
SMIDGE

 The Smart Fridge System

Felipe Bernal, Arian Caraballo, Isabel Virag,

Daniela Zicavo

School of Electrical Engineering and Computer

Science, University of Central Florida, Orlando,

Florida, 32816-2450

Abstract — This paper present the design and overview of
a system developed for a smart fridge. Through the use of
user friendly interfaces, the system allows the user to keep

track of and add items to their inventory as well as maintain
shopping lists and recipes. This smart fridge system is a
system of subsystems. The main part of the system is the

fridge client, which allows the user to interact with the
system through a touch screen LCD and UPC scanner. The
user can also access its information through a mobile

application and a website. The fridge client and the mobile
application are interfaces developed in Android. The web-
based application can be accessed with any browser. Each

application will contain its own database which will
synchronize with the main database maintained in the server.

Index Terms — UPC codes, barcode scanner, Android
applications, ARM processor, smart fridge.

I. INTRODUCTION

The team decided to engage in a smart fridge project for

the technology challenges it represents and how beneficial

it can be in ones everyday life. The project merges

different technologies, both hardware and software, to

come up with the final product. There have been some

attempts at creating smart fridge systems but none have

made a real breakthrough. This system will attempt to

fulfill different areas of need. From the private sector

point of view, this system can simplify homes, simplify

life and give people back all that time that is wasted on

dealing with kitchen inventories, shopping lists and

complex recipes. From the industrial point of view, the

creation of a database that will be linked to several

hardware and software components, from which the

database can be accessed and modified, is definitely an

idea that can be used in future applications.

Although the team members had various options

when it came to the design of the overall system, certain

goals were really taken into account when selecting the

optimal implementation technique. Some features that

required a large amount of work and were thought of as

extremely time consuming were not sacrificed for the sake

of simplicity. The main goal of the project was to create a

useful system that was very user friendly.

The team is comprised of four computer

engineers and wanted to undertake in a project that was

software heavy. The system contains three clients which

contains a large amount of software. The development of

web-based applications as well as the development of

mobile phone applications has grown rapidly in demand

within the past few years. For this reason, it was deemed

important to undertake a project which would allow the

team members to expand their technical foundation in

these areas. The project also contains several hardware

components to it which stood as a major challenge to the

team members. Through self-study and research all of the

tasks were tackled appropriately.

II. MOTIVATION

 What can you make that is a Caribbean dish in

the seafood group category that is easy to make? How

about an Italian recipe in the dairy category that is difficult

to make? Questions like this were what inspired our group

to create an application that would be able to put together

a delicious meal from what you have in your fridge. In

addition, instead of asking this question why not let the

application know what you already have in stock at the

moment of purchase or when you are running low of

certain item, or if it is completely out of stock. Imagine

this and some other features added to one of the most used

appliances in any home.

The motivation for “Smidge” was to incorporate

one of the most used appliances in the household to the

era of smart devices. The idea came up when the group

made the suggestion of a project that will make life a little

bit easier for users. With “Smidge” you would not have to

worry about running out of a particular item, or searching

through your shelves looking for items that you need to

buy to put them on a shopping list. “Smidge” is linked to

your cell phone through an Android application so you

will have access to your fridge and pantry inventory

twenty four hour a day, seven days a week. Smidge

database is also going to be synchronized to a website to

make it easier to replace items or make adjustment to the

inventory.

III. SYSTEM BREAKDOWN

The system can be described by the different

components that make it up. There are three interfaces by

which the user can interact with the system. The web-

based application and the mobile application are both

software only components of the system. The third

interface, the fridge client, contains both software and

hardware components. The hardware consists of the

printed circuit board which interfaces the scanner and the

LCD display. The other main component is the database

system. While this part might seem trivial, it consists of

detailed design and various scripts needed to keep all of

them synchronized. The system distribution can be seen

in figure

Fig. 1. System Breakdown Block Diagram.

The Barcode Scanner is in charge of reading the

Universal Product Code located in any one of the products

that will be placed inside the fridge, and delivering it as a

sequence of numbers in the form of a keyboard input. This

keyboard input will then be entered into a search for

product recognition. The scanning system is responsible

for linking this input read in by the scanner to the

inventory API. The information is then retrieved and

displayed in the LCD on the refrigerator system.

The touch Interface is provided through an LCD

touch screen placed on top of the small refrigerator for

convenient access. With this, the user is able to easily

enter and delete products from the inventory on the

system. Through this system, the user will have the option

to enter a product or a batch of products; remove a product

from the inventory; change the size or weight of the

product as it progresses through its use; add expiration

dates if desired with the option to notify the user when the

expiration date is reached; add and modify shopping lists

and finally, view any recipes already in the system.

The Web Interface resembles the touch interface

very closely. It is responsible for offering yet another

option for the user to check their current fridge inventory

and make any changes; as well as create shopping lists,

adjust shopping lists, create or delete recipes. The

webpage plays a big part in the enhancement of user

experience with the system and requires a personalized

login account for complete privacy.

The Mobile Application provides one of the main

advantages of the system, being able to access the

inventory at any time, any place. Having the ability to

access, create, and modify shopping lists while at the

grocery store makes all the hard work of keeping track of

groceries worthwhile. The contents of the mobile

application are very similar to those of the website.

Through the mobile application, the user is also able to

access, modify and create new recipes on the go as well as

modify items on the current inventory available.

Shopping Lists are created by the user in order to

have a list of items desired to be purchased in the future.

They are available for creation, viewing, modification and

deletion through the three interfaces: mobile application,

refrigerator system and website. The user should be able

to add his personal shopping lists with different names.

Also, there should be a shopping list automatically created

by the system that provides an up-to-date list of items the

system has analyzed and concluded the user shall need.

This list will be based on items bought in the past, items

the user has already disposed of, or items whose

expiration date is approaching. Based on user preferences,

the shopping lists will have the ability to get sent through

email or mobile application notifications.

Recipes will be comprised of a list of ingredients

and an itemized procedure divided into steps. The user

will have to input these recipes into the system through the

mobile application or website; however, the recipes should

be viewable through all interfaces, including the

refrigerator system. The system should be able to

determine which recipes are available for creation based

on the items currently available on the inventory. It should

also be able to determine which items are missing in the

inventory from a selected recipe.

The notification system will be implemented to

alert the user about items soon to reach their expiration

date, items soon to be discarded, undesirable temperature

readings, or shopping lists selected through user

preferences. It can be implemented to use email or mobile

application notifications in a mobile phone.

IV. FRIDGE CLIENT

The fridge client is broken down into two parts; hardware

and software. All of the hardware in the smart fridge

system is contained in this subsystem of the overall

system.

A. Fridge Client Hardware

The system needed a way to input the items being stored

in the fridge by the user. Since most items purchased in a

grocery store contain a UPC code, a barcode scanner

needed to be implemented in some sort of way. To

provide the user with an interface that was easy to use and

effective, several options were researched but ultimately it

was decided that the system should run on Android. For

these reasons mentioned, the system was ultimately

implemented using an ARM processor. It was required

that the system had a minimum speed of 667Mhz and had

pop memory capacity of greater than 1 GB for both

SDRAM and NAND. Additionally, the fridge client

needed to be compact so this client needed to be

implemented in a board of no more than four inches

squared. After narrowing the processor choices down to

three, OMAP 4430, OMAP 3530, and SC6410, it was

determined that the OMAP 4430 and 3530 would be the

best options available but the OMAP 3530 would be the

only one that was easily accessible.

The system uses this processor to interface

several components necessary for the functionality of the

system. The TPS65950 Power Interface control is

connected to the processor through several pins to

interface the power supply, SD slot and USB host and

connector. The processor also has pins which connect to

the SD slot, USB host, reset buttons, and JTAG connector.

[1] The board uses a 5V power connector to power the

processor and components. This configuration can be

seen in figure 1.

Fig. 2. Hardware Overview Block Diagram

To retrieve the information for each item, the

system needed to be able to interface a UPC scanner with

the processor. Several scanners were researched, some

which were connected via USB. The best option, the

MetroLogic’s Scanglove, was selected due to various

reasons. It is a durable, lightweight, wearable automatic-

single line 1D bar code scanner that improves productivity

as it increases scanning flexibility. It can be used as a back

of hand scanner or a stationary desktop scanner or also as

Fig. 3. Metrologic ScanGlove.

(Reprinted with permission from Metrologic

Intruments, Inc)

a compact, fixed mount presentation scanner. Its most

important aspect is that as soon as it is plugged into a PC,

and the barcode is presented to the scanner, the numbers

are automatically entered into the computer, similar to a

keyboard input; no special drivers are needed to be able to

use the device.

The scanner can read up to 80 data characters and

has a visible laser diode of 650mm. It has three indicators:

if the LED is red, the laser is on and ready to scan. If it is

green, it means it just read a barcode successfully. When it

comes to power, the ScanGlove comes with its own USB

power cord attached and gets power as well as outputs the

code through this same cable. The unit also features an

infrared sensor (IR), if a specified time has elapsed

without any scanning, the unit will enter a “standby”

mode. The unit reactivates automatically when it detects

an object in front of the IR sensor. The last feature is that

the scanner can be programmed to emit three beeps when

a timeout occurs between the host and the scanner. [3]

 An internet connection is required to connect to

the UPC database and also to be able to keep all the

databases synchronized. With this system in mind,

wireless network connection allows for better system

integration. The main concern in selecting a Wi-Fi

module was selecting a module which was compatible

with Android without the need of custom drivers. The

Belkin Wireless G USB Network Adapter F5D7050 was

selected for system implementation. Its 400 feet range,

USB connectivity, and 5V operating voltage made it an

optimal fit for the hardware system.

The fridge client will be equipped with an LCD

touch screen display. The IMO Pivot Touch was selected

as the best option. This device adds an element of speed

and ease to the user experience when using the system.

This touch screen display is also powered through the

USB. It is a 7 inch display with a resistive touch-screen.

It has a resolution of 800 x 400 and its power consumption

is 100 – 240V. [2] The IMO Pivot Touch has generic

drivers and custom ones needed to be built for the display

to work on the Android operating system.

B. Fridge Client Software

The fridge client is the main point of interaction with the

user. This is the only client application in the system that

allows the user to input items into its inventory. Since, the

fridge display will be the main interaction point between

the user and the system, it is crucial that this display is as

user friendly as possible. There are five different areas

which have been kept in mind when enhancing usability

of this application. These include the learning curve,

efficiency, ability to memorize, errors, and satisfaction.

With these factors optimized, the fridge display contains

an extremely easy to use interface.

 This application, as well as the mobile phone

application, is developed in Android. It makes use many

of the features available to Android application

developers. The fridge client application was developed

in Eclipse Helios IDE with an Android Development

Tools plugin. The target build version of Android used in

development is 2.2 and additional emulator plugins, such

as the Galaxy Tab emulator, were installed to give the

developers a better idea of what the application would

look like once installed on the board.

The fridge client application follows the framework

described by Android applications. The diagram shown in

figure 3 shows how an Android application is organized.

Fig. 4. Android application Framework

The application contains three main files which hold most

of the files of the application. The source file contains all

of the java files with all the source code which the

application is made of. These files are usually one of

three kinds. The first is an activity class. This is a java

class which extends activity. Each page in an android

application is an activity and is declared in these files.

Another type of file in the source file is an adapter file. In

the case of the fridge client application, most of these are

adapters that abstract the connection to the database from

the interface. These are java files that extend

SQLiteOpenHelper which aid in getting and setting

information into the local database. The last can be a

simple java object used by any activity.

 The assets folder contains items that can be

referenced by other files in the application such as images,

strings, and the like. The resources folder contains all of

the XML files of the application. These files define the

layout of each page in the application. Components such

as textboxes, lists, titles, and so on can be modified in

these files. Another major part of the framework is the

Manifest file. This file declares all the activities used in

the application as well as the main intent.

 There are five main activities that reference back

to main activity. Each of them contain the basic methods

found in a common activity such as onCreate, linkbutton,

onKeyDown, The inventory activity allows the user to

access the information regarding what items are currently

stored in the fridge. This activity uses a listview adapter

to set display the values appropriately. It also uses the

database adapter to get the information regarding the

inventory table. The items activity allows the user to

input any items into the system. This can be done with the

scanner or through the produce item activity. This activity

also uses a listview adapter and database adapter. This

database adapter however accesses the items table as well

as the inventory table. The structure of the database will

be discussed in a future section. The other activities in

this application consist of recipes activity and shopping

list activity. These activities use their own adapters to

properly display data and provide a useful interface for the

user. These activities and the structure of the application

can be seen in the basic class diagram displayed in figure

5. Although this diagram displays most of the classes

involved in the fridge client, it does not include several

classes that were required during development to facilitate

the coding of the activities mentioned. There is an item

object class which keeps track of the information of an

item in an object. These objects are used on a list in the

add items activity to keep track of what has been scanned.

Additionally a parceable item object had to be created to

be able to pass the items from one activity to the next.

Specifically, when a user goes to the produce item page,

the information from the add items page must be stored

until the user comes back to that activity. The

Fig. 5. Fridge client basic class diagram

implementation of these parceable objects was

implemented using several classes. Without these, the

information passed back and forth between add items

activity and produce activity would have been significant,

and the device would have experienced unexpected

crashes due to memory latency.

 The main process within the fridge client is that

of adding items to the system. This process is illustrated

in figure 6. Note that there are detailed steps which are

not specified by this diagram and will be illustrated with

Fig. 6. Add Items sequence diagram

the actual display in a later section. When an item gets

scanned, the static assets are bypassed. This is due to the

fact that the amount of UPC codes is too large to be able

to store it in this folder. The database adapter is accessed

to see if that item is stored in the local database by using

the appropriate function calls. If the item is stored in the

local database then the item is returned to add items

activity. If the item is not in the local database then the

UPC database is accessed to retrieve the item given by this

barcode.

The UPC database that is being used by the

system is upcdatabase.com. This website provides an api

to be able to connect to their system through our own

Android application. Since this service

charges for every item that is searched in their

database, although it is very inexpensive, the

items are stored in the local database in order

to be able to retrieve that item again without

having to go to the upc database to do so.

This in essence works like a cache in that if

the item has been called recently, the look up

time for this item will be much faster the

second time around.

 When a produce item is selected, the

static assets are accessed. All of the produce

items, along with the PLU codes, images, and

names are stored in the static assets folder.

This procedure is in fact done in a separate

activity but it is accessed from the add items

activity. Once the produce item is retrieved,

it is sent back to add items activity for

processing. If the information of an item is edited, it is

then forwarded to the database through the database

adapters. That information regarding an item is saved in

the database and the changes are confirmed.

Fig. 7. Shopping List sequence diagram

The process of interacting with the shopping list feature of

the fridge client is illustrated in figure 7. The shopping

list activity requires all of the shopping lists to be

synchronized in order to not only get the shopping lists

that have been created in the fridge client but also any

shopping lists that may have been created in the mobile

phone application as well as the ones created in the

website. This part of the process can be seen on the first

arrow in the sequence diagram. The activity first requests

the shopping list to the database adapter. Then the

synchronization takes places when the adapter sends a

request to the server to get the updated shopping lists from

the server. The server gets that request and returns the

updated list of shopping lists. Once the adapter gets this

response from the server, it merges the shopping lists with

the ones that were already on the local database. Now that

the database adapter has the updated information

regarding shopping list it can return the lists to the activity

so they can be displayed. To create and delete a shopping

list, the activity calls the database adapter to be able to

perform the necessary data exchange with the local

database. The same procedure is used for adding and

removing an item.

 The layout of the pages for the fridge client can

be seen by looking at figures 8 and 9. Figure 8 shows a

screenshot of what the main page looks like. Although

functionality was the main priority of this system, user

friendliness as well as look and feel were also taken into

account. In the main page, the user can go to add items

when new items need to be stored in the fridge, or it can

go to inventory to view the items that are already stored in

the fridge. Additionally, the main page has

buttons to go to the recipes section of the

fridge client as well as the shopping list

section of the fridge client. The other two

buttons seen in the main client are the help

button and the settings button. The settings

button allows the user to enter its credentials

to be able to access their information in the

website.

 The picture seen on figure 9 shows a

screenshot of the add items page. When a

user scans an item, it is added to the list

shown. Once the item is retrieved either from

the local database or upcdatabase.com, this

activity does a google image search for the

item. That image is stored in the application

and the path to the file is stored in the

database as well. That image is then displayed as shown

in the figure below. The user then has the option to edit

the expiration date, quantity, and amount left. From this

page the user can go to the Produce Items page.

Fig. 8. Fridge Client Main Page

Fig. 9. Fridge Client Add Items Page

The page shown in figure 10 allows the user to enter any
produce items that need to be stored in the system. This
page retrieves all of the produce items from the static
assets and displays them. Since there are quite a few
produce items to be displayed, the page takes a while to
load all of the paths for the images for each produce item.
This only happens the first time the page is accessed. To
accommodate this inconvenience and increase the user
friendliness of the page, a loading dialog is displayed and
lets the user know. Once all the items have been loaded to
the page, the dialog disappears and the page can be used
as desired.

Fig. 10. Fridge Client Add Items Page

The shopping list page and the recipes page follow similar
layout formats as the ones seen on figures 9 and 10. The
recipe page allows you to add an item, which has been
scanned at some point, to the list. It also allows the user to
enter an item manually or to choose an item from the
produce page. The recipe page allows the user to view the
recipes in the database but not alter them. This process is
done in the web based application or the mobile phone
application.

V. REMOTE APPLICATIONS

A. Mobile Phone Application

The mobile application is also an Android platform
application. This application contains a similar
functionality as the fridge client but varies in the layout of
the application. The same goals are carried throughout the
remote application especially having an application that is
user friendly. From the mobile application, the user is
able to view the information regarding the system from
anywhere as long as they have internet connection. The
mobile application allows the user to access the inventory,
and perform any necessary procedures in recipes and
shopping lists. One of the main advantages of having a
mobile phone application is that it provides the user with
and interface which he or she can use at any time.
Specifically, the mobile phone application becomes very

useful if the user wants to view the shopping list in the
grocery store, as
is usually the
case, and wants
to mark off the
items that he or
she has acquired.
This
functionality can
be seen in figure
11. When the
item is touched
in the screen, it
is checked of and
the name is
crossed off. The
user can also add
or remove items
to the list as
shown.

Fig. 11. Shopping List Mobile Application

B. Web-based Application

The web-based application is in place to allow the user to

have an interface accessible through his or her computer

and allow simple data manipulation. Since it’s easier to

type with a keyboard than inputting data through a touch

screen, this application gives the user the ability to

manage all of the information in the system quickly. The

system also allows the user to manage recipes as desired.

 This application was developed using PHP and

javascript. Separate modules control the different sections

of the page and it connects with the database in the server.

Each user can access the website through the use of its

username and password saved in the fridge client. The

information displayed in the webpage is unique to that

user’s system information. The layout of this application

can be seen in figure 12.

Fig. 10. Fridge Client Add Items Page

C. Database Systems & Database Connection API

The database section of this system is more cumbersome
than most systems. While the data being used by the
different applications is similar throughout, each
application contains a separate database. It is critical to be
able to successfully synchronize data when needed as
needed. The web based application contains a separate
functionality that allows the Android applications to
synchronize their data with the database in the server.
This is done through several forms stored in the server
which allow the android applications to access the central
database stored in the server. Each form performs a
specific task that allows each application to synchronize
their own database. This allows the applications to get,
put, delete, and update any form of data being altered in
the local database. To send the information to the form, a
JSON object is created with the necessary data to be
transferred to the main database. The form then gathers
this information, parses it and performs the necessary
operation according to the form. If there is data to be sent
back to the android applications, the form too packages
the information in a JSON object and sends the response
back to the android application as needed. Any time there
is a change in the local database of any of the android
applications, a form is called to synchronize the main
database accordingly. When the applications launch a
specific activity, each table related to that activity is
synchronized to ensure any changes to that table is done
on the most up-to-date information. In essence, the
database in the server will always have the latest data
available. The database management system used for the
web-based application is mySQL and the ones used for the
Android applications is SQLite.

V.CONCLUSION

A system was developed to accomplish the concept of a
smart fridge system. This system contained several
subsystems which were comprised of both hardware and
software. Many interconnections between database
systems made several aspects of this system complex.
The group took advantage of several features of the
android framework to come up with a user friendly result.
System properties such as layering, modularity, hierarchy,
and abstraction, were all taken into account when
designing the system to come up with an effective result.

REFERENCES
[1] Texas Instruments TPS 65950 Integrated Power

Management IC Information Page, Website:

http://focus.ti.com/docs/prod/folders/print/tps65950.html

[2] IMO Pivot Touch review information page, Website:
http://www.hanselman.com/blog/ReviewMimoMonitorsM
oPivot.aspx

[3] Metrologic IS4225 ScanGlove Wearable Scanner
Product Information, Website:
http://www.semicron.com/is4225.html

Felipe Bernal is a senior

computer engineering student at

the University of Central Florida

and is scheduled to graduate in

May 2011. Upon graduation,

Felipe will join the consulting

team at Citrix Systems where he

has interned for the past three

summers. He is a former Google

Scholar and two-time Inroader of

the year. Eventually, he plans on getting his masters in

business administration.

Isabel Virag is currently a senior

majoring in Computer

Engineering at the University of

Central Florida. Aside from

being a full time engineering

student, she participated on a

lung cancer research project as

part of the RAMP program and

worked at the CAH Technology

department before then. She

currently holds a position in product development

modeling as an entrepreneurship scholar of the YES

program at Mydea Technologies and wishes to continue to

work for this company in the future.

Arian Caraballo is currently a

senior at the University of Central

Florida and will receive his

Bachelor’s in Computer

Engineering in May of 2011.

After graduation he plans to join

the workforce and has already

accepted a position as a Software

Engineer with his current

employer.

Daniela Zicavo is a senior

Computer Engineering student at

UCF graduating in the spring

2011. She attended UCF from

2009 to 2011. Prior to that she

attended Edison State College

where she got her Associate in

Arts Degree. For the last year she

has work as a Research Assistant

in the Computer Vision Lab at

UCF. After graduating from UCF she plans on start

working as a software engineer and prepare for her

postgraduate studies.

http://focus.ti.com/docs/prod/folders/print/tps65950.html
http://www.hanselman.com/blog/ReviewMimoMonitorsMoPivot.aspx
http://www.hanselman.com/blog/ReviewMimoMonitorsMoPivot.aspx
http://www.semicron.com/is4225.html

