
The GameQube

Omar Alami, Stephen Monn, Matthew Dworkin

Dept. of Electrical Engineering and Computer

Science, University of Central Florida, Orlando,

Florida, 32816-2450

Abstract — The GameQube consists of an LED volume
display cube that a person can play simple games on using a
GameCube controller. The GameQube uses 1000 RGB LEDs
in a 10x10x10 arrangement and embedded circuitry to form a
completely enclosed gaming system. The GameQube takes on
the classic LED cube project and expands it to be able to play
classic games in a 3D environment. The software and
hardware design details that create the completely embedded
LED game cube are presented.

Index Terms — Circuits, Microcontrollers, Multiplexing.

I. INTRODUCTION

An LED cube is a group of Light Emitting Diodes

configured to form a cube shaped display for animations in

3D. Past LED cube project creations have mainly focused

on showing pre-defined animations. This project furthers

those ideas so that a user is able to control what is shown

on the cube in the same way that a video game player has

control over his character. Other than basic animations,

playable game such as Pong, Brick, Snake, and Space

Invaders have been implemented. A custom made game

has also been implemented, Block, designed specifically

with 3D in mind. Additional features such as sound have

been added to increase the user experience. Altogether, the

GameQube strives to go beyond traditional LED cube

projects and become a fully interactive entertainment

system.

The project consists of the physical LED arrangement,

the internal circuitry that controls the LEDs, a housing unit

that hosts the hardware, and the software that controls

what is being shown on the cube. A main concept used in

creating an LED cube is Persistence of Vision. Persistence

of Vision directly refers to the way in which the human

eye works. When an object is blinking at a high frequency,

the human eye cannot keep up, and the perceived image is

a constant sort of mixture of the on and off state. This

effect combined with multiplexing layers of the cube

allows for all LEDs to appear to be on. This concept

serves as the main criteria in designing an LED cube.

II. SYSTEM COMPONENTS

The design of an LED cube allows for flexibility in

creating a functional multiplexing scheme. Power and

brightness tradeoffs serve as major guideline when

choosing components.

A. Light Emitting Diodes (LEDs)

One important design aspect of all LEDs is clarity. Most

LEDs are simply clear to allow light to pass through

without being disrupted or scattered. However, for an LED

providing multiple colors by combining a red, green and

blue LED, it may be desirable to have the light scattered a

bit in order to mix the three base colors in single

noticeable color. Because of this, LEDs typically come in

a clear or diffused design. The diffused design looks a

little cloudy, but scatters and mixes light better, whereas

the clear design simply lets the light pass straight through.

For the purpose of a display, diffused LEDs are more

desirable due to the combinations of colors required to

make from mixing the primary colors red, green and blue.

Another important factor in choosing diffused LEDs is the

fact that they scatter light in all directions. This is

important for the Cube display, since it will be viewed

from many different angles. Finally, if the display is to use

some sort of LED drivers, then common anode RGB LEDs

should be used as opposed to common cathode. The LED

Cube is composed of 5mm RGB LEDs arranged in a

common anode per layer design.

B. Microcontrollers

To create an LED cube there are many specifications

that require complex logic computation and I/O control at

high speeds. In order to meet the specifications, several

microcontrollers have been implemented into the design.

This includes microcontrollers for both the logic involved

in running the volumetric display and running more

complex computations for game logic and artificial

intelligence. Important things to keep in mind while

choosing an appropriate microcontroller are the power

requirements, I/O capabilities and processing speed. It’s

also important to keep in mind the fact that these devices

will mostly like need to communicate with each other.

Separate microcontrollers have been used for the LED

logic circuit and main microcontroller board and sound

driver.

For some of the less complicated computing and logic

tasks in this project, such as the LED display control, a

less powerful microcontroller can be utilized. This allows

for less power consumption compared to using a more

powerful microcontroller for the smaller remedial tasks.

The MSP430 value line utilizes very low power

consumption while running and also supports a sleep state

that allows the chip to consume virtually no power when

the chip is not in use. It’s because of this sleep state that

the gains in power consumption will really be evident

since the logic for the display will only need to be

computed in small bursts at a time. Similarly, all sound

processing is handled by an MSP430 microcontroller.

When no sound is being played, the chip can hibernate and

consume very little power. Using this technique and the

hardware interrupts supported by the chip line; all sound

processing can be done efficiently and without any delay

in time as well.

The main microcontroller decision was very important

for this project as it brings the hardware LED cube, the

controller input, and the software together. To allow the

cube to play multiple animations and choose between

several games, our microcontroller choice had to support

enough flash memory to store all the code. The

TM4C123GH6PM Tiva C Series microcontroller is used

as the project’s main microcontroller. It's a 32bit ARM

based processor that uses the smaller thumb16 instruction

set, thus reducing code size. The Tiva chip comes in a 64-

pin package and 256 kilobytes of memory. This allows the

chip to support plenty of games along with supporting

features such as sound due to the high pin count. The

board to host this microcontroller is a separate board to

allow the project to remain modular. This board hosts the

Tiva controller and the MSP430 microcontroller used for

sound. This board then directly connects to the LED cube

circuit.

C. External Memory Storage

 Adding the extra sound features to the GameQube

brought a lot of additional challenges. The biggest of the

challenges was how to store large amounts of media assets

to be read and played later by the microcontrollers. The

simplest solution was to use an SD card and have the

microcontroller communicate directly to it through the SPI

interface mode that the card supports. This works out

particularly well, since SD cards run at the same 3.3V

voltage level as all of the microcontrollers used in the

project. The only obstacle was how to read and address

different files on the card. A file system could have been

implemented, but was ultimately rejected due to the

bulkiness it would have added to the software. Instead, a

simple interface was designed in which file start and end

address would be hard coded onto the microcontroller so

that it knows where to read the media.

D. Memory Registers

This project involves different types of logic devices

and small logic circuits. One of the necessities that come

out of designing such circuits and interfaces is a way to

remember certain logic states. A register allows for small

memory storage that is useful in many logic circuits. This

will help tremendously in this project for many aspects

such as keeping track of any large buffers that may be used

for the volumetric display.

The type of register used in the GameQube is what’s

known as a FIFO register (First In First Out). This is very

much like a shift register, in that bits get shifted into

memory. However, unlike the shift register, the bits are not

then output all at once. Instead, the bits get output serially

just like they were input. The advantage to this is that there

is a reduction in the number of pins to output data. This

also means that the interface to FIFOs of different memory

capacities is almost always the same. Because of this,

small FIFO register chips can hold a large amount of data

without getting ridiculous in how many pins there are and

be swapped out later for larger capacities if it is necessary.

These registers also differ, in that the data may be input

and output in quantities more than just a bit. For example,

the input and output could be whole bytes.

What makes these registers desirable for this project is

their ability to hold lots of data that can be accessed with

minimal I/O. Particularly, the volumetric display will most

likely require a large amount of data, which holds the state

of each element of the display, to be stored in a buffer.

This can also be used as a way for large chunks of data to

be communicated between two different microcontrollers

with little synchronization needed between them as would

be the case in a direct communication link.

E. Integrated Circuits (ICs)

One of the problems faced in designing the volumetric

display for this project is the control of the LEDs. This can

be implemented simply by attaching each of the LEDs

anodes to a transistor with a high enough current rating to

support the power required to obtain a desired brightness.

However, this is very impractical since the number of

LEDs required will be at least one thousand. The IC used

to solve all these dilemmas is the TLC5940 LED Driver.

This chip allows for up to 16 outputs rated at an

impressive max current level, which will drive the LEDs

with more than enough power. One of the things that make

this chip a little more unique is the fact that it actually does

not provide the power directly, but rather acts as a switch

to each output, connecting it to ground. This means that if

LEDs are hooked up to this chip, then they must be

attached by their anodes. The chip also utilizes PWM to

control brightness of each output and internal memory to

remember the states of each output. The memory is input

serially, which reduces the amount of I/O required to

interface with the chip. Finally, the chip provides support

for something known as dot correction. Dot correction is

another brightness control feature that can limit the current

passing through specified LEDs in case some LEDs end up

being naturally brighter than others. This allows for all

LEDs to be kept at the same relative brightness level,

despite any manufacturing discontinuities.

In summary, this chip is provides more than enough

current to power individual LEDs, and has lots of features

to help with maintaining appropriate brightness in each

LED. All of this and it comes in a small and inexpensive

package.

F. Game Controller

The game controllers used for input to the GameQube

are GameCube controllers. Two variants have been tested

and currently work: an official Nintendo wired GameCube

controller and a Mad Catz wireless controller. The wired

and wireless controllers both work identically. The

wireless controllers work using an RF receiver, allowing it

to be used without any additional software configuration.

Fig. 1. Overall Design of the GameQube.

The controllers have 6 buttons, two triggers, a D-pad,

and two joysticks. The D-pad is used for static directional

control while the joysticks allow for more dynamic

movement and acceleration.

The controllers plug into a GameCube controller hub

extracted from a GameCube and implanted into the

housing of the GameQube. This hub hosts up to four

controllers and allows for one power source to be plugged

in and power all controllers.

G. Power Supply

The power supply is an official GameCube power

supply. The GameCube AC adapter provides 12V DC at

3.25A with input directly from the wall. This power supply

provides more than enough voltage, in which no

components in the GameQube consume more than 5V.

While a lower voltage power supply would be easier to

step down and dissipate heat, the GameCube AC adapter

was attractive due to the current output. With 3.25A, this

allows plenty of freedom when lighting all the LEDs at

varying brightness.

III. OVERALL DESIGN

The overall design is shown in Fig. 1.

The LED Volumetric Display controls the overall

display for the GameQube. This is done by multiplexing

through each of the layers in the display one at a time,

flashing the appropriate colors on the LEDs by controlling

the LED drivers, and then checking for the next video

frame. All of this is done at very high speeds so that every

layer of the cube appears to be on at the same time.

Central processing includes the main Tiva microcontroller

board which hosts the software and sends data to the LED

display. The main microcontroller board also hosts the

sound control.

Additionally, the cube and its components are contained

in a housing unit. The base of housing arranged in a

rectangular prism made of wood. The LED circuit, main

microcontroller, power control, speakers, and GameCube

controller board are stored in the rectangular base. The

LED cube sits on top of the base and is covered by an

acrylic shell. The LED cube has a thin layer of wood as

support which stands on the base and is secured using pins,

allowing the cube to lifted giving access to the electronics

inside.

The high level C++ software that creates the games and

animations are hosted and programmed onto the Tiva

microcontroller. This software runs through a graphical

rendering set-up to draw and create objects on the cube.

The software then breaks down the software to output

1000 bytes per frame, allowing for each LED to have a

color value.

IV. HARDWARE DESIGN DETAILS

The hardware design was modeled to allow modularity

between the major sections. The LED controller circuit

and main microcontroller are on separate to allow for

adjustments and changes that don’t affect the overall

design. Additionally the power control is separated to

allow for modifying the power that dissipates through the

cube.

A. LED Cube Design

The LED Cube is composed of 5mm RGB LEDs

arranged in a common anode per layer design. There are a

total of 300 leads, which are being routed from the cube to

a PCB via ribbon cables. The PCB contains all the logic

and power for the display, including the LED drivers. The

microcontroller to be used in the LED logic will be the

MSP430. A single 10 pin connector is also being on the

PCB for the main processor to interface and write to the

display. The final array of LEDs is encased in acrylic and

stand on top of the base of the final project.

To help organize the amount of LED driver chips, the

LEDs are divided into groups according to their respective

colors (red, green, blue). This not only helps with

organization, but it also helps to perform any sort of color

correction at a hardware level. There will then be three

LED driver sections each with 7 TLC5940s, 10 sockets for

ribbon cables, with 10 pins connectors, and 12

miscellaneous pins which can be used to drive additional

LEDs.

To multiplex the layers of the display, the

MSP430F5529 is implemented in the design with a clock

frequency of 25MHz, closely matching the TLC5940 max

serial data transfer speed of 30MHz. To select the columns

to light, the microcontroller interfaces with the three color

LED driver sections. To select a layer, the microcontroller

interfaces with an array of transistors which selectively

provide power to only one layer at a time. The display

goes through the cycle of flashing all 10 layers at a rate of

300Hz. In order to receive video data from the main

processor, a separate shared memory buffer is used to

allow an asynchronous data transfer to occur between the

two devices.

The video data stored in the external RAM memory chip

is stored in the format of one byte per LED to denote

color. The reason for this is to improve the amount of time

it takes for the main processor to output a frame. The

separate modular approach for the LED control will also

help improve video output times for the main processor.

For example, if the main processor was to control the

TLC5940 LED drivers directly, it would take a

considerably more amount of time to output all desired

LED states. All LED data would need to be shifted in with

12 bits per color. That’s 26 bits per LED for one thousand

LEDs. If only one bit can be shifted in at a time it would

take 26000 clock cycles. Encoding each LED into a byte

and allowing a byte to be output in a single clock cycle, it

only takes 1000 clock cycles to output video data. This

speeds up the data transfer by a factor of 26. Figure 2

below shows the LED control design.

Finally, a special interface was designed for the main

microcontroller to be able to send video data to the

display. There are 10 pins in this interface, 8 of which are

used to send an entire byte of data at a time. The ninth pin

is used to clock the data to the display and the last pin is

used to keep everything in sync. When the display is done

processing a frame of data it pulls the sync pin low for the

main microcontroller to know to send new data. Since the

display checks for new video data at a constant 60Hz, the

sync pin can also be used by the main microcontroller to

maintain a 60Hz frame rate. Also, because the displays

refreshes at 300Hz it also supports frame rates of 60Hz,

50.8Hz, 43.6Hz, 38Hz, 33.9Hz if the main microcontroller

can't run fast enough for 60Hz.

Fig. 2. LED Control Design.

B. Microcontroller Design

Connected to the 10 pin interface is the main

microcontroller board. This board is centered on the Tiva

TM4C123GH6PM. The chip is configured with

decoupling capacitors and an external oscillator for stable

power and timing. One port of pins is reserved for the 10

pin display interface. With 64 pins, and 39 available for

GPIO, the Tiva proved to be a good choice as many more

pins ended up getting used than originally planned. Three

pins are configured for sound input and three other pins

are configured for sound output.

The input syncs with the source of the sound files, the

MSP430G2553. Sound is produced on the main board by

using PWM to work as a digital to analog converter. This

output is sampled at 32 kHz to produce audio. Large music

sound files are stored and read from an SD card, whereas

short sound effect files are stored in the extra program

space of the chip as constant arrays. This allows for both

music and sound effects to be mixed at the same time to

produce a single audio stream. There are two separate

PWM channels for a distinct left and right channel. Input

audio is routed through an op-amp and mixed with the

synthesized sound in an analog fashion. The final mix is

then routed to the ADC of the main microcontroller for

visualization and then output to the speakers as well.

C. Power Design

The MSP430, Tiva microcontrollers run at 3.3V as well

does the GameQube. The GameCube controllers take in

3.3V and 5V. To allows use of both 3.3V and 5V from the

12V power supply, a DC-DC converter is used to step-

down the voltage. The converter uses a LM25965

switching regulator and a PJ1084 low dropout voltage

regulator to provide both 3V and 5V at 3A from a single

12V input. The 5V line goes solely to the GameCube

controller hub. The 3.3V line goes to the main

microcontroller board which provides power to the LED

circuit.

D. Input Design

The GameCube controllers use 5 pins: two for power,

two for ground, and one bidirectional data line. Our design

incorporates the GameCube controller hub that provides a

single source of power, allowing the main microcontroller

to only use four pins for controllers. Each pin is mapped to

one of the bidirectional lines for each controller. While the

software only supports two player games, four player

controls is possible. The hardware configuration for the

GameCube controllers is very simple. The burden of

getting the GameCube controllers to work correctly is put

on the software configuration.

V. SOFTWARE DESIGN DETAILS

The main goal of the software is provide a fun and

interactive experience for a user. Being a three-

dimensional display, game and animations that utilize the

full space were favored. Before 3D graphics, classic games

were limited to what could be simulated on a 2D screen.

The GameQube allows for those games that work with

limited resolution, to evolve into a 3D world.

The software architecture, referred to as the Virtual

Environment is an object-oriented C++ runtime. The

software runs on a loop running different applications,

called runnables in the software. Each runnable refers to a

different application a user can select from the main menu.

These include games such as Snake and Pong, Animations

to watch, and a Music Visualizer. Each

runnable extends IRunnable which sets up

the class to render the scene using the

Virtual Environments SceneManager and

VideoDriver.

The SceneManager is the container class

responsible for hosting all the nodes that

can rendered on the cube. A node is

predefined object with certain behavior that

is drawn to the cube. Some common nodes

used include CubeSceneNode,

TextSceneNode, and LineSceneNode. Each

of these nodes keeps track of size, color,

and other attributes of the object and

defines how to draw the node. The

SceneManager is responsible for adding

and removing each node to the scene. Every

frame the SceneManger is called to render

all nodes.

Rendering is handled through the VideoDriver. When

each node is called to render, it calls a render function in

the VideoDriver that defines how that node draws to the

scene. The scene promises of 1000 points, or LEDs. Each

node eventually breaks down into a collection of drawing

points. The function used to draw a point is

drawRawPoint, which takes in the encoded color and

position and writes a byte of data to the buffer. This 1000

byte buffer is what is sent to the LED cube circuit.

Each runnable then uses nodes to create a game or

animation on the cube. The architecture allows the

runnables to be far removed for any low level software

functions. This allows writing of the applications to be as

simple as creating the game using the same logic as if it

were used in a 2D display or 3D engine.

Additional components to the Virtual Environment

include the controller class which checks for input each

frame and the runnable is free to respond how it likes. The

wired GameCube controller supports the rumble function,

allowing the controller to rumble under certain conditions

such as death. Runnables also interact with the sound class

which allows a runnable to define a music track to play

while running, along with certain short sound effects

A. User Interface

The user interface for the project was designed with

simplicity and usability as major factors. It needed to be

easy for any user to navigate, regardless of technical

history. With that in mind, the interface was designed with

a main menu showing the runnable applications, the

running application screens, and a pause screen for each

running application, shown in more detail in Fig. 3.

Fig. 3. The GameQube user interface flowchart.

When the user first turns the GameQube on, a quick

animation is played to show that the cube is starting up.

This animation mimics the original Nintendo GameCube

boot animation. After the animation completes, the user is

brought to the main menu. The main menu of the cube was

created as a vertical scrolling menu, controlled with up and

down pulls on the controller’s analog stick or D-pad. This

allowed for quick transitions between selectable games

and animations, as well as the ability to bring focus to a

single runnable at a time. To take advantage of this focus,

each runnable has its name written in LED light scrolling

around the sides of the cube. Also, each runnable has a

small animation running on the main menu that shows its

functionality. The user is able to then press the ‘A’ button

on the controller to start the runnable that is currently

being shown.

At this point, the user starts to play or watch whichever

runnable has been chosen. During the execution of the

runnable, it is possible for it to be paused if the user

decides to take a break. By pressing the ‘START/PAUSE’

button on the controller, the user is brought to a pause

screen that suspends the current action the runnable is

taking. At this screen, the user sees a shrunken version of

the paused runnable inside of a cube along with a scrolling

pause icon. The options for the user are to press

‘START/PAUSE’ again to resume the runnable or to press

‘A’ to be brought back to the main menu.

B. Games and Animations

The overall concept of the GameQube was spawned

from the idea that it could be used as a unique way to play

games, especially ones that were originally created in a 2D

space. By introducing a 3D LED environment, classic

games can be rewritten to be played in three dimensions,

making them seem like brand new games. Many of the

games we chose to design for the cube were originally

made to be played in 2D.

One of the games we chose to bring into the 3D world

was “Pong”, a classic 2 player game. The objective is for a

player to hit a ball with a paddle past the opponent’s

paddle to score. Normally, the ball would be able to move

in two dimensions (x and y) and a player’s paddle would

move in only one dimension (y). However, with the shift to

3D the ball can move in three dimensions (x, y, and z) and

the paddles can move in two (x and y). This new

functionality adds an entirely new layer of gameplay depth

to a previously much simpler game. The game starts when

player 1 presses ‘A’ on his controller to release the ball.

Each player then moves his paddle with the controller’s

analog stick to attempt to put it in front of the incoming

ball to hit it back towards his opponent. When a ball goes

past a paddle, that player’s cube side turns red and the

other player’s side turns green to signify that he scored.

Once a player scores enough times, his cube side flashes

green which means that he won.

Another game that is playable on the GameQube is our

version of “Atari Breakout” called “Brick”. In this game, a

player controls a paddle and hits a ball away from him,

similar to “Pong”. The objective, though, is to have the

ball hit the colored bricks on the other side of the cube to

destroy them. When all the bricks are destroyed, the player

wins the game. Also similar to “Pong”, the ball is released

into play by pressing ‘A’ and the paddle is controlled with

the analog stick.

The third game that has been implemented for the cube

is “Snake”. In “Snake”, the player is in control of a

moving snake (line of LEDs) and needs to navigate it to a

fruit that will increase the snake’s size by one LED when

collected. This continues until the player either runs the

snake into itself or a wall, which ends the game. The snake

can move in 3D and the fruit is located in 3D, which

makes keeping the snake alive much more difficult.

The fourth game designed for the cube is called

“Block”. The goal of this game is for the player to rotate a

shape in such a way that it will fit into a hole in a wall. At

the start of the game, the player is given an odd shape and

is shown a wall of LEDs at the bottom of the cube with a

hole in it. The player can then start the game by beginning

to rotate the shape with the analog stick. At that moment, a

timer starts to tick down on the left side of the screen.

Once the timer hits the bottom of the cube, the LED wall

will rise up towards the top of the cube. If the rotated

shape fits through the hole, the player is awarded a point

and a new shape and hole appears. If the shape does not

fit, the game ends and a screen shows the player how many

points were awarded to him.

The final game implemented on the GameQube is

“Invaders”, based on the classic game “Space Invaders”. A

player starts off as a spaceship represented as a rectangle

at the bottom of the LED cube. Nine aliens, represented as

cubes at the top of the LED cube move back and forth, and

eventually downwards. The goal is for the spaceship to kill

all aliens by shooting an LED bullet and hitting them. The

spaceship has to kill all spaceships before one of them

shoots the spaceship or one of them reaches the spaceship

at the bottom.

In order to diversify the types of applications on the

cube, we decided to design animations that a user could

watch. Once the animation runnable is selected, an

assortment of animations begins to play, automatically

shifting from one to the next. The user can cycle through

the animations manually with the ‘A’ button. When the list

of animations reaches its end, it loops back to the first

animation and runs through them again. With the number

of games and animations that are present on the

GameQube, it is unlikely that a user will not find

something interesting and enjoyable to them.

The last runnable is the Music Visualizer. The music

visualizer allows for a user to play with stored music

tracks or input their own, to run music based animations.

The animations variable includes seeing the raw waveform

from either the left channel, right channel or both.

C. Embedded Software

A lot of code needed to be written on the embedded

level to control the microcontrollers at their basic levels.

Whereas most of the software focuses on the overall

processing of data for the project as a whole, there still

needed to be the lower level written to denote exactly how

pins would be utilized or clock speeds would be run.

 For the LED display microcontroller this involved

setting up the IO pins as well as initializing timers and

hardware SPI features. The main oscillator was set to

25MHz, but the PWM clock only runs at half the oscillator

speed, whereas SPI runs at the full clock speed. The timers

that were initialized are used to maintain a constant time

interval when multiplexing through the layers of the

display. Gamma tables were also created as a quick way of

decoding a byte color into a byte value for each of the

three primary colors. These table values were also

generated to take gamma into consideration as well as

maintaining constant overall brightness of the LED while

different colors are mixing.

 The main microcontroller features most of the high

level code but also required some careful control over the

low level features. The max heap and stack size had to be

carefully decided and set for the processor as well as

enabling of some of the peripheral features like ADC. The

biggest challenge was writing the low level code to

interface with the input controllers. The timing is very

critical for the projects chosen controllers and any details

involving clock speed configuration could ruin the timings.

Sound was another aspect that needed to be programmed

carefully at the lower embedded level. The interrupt based

interface needed to be understood and communicated

through two very different chips.

 The sound driver microcontroller needed to have it's

hardware interrupt system setup. The embedded code also

involved programming the interface between the

microcontroller and the SD card. This involved hard

coding the different types of messages that could be sent

or received. One of the more clever embedded level

programming techniques used for sound was to take

advantage of the extra program space and use it as

additional ROM to store media assets. Storing small audio

samples this way allowed for real time mixing of different

sounds, since reading from the chips ROM takes up

virtually no extra communication time as opposed to

adding an extra SD card.

VI. CONCLUSION

 Through completing this project, we have gained

valuable experience and knowledge that will no doubt

assist us in the future. Our original vision of an LED cube

for games grew into an entertainment system used for

games, animations, and sound visualizing. With the help of

our education and resources from UCF we were

challenged to complete a full engineering project

development. We were able to incorporate a number of

ideas that were originally thought to be stretch goals, such

as extra games and sound. The GameQube is completely

functional and can do everything that we hoped for.

BIOGRAPHY

Omar Alami is a graduating

Computer Engineering student at

the University of Central Florida.

He is working part-time as a

Software Engineer at The DiSTI

Corporation. Omar plans to

transition into full-time upon

graduation and pursue a Master’s

in Computer Science part-time at

UCF beginning Fall 2014.

Stephen Monn is a student at the

University of Central Florida

graduating with a Bachelors

Degree in Computer Engineering.

He currently works as a student for

Lockheed Martin and will continue

working for the company in a full

time position after graduation.

Matthew Dworkin is a senior at

the University of Central Florida.

He plans to graduate with his

Bachelors of Science in Computer

Engineering in May of 2014. After

graduation, he wants to start a

career in the Orlando area working

as a software developer.

