
Towards Intelligent Motion Inferencing in Mathematical
Sketching

Salman Cheema
School of EECS

University of Central Florida
salmanc@cs.ucf.edu

Joseph J. LaViola Jr.
School of EECS

University of Central Florida
jjl@cs.ucf.edu

ABSTRACT
We present a new approach for creating dynamic illustra-
tions to assist in the understanding of concepts in physics
and mathematics using pen-based interaction. Our approach
builds upon mathematical sketching by combining the abil-
ity to make associations between handwritten mathematics
and free-form drawings with an underlying physics engine.
This combination lets users create animations without hav-
ing to directly specify object behavior with position func-
tions through time, yet still supports writing the mathemat-
ics needed to formulate a problem. This functionality sig-
nificantly expands the capabilities of mathematical sketch-
ing to support a wider variety of dynamic illustrations. We
describe our approach to creating this mathematical sketch-
ing/physics engine fusion and discuss how it provides a foun-
dation for using mathematical sketching in intelligent tutor-
ing systems.

Author Keywords
Pen-based Interfaces, Mathematical Sketching, Sketch Pars-
ing, Sketch Inferencing

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User Inter-
faces—Interaction styles; I.2.3 Artificial Intelligence: De-
duction and Theorem Proving—Inference engines

General Terms
Design, Human Factors

INTRODUCTION
Diagrams are a crucial part of many scientific disciplines.
They aid learning by presenting concepts in a visual form [9,
10]. To solve problems, students often sketch a diagram
using pencil and paper. The diagram usually includes ini-
tial conditions provided in the problem statement. However,
such diagrams are static and serve only as a starting point
to solving the problem. The answer may be a number or
a function that does not necessarily provide much insight

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IUI’10, February 7–10, 2010, Hong Kong, China.
Copyright 2010 ACM 978-1-60558-515-4/10/02...$10.00.

into the underlying concepts. By animating the drawing in a
meaningful way, better insight and understanding can be im-
parted to students. Mathematical sketching is an approach
that provides users the ability to animate these diagrams on
a pen-based computer by associating them with handwritten
mathematics to govern their behavior [5].

Our underlying research goal is to use mathematical sketch-
ing as the foundation for intelligent tutoring systems for math-
ematics and physics. To reach this goal, mathematical sketch-
ing needs to evolve to include a firm understanding of the
problem, its solution, and a user’s input. It can then pro-
vide appropriate feedback (using dynamic illustrations) on
whether a user’s solution is correct or not. In many cases, the
information users enter will be insufficient to make a proper
animation. Although the current mathematical sketching im-
plementation supports a wide variety of dynamic illustra-
tions [4], it is significantly limited because users must di-
rectly specify how objects behave with position and/or rota-
tion functions of time. An inspection of [9, 10] show prob-
lems students are asked to solve rarely conform to the dy-
namic illustration creation scheme provided by mathemat-
ical sketching. Thus, mathematical sketching needs to be
broadened to include inferencing capabilities to make a proper
dynamic illustration, given information that is only indirectly
or partially related to providing a behavioral specification for
the animation.

In this paper, we present an approach that moves mathemat-
ical sketching towards the ability to infer proper dynamic
illustrations from incomplete specifications. We combine
the ability to make associations between handwritten math-
ematics and free-form drawings with an underlying physics
engine. This combination provides mathematical sketching
with more flexibility to support animations without having to
directly specify object behavior with position/rotation func-
tions through time, yet still supports writing the mathematics
needed to formulate a problem.

RELATED WORK
Systems for recognizing and animating diagrams in terms of
basic primitive shapes have been developed by Alvarado [1]
and Kara [3]. They allow the representation of a range of
problems in specific domains such as mechanical design and
vibratory systems by using a simulation backend. How-
ever, they are limited in scope because they do not allow
the user to write mathematics to govern animation behav-
ior. MathPad2 [6] sought to overcome these limitations by

289

having users write down the mathematics to govern all as-
pects of a diagram’s animation, but it is also limited in the
range of problems that it can represent (e.g. it would be hard
to model a collision resolution problem in MathPad2). Our
approach combines the best elements of [1, 3] with mathe-
matical sketching, providing animations that will work when
users provide just the diagram, the diagram with a full math-
ematical specification, or the diagram with a partial mathe-
matical specification1.

SYSTEM OVERVIEW
In our system, users can create a dynamic illustration by
sketching a diagram and writing down initial conditions and
any equations as part of a particular problem. User input
takes the form of writing with a stylus on a tablet PC. Af-
ter drawing the diagram and writing down initial conditions,
users can request an analysis of the diagram.

The system attempts to analyze the diagram in terms of its
components: convex polygons, circles, springs, and wires.
The ink for recognized diagram components is replaced by
rectified components. This lets the user know that the system
has correctly interpreted the diagram. As the system needs
to perform diagram animation with incomplete information,
realistic values are assigned to recognized components’ at-
tributes based on appearance and position. For example, a
shape’s default mass is assigned proportional to its enclosed
area, in order to provide realistic animated behavior because
larger objects are perceived to have more mass.

Users can replace default attributes with proper initial condi-
tions by writing mathematical expressions and making asso-
ciations with recognized diagram components. To make an
association, a lasso gesture is used to select one or more ex-
pressions followed by a tap gesture. The user can associate
either a constant expression (e.g. m = 5) or an equation (e.g.
v(x) = sin(t)) with any relevant diagram component. The
system applies the force of gravity to all components by de-
fault. Users may associate any number of constant/variable
forces such as push, drag, and reaction forces. Erroneous
associations are ignored automatically. For example, it does
not make sense to associate velocity equations with wires
and springs. Similarly, associating spring constant values
with a shape is meaningless. At any time, users can view
associations by hovering the stylus over a recognized com-
ponent.

Allowing users to modify the behavior of the system in this
manner has several benefits. First, users can modify default
values and behavior as needed for a given problem. Second,
users should be able to debug associations and fix errors.
Errors can exist in initial conditions, causing incorrect ani-
mation that conflicts with the user’s intuition. We provide a
reset mode that lets users correct and alter existing associa-
tions. Finally, our approach allows users to experiment with
different initial values and gain better insight into the work-
1A simple example of a partial specification would be writing the
appropriate force equations for an object and having the underlying
physics engine fill in the details to ensure a plausible animation.
The user would not have to write down a numerical routine to solve
the differential equation.

Figure 1. Overview of our system components.

ing of underlying concepts. Consider a projectile problem.
It may be instructive to experiment with changing initial ve-
locity or the magnitude of the drag force to see the effects on
the range of the projectile.

In keeping with our goal to emulate pencil and paper, exist-
ing associations are preserved along different system modes.
If users want to alter a part of an expression that is already
associated with a diagram component, they do not have to
make the association again. We believe that this approach
minimizes unnecessary work on the user’s part and lets her
focus on the problem at hand rather than being encumbered
by the user interface.

SYSTEM DESIGN
We use a layered approach for flexibility. A custom 2D rigid
body physics engine [7] is used for updating and animating
diagram components. See Figure 1 for an overview of the
system components.

User Interface
The user interface provides facilities for inking to let the user
sketch diagrams and write mathematics in a natural man-
ner. A gesture recognition module recognizes three gestures:
lasso, scribble-erase, and tap. The gesture set is limited to
provide a simple and accessible user interface. The lasso
gesture can be used to select both ink and recognized dia-
gram components. Users can drag and reposition the selec-
tion anywhere on the screen. Similarly, the scribble-erase
gesture is used to erase ink and diagram components. If
users select mathematics and tap a recognized diagram com-
ponent, an association is made. If no math is selected, the tap
gesture will cause a recognized shape to become immobile.
We provide options to save/load ink in order to easily recall
an old problem for revision or clarification. Instant recogni-
tion feedback is provided by means of an online mathemat-
ics recognizer [8]. Recognition errors can be fixed by us-
ing the scribble erase gesture. The feedback results are also
used to make the association which improves performance
by not doing unnecessary recognition and minimizes recog-
nition errors by using correctly recognized mathematics.

Sketch Interpreter
The sketch interpreter has components to perform diagram
recognition, manage associations, render content, and up-
date the animation. A large part of the physics engine resides

290

in this layer because association information is maintained
here. The associations affect initial values and behavior of
the physics engine. Therefore the physics engine cannot be
decoupled from this layer.

Diagram Recognition
Proper parsing of a diagram is necessary to convert a prob-
lem into components that can be animated by the physics en-
gine. From a usability perspective, it is critical that the sym-
bols used to represent diagram components be intuitive and
obvious to a physics student. We use circles, convex poly-
gons, springs and wires as basic diagram components. We
believe that it is possible to model a wide variety of elemen-
tary physics problems using these basic components. This
section describes our methodology for recognizing them.

A cusp detector is used to recognize shapes where shapes
must be closed strokes. A shape is classified as a polygon
if it has more than 2 cusps, otherwise it is classified as a
circle. A stroke is a spring if it is not a closed stroke and has
three or more self intersections. We employ a line segment
intersection test for counting self intersections. Wires are
relatively straight lines.

An ink stroke is either a diagram component or part of a
mathematical expression. The distinction is important be-
cause it is possible to misclassify parts of a mathematical
expression as diagram components (e.g. zeros as circles or
symbols with self intersections as springs). We use a few
simple rules to address these problems. Shapes are sepa-
rated from mathematics by ensuring that all convex diagram
components enclose a minimum area. For springs and wires,
at least one end of both must be attached to a shape. Hence
recognition proceeds in the following order: shapes, springs,
wires, and mathematics.

Associations Management
Associations between mathematics and diagram components
are used by the physics engine at runtime to animate a dia-
gram. Associations can include both constant expressions
and equations. Constants can modify almost all attributes of
a diagram component such as mass, velocity, angular veloc-
ity, orientation, position, acceleration, and forces. Constants
are applied once, at the start of the animation. It is impor-
tant to have a mechanism to undo them, because the user can
reset the animation and start over with different parameters.

It is possible to write equations for several attributes of dia-
gram components. The physics engine populates the appro-
priate set of equations with their parameter values at runtime
and evaluates them to guide the animation of the diagram.
When evaluating equations with errors, any unrecognized
parameter is assigned a value of zero. This can yield an
incorrect animation but also serves as feedback to the user
indicating some error in input is causing abnormal behavior.

Animation of Diagram Components
Diagram components are animated by a custom 2D Rigid
Body physics engine [7]. The default animation behavior of
all diagram components depends on the standard equations

of motion. The engine updates every movable component’s
position by computing net acceleration and then integrating
twice for position. Collision detection and resolution are
performed after the update. This step may also involve the
computation of rest forces for components that are in rest-
ing contact [2]. Lastly, a post processing step is applied that
infers unspecified circumstances. Important attributes such
as forces and velocity are rendered using arrows. The length
of each arrow changes in proportion to the magnitude of the
quantity it represents, which lets users observe how impor-
tant quantities change due to specified initial conditions.

The physics engine has a very open ended design. Much
of its behavior can be altered by users. Users may move
diagram components by lassoing and dragging. Attributes
of diagram components can be altered by associating con-
stants/equations. Users can also specify position or velocity
equations as a replacement for standard forces or acceler-
ation equations. In such cases, the system is able to infer
what needs to be done to update components’ positions. If
only velocity is specified, it infers the need to integrate once
to update position. If the position equation is specified, it
infers that no integration is required. The net force is always
computed for display purposes.

Interesting scenarios arise when the default behavior is over-
ridden by user-specified behavior. Consider the following
example. Two objects X and Y are part of the diagram. X
is moving under standard equations of motion. Y is moving
under user-defined equations that specify how its position
changes with time. An important question from an anima-
tion perspective is what happens if X and Y collide? Clearly
the position equations for Y no longer applies. How should
the user-defined behavior be changed in order to produce a
realistic animation? Our approach is to revert to the standard
equations of motion.

Inferencing Unspecified Events
This subsystem is best illustrated by an example. Consider
an object attached to some wires. Suppose that the com-
bined tension in all wires is not enough to inhibit motion.
How should the system proceed with animation? Clearly
the object should move, causing some wires to break. Our
approach is to start breaking the wires most opposite to the
direction of motion, providing a convincing animation.

Such cases are not specified by users. To incorporate such
unseen events into the animation, we have built a simple
inferencing system into our physics engine. Inferencing is
done after collision resolution. Currently it is limited to de-
tecting if an object is in equilibrium (i.e., will it move?).
Such scenarios can occur in a variety of situations involving
wires, springs, and inclined plane problems.

EXAMPLE SCENARIO: FREEFALL
Consider a free-fall problem. A student is asked to write
down the drag force acting on the body with a coefficient of
0.5 (see Figure 2). The student draws a ball and writes an
expression for aerodynamic drag. Upon analysis, the sys-
tem recognizes and replaces the ball with a circle. The user

291

Figure 2. A diagram exploring free fall with aerodynamic drag.

Figure 3. An altered freefall diagram that specifies how the position of
the ball changes instead of giving the initial conditions.

associates the drag force with the circle. When run, the an-
imation shows how the velocity and the drag force changes
as the ball falls towards the ground. The ball will bounce a
few times, losing momentum with each bounce. Eventually
it will come to a complete stop on the ground. Note that
the student was not asked to find the position equations for
the ball, just write an expression for the drag force. In this
case, the system infers from the drawing and the mathemat-
ics what forces are applied to the ball and that it must fill in
the details to ensure a proper animation.

The system also supports the more traditional mathematical
sketch creation mechanism. Suppose the student is asked to
write down the ball’s position equations. In this case, the
system detects from the written mathematics that it cannot
use the standard equations of motion because position equa-
tions have been defined. Instead, it uses the given equations
to update the position of the ball. When the ball collides
with something while moving, the specified equations be-
come obsolete. The system detects this and the motion of
the ball reverts back to the standard equations of motion.

CONCLUSION
We have presented a system that combines mathematical
sketching with an underling physics engine to allow cre-

ation of a wider variety of dynamic illustrations to under-
stand physics and mathematics concepts. This fusion pro-
vides a mechanism to infer how to make a proper animation
given different levels of granularity of user input, from di-
agram only to complete behavioral specification. Currently
our system understands the relationship between accelera-
tion, velocity, and position/orientation. We plan to extend
this by building diagrammatic reasoning components into
the system. Although we have made strides toward creat-
ing a mathematical sketching system suitable for intelligent
tutoring, there is still a significant amount of work that needs
to be done to make a general solution. Our system needs to
develop an understanding of concepts related to the F = ma
equation, such as work and kinetic energy, power, momen-
tum, and impulse among others. An evaluation of the per-
formance of system components, such as the shape and ges-
ture recognizers, will help us improve our system. We also
plan to get feedback regarding the system’s usability and
effectiveness by conducting a user study among university
physics students.

ACKNOWLEDGEMENTS
This work is supported in part by NSF CAREER Award IIS-
0845921.

REFERENCES
1. Alvarado, C.J. A Natural Sketching Environment:

Bringing the Computer into early stages of Mechanical
Design , Master’s Thesis, Massachusetts Institute of
Technology, 2000

2. Baraff, D., And Witkin, A. Physically Based Modeling:
Principles and Practice , Siggraph Course Notes, 1997

3. Kara, L.B., Gennari, L., And Stahovich, T.F. A
Sketch-based Tool for Analyzing Vibratory Mechanical
Systems , Journal of Mechanical Design, Volume 130,
Issue 10, 2008

4. LaViola, J. Advances in Mathematical Sketching:
Moving Toward the Paradigm’s Full Potential, IEEE
Computer Graphics and Applications, 27(1):38-48,
January/February 2007.

5. LaViola, J. Mathematical Sketching: A New Approach
to Creating and Exploring Dynamic Illustrations , PhD
Thesis, Brown University, 2005

6. LaViola, J. and R. Zeleznik. MathPad2: A System for
the Creation and Exploration of Mathematical
Sketches, ACM Transactions on Graphics (Proceedings
of SIGGRAPH 2004), 23(3):432-440, August 2004.

7. Millington, I. Game Physics Engine Developement ,
Morgan Kaufmann, March 2007

8. StarPad. http://pen.cs.brown.edu/starpad.html, 2009.

9. Varberg, D. And Purcell, E.J. Calculus with Analytical
Geometry , Prentice Hall, 1992

10. Young, H.D. University Physics , Addison-Wesley
Publishing Company, 1992

292

