

PROJECT HELL S

Group 29 Pablo Pozo, E.E. Esteban Ossa, E.E. Cory Bianchi, Cp.E. Patrick O'Connor, E.E.

College of Engineering & Computer Science

Motivation

- To provide free energy to people in need
- To design a solar power system
- To travel outside of the country
- To experience new cultures and explore new horizons
- To promote the use of new, clean, and sustainable energy sources

Pomolong Township

Goals & Objectives

- To generate, store, and distribute power
- Self-sustaining reliable system
- To improve the quality of life of the Pomolong Township
- To deliver AC power

System Specifications & Requirements

- An off-grid 1000W system
- Output 220V at 50Hz
- Input up to 30V and up to 32A
- Batteries will have a 50% depth of discharge
- 7.5 hours at 10A without charging
- ▶ Work at temperatures from -18 52°C

General Block Diagram

Solar Panel Array

Solar Panel Comparison

	ET-P660245B	CHSM6610P	Suntech STP235
PEAK POWER	245W	240W	235W
PEAK VOLTAGE	30.14V	29.54V	30.20V
PEAK CURRENT	8.13A	8.13A	7.92A
CELL TYPE	POLYCRYSTALLINE	POLYCRYSTALLINE	POLYCRYSTALLINE
WEIGHT	42.6LBS	44.0LBS	40.1LBS
NUMBER OF CELLS	60	60	60
EFFICIENCY	15.0%	14.3%	14.8%
COST	\$258.00	\$275.00	\$183.00

- Specifications and Requirements
 - 5–30V input
 - Max 32A input
 - Using 4 solar panels that will output 1000W at a maximum of 30V will give us about 32A of maximum input
 - Constant output 20V
 - Need to charge batteries at a higher voltage

- Analog to Digital Converter
 - 10 bit resolution
 - Step of 4.887mV
 - 5V max input
 - Where Analog to Digital is used
 - 1x Voltage Input
 - 1x Voltage Output
- Battery Charge
 - Check battery voltage using a voltage divider circuit

Buck-Boost Converter

- Steps voltage up/down
- Input 5–30V up to 8 A
- Mode selection based on input voltage
- Duty cycle is based on output voltage

IGBT/MOSFET Comparison

Microcontroller Comparison

	2.05 in	1.35 in	1.98 in
0.53	in .24	4 in .48	
	ATmega32	PIC16F887	PIC18F45K22
CLOCK	16MHz	8MHz	16MHz
ADC CHANNELS	8	14	28
PROGRAMMABLE MEMORY	32Kbytes	14Kbytes	32Kbytes
INSTRUCTION SET	131	35	75
PWM OUTPUT	4	2	5
OPERATING VOLTAGE	2.5 – 5.5V	2.0 – 5.5V	2.3 – 5.5V
COST	\$8.17	\$2.45	\$3.05

Inductor Selection

$$L_{buck} > \frac{Vo*(Vinmax-Vout)}{Kind*Fsw*Vinmax*Iout}$$

•
$$L_{boost} > \frac{Vinmin^2 * (Vout - Vinmin)}{Kind * Fsw * Vout^2 * Iout}$$

	1140-121K-RC
INDUCUTANCE	120uH
I _{max}	14.4A
TOLERANCE	$\pm 10\%$
OPERATING TEMPERATURE	-55-105°C
COST	\$7.17

Capacitor Selection

	UHE1H152MHD
CAPACITANCE	1500uF
Vmax	50V
TOLERANCE	±20%
OPERATING TEMPERATURE	-40-105°C
COST	\$1.29

0.63 in

Diode Selection

	MBR1045	
V _{max} REVERSE	45V	
AVG. FORWARD CURRENT	10A	
OPERATING TEMPERATURE	-60-150°C	
POWER DISSIPATION	2W	
COST	\$0.64	

Battery Bank

Battery Bank

- Specifications
 - Three 6V batteries
 - Series connection to create a 18V battery bank
 - 215AH Capacity
 - 100AH of usable capacity (50% depth of discharge)
 - Lead acid and deep cycle

Battery Comparison

	DURACELL SLIGC110	DURACELL EGC2	TROJAN T-105
CAPACITY	215AH	230AH	225AH
VOLTAGE	6V	6V	6V
WEIGHT	60.5LBS	64.0LBS	62.0LBS
SIZE	GOLF CART	GOLF CART	GOLF CART
COST	\$85.00	\$120.00	\$132.00

Inverter

Inverter

Specification & Requirements

- Input voltage 18VDC
- Pure sine wave output
- Output 220VAC at 50Hz
- Deliver 1000W

Inverter Block Diagram

Microcontroller Comparison

	PIC16F684-I/P	MSP430F1121A	AT89LP214-20
CLOCK	20MHz	8MHz	20MHz
PROGRAMMABLE MEMORY	3.5Kbytes	2Kbytes	2Kbytes
OPERATING VOLTAGE	2 - 5.5V	1.8 - 3.6V	2.4 - 5.5V
COMPARATOR	2	1	1
PWM	1	1	0
COST	\$1.96	\$1.75	\$1.96

Programming the PIC16F684

- Digitally produce a sine wave
- > Set of values that can approximate a sine wave signal
- Minimum of 32 values to create a proper approximation
- Values will vary from 0° to 360°

MOSFET Driver

- \blacktriangleright $V_{DD} >$ 5V, $V_{cc} > 12V$
- Low and high side driver
- Tolerant to negative transient voltage
- Fast on time
- Fast off dead time

MOSFET Driver Comparison

	IR2110	IR2112	IR2101
V _{OFFSET}	500V max	600V max	600V max
I _{o+/-}	2A/2A	200mA/420mA	130mA/270mA
V _{OUT}	10-20V	10-20V	10-20V
t _{on} / t _{off}	160ns / 150ns	125ns / 105ns	160ns / 150ns
DELAY MATCHING	10ns	30ns	50ns
COST	\$1.88	\$1.55	\$1.18

IGBT/MOSFET Comparison

	HIGH SIDE (Q1,Q3)		LOW SIDE (Q2,Q4)	
	IRG4PC40UD	IRFPS3810	IRG4PC40FDP	IRFPS3810
POWER DISSIPATION	8.7W	12W	7.53W	12W
OPERATION FREQUENCY	8-30KHz	1MHz	<1KHz	1MHz
TURN ON VOLTAGE	1.7V	3.0V	1.5V	3.0V
SPEED	ULTRAFAST	ULTRAFAST	FAST	ULTRAFAST
COST	\$6.46	FREE	\$6.33	FREE

MOSFET H-Bridge

 Low Frequency & High Frequency signals from the microcontroller

LC Filter

Filter frequencies above 50Hz
Current rating of up to 42A

Transformer

- Input voltage 18V
- Output voltage 220V
- Frequency 50Hz
- Power rating 1000VA

Problems

INVERTER

- IGBTs switching problems in the H-bridge
- Transformer interference with the LC filter
- Boost converter design difficulties

CHARGE CONTROLLER

- Driving the gates on the MOSFETs and IGBTs
- Accuracy of the feedback

Results

Inverter Efficiency

- Voltage Input: 18.36V
- Current Input: 6.5A
- Power Input: 119.34W
- Voltage Output: 223.2V
- Current Output: 0.406A
- Power Output: 90.62W
- 76% Efficiency

Work Distribution

	PABLO	ESTEBAN	PATRICK	CORY
Solar Panels			Х	Х
Charge Controller			Х	Х
Battery Bank	Х	Х		
Inverter	Х	Х		

Budget

COMPONENT DESCRTIPTION	TOTAL ITEMS	UNIT PRICE	TOTAL PRICE
CAP CER 0.1UF 50V 5% RADIAL	66	\$0.65	\$42.90
DIODE FAST 1000V 1A DO-41	46	\$0.43	\$19.78
CAP ALUM 47UF 50V 20% RADIAL	54	\$0.25	\$13.50
IC DRIVER HIGH/LOW SIDE 14DIP	34	\$4.26	\$144.84
RES 10 OHM 1W 1% WIREWOUND AXL	34	\$0.44	\$14.96
RES 1.0K OHM 3W 5% METAL OXIDE	12	\$0.59	\$7.08
CAP CER 15PF 50V 5% RADIAL	14	\$0.29	\$4.06
CAP CER 0.22UF 50V 10% RADIAL	6	\$0.38	\$2.28
CAP CER 0.1UF 50V 10% RADIAL	12	\$0.20	\$2.40
CAP CER 0.33UF 50V 10% RADIAL	10	\$0.27	\$2.67
16MHz – 18PF	50	\$0.35	\$17.50
CONN IC SOCKET VERT 14POS TIN	16	\$0.22	\$3.52
HEATSINKS	12	\$1.95	\$23.40
ENCLOSURE	1	\$35.00	\$35.00

Budget

DESCRTIPTION	TOTAL ITEMS	UNIT PRICE	TOTAL PRICE
DIODE MBR1045	25	\$0.64	\$16.10
LED STACK LIGHT	1	\$6.92	\$6.92
LED BLUE	2	\$0.21	\$0.42
RESISTOR 1K	32	\$0.06	\$1.82
CAP ELEC 1.5mF	10	\$1.29	\$12.87
INDUCTOR 120uH	8	\$7.17	\$57.36
SOCKET 40 PIN	2	\$0.51	\$1.02
TERM BLOCK 2POS	3	\$0.63	\$1.89
TERM BLOCK 4POS	6	\$0.73	\$4.38
HEATSINK AND CLIP FOR TO-247	12	\$2.07	\$24.84
PIC 16F887	5	\$2.80	\$14.00
SOLAR PANEL	4	\$183.00	\$732.00
BATTERIES	4	\$85.00	\$340.00
PCB INVERTER	1	\$464.00	\$464.00
PCB CHARGE CONTROLLER	1	\$66.00	\$66.00
EASYPIC 7	2	\$140.00	\$280.00
CABLES	1	\$140.00	\$140.00
PIC 16F684	20	\$1.96	\$39.20
		TOTAL	\$2,536.71

Sponsors

COLLEGE OF ENGINEERING & COMPUTER SCIENCE Special Thanks:

- Dr. Richie
- CECS & EECS
- Mike Tullbane
- Honors College

Questions??

