
Dynamic task‐dependent parallelism is an increasingly popular programming model on shared‐memory systems. Compared to data
parallel loop‐based concurrency, it promises enhanced scalability, load balancing and locality. These promises, however, are under‐
mined by non‐uniform memory access (NUMA). We show that it is possible to preserve the uniform hardware abstracƟon of contem‐
porary task‐parallel programming models, for both compuƟng and memory resources, while achieving near‐opƟmal data locality. Our
run‐Ɵme algorithms for NUMA‐aware task and data placement are fully automaƟc, applicaƟon‐independent, performance‐portable
across NUMA machines, and adapt to dynamic changes. We take advantage of data‐flow style task parallelism, where the privaƟza‐
Ɵon of task data enhances scalability through the eliminaƟon of false dependences, and enable fine‐grained dynamic control over the
placement of applicaƟon data. In a second part, we present AŌermath, an interacƟve visualizaƟon tool for post‐mortem trace analysis
of cross‐layer performance anomalies in dynamic task‐parallel applicaƟons. We focus on the detecƟon of anomalies inaccessible to
state‐of‐the‐art performance analysis techniques, including anomalies deriving from the interacƟon of mulƟple levels of soŌware ab‐
stracƟons, anomalies associated with the hardware, and anomalies resulƟng from interferences between opƟmizaƟons in the applica‐
Ɵon and run‐Ɵme system. AŌermath supports filtering, aggregaƟon and joint visualizaƟon of key metrics and performance indicators,
such as task duraƟon, run‐Ɵme state, hardware performance counters and data transfers. While not being specifically designed for
NUMA architectures, AŌermath takes advantage of the explicit memory regions and dependence informaƟon in dependent task mod‐
els to precisely capture long‐distance and inter‐core effects on complex, dynamic applicaƟons.

Antoniu Pop holds a Royal Academy of Engineering University Research Fellowship and is a Lecturer in the
Advanced Processor Technologies group at the University of Manchester. He conducts research in mulƟple as‐
pects of parallel soŌware including programming languages, program analysis, data‐flow models of computa‐
Ɵon and compiler and runƟme opƟmisaƟons for parallel and high‐performance computer systems. He is the
designer of the OpenStream language and has contributed to the GCC compiler. Antoniu is involved in mulƟple
EU and UK projects invesƟgaƟng data‐flow programming models for many‐core architectures and in the Euro‐
Exa projects, co‐designing the European hardware and soŌware architecture for exa‐scale compuƟng.

Hosted by: Dr. Damian Dechev

