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Abstract  —  The GameQube consists of an LED volume 
display cube that a person can play simple games on using a 
GameCube controller. The GameQube uses 1000 RGB LEDs 
in a 10x10x10 arrangement and embedded circuitry to form a 
completely enclosed gaming system. The GameQube takes on 
the classic LED cube project and expands it to be able to play 
classic games in a 3D environment. The software and 
hardware design details that create the completely embedded 
LED game cube are presented. 

Index Terms  —  Circuits, Microcontrollers, Multiplexing. 

I. INTRODUCTION 

An LED cube is a group of Light Emitting Diodes 

configured to form a cube shaped display for animations in 

3D. Past LED cube project creations have mainly focused 

on showing pre-defined animations. This project furthers 

those ideas so that a user is able to control what is shown 

on the cube in the same way that a video game player has 

control over his character. Other than basic animations, 

playable game such as Pong, Brick, Snake, and Space 

Invaders have been implemented. A custom made game 

has also been implemented, Block, designed specifically 

with 3D in mind. Additional features such as sound have 

been added to increase the user experience. Altogether, the 

GameQube strives to go beyond traditional LED cube 

projects and become a fully interactive entertainment 

system. 

The project consists of the physical LED arrangement, 

the internal circuitry that controls the LEDs, a housing unit 

that hosts the hardware, and the software that controls 

what is being shown on the cube. A main concept used in 

creating an LED cube is Persistence of Vision. Persistence 

of Vision directly refers to the way in which the human 

eye works. When an object is blinking at a high frequency, 

the human eye cannot keep up, and the perceived image is 

a constant sort of mixture of the on and off state. This 

effect combined with multiplexing layers of the cube 

allows for all LEDs to appear to be on. This concept 

serves as the main criteria in designing an LED cube. 

II. SYSTEM COMPONENTS 

The design of an LED cube allows for flexibility in 

creating a functional multiplexing scheme. Power and 

brightness tradeoffs serve as major guideline when 

choosing components. 

 

A. Light Emitting Diodes (LEDs)  

 

One important design aspect of all LEDs is clarity. Most 

LEDs are simply clear to allow light to pass through 

without being disrupted or scattered. However, for an LED 

providing multiple colors by combining a red, green and 

blue LED, it may be desirable to have the light scattered a 

bit in order to mix the three base colors in single 

noticeable color. Because of this, LEDs typically come in 

a clear or diffused design. The diffused design looks a 

little cloudy, but scatters and mixes light better, whereas 

the clear design simply lets the light pass straight through. 

For the purpose of a display, diffused LEDs are more 

desirable due to the combinations of colors required to 

make from mixing the primary colors red, green and blue. 

Another important factor in choosing diffused LEDs is the 

fact that they scatter light in all directions. This is 

important for the Cube display, since it will be viewed 

from many different angles. Finally, if the display is to use 

some sort of LED drivers, then common anode RGB LEDs 

should be used as opposed to common cathode. The LED 

Cube is composed of 5mm RGB LEDs arranged in a 

common anode per layer design.  

 

B. Microcontrollers 

 

To create an LED cube there are many specifications 

that require complex logic computation and I/O control at 

high speeds. In order to meet the specifications, several 

microcontrollers have been implemented into the design. 

This includes microcontrollers for both the logic involved 

in running the volumetric display and running more 

complex computations for game logic and artificial 

intelligence. Important things to keep in mind while 

choosing an appropriate microcontroller are the power 

requirements, I/O capabilities and processing speed. It’s 

also important to keep in mind the fact that these devices 

will mostly like need to communicate with each other. 

Separate microcontrollers have been used for the LED 

logic circuit and main microcontroller board and sound 

driver. 

For some of the less complicated computing and logic 

tasks in this project, such as the LED display control, a 

less powerful microcontroller can be utilized. This allows 

for less power consumption compared to using a more 



powerful microcontroller for the smaller remedial tasks. 

The MSP430 value line utilizes very low power 

consumption while running and also supports a sleep state 

that allows the chip to consume virtually no power when 

the chip is not in use. It’s because of this sleep state that 

the gains in power consumption will really be evident 

since the logic for the display will only need to be 

computed in small bursts at a time. Similarly, all sound 

processing is handled by an MSP430 microcontroller. 

When no sound is being played, the chip can hibernate and 

consume very little power. Using this technique and the 

hardware interrupts supported by the chip line; all sound 

processing can be done efficiently and without any delay 

in time as well. 

The main microcontroller decision was very important 

for this project as it brings the hardware LED cube, the 

controller input, and the software together. To allow the 

cube to play multiple animations and choose between 

several games, our microcontroller choice had to support 

enough flash memory to store all the code. The 

TM4C123GH6PM Tiva C Series microcontroller is used 

as the project’s main microcontroller. It's a 32bit ARM 

based processor that uses the smaller thumb16 instruction 

set, thus reducing code size. The Tiva chip comes in a 64-

pin package and 256 kilobytes of memory. This allows the 

chip to support plenty of games along with supporting 

features such as sound due to the high pin count. The 

board to host this microcontroller is a separate board to 

allow the project to remain modular. This board hosts the 

Tiva controller and the MSP430 microcontroller used for 

sound. This board then directly connects to the LED cube 

circuit. 

 

C. External Memory Storage 

 

   Adding the extra sound features to the GameQube 

brought a lot of additional challenges. The biggest of the 

challenges was how to store large amounts of media assets 

to be read and played later by the microcontrollers. The 

simplest solution was to use an SD card and have the 

microcontroller communicate directly to it through the SPI 

interface mode that the card supports. This works out 

particularly well, since SD cards run at the same 3.3V 

voltage level as all of the microcontrollers used in the 

project. The only obstacle was how to read and address 

different files on the card. A file system could have been 

implemented, but was ultimately rejected due to the 

bulkiness it would have added to the software. Instead, a 

simple interface was designed in which file start and end 

address would be hard coded onto the microcontroller so 

that it knows where to read the media. 

 

D. Memory Registers 

 

This project involves different types of logic devices 

and small logic circuits. One of the necessities that come 

out of designing such circuits and interfaces is a way to 

remember certain logic states. A register allows for small 

memory storage that is useful in many logic circuits. This 

will help tremendously in this project for many aspects 

such as keeping track of any large buffers that may be used 

for the volumetric display.  

The type of register used in the GameQube is what’s 

known as a FIFO register (First In First Out). This is very 

much like a shift register, in that bits get shifted into 

memory. However, unlike the shift register, the bits are not 

then output all at once. Instead, the bits get output serially 

just like they were input. The advantage to this is that there 

is a reduction in the number of pins to output data. This 

also means that the interface to FIFOs of different memory 

capacities is almost always the same. Because of this, 

small FIFO register chips can hold a large amount of data 

without getting ridiculous in how many pins there are and 

be swapped out later for larger capacities if it is necessary. 

These registers also differ, in that the data may be input 

and output in quantities more than just a bit. For example, 

the input and output could be whole bytes. 

What makes these registers desirable for this project is 

their ability to hold lots of data that can be accessed with 

minimal I/O. Particularly, the volumetric display will most 

likely require a large amount of data, which holds the state 

of each element of the display, to be stored in a buffer. 

This can also be used as a way for large chunks of data to 

be communicated between two different microcontrollers 

with little synchronization needed between them as would 

be the case in a direct communication link. 

 

E. Integrated Circuits (ICs) 

 

One of the problems faced in designing the volumetric 

display for this project is the control of the LEDs. This can 

be implemented simply by attaching each of the LEDs 

anodes to a transistor with a high enough current rating to 

support the power required to obtain a desired brightness. 

However, this is very impractical since the number of 

LEDs required will be at least one thousand. The IC used 

to solve all these dilemmas is the TLC5940 LED Driver. 

This chip allows for up to 16 outputs rated at an 

impressive max current level, which will drive the LEDs 

with more than enough power. One of the things that make 

this chip a little more unique is the fact that it actually does 

not provide the power directly, but rather acts as a switch 

to each output, connecting it to ground. This means that if 

LEDs are hooked up to this chip, then they must be 



attached by their anodes. The chip also utilizes PWM to 

control brightness of each output and internal memory to 

remember the states of each output. The memory is input 

serially, which reduces the amount of I/O required to 

interface with the chip. Finally, the chip provides support 

for something known as dot correction. Dot correction is 

another brightness control feature that can limit the current 

passing through specified LEDs in case some LEDs end up 

being naturally brighter than others. This allows for all 

LEDs to be kept at the same relative brightness level, 

despite any manufacturing discontinuities. 

In summary, this chip is provides more than enough 

current to power individual LEDs, and has lots of features 

to help with maintaining appropriate brightness in each 

LED. All of this and it comes in a small and inexpensive 

package. 

 

F. Game Controller 

 

The game controllers used for input to the GameQube 

are GameCube controllers. Two variants have been tested 

and currently work: an official Nintendo wired GameCube 

controller and a Mad Catz wireless controller. The wired 

and wireless controllers both work identically. The 

wireless controllers work using an RF receiver, allowing it 

to be used without any additional software configuration.  

 

Fig. 1. Overall Design of the GameQube. 

 

The controllers have 6 buttons, two triggers, a D-pad, 

and two joysticks. The D-pad is used for static directional 

control while the joysticks allow for more dynamic 

movement and acceleration.  

The controllers plug into a GameCube controller hub 

extracted from a GameCube and implanted into the 

housing of the GameQube. This hub hosts up to four 

controllers and allows for one power source to be plugged 

in and power all controllers. 

 

G. Power Supply 

 

The power supply is an official GameCube power 

supply. The GameCube AC adapter provides 12V DC at 

3.25A with input directly from the wall. This power supply 

provides more than enough voltage, in which no 

components in the GameQube consume more than 5V. 

While a lower voltage power supply would be easier to 

step down and dissipate heat, the GameCube AC adapter 

was attractive due to the current output. With 3.25A, this 

allows plenty of freedom when lighting all the LEDs at 

varying brightness.  

III. OVERALL DESIGN  

The overall design is shown in Fig. 1.  



The LED Volumetric Display controls the overall 

display for the GameQube. This is done by multiplexing 

through each of the layers in the display one at a time, 

flashing the appropriate colors on the LEDs by controlling 

the LED drivers, and then checking for the next video 

frame. All of this is done at very high speeds so that every 

layer of the cube appears to be on at the same time. 

Central processing includes the main Tiva microcontroller 

board which hosts the software and sends data to the LED 

display. The main microcontroller board also hosts the 

sound control. 

Additionally, the cube and its components are contained 

in a housing unit. The base of housing arranged in a 

rectangular prism made of wood. The LED circuit, main 

microcontroller, power control, speakers, and GameCube 

controller board are stored in the rectangular base. The 

LED cube sits on top of the base and is covered by an 

acrylic shell. The LED cube has a thin layer of wood as 

support which stands on the base and is secured using pins, 

allowing the cube to lifted giving access to the electronics 

inside. 

The high level C++ software that creates the games and 

animations are hosted and programmed onto the Tiva 

microcontroller. This software runs through a graphical 

rendering set-up to draw and create objects on the cube. 

The software then breaks down the software to output 

1000 bytes per frame, allowing for each LED to have a 

color value. 
 

IV. HARDWARE DESIGN DETAILS 
 

The hardware design was modeled to allow modularity 

between the major sections. The LED controller circuit 

and main microcontroller are on separate to allow for 

adjustments and changes that don’t affect the overall 

design. Additionally the power control is separated to 

allow for modifying the power that dissipates through the 

cube. 
 

A. LED Cube Design 

 

The LED Cube is composed of 5mm RGB LEDs 

arranged in a common anode per layer design. There are a 

total of 300 leads, which are being routed from the cube to 

a PCB via ribbon cables. The PCB contains all the logic 

and power for the display, including the LED drivers. The 

microcontroller to be used in the LED logic will be the 

MSP430. A single 10 pin connector is also being on the 

PCB for the main processor to interface and write to the 

display. The final array of LEDs is encased in acrylic and 

stand on top of the base of the final project. 

To help organize the amount of LED driver chips, the 

LEDs are divided into groups according to their respective 

colors (red, green, blue). This not only helps with 

organization, but it also helps to perform any sort of color 

correction at a hardware level. There will then be three 

LED driver sections each with 7 TLC5940s, 10 sockets for 

ribbon cables, with 10 pins connectors, and 12 

miscellaneous pins which can be used to drive additional 

LEDs. 

To multiplex the layers of the display, the 

MSP430F5529 is implemented in the design with a clock 

frequency of 25MHz, closely matching the TLC5940 max 

serial data transfer speed of 30MHz. To select the columns 

to light, the microcontroller interfaces with the three color 

LED driver sections. To select a layer, the microcontroller 

interfaces with an array of transistors which selectively 

provide power to only one layer at a time. The display 

goes through the cycle of flashing all 10 layers at a rate of 

300Hz. In order to receive video data from the main 

processor, a separate shared memory buffer is used to 

allow an asynchronous data transfer to occur between the 

two devices. 

The video data stored in the external RAM memory chip 

is stored in the format of one byte per LED to denote 

color. The reason for this is to improve the amount of time 

it takes for the main processor to output a frame. The 

separate modular approach for the LED control will also 

help improve video output times for the main processor. 

For example, if the main processor was to control the 

TLC5940 LED drivers directly, it would take a 

considerably more amount of time to output all desired 

LED states. All LED data would need to be shifted in with 

12 bits per color. That’s 26 bits per LED for one thousand 

LEDs. If only one bit can be shifted in at a time it would 

take 26000 clock cycles. Encoding each LED into a byte 

and allowing a byte to be output in a single clock cycle, it 

only takes 1000 clock cycles to output video data. This 

speeds up the data transfer by a factor of 26. Figure 2 

below shows the LED control design. 

Finally, a special interface was designed for the main 

microcontroller to be able to send video data to the 

display. There are 10 pins in this interface, 8 of which are 

used to send an entire byte of data at a time. The ninth pin 

is used to clock the data to the display and the last pin is 

used to keep everything in sync. When the display is done 

processing a frame of data it pulls the sync pin low for the 

main microcontroller to know to send new data. Since the 

display checks for new video data at a constant 60Hz, the 

sync pin can also be used by the main microcontroller to 

maintain a 60Hz frame rate. Also, because the displays 

refreshes at 300Hz it also supports frame rates of 60Hz, 

50.8Hz, 43.6Hz, 38Hz, 33.9Hz if the main microcontroller 

can't run fast enough for 60Hz. 

 



Fig. 2. LED Control Design. 

 

B. Microcontroller Design 

 

Connected to the 10 pin interface is the main 

microcontroller board. This board is centered on the Tiva 

TM4C123GH6PM. The chip is configured with 

decoupling capacitors and an external oscillator for stable 

power and timing. One port of pins is reserved for the 10 

pin display interface. With 64 pins, and 39 available for 

GPIO, the Tiva proved to be a good choice as many more 

pins ended up getting used than originally planned. Three 

pins are configured for sound input and three other pins 

are configured for sound output.  

The input syncs with the source of the sound files, the 

MSP430G2553. Sound is produced on the main board by 

using PWM to work as a digital to analog converter. This 

output is sampled at 32 kHz to produce audio. Large music 

sound files are stored and read from an SD card, whereas 

short sound effect files are stored in the extra program 

space of the chip as constant arrays. This allows for both 

music and sound effects to be mixed at the same time to 

produce a single audio stream. There are two separate 

PWM channels for a distinct left and right channel. Input 

audio is routed through an op-amp and mixed with the 

synthesized sound in an analog fashion. The final mix is 

then routed to the ADC of the main microcontroller for 

visualization and then output to the speakers as well. 

 

C. Power Design 

 

The MSP430, Tiva microcontrollers run at 3.3V as well 

does the GameQube. The GameCube controllers take in 

3.3V and 5V. To allows use of both 3.3V and 5V from the 

12V power supply, a DC-DC converter is used to step-

down the voltage. The converter uses a LM25965 

switching regulator and a PJ1084 low dropout voltage 

regulator to provide both 3V and 5V at 3A from a single 

12V input. The 5V line goes solely to the GameCube 

controller hub. The 3.3V line goes to the main 

microcontroller board which provides power to the LED 

circuit. 

 

D. Input Design 

 

The GameCube controllers use 5 pins: two for power, 

two for ground, and one bidirectional data line. Our design 

incorporates the GameCube controller hub that provides a 

single source of power, allowing the main microcontroller 

to only use four pins for controllers. Each pin is mapped to 

one of the bidirectional lines for each controller. While the 

software only supports two player games, four player 

controls is possible. The hardware configuration for the 

GameCube controllers is very simple. The burden of 

getting the GameCube controllers to work correctly is put 

on the software configuration. 

 

 



V. SOFTWARE DESIGN DETAILS 

The main goal of the software is provide a fun and 

interactive experience for a user. Being a three-

dimensional display, game and animations that utilize the 

full space were favored. Before 3D graphics, classic games 

were limited to what could be simulated on a 2D screen. 

The GameQube allows for those games that work with 

limited resolution, to evolve into a 3D world. 

The software architecture, referred to as the Virtual 

Environment is an object-oriented C++ runtime. The 

software runs on a loop running different applications, 

called runnables in the software. Each runnable refers to a 

different application a user can select from the main menu. 

These include games such as Snake and Pong, Animations 

to watch, and a Music Visualizer. Each 

runnable extends IRunnable which sets up 

the class to render the scene using the 

Virtual Environments SceneManager and 

VideoDriver. 

The SceneManager is the container class 

responsible for hosting all the nodes that 

can rendered on the cube. A node is 

predefined object with certain behavior that 

is drawn to the cube. Some common nodes 

used include CubeSceneNode, 

TextSceneNode, and LineSceneNode. Each 

of these nodes keeps track of size, color, 

and other attributes of the object and 

defines how to draw the node. The 

SceneManager is responsible for adding 

and removing each node to the scene. Every 

frame the SceneManger is called to render 

all nodes. 

Rendering is handled through the VideoDriver. When 

each node is called to render, it calls a render function in 

the VideoDriver that defines how that node draws to the 

scene. The scene promises of 1000 points, or LEDs. Each 

node eventually breaks down into a collection of drawing 

points. The function used to draw a point is 

drawRawPoint, which takes in the encoded color and 

position and writes a byte of data to the buffer. This 1000 

byte buffer is what is sent to the LED cube circuit. 

Each runnable then uses nodes to create a game or 

animation on the cube. The architecture allows the 

runnables to be far removed for any low level software 

functions. This allows writing of the applications to be as 

simple as creating the game using the same logic as if it 

were used in a 2D display or 3D engine.  

Additional components to the Virtual Environment 

include the controller class which checks for input each 

frame and the runnable is free to respond how it likes. The 

wired GameCube controller supports the rumble function, 

allowing the controller to rumble under certain conditions 

such as death. Runnables also interact with the sound class 

which allows a runnable to define a music track to play 

while running, along with certain short sound effects  

  

A. User Interface 

 

The user interface for the project was designed with 

simplicity and usability as major factors. It needed to be 

easy for any user to navigate, regardless of technical 

history. With that in mind, the interface was designed with 

a main menu showing the runnable applications, the 

running application screens, and a pause screen for each 

running application, shown in more detail in Fig. 3.  

 

Fig. 3. The GameQube user interface flowchart. 

 

When the user first turns the GameQube on, a quick 

animation is played to show that the cube is starting up. 

This animation mimics the original Nintendo GameCube 

boot animation. After the animation completes, the user is 

brought to the main menu. The main menu of the cube was 

created as a vertical scrolling menu, controlled with up and 

down pulls on the controller’s analog stick or D-pad. This 

allowed for quick transitions between selectable games 

and animations, as well as the ability to bring focus to a 

single runnable at a time. To take advantage of this focus, 

each runnable has its name written in LED light scrolling 

around the sides of the cube. Also, each runnable has a 

small animation running on the main menu that shows its 

functionality. The user is able to then press the ‘A’ button 

on the controller to start the runnable that is currently 

being shown. 

At this point, the user starts to play or watch whichever 

runnable has been chosen. During the execution of the 



runnable, it is possible for it to be paused if the user 

decides to take a break. By pressing the ‘START/PAUSE’ 

button on the controller, the user is brought to a pause 

screen that suspends the current action the runnable is 

taking. At this screen, the user sees a shrunken version of 

the paused runnable inside of a cube along with a scrolling 

pause icon. The options for the user are to press 

‘START/PAUSE’ again to resume the runnable or to press 

‘A’ to be brought back to the main menu. 

 

B. Games and Animations 

 

The overall concept of the GameQube was spawned 

from the idea that it could be used as a unique way to play 

games, especially ones that were originally created in a 2D 

space. By introducing a 3D LED environment, classic 

games can be rewritten to be played in three dimensions, 

making them seem like brand new games. Many of the 

games we chose to design for the cube were originally 

made to be played in 2D. 

One of the games we chose to bring into the 3D world 

was “Pong”, a classic 2 player game. The objective is for a 

player to hit a ball with a paddle past the opponent’s 

paddle to score. Normally, the ball would be able to move 

in two dimensions (x and y) and a player’s paddle would 

move in only one dimension (y). However, with the shift to 

3D the ball can move in three dimensions (x, y, and z) and 

the paddles can move in two (x and y). This new 

functionality adds an entirely new layer of gameplay depth 

to a previously much simpler game. The game starts when 

player 1 presses ‘A’ on his controller to release the ball. 

Each player then moves his paddle with the controller’s 

analog stick to attempt to put it in front of the incoming 

ball to hit it back towards his opponent. When a ball goes 

past a paddle, that player’s cube side turns red and the 

other player’s side turns green to signify that he scored. 

Once a player scores enough times, his cube side flashes 

green which means that he won. 

Another game that is playable on the GameQube is our 

version of “Atari Breakout” called “Brick”. In this game, a 

player controls a paddle and hits a ball away from him, 

similar to “Pong”. The objective, though, is to have the 

ball hit the colored bricks on the other side of the cube to 

destroy them. When all the bricks are destroyed, the player 

wins the game. Also similar to “Pong”, the ball is released 

into play by pressing ‘A’ and the paddle is controlled with 

the analog stick. 

The third game that has been implemented for the cube 

is “Snake”. In “Snake”, the player is in control of a 

moving snake (line of LEDs) and needs to navigate it to a 

fruit that will increase the snake’s size by one LED when 

collected. This continues until the player either runs the 

snake into itself or a wall, which ends the game. The snake 

can move in 3D and the fruit is located in 3D, which 

makes keeping the snake alive much more difficult. 

The fourth game designed for the cube is called 

“Block”. The goal of this game is for the player to rotate a 

shape in such a way that it will fit into a hole in a wall. At 

the start of the game, the player is given an odd shape and 

is shown a wall of LEDs at the bottom of the cube with a 

hole in it. The player can then start the game by beginning 

to rotate the shape with the analog stick. At that moment, a 

timer starts to tick down on the left side of the screen. 

Once the timer hits the bottom of the cube, the LED wall 

will rise up towards the top of the cube. If the rotated 

shape fits through the hole, the player is awarded a point 

and a new shape and hole appears. If the shape does not 

fit, the game ends and a screen shows the player how many 

points were awarded to him. 

The final game implemented on the GameQube is 

“Invaders”, based on the classic game “Space Invaders”. A 

player starts off as a spaceship represented as a rectangle 

at the bottom of the LED cube. Nine aliens, represented as 

cubes at the top of the LED cube move back and forth, and 

eventually downwards. The goal is for the spaceship to kill 

all aliens by shooting an LED bullet and hitting them. The 

spaceship has to kill all spaceships before one of them 

shoots the spaceship or one of them reaches the spaceship 

at the bottom. 

In order to diversify the types of applications on the 

cube, we decided to design animations that a user could 

watch. Once the animation runnable is selected, an 

assortment of animations begins to play, automatically 

shifting from one to the next. The user can cycle through 

the animations manually with the ‘A’ button. When the list 

of animations reaches its end, it loops back to the first 

animation and runs through them again. With the number 

of games and animations that are present on the 

GameQube, it is unlikely that a user will not find 

something interesting and enjoyable to them. 

The last runnable is the Music Visualizer. The music 

visualizer allows for a user to play with stored music 

tracks or input their own, to run music based animations. 

The animations variable includes seeing the raw waveform 

from either the left channel, right channel or both. 

 

C. Embedded Software 

 

A lot of code needed to be written on the embedded 

level to control the microcontrollers at their basic levels. 

Whereas most of the software focuses on the overall 

processing of data for the project as a whole, there still 

needed to be the lower level written to denote exactly how 

pins would be utilized or clock speeds would be run. 



   For the LED display microcontroller this involved 

setting up the IO pins as well as initializing timers and 

hardware SPI features. The main oscillator was set to 

25MHz, but the PWM clock only runs at half the oscillator 

speed, whereas SPI runs at the full clock speed. The timers 

that were initialized are used to maintain a constant time 

interval when multiplexing through the layers of the 

display. Gamma tables were also created as a quick way of 

decoding a byte color into a byte value for each of the 

three primary colors. These table values were also 

generated to take gamma into consideration as well as 

maintaining constant overall brightness of the LED while 

different colors are mixing. 

   The main microcontroller features most of the high 

level code but also required some careful control over the 

low level features. The max heap and stack size had to be 

carefully decided and set for the processor as well as 

enabling of some of the peripheral features like ADC. The 

biggest challenge was writing the low level code to 

interface with the input controllers. The timing is very 

critical for the projects chosen controllers and any details 

involving clock speed configuration could ruin the timings. 

Sound was another aspect that needed to be programmed 

carefully at the lower embedded level. The interrupt based 

interface needed to be understood and communicated 

through two very different chips. 

   The sound driver microcontroller needed to have it's 

hardware interrupt system setup. The embedded code also 

involved programming the interface between the 

microcontroller and the SD card. This involved hard 

coding the different types of messages that could be sent 

or received. One of the more clever embedded level 

programming techniques used for sound was to take 

advantage of the extra program space and use it as 

additional ROM to store media assets. Storing small audio 

samples this way allowed for real time mixing of different 

sounds, since reading from the chips ROM takes up 

virtually no extra communication time as opposed to 

adding an extra SD card. 

 

VI. CONCLUSION 

     Through completing this project, we have gained 

valuable experience and knowledge that will no doubt 

assist us in the future. Our original vision of an LED cube 

for games grew into an entertainment system used for 

games, animations, and sound visualizing. With the help of 

our education and resources from UCF we were 

challenged to complete a full engineering project 

development. We were able to incorporate a number of 

ideas that were originally thought to be stretch goals, such 

as extra games and sound. The GameQube is completely 

functional and can do everything that we hoped for. 
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