001). 

4.5.2 Vive Position. Average Vive Position accuracy results for 
each method over varying template counts are shown in Figure 9. 
All rejection threshold selection methods performed well. Optimal 
achieved a 96.7% (SD=3.1%) overall accuracy, followed by Mincer 
at a 96.4% (SD=3.3%), a small 0.4% reduction. 3σ achieved a 96.1% 
(SD=3.8%) overall accuracy, which was 0.2% less accurate than Min-
cer, and 3σ -per-class achieved the lowest score of 95.7% (SD=4.3%), 
a 0.7% decrease from Mincer’s results. However, their diference 
was not signifcant (F3,171 = 2.59, n.s.) 

The efect of template count on overall accuracy was signifcant 
(F4,171 = 11.97, p < .0001), but interaction efects between the selec-
tion methods and template counts were not (F12,171 = 0.43, n.s.). In-
creasing template count from one to fve increases the Optimal score 
by 2.0% from 95.5% (SD=3.3%) to 97.4% (SD=2.5%). Mincer scores 
improved by 2.1% from 95.1% (SD=3.8%) to 97.0% (SD=2.8%). 3σ 
improvements were signifcant(t(171) = −3.95, p < .05)—a 3.8% in-
crease from 93.6% (SD=5.3%) to 97.1% (SD=2.8%). 3σ -per-class score 
improvements were also statistically signifcant (t(171) = −4.39, 

Figure 9: F1-Score over varying methods and train set sizes 
for Vive Position user-dependent test. Error bars are stan-
dard error (68%) for legibility. 

p < .005), increasing by 4.8% from 92.6% (SD=6.0%) at one template 
to 97.1% (SD=2.8%) at fve templates. 

4.5.3 Vive Qaternion. Average accuracy results for Vive Quater-
nion dataset for each method over varying template counts are 
shown in Figure 10. One will notice that overall accuracy across 
all methods are lower with this data type than on other datasets. 
The efect of the rejection threshold selection method on accuracy 
was statistically signifcant (F3,152 = 45.35, p < .0001). Optimal 
achieved an 89.3% (SD=4.2%) overall accuracy, followed by Min-
cer at 87.5% (SD=5.6%). This diference was not signifcant. Mincer 
was also 15.9% more accurate than 3σ (t(152) = 8.59, p < .0001), 
which only achieved 73.6% (SD=10.8%) overall accuracy. And the 
slight lead of 1.3% by Mincer over 3σ -per-class was not statistically 
signifcant (t(152) = 0.80, n.s.). Optimal was 17.6% more accurate 
than 3σ (t(152) = 10.99, p < .0001), and 3.3% more accurate than 
3σ -per-class (t(152) = 3.20, p < .01). 

The efect of the template count on accuracy was statistically 
signifcant (F4,152 = 3.79, p < .01), but there was no signif-
cant interaction between the method × template count conditions 
(F12,152 = 1.54). With one template loaded, none of the diferences 
between methods were signifcant, and simply increasing template 
count for the selection methods did not result in signifcantly difer-
ent ac curacies. Still, with fve templates loaded, all methods except 
for 3σ performed at around 90%. Optimal achieved 91.7% (SD=2.5%), 
followed by 3σ -per-class at 90.0% (SD=3.9%), and Mincer at 89.7% 
(SD=5.1%). Mincer was 2.2% below Optimal, and only 0.3% below 
3σ -per-class. 

4.5.4 Mouse. Average Mouse accuracy results for each method 
over varying template counts are shown in Figure 11. Optimal 
and Mincer both achieve high accuracy (above 90%) using just one 



The Voight-Kampf Machine for Automatic Custom Gesture Rejection Threshold Selection CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA 

1 2 3 4 5
Template Count

0.0

0.2

0.4

0.6

0.8

1.0

F1
-S

co
re

Optimal
Mincer
3 -per-class
3
Minimum Dist
Average Dist
Splice

Vive Quaternion Accuracy (User Dependent)

1 2 3 4 5
Template Count

0.0

0.2

0.4

0.6

0.8

1.0

F1
-S

co
re

Optimal
Mincer
3 -per-class
3
Minimum Dist
Average Dist
Splice

Mouse Accuracy (User Dependent)

Figure 10: F1-Score over varying methods and train set sizes 
for Vive Quaternion user-dependent test. Error bars are stan-
dard error (68%) for legibility. 

template per gesture class, while the other methods do not achieve 
high accuracy. The efect of the rejection threshold selection method 
on accuracy was statistically signifcant (F3,171 = 243.91, p < .0001), 
with Mincer attaining 93.2% (SD=2.8%) overall accuracy, being only 
0.3% less accurate (t(171) = 0.92, n.s.) than the Optimal at 93.5% 
(SD=3.0%). Mincer was also 16.3% more accurate (t(171) = 21.80, 
p < .0001) than 3σ 78.0% (SD=8.3%), and a statistically signifcant 
diference of 6.9% (t(171) = 13.82, p < .0001) was detected between 
Mincer and 3σ -per-class 86.8% (SD=4.0%). 

There was also an efect of method × template count on accuracy 
(F12,171 = 6.34, p < .0001). For instance, the Optimal score from 
91.1% (SD=3.1%) to 94.8% (SD=2.2%), which was a 4.0% increase 
(t(171) = −4.87, p < .0005). A 2.7% increase was also observed with 
Mincer, from 91.6% (SD=3.2%) to 94.1% (SD=2.3%), but the diference 
was not signifcant (t(171) = −3.14, n.s.). 3σ with one template 
achieved 84.3% (SD=4.3%), and 73.3% (SD=9.1%) with fve templates, 
which was a 13.1% decrease (t(171) = 3.36, n.s.). 3σ -per-class scores 
decreased from 89.5% (SD=2.6%) to 84.0% (SD=4.6%), which was a 
6.1% diference (t(171) = 3.7705). With one loaded template, Mincer 
was not signifcantly diferent from Optimal (t(171) = −0.55, n.s.). 
3σ -per-class performed similarly, 89.5% (SD=2.6%), which was a 
1.8% decrease from the Optimal score (t(171) = 1.77, n.s.). Accuracy 
was 2.3% lower when using 3σ -per-class compared to Mincer, but 
the diference was not signifcant (t(171) = 2.32, n.s.). With fve 
templates loaded, Mincer achieved 94.1% (SD=2.3%) remaining close 
to Optimal performance—an 0.8% diference (t(171) = 1.18, n.s.). 
3σ -per-class achieved only 84.0% (SD=4.6%), and 3σ ’s accuracy 
was even lower at 73.3% (SD=9.1%). A signifcant 10.7% diference 
between Mincer and 3σ -per-class was detected(t(171) = 9.23, p < 
.0001), as well as a 22.1% diference between Mincer and 3σ (t(171) = 
12.59, p < .0001). We see that Mincer is accurate with both low and 

Figure 11: F1-Score over varying methods and train set sizes 
for Mouse user-dependent test. Error bars are standard error 
(68%) for legibility. 

high template counts, and remains close to Optimal performance 
through all levels, whereas other methods perform worse and drop 
in performance as the template count increases. 

4.6 User Independent Testing 
We also performed a preliminary investigation to understand user-
independent recognition performance. Although the test protocol 
is similar, we vary both the training participant count and training 
samples per participant, in accordance with prior work [55]. All 
techniques, including Optimal, were less accurate. We noticed that 
as the training set size increased, several (in some cases all) alterna-
tive techniques dropped in performance. Mincer, on the other hand, 
maintained or improved in accuracy as the training set grew. For ex-
ample, from one training participant with one template loaded per 
participant to four participants with four templates, optimal Kinect 
performance increased from 79.3% to 89.0%, Mincer from 73.0% to 
88.1%, and, the next best 3σ -per-class, from 74.3% to 81.5%. Opti-
mal Vive Position accuracy increased from 84.5% to 94.0%, Mincer 
from 73% to 93.7%, and 3σ from 50.5% to 91.9%. Similarly, optimal 
Vive Quaternion increased from 57.0% to 77.7%, Mincer from 45.8% 
to 75.5%, and 3σ -per-class from 39.9% to 76.9%. Finally, optimal 
Mouse accuracy increased from 86.5% to 92.7%, Mincer from 85.1% 
to 87.3%, and decreased for 3σ -per-class from 84.7% to 69.2%. To 
fully understand the ramifcations of our evaluated methods in the 
user-independent setting, a more rigorous investigation is required, 
which we leave to future work. 

5 EVALUATION PART II 
As we saw in our prior evaluation, Dollar General using VKM for 
rejection threshold selection was a top performer in recognizing 
custom gestures embedded in continuous high-activity data. In this 
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section we further evaluate VKM using the same Dollar General 
pipeline to better understand how a $-family based system performs 
relative to more complex continuous gesture recognition systems. 
For simplicity, we refer to this pipeline as The Dollar General (TDG) 
as its parts are derived from various $-family ideas and techniques. 

5.1 The Eurographics 2019 Shape Retrieval 
Contest, Gesture Track 

To understand how TDG performs relative to other continuous 
gesture recognition techniques, we frst turn our attention to the 
Eurographics 2019 SHape Retrieval Contest (SHREC) track on on-
line gesture recognition [6]. The competition organizers collected 
continuous data from participants that were similar to our high-
activity data—their data also combines gesture with non-gesture 
actions. Specifcally, they developed a virtual environment for the 
Oculus Rift that sampled hand pose data using a Leap Motion device, 
where “actions consisted of selecting objects, clicking on virtual but-
tons, moving a slider and spinning a globe with a swipe” [6, p. 94]. 
While interacting with the environment, participants were asked to 
perform one of fve gestures at various times: cross, V-mark, caret, 
square, or circle. 

The organizers collected data from thirteen participants such that 
gestures were performed in diferent positions. They then divided 
the dataset into a 4/9 split, where four participants were used for 
training and nine for user-independent recognition testing. Session 
data was further divided into 60 annotated training sequences and 
135 test sequences. This is not strictly a customization scenario, 
but nonetheless represents a realistic use case where a designer 
acquires approximately three samples per gesture class from four 
peers or friends during an iterative development cycle. This is a 
challenging problem because, even in aggregate, the amount of 
training data is still relatively little, and the recognizer is trained 
and tested with diferent users. 

Five groups participated in the competition, though one group 
was the organizers who provided a baseline recognizer based on 
3 cent [7]. The other four groups provided neural network based 
solutions. Test sessions were played through trained recognizers 
that output recognition results. Post processing scripts analyzed 
the output and generated several error measures, including the 
percentage of correctly classifed, mislabeled, false positive, and 
false negative gestures. Note that mislabeled gestures are a special 
kind of false positive that occurs when a gesture is detected within 
the window of an expected gesture, but the class label is incorrect. 
We ran the same evaluation on TDG using Vive Position GPSR 
parameters, since both involve hand tracking data. 

We combine TDG results with the original competition results 
in Table 1. We found that TDG outperformed all alternative tech-
niques in classifcation accuracy and was the only system that 
achieved high accuracy (≥ 90%). TDG errors were mostly due to 
false negatives. uDeepGRU2 also performed well relative to the 
other methods, achieving 85.2% recognition accuracy. uDeepGRU 
like TDG uses synthetic data generation to augment training data, 
which facilitates learning from limited quantities. Other methods 
do not fare as well, which indicates the difculty of this challenge. 
It is important to note that VKM’s ability to select tight rejection 
threshold is a key reason why TDG performs well as it does. 

Table 1: SHREC 2019 competition results reported as per-
centage values. Each row sums to 100%. See [6] for a descrip-
tion of each continuous gesture recognizer. 

Method 
Correctly 
Classifed 

Mislabeled 
False 

Positives 
False 

Negatives 

The Dollar General 90.7 0.7 0.7 8.1 
uDeepGRU2 
uDeepGRU1 
uDeepGRU3 
SW 3-cent 

85.2 
79.3 
79.3 
75.6 

7.4 
8.1 
8.1 
16.3 

3.0 
3.0 
2.2 
2.2 

4.4 
9.6 
10.4 
5.9 

DeA 51.9 18.5 25.2 4.4 
AJ-RN 28.1 43.0 23.0 5.9 
PI-RN 11.1 39.3 48.9 0.7 
Seg. LSTM1 
Seg. LSTM2 

11.1 
6.7 

28.9 
25.2 

60.0 
68.1 

0.0 
0.0 

5.2 uDeepGRU Performance on High-Activity 
Data 

Based on SHREC 2019 competition results, we decided to evaluate 
uDeepGRU on our high-activity data. We choose to use uDeepGRU 
because it was the second best performer in that competition, and 
like TDG, uDeepGRU was designed to work with a variety of input 
device types. Since the competition, several improvements have 
been made to the system, which we use in this evaluation. 

5.2.1 uDeepGRU. uDeepGRU is based on DeepGRU [32], a device-
agnostic gesture recognizer that was shown to outperform many 
state-of-the-art recognizers across a variety of publicly available 
datasets (using test protocols adopted by the community that are 
unique to each dataset). In cases where DeepGRU did not achieve 
top performance, it still performed competitively. uDeepGRU uses 
a similar architecture that comprises an encoder and classifcation 
neural network. The encoder network uses unidirectional gated 
recurrent units [9] for its recurrent layers, and a fully connected 
layer for its classifcation network. Details are available in [6]. 

At each time step, uDeepGRU outputs a class label, one of which 
may be none, i.e., no gesture detected. The system will try to learn 
all parts of a gesture so that it can output appropriate labels early 
in a gesture sequence. This is problematic with high-activity data 
because many non-gesture actions partially overlap with valid ges-
tures, and without sufcient negative training data, uDeepGRU 
cannot learn how to separate gestures from other actions. SHREC 
2019 training samples contained both gesture and non-gesture mo-
tions from which uDeepGRU learned, whereas our high-activity 
training dataset contains only segmented gestures. We overcome 
this issue in two ways. First, similar to splicing, we concatenate par-
tial, randomly selected, gesture subsequences to both sides of full 
gesture samples for training. Second, all frames are labeled none, 
except for the last second of each real gesture sequence. These mod-
ifcations help protect uDeepGRU from reporting early detections. 

5.2.2 Method and Results. We used an identical test protocol to 
that reported in our frst evaluation. One diference is that we used 
all available training samples (T = 5), where in each iteration, we 
used four random samples for training and the remaining sample 
for validation. After training, we replay the participant’s session 
through uDeepGRU and save per frame label classifcation and score 
results. We say a user gesticulated if uDeepGRU outputs identical 
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Table 2: uDeepGRU Kinect results 

Method 

Optimal 

T=1 
µ σ 

0.91 0.04 

T=2 
µ σ 

0.94 0.03 

T=3 
µ σ 

0.95 0.03 

T=4 
µ σ 

0.95 0.03 

T=5 
µ σ 

0.95 0.02 
TDG 0.91 0.05 0.93 0.04 0.94 0.03 0.94 0.04 0.95 0.04 
uDeepGRU — — — — — — — — 0.86 0.05 

labels over a contiguous set of frames and the classifcation scores 
are above a certain threshold. Using a grid search, we fnd those 
thresholds that maximize F1. Although, this is not how one would 
use uDeepGRU in practice, we wanted to give it the best chance 
possible to achieve high accuracy. 

Kinect results are reported in Table 2. We fnd that uDeepGRU 
does not achieve high accuracy, even with fve training samples. In 
fact, TDG with a single training sample outperforms uDeepGRU 
with fve training samples. The percentage increase in error rates 
between optimal (baseline) and uDeepGRU is also large (≈ 366%) 
compared to TDG (≈ 9%). 

6 DISCUSSION 
It is clear from our frst evaluation that The Voight-Kampf Machine 
is well suited to rejection threshold selection for custom gestures. 
Among the six threshold selection techniques tested, VKM outper-
formed all other selection techniques and was the only method to 
achieve high accuracy (≥ 90%) across all four high-activity datasets 
in our user dependent recognition test. In three cases, we saw high 
accuracy even when only one training sample per gesture class was 
loaded, and, in all cases, performance improved with more training 
data. This means that designers can feel confdent using VKM for 
rejection threshold selection for a variety of input device types. 

We further found that VKM with Machete and Jacknife (TDG) 
also performed well on continuous high-activity hand gesture data 
collected with a Leap Motion input device. Specifcally, TDG out-
performed all competitors in the SHREC’19 competition, being the 
only system to achieve high accuracy. This was only possible be-
cause VKM is able to select near optimal rejection thresholds. Our 
competitors used state-of-the-art techniques in neural networks, 
but only uDeepGRU came close to our level of performance. The or-
ganizers give a possible reason, stating that “these methods require 
a relevant efort for optimizing training strategies working with a 
limited number of examples and participants had a limited time to 
prepare the submission. [...] other methods (DeA, AJ-RN, PI-RN, Seg 
LSTM) are detecting a lot of false positives, and typically provide a 
false detection as the frst result. Proper tuning of the method could 
avoid this efect” [6, p. 98]. Although TDG has tunable parameters 
throughout the system, there is little efort involved in selecting 
appropriate values given that VKM is fully automatic. 

It is also worth noting that uDeepGRU took over one hour to 
train due to its internally generated synthetic data, and because of 
uDeepGRU’s architecture, it already trains faster than other neural 
network solutions. Our C++ based TDG code, on the other hand, 
takes less than thirty seconds to train on a 2.3 GHz Intel Core i5 
based MacBook Pro with fve templates loaded. Customization re-
quires fast, online training so that users can iteratively adjust their 
preferences and practitioners can quickly iterate their designs. This 

makes TDG an ideal choice for customizable user interfaces gener-
ally, and VKM ideal for rejection threshold selection specifcally. 

It is interesting to fnd that although we learned optimal-N GPSR 
equation coefcients for specifc input devices, there is some trans-
ference. We ran VKM with parameters learned from Vive Position 
data on SHREC’19 competition data with great success; and as 
noted, not only did we achieve high performance, but we also out-
performed all competitors. This is not always the case, as informal 
testing has already revealed that we cannot use parameters learned 
for Kinect on Mouse input data. However, it may be that Kinect-
based coefcients work well with other skeletal tracking systems 
designed for full body gestures, that Vive Quaternion parameters 
work well with other 3D orientation tracking systems, and so forth. 

6.1 Limitations and Future Work 
An issue with our current positive synthetic data generation ap-
proach using GPSR requires that we learn unique parameters for 
every input device. This is problematic in that if the parameters do 
not transfer as discussed above, designers will repeat the process 
we used to fnd suitable parameters, which is not only inconve-
nient but also time consuming. Even if we were able to establish a 
large catalog of coefcients for diferent input device types, HCI 
researchers continuously prototype new hardware and explore the 
usability of these devices, which often involves gesture input. 

It may be that optimal-N depends on the unique proclivities of 
an input device, those characteristics that contribute to noise, pose 
estimation, measurement error, and constraints that infuence how 
users move or interact with the device. Or it may be that we have 
not yet found the right set of trajectory attributes to examine. For 
example, the set of parameters that are appropriate for touch input 
may also be suitable for Kinect input if we were able to take into 
account frequency domain information and make necessary trans-
formations. To further improve GPSR, we will have to investigate 
these possibilities. 

A second issue is that threshold scaling requires possibly un-
known information. Through simulation we determine an appro-
priate scaling value that takes into account diferences in training 
and application gesture production variabilities as well as the efect 
of the training dataset size. Diferences in variability cannot always 
be known in advance but is highly relevant since ignoring these dif-
ferences can lead to VKM underestimating the rejection threshold, 
which in turn leads to an increase in false negatives. With respect 
to training set size, we assume that all gesture samples come from 
the same underlying distribution, but it may be that users use dif-
ferent forms of a gesture depending on context or happenstance. A 
straight arrow in one moment may be a curved arrow in the next, 
but either way, it may be a mistake to assume each instance derives 
from the same internalized action plan. In this case, it would be 
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more appropriate for simulation to assume unique distributions for 
each gesture if this information were available a priori. To address 
both of these concerns, it will be worth investigating online meth-
ods that can analyze motion data as it arrives to determine if there 
are deviations from the underlying assumptions. 

7 CONCLUSION 
We have introduced The Voight-Kampf Machine to solve the au-
tomatic rejection threshold selection problem for custom gesture 
recognition. VKM provides a general framework for threshold selec-
tion based on synthetic data generation using GPSR and Mincer. We 
defned a new optimal-N equation for GPSR that replicates global 
within class score distributions. We were also able to show that 
Jackknife’s splicing technique generates realistic negative score 
distributions, but this negative data generation method does not 
lead to optimal results. We addressed this issue with Mincer, which 
generates gesture class-specifc negative samples, leading to better 
rejection thresholds. Our evaluation of four high-activity datasets 
revealed that TDG with VKM is able to achieve not only high ac-
curacy, but also near optimal performance. Further, we found that 
our system is competitive with alternative deep learning methods 
despite being signifcantly less sophisticated. For these reasons, 
we believe VKM has great potential to facilitate custom gesture 
recognition and enable individuals to explore user interface design 
in ways they would not have been able to otherwise. 
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