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ABSTRACT
We explore the benefits of intelligent prototype selection for
$-family recognizers. Currently, the state of the art is to ran-
domly select a subset of prototypes from a dataset without
any processing. This results in reduced computation time for
the recognizer, but also increases error rates. We propose ap-
plying optimization algorithms, specifically random mutation
hill climb and a genetic algorithm, to search for reduced sets
of prototypes that minimize recognition error. After an eval-
uation, we found that error rates could be reduced compared
to random selection and rapidly approached the baseline ac-
curacies for a number of different $-family recognizers.
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INTRODUCTION
$-family recognizers, such as $1 [17], $N [2], 1¢ [6], and $P
[15], are 2D gesture recognizers designed to be accessible to
all developers. They are suitable for rapid prototyping, have
low coding overhead, rely only on simple geometry and near-
est neighbor prototype matching, utilize intuitive internal rep-
resentations of gestures, are easy to debug, and achieve high
accuracy with as little as one prototype per gesture [15, 17].
By possessing these characteristics, it is not surprising that $-
family recognizers have gained significant popularity. How-
ever, developers who employ these recognizers may also be
interested in $-family like methods that address related topics
in gesture recognition such as rejection criteria for malformed
gestures, synthetic data generation, and prototype selection.
In this paper, we begin to tackle the latter.
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It is easy to acquire a large dataset. One can collect numerous
gesture samples from friends, family, coworkers, and volun-
teers; record samples online and return them to a local repos-
itory; select gestures from publicly available datasets such as
[3, 9, 16, 17]; or generate countless synthetic samples from an
online service [7]. However, with $-family recognizers that
are 1-nearest neighbors template matching algorithms, each
new training sample incurs an additional penalty in recogni-
tion time and storage space, both of which are often restricted
or must be minimized as much as possible. It is therefore nec-
essary to winnow the dataset down to a small subset of sam-
ples that exhibit high discriminatory power—that best sepa-
rate the gesture classes. This prototype (or instance) selection
problem is well studied [4], but most solutions are complex
(requiring expert knowledge), are slow, or have high coding
overhead, and are consequently juxtaposed to $-family ide-
ology in one way or another. Alternative recognizers, like
Rubine’s linear classifier [12], have also been used for 2D
gesture recognition but feature more complex mathematical
structures and are therefore less approachable.

In a $-family friendly context, a promising set of solutions
for prototype selection are stochastic methods such as genetic
algorithms and hill climbing [10, 11, 13]. These methods
have been shown to achieve high accuracy, but involve only
random template selection and recognizer evaluation. As a
result, there is little bookkeeping and little coding overhead,
and therefore can be added to any project with only minimum
effort.

PROTOTYPE SELECTION
In this work, we propose two potential selection methods to
be applied to $-family recognizers: Genetic Algorithms and
Random Mutation Hill Climb. Both stochastically search for
optimal solutions using online repeated cross-validation of
the candidate solutions.

Genetic Algorithm
Genetic algorithms test the fitness of a population consisting
of multiple candidate solutions for a number of generations.
At the end of each generation, children are created from the
higher fitness candidates (parents) from the population. Ge-
netic algorithms leverage mutation and crossover operators to
facilitate the exploration of new areas within the search space.

In the context of prototype selection, each candidate solution
is a subset of the complete dataset. During initialization, a
random collection of prototypes is selected to populate each
of the candidate solutions and a recognizer is generated from



those prototypes. To evaluate the fitness of a candidate, a
random selection of prototypes is recognized, and the resul-
tant accuracy is the fitness of the candidate. This operation
is carried out for each of the candidates in the population.
Next, the highest fitness candidates are selected to be carried
over into the next generation, while the remaining candidates
are replaced with children generated by mutating (changing
one of the selected prototypes of a candidate) and crossing
over (randomly selecting prototypes from two different can-
didates) candidates from the current generation. This new
generation then repeats the processes of the previous gener-
ations until either the maximum number of generations pass
or a solution that can correctly recognize all the prototypes
during fitness evaluation is found. In our implementation, we
used single point mutation and uniform crossover as our ge-
netic operators. We also used elitism to carry over the top
50% of each generation. For the fitness evaluation, each can-
didate solution was evaluated by attempting to recognize 32k
prototypes from the dataset, where k is the total number of
prototypes in each candidate solution. The fitness is the accu-
racy of this result.

Random Mutation Hill Climb
Of all the methods we considered, Skalak’s [13] approach
to prototype selection using random mutation hill climb
(RMHC) is perhaps the most appropriate technique with
respect to coding overhead, complexity, understandability,
speed, and accuracy. In his initial formulation, prototypes are
represented as integers that index samples in a training set,
and the selection is encoded into a single bit string. The bit
string is randomly mutated one bit at a time. On each itera-
tion, the fitness of the encoded prototype bit string is evalu-
ated utilizing a 1-nearest neighbor classifier. If the fitness of
the mutated string is greater than all previously identified so-
lutions, the mutated string becomes the new best (fittest) solu-
tion. This process terminates after a predetermined, but low,
number of iterations. Our approach is identical except that
we store an array of integers that index samples in a training
set, and we randomly mutate whole integers rather than indi-
vidual bits in order to reduce coding complexity. However,
there are also a number of optimizations that we employ to
speedup the process.

There is no sense in considering a solution in which not every
class is represented. When the target prototype count is low,
for example, this situation is easy to encounter, and signifi-
cantly many more mutations are required to achieve high ac-
curacy as compared to the following alternative. Instead, we
ensure that there is at least one prototype per gesture when
performing a mutation. For each class we keep a counter of
selected prototypes that represent the class. When a prototype
is to be mutated, if its associated class count is one, we ran-
domly select another prototype from within the same class.
Otherwise, there is no restriction. Finally, if the fittest solu-
tion wins its second mutation round and has classified a suf-
ficient number of consecutive samples correctly, the process
terminates (currently this is 64 times the class count).

We operate under a similar assumption as Skalak: that $-
family recognizers are typically employed in problem do-

RANDOM-MUTATION-HILL-CLIMB (Samples, k)

for i← 0 to k do
Fittest[i]← RANDOM-SAMPLE(Samples)

FittestRecognizer ← GENERATE-RECOGNIZER(Fittest)
count← 0
max← 32 ∗ k
TestMutations← 256
while count < max do

Alternate← Fittest
MUTATE-ONE(Samples,Alternate)
AlternateRecognizer ← GENERATE-RECOGNIZER(Alternate)
c1, c2, n← 0, 0, 0
for i← 0 to TestMutations do

for j ← 0 to Gesture-Type-Count(Samples) do
S ← RANDOM-SAMPLE-OF-TYPE(Samples,j)
c1← c1+IS-RECOGNIZED(FittestRecognizer, S)
c2← c2+IS-RECOGNIZED(AlternateRecognizer, S)

k ← FIND-CRITICAL-VALUE(c1, c2, n)
if c2 < k then

break

if c2 > c1 then
Fittest← Alternate
FittestRecognizer ← AlternateRecognizer

return Fittest

FIND-CRITICAL-VALUE (correct1, correct2, n)

α, pf, comb← 0.8, 1.0, 1.0
psuccess← correct1/n
pfail← 1.0− psuccess
ps← psuccessn

for k ← n to 0 and α > 0 do
α← α− comb ∗ ps ∗ pf
comb← (comb ∗ k)/(n− k + 1)
ps← ps/psuccess
pf ← pf ∗ pfail

return k

mains where good prototypes appear in dense regions of the
sample space. We also assume that most, if not all, gestures
reside in a sloppiness space [5], so that rushed and sloppy in-
stances are still distinguishable. Using these assumptions, in-
stead of evaluating a candidate solution over the entire train-
ing dataset, we can randomly sample from the dataset. That
is, samples are drawn with replacement and evaluated against
the fittest solution and candidate solution, until either one so-
lution clearly out performs the other, or a predetermine num-
ber of iterations pass (we use 256 times the class count in
our evaluation). Also, to ensure good test coverage, in each
iteration we test one sample from each class. Since each re-
sult is a Bernoulli trial (either a sample is classified correctly
or not), the sequence of all results is a Binomial distribution.
Therefore we can use an exact Binomial test to compare the
solutions. The minimum variance unbiased estimator of the
success rate is given by:

p̂ =
x

n
, (1)

where x is the number of successes in a set of n Bernoulli
trails. Let p̂0 be the success rate estimate for the fittest so-
lution and p̂c the estimate for a new candidate solution. As
solutions are iteratively evaluated, we conduct a one-tailed
hypothesis test to eliminate any candidate solutions that are
unlikely to improve accuracy:

H0 : p̂c = p̂0

H1 : p̂c < p̂0,
(2)



where the null hypothesis is that candidate solution is approx-
imately as good as fittest solution. Note, however, that the
usual normal approximation to the binomial distribution is in-
appropriate because the success rate is often too high. For this
reason we must conduct an exact test and manually find the
critical value of the rejection region.

The cumulative distribution function (CDF) of the binomial
distribution is as follows:

P (X ≤ k) =

k∑
i=0

(
n

i

)
pi(1− p)n−i, (3)

where random variable X is the number of successes and p,
again, is the probability of success. Given a level of signifi-
cance, such as α = .05, it is actually more efficient to solve
the inverse problem: to find the critical value for the upper
tail, 1 − α, and calculate the summation backward from n
down to k for P (X > k). Why? First note that Equation
3 contains a binomial coefficient, which can be solved incre-
mentally as the CDF is being calculated by using the follow-
ing relation: (

n

k − 1

)
=

(
n

k

)
k

n− k + 1
, (4)

where k represents the number of successes in n trials, and
the initial condition is

(
n
k=n

)
= 1. Second, note that because

the success rate is high, the k containing α = .05 of the lower
tail (or equivalently the k containing α = .95 of the upper
tail) is close to n. For example, with n = 1500 and p = .95,
then 5% of the distribution falls under k = 1439.

EVALUATION
We ran a large scale evaluation of the proposed selection tech-
niques and their effect on error rates. We compared to the
baseline, using all available prototypes, and the current trend
of random selection for reduction. In this way, we could de-
termine if there was an improvement over random selection
and how close the results came to the best possible result. We
chose to evaluate the proposed selection methods on three dif-
ferent datasets, with details shown in Table 3.

Recognizers
We used a number of $-family recognizers to insure that the
results were consistent regardless of which recognizers were
used:

Protractor. Protractor [8] is a speed-optimized version of the
traditional $1 recognizer. Protractor aligns the candidate ges-
ture and dataset prototype to minimize the distance between
the two unistroke and uses the inverse minimum cosine dis-
tance between the samples.

$N-Protractor. $N-Protractor [3] is a speed-optimized ver-
sion of the $N recognizer which leverages the optimizations
proposed in Protractor to decrease the overall computation
time of $N while maintaining similar error rates.

Penny Pincher. The Penny Pincher recognizer [14] is a re-
duced complexity recognizer that emphasizes speed and sim-
plicity while maintaining high recognition rates. Penny

Penny Pincher
$1-GDS SIGN MMG

k GA RM Rand GA RM Rand GA RM Rand
1 2.0 1.5 8.8 4.8 4.1 14.1 23.4 22.6 37.8
2 0.9 0.6 4.8 2.4 1.5 8.8 11.3 8.7 25.5
3 0.5 0.5 3.4 2.0 1.1 6.0 8.6 4.5 20.2
4 0.4 0.5 2.5 1.8 0.9 4.5 6.3 3.2 16.2
5 0.2 0.5 2.3 1.3 0.9 4.2 5.2 2.4 14.0
n <0.1 <0.1 <0.1 0.4 0.4 0.4 0.8 0.8 0.8

Protractor
$1-GDS SIGN MMG

k GA RM Rand GA RM Rand GA RM Rand
1 2.3 1.6 12.0 16.0 16.0 32.7 23.4 23.7 35.6
2 1.0 0.8 6.7 14.5 13.2 27.8 9.6 6.9 23.3
3 0.8 0.7 4.8 13.8 13.1 24.8 7.0 4.3 18.5
4 0.6 0.5 3.6 13.9 12.2 23.4 5.8 3.6 15.5
5 0.6 0.5 3.1 13.9 12.7 23.1 5.1 3.2 13.4
n 0.2 0.2 0.2 13.5 13.5 13.5 3.0 3.0 3.0

$N-Protractor
$1-GDS SIGN MMG

k GA RM Rand GA RM Rand GA RM Rand
1 5.0 4.2 14.7 15.9 16.2 31.1 12.0 12.0 20.4
2 1.3 0.9 7.6 12.6 11.1 24.3 5.6 4.1 12.0
3 0.9 0.5 5.5 11.7 10.7 20.8 3.9 2.1 9.3
4 0.7 0.8 4.1 10.7 10.1 19.0 3.5 1.7 7.4
5 0.6 0.7 3.7 11.1 10.6 18.4 2.7 1.7 6.1
n 0.1 0.1 0.1 9.4 9.4 9.4 0.5 0.5 0.5

Table 1: Absolute error rates (in %) for all datasets, selection modes,
and recognizers for template counts k = [1, 5] and baseline (k = n)
using remaining samples as templates after removing the candidates.

$1-GDS SIGN MMG
Recognizer Mem Speed Mem Speed Mem Speed

Penny Pincher 98.3 95.7 99.7 99.5 97.5 95.2
Protractor 98.3 97.7 99.7 99.7 97.5 96.8

$N-Protractor 98.3 97.4 99.7 99.6 97.5 97.7

Table 2: Percent reduction in memory consumption and runtime
for k = 5 compared to baseline. Note that metadata overhead is
excluded from the memory consumption calculation.

Pincher reduces the matching process to addition and mul-
tiplication, allowing for significantly shorter matching times.

Procedure
In order to determine the effect of the reduced datasets on the
error rates of the $-family recognizers, we randomly gener-
ated a number of tests for each combination of recognizer,
dataset, and selection mode. The evaluations were user in-
dependent, so samples for each gesture type from each user
were combined together. A prototype was selected from each
gesture class within the selected dataset and was designated a
candidate to be matched. The candidate was matched against
the best reduced dataset generated using one of the selection
methods. The candidate was not included in the gesture se-
lection process for that particular test. Error rates for this
cross-validation were recorded for k = [1, 5], where k ∗ T is
the number of prototypes to which the dataset should be re-
duced, and T is the number of distinct classes in the complete
dataset. The variance of the resulting error rates were mini-
mized by running tests with each configuration 500 times.

Name Ref Multistroke Gestures Participants Total Samples
$1-GDS [17] No 16 10 4800
SIGN [1] No 17 20 33154
MMG [3] Yes 16 20 3200

Table 3: Datasets used to evaluate selection methods. Additional
details can be found in the associated references.
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Figure 1: Percent reduction in error rates relative to random selection error rates and baseline for different sample counts per gesture class
for each dataset. The baseline is represented by 100% reduction in error rate and random selection is represented by 0%; that is, charts were
generated using the equation 100 ∗ (random − method)/(random − baseline). In all cases, RMHC and GA were significantly closer to
baseline accuracy than random selection with substantial reductions in error rate.

Results
Results for the evaluation are shown in Table 1. For visualiza-
tion purposes, we elected to report the percentage decrease in
error rate in lieu of the absolute error rate because we are not
comparing recognizers. We wanted to see how close to base-
line error rates the selection algorithms were able to reach.
These results are presented in Figure 1. Each of the recogniz-
ers improved dramatically over random selection in all con-
figurations. We compared the RMHC and GA error distri-
butions to random selection for each dataset, recognizer and
level of k, which resulted in 90 pairwise comparisons. Us-
ing Welch’s unequal variances t-test with a Bonferroni cor-
rection, all results were significant (p < .05/90). Error rates
were reduced by over 70% in all cases for $1-GDS, 35% for
SIGN, and 25% for MMG. Table 2 also shows the reduction
in time and space efficiency for k = 5. It is clear that reduc-
ing the size of the dataset reduces the computational load of
the recognition process while still reaching similar recogni-
tion rates to baseline, according to Table 1.

DISCUSSION AND CONCLUSIONS
The results of the experiment point toward a clear benefit in
using a supervised selection algorithm to reduce the number
of prototypes while still maintaining only slightly worse error
rates than when using the entire dataset. This idea is com-
pounded in situations when there is a temporal constraint on
recognition. Each configuration rapidly approached the base-
line accuracy of the dataset for that particular recognizer.

Also notable is the fact that RMHC and GA performed sim-
ilarly. Both methods are heavily influenced by the mutation
genetic operator. Mutation is the primary method of explo-
ration in GA with crossover being used to consolidate good
candidates into potentially higher fitness individuals. RMHC
is able to reach similarly optimal prototype subsets without
the use of crossover or multiple candidates in each iteration.
For this reason, we recommend practitioners use RMHC in
lieu of GA. We have provided pseudocode for RMHC.

There are almost no downsides to carrying out this calcula-
tion, save the brief additional implementation time and time
to carry out the preprocessing and selection, which is negli-
gible for RMHC. However, we found that $N-Protractor was
slow to carry out selection, particularly when working with a
large, multistroke dataset (MMG). One possible way to solve
this is to use a faster, more efficient recognizer like Penny
Pincher during the selection process and then use the resul-
tant subset of strokes to build a different $-family recognizer.

We proposed two alternative techniques for prototype selec-
tion that intelligently select prototypes that will best main-
tain the low error rates of the recognizer. Previous research
[10] has found that there are methods to improve the perfor-
mance of GA relative to RMHC. However, both techniques
perform better than random selection in all cases tested here,
and RMHC is simpler to code with similar execution time.
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