
Automatic Guitar Tuner

Trenton Ahrens, Alex Capo, Ernesto Wong

Department of Electrical Engineering and

Computer Science, University of Central

Florida, Orlando, Florida, 32816-2450 U.S.A.

Abstract — This document describes the design of the

Automatic Guitar Tuner, which include specifications and
procedures for constructing and testing. The project involves
the use of signal processing and amplification, integrated

circuit manipulation, and Bluetooth integration with an
Android user interface. The aforementioned processes are
utilized in unison to control the bass guitar's sting

frequencies via DC gear motors. This paper also shows
results and data of the procedural approaches such as
waveforms, frequency ranges, and schematics.

Index Terms — analog-digital conversion, analog
integrated circuit, Bluetooth, DC motors, frequency, signal
processing algorithm.

I. INTRODUCTION

The practical idea of automatically tuning a guitar

explores a wide range of technologies and processes. The

project targets beginner guitar players to assist in tuning a

bass guitar to a certain, pre-set tuning preference. Intricate

hardware and software applications are utilized to bring

together a complex system. The overall goal of Automatic

Guitar Tuner project is to have the user automatically tune

the bass guitar by selecting a tuning preference through an

Android mobile application that applies Bluetooth

wireless technology. The project uses the Android Studio

Integrated Development Environment (IDE) for the

development of the Graphic User Interface (GUI). The

Java language is the default language for the IDE. Using

the common built-in Bluetooth capabilities found in most

mobile devices, the communication is established between

the mobile device and the Bluetooth module which is

connected to the PCB containing the Atmega328p chip.

The Atmega328p is the 'brains' of the system, as it is

responsible for the analog-digital conversion (ADC) and

signal processing algorithm. As the user plucks a string to

commence the automatic tuning process, the analog

signals being inputted from the pickups of the bass guitar

are converted to digital signals. The digital signals are

then analyzed for frequency so that it may be processed

and outputted for determining the strings correct tension,

controlled by standard DC gear motors mounted on the

headstock of the guitar. The entire process is repeated on

the remaining strings. The results of the entire procedure

brings forth a perfectly tuned bass guitar that is

aesthetically pleasing to the ear.

II. SYSTEM COMPONENTS

To understand the project in its entirety, it is easiest to

overview each component and subsystem individually.

The later sections will describe the components in depth

with technical details.

A. Motors

The tuning mechanism of the Automatic Guitar Tuner

was driven by DC gear motors, the ROB-12472 standard

gear motor to be exact. These motors were used because

they were cost efficient and also capable of turning the

pegs of the guitar at their highest load.

 B. H-Bridge

The Automatic Guitar Tuner required its tuning

mechanism to have bidirectional rotation capability. In

order to achieve this requirement, the system needs four

total H-Bridge motor drivers. The L293DNE dual H-

Bridge by Texas Instruments was used to meet these

requirements. Each integrated circuit (IC) contained two

H-Bridges, so only two chips were needed.

C. Power

The Automatic Guitar Tuner requires a couple different

power sources to operate correctly. Battery power was the

means of power decided on by the team. An 8xAA battery

pack holster and two 9V batteries were used to make this

work. Also, a LM7805CT voltage regulator was included

to drop down voltages from the battery pack for certain

components that use a lower voltage.

D. Microcontroller

The brains of this project is the Atmel Atmega328p

microcontroller (MCU). This chip was chosen for its

small form factor, its ease of programming and

interfacing, its ADC inputs, and the necessary outputs. An

Arduino dev board was used to program and test the

Atmega chip, as well as the Arduino IDE.

E. Op Amp

The analog signal received from the guitar needs to be

amplified before it can be analyzed by the microcontroller.

This is accomplished by using a TL082CP op amp from

Texas Instruments. This is a widely used and very

common general purpose operational amplifier. It is very

low cost, requires low supply current, and has a large gain

bandwidth product.

F. Bluetooth

The project aims to have wireless communication from

the user interface to the Atmega328p. The low cost and

low power consumption provides an adequate medium for

communication. The built in Bluetooth capabilities within

the mobile Android device allows the user to send serial

data through Bluetooth's radio technology called

frequency-hopping spread spectrum. The Atmega328p

receives the incoming serial data from the user via the

HC-05 Bluetooth module, which is the ideal choice for

integration onto the PCB.

G. Android Application

The user interface is an Android application designed

and developed using the Android Studio IDE. The

Android platform is open source which made development

boundless. The Java programming language, which

utilizes object-oriented structuring of data, is used as the

default programming language for the Android Studio

IDE. Android application is set to run on Android version

4.4 and up. The Android application utilizes the mobile

device's built-in Bluetooth capabilities to allow

communication to the Atmega328p. The application

allows the user to select from a set of five tuning

preferences with a click of a button for each preference.

Fig. 1. Depicted above is the GUI that the user will be
interacting with when selecting the tuning preference.

H. Bass Guitar

This project is designed around using a standard 4-string

bass guitar. The bass guitar consists of four strings, tuning

pegs, an auxiliary jack, and pickups. The strings are a

standard gauge round wound configuration. No external

pickups were necessary while designing the Automatic

Guitar Tuner because the built in set worked fine. The

input jack is connected directly to the pickups so no

additional circuitry was needed to listen to the string's

signal.

Fig. 2. Shown above is the standard design and anatomy
of a bass guitar.

 III. SYSTEM CONCEPT

In order to obtain a visual interpretation of how the

system works as a whole, a flow chart of how the

Automatic Guitar Tuner works is displayed below.

Fig. 3. Complete flowchart of the system illustrates how

the user interacts with the guitar as well as how the

subsystems are linked together.

It is displayed in Fig. 3 that there are six main parts to

the system as a whole. The user will be interacting with

two parts of it only, which are the mobile Android

application and the guitar pickups. Both the mobile

application and pickups then interact with the MCU,

which applies the appropriate algorithms from each input.

Finally, based upon the output of the algorithms, the

particular command will be outputted to the motors.

The mobile application will allow the user to select the

desired frequency settings to be obtained. In the mobile

application, the user will select one of the five

preconfigured settings being: Standard, Drop D, Drop B,

Drop C, and Flat tuning. As far as the user's interaction

with the pickups go, this refers to the plucking of the

string and the frequency in which the pickups read from

the string. The pickups read the vibrations from the string

as a voltage, and based upon the signal being read, is

compared to the correct frequency. The MCU's frequency

detection algorithm then outputs either a forward or

reverse signal to the motors, which rotate accordingly

until the frequency being read matches the correct setting.

A. Tuning Mechanism Concept

Now that an overall concept has been portrayed, further

detail can be explained on the system's tuning mechanism.

The MCU will determine whether the motor being used

needs to rotate clockwise or counterclockwise. This

decision is made by comparing the current string

frequency to the actual frequency it should be at. Based

upon this difference, the MCU will write the appropriate

pin high, and the other low for forward, and vice versa for

reverse. Once the MCU recognizes that the string is in

tune, both the forward and reverse pins will write to a

logical low to brake the motor. Shown below is the

flowchart of how exactly this action occurs.

Fig. 4. Representation of how the systems tuning

mechanism operates during the tuning process.

B. Power Distribution Concept

It was depicted in prior pictures on how the power is

being distributed throughout the system, but it is only a

vague interpretation. The system uses two separate battery

sources, the battery holster and the series configured 9 V

batteries. The 9 V batteries are only being used on the op

amp, whereas the battery pack is used for a number of

inputs. Below is a diagram of exactly how these two

sources are being used in the system.

Fig. 5. A complete representation of how the power is
being distributed throughout the PCB.

C. MCU Concept

It is important to understand what exactly the system's

MCU is doing during the tuning process. This is the

driving force of the entire system because it acts as the

decision maker for it. In addition to making the decisions,

it also has all of the systems operating code stored onto it.

The code stored onto the MCU consists of different

parts, mainly being the frequency detection portion, the

comparison portion, and the Bluetooth transmit and

receive serial data. In the following figure it is illustrated

as a flow of operations, showing the analog input that is

read from the MCU's ADC channels being fed through the

signal processing algorithm. Once the sampled signal is

realized, it is compared to the controlled signal that is

stored into the MCU's memory, which is selected from the

Android application. After the difference in frequency is

confirmed, the MCU then outputs the appropriate

forward/reverse signal to the motor to correct the

difference.

Fig. 6. The representation of the system's microcontroller
flow of operations.

IV. HARDWARE DETAIL

Each major system component that was outlined in

Section II: System Components will now be explained in

depth with more technical information.

A. Motors

The selection of motors is an important part for the

Automatic Guitar Tuner. They should not be too heavy

that the user feels discomfort while playing the

instrument, and also should be capable of supplying the

required torque in order to turn the tuning pegs of the

guitar. It was discovered on a website that the heaviest

string would need about 37 lb-in of torque to turn the

tuning peg. [1]

There were issues initially when considering motors to

use for the design, mostly being that small enough motors

were not capable of turning the tuning pegs. A gearbox

could have been used to overcome the inadequate torque

output of the stepper and servo motors, but the area in

which is available on the headstock of the guitar restricted

this from being a viable option.

 The ROB-12472 standard gear motor not only met the

torque requirements, but also rotated at such a speed that

worked out nicely for the systems frequency detection

algorithm. At six rotations per minute, the frequency read

algorithm was able to operate in parallel with the motors

as they turned, and the frequency change is subtle enough

at this rotational rate that accurate measurements are able

to be obtained. The motors are capable of delivering up to

38 lb-in of torque and proved to be plenty to turn the

heaviest string at its highest required tension for each

tuning preference. Another notable feature is the wide

input voltage range that the motors accept being from 3-12

V.

The motors were mounted onto the guitar with a custom

made sheet metal bracket. This bracket was designed in

Autodesk Inventor and cut out by hand with a drill press

and a jig saw. The motors were attached to the bracket

with 6-32 screws. Holes were drilled into the sheet metal

and then tapped with the correct thread size allowing the

motors to be attached to the bracket. The motor shafts

were connected to the tuning peg by attaching a flathead

bit to the motor and making a notch in the back of the

tuning peg. A Dremel was used to create a notch on the

back side of the tuning peg, allowing a flathead bit to fit

securely. The D-shaft on the motor was connected to a

flathead bit using a coupler, allowing the motor to

properly turn the peg.

B. H-Bridge

The frequency of a string that is out of tune can be

either above or below the desired frequency, which means

that the motors require bidirectional rotation capabilities.

In order to achieve this requirement, the system’s final

design needs four H-Bridges in order to control all four

motors. Building an H-Bridge from scratch was an option

in terms of design, but the size profile would be much

larger than what was desired. In order to work around this

and to make the most convenient experience for the user,

IC’s made more sense.

The L293DNE dual H-Bridge by Texas Instruments

proved to be the exact component needed. Only two total

IC’s were needed because a single IC was capable of

handling the bidirectional rotation of two separate motors.

The chip is capable of outputting up to 1A of current and

has motor voltage supply range of 4.5-36 V. Because the

chip was capable of outputting enough current to turn the

motors at their highest loads, the final PCB design did not

require and current amplifying components such as

transistors, which yielded a simpler schematic.

The L293DNE bridges are dual in-line package (DIP)

IC's with sixteen pins. Below is a list that describes each

of the pins functionality.

(1) & (9) - Motors 1 and 2 logic control, respectively.

(4) (5) (12) & (13) - Ground.

(2) & (7) - Forward/Backward turn logic for motor 1.

(10) & (15) - Forward/Backward turn logic for motor 2.

(3) & (6) - Motor 1 input leads.

(11) & (14) - Motor 2 input leads.

(8) - Motor power at 9.6 V.

(16) - Logic power at 5 V. [2]

C. Power

There are multiple components in the design that require

some amount of input voltage to operate. This amount of

input voltage varies per components and thus required

voltage regulation. In particular, the ATMega328P, logic

power for the L293DNE, and the HC-05 Bluetooth

module all use 5 V inputs. The L293DNE also requires the

voltage input that the motors will be using to operate

which is anywhere from 4.5-36 V. Finally, the TL082CP

op amp required a +/- 9 V input.

The motors proved to be capable of moving the load

with the 9.6 V (8x1.2 V NiMH AA batteries) input

directly fed from the battery holster. The aforementioned

voltage regulator was used to drop down this 9.6 V to 5 V

to use as an input for MCU, the H-Bridge's logic power,

and the Bluetooth module. The final component that used

power was the systems op amp, which required a +/- 9 V

supply.

To power the op amp, a supply of an equal plus and

minus voltage was required. To accomplish this, a

TLE2426 rail splitter was used. This IC works by taking a

voltage supply and splitting it into two equal positive and

negative voltages by creating a virtual ground. This was

preferred over using two batteries individually or a resistor

divider, because either of these can become unbalanced

and cause one battery to drain faster than the other. The

rail splitter also has a noise reduction pin with a 1µF

capacitor. Below is a schematic showing the layout of the

rail splitter.

Fig. 7. Schematic of TLE2426 Rail Splitter.

The VCC+ is the positive end of the two 9V batteries

and VCC- is the negative end of the two batteries. When

the output is connected to ground, the VCC+ is at 9V

when compared and VCC- is at -9V when compared to

ground.

D. Microcontroller

The Atmega328P is the component that ties all the other

systems together. The microcontroller is powered with

5V from the voltage regulator. It is run with a clock speed

of 16MHz from an external crystal oscillator. The

microcontroller receives the analog guitar signal from the

op amp and the signal is processed by the analog to digital

converter. It communicates with the HC-05 Bluetooth

module via the TX and RX pins. The microcontroller uses

eight digital output pins to signal the H-Bridges to control

the motors.

E. Op Amp

The TL082CP op amp is powered with a +/- 9V supply

from the rail splitter. The op amp is connected in a non-

inverting configuration as shown in the following figure.

Fig. 8. Schematic of TL082CP Op Amp.

 The positive signal from the guitar pickups is

connected to the positive terminal on the op amp. The

negative terminal is connected to a 10kΩ potentiometer

which is connected to ground. This allows the gain of the

op amp to be adjusted easily to ensure the Arduino

receives a full signal from 0-5V. On the output, a 100kΩ

resister is connected to the negative input. The gain of the

op amp can be calculated by the following equation:

On the output of the op amp there is a 10µF capacitor to

block an DC voltage and ensure that the signal is centered

around 0V. After the DC blocking capacitor, there is a

voltage divider that consists of two 100kΩ resistors that

center the signal around 2.5V. This ensures that the analog

to digital converter on the microcontroller receives the

whole signal as anything above 5V or below 0V cannot be

read by the ADC.

The TL082CP package contains two individual op

amps. The unused op amp cannot simply be left floating,

as this can affect the other op amp. They cannot simply

be tied to ground either. To solve this problem, the

positive input of the unused op amp is tied to ground, and

the negative input is tied to the output.

F. Bluetooth

Along with the built-in Bluetooth capabilities on the

mobile Android device, the HC-05 Bluetooth module is

used by the Atmega328p to allow serial communication

from the Android application. The HC-05 operates

between 3.3 V to 5V. It consists of Tx and Rx pins which

provide transmission lines of UART data input and output

to the Atmega328p. While pairing with the mobile

Android device, the built-in LED on the module blinks at

a rate of 2 Hz and 1 Hz for standby. The HC-05 allows the

option to switch between master or slave mode through

the AT commands. By default, the module is set and kept

on slave mode, as the mobile Android device acts as the

master.

V. SOFTWARE DETAIL

Each major system component that was outlined in

Section II: System Components will now be explained in

depth with more technical information.

A. Android Application

Developed using the Android Studio IDE, the Automatic

Guitar Tuner (AGT) application serves as the user

interface. Upon development, several files needed to be

made for the application to compile as whole: (1)The

Main Activity class file (2)The Main Activity extensible

markup language and (3)The Android Manifest extensible

markup language.

 The Main Activity class file serves as the main source

code for the application. It is where the libraries for

Bluetooth are imported and where variables, or objects,

and methods are defined to carry out the data transfer

process from the application to the Atmega328p. Upon

launching the application, the activity starts with the

onCreate() method. Here, setContentView(int) is

called with a layout resource defining your user interface,

and using findViewById(int) to retrieve the widgets in

needed to interact with programmatically. For the project,

the application has five buttons representing five different

tuning preferences the user can select from. For the first

button, which represents Standard tuning, upon click, a

character '1' is converted to bytes in the sendData()

method, where the serial data is transferred to the

Atmega328p via Bluetooth. The same is done for the

remaining four buttons, however, each button sends a

unique character corresponding to the set tuning

preference. After the onCreate() method comes the

onResume() method, which is called when the activity

will start interacting with the user. At this point the

activity is at the top of the activity stack, with user input

going to it. For the project, this method retrieves the

Bluetooth adapter and pairs with the HC-05 based on the

MAC address. After onResume() comes onPause(),

which handles the activity for when the system is about to

start resuming a previous activity. Here, onPause() checks

and maintains Bluetooth communication with the HC-05.

Any communication error that arises will close the

Bluetooth sockets and notify the user. [3]

 Along the class file is the extensible markup language

file (.xml) where the layout of the application is designed.

The file contains a layout view which allows the

developer to design the GUI by placing various widgets,

in this case the text fields and buttons, wherever is seen

fit. The file also has text view, which contains the screen

elements for each widget with a series of nested elements,

similar to web pages in HTML.

Fig. 9. A screenshot of the nested elements within a

button.

 The Android Manifest file presents essential

information about the application to the Android system

and information the system must have before it can run

any of the code. The following is handled by the manifest:

 It names the Java package for the application,

which is a unique identifier for the application.

 It describes the components of the application —

the activities, services, broadcast receivers, and

content providers that the application is

composed of. These declarations let the Android

system know what the components are and under

what conditions they can be launched.

 It determines which processes will host

application components.

 It declares which permissions the application

must have in order to access protected parts of

the API and interact with other applications.

 It declares the permissions that other applications

are required to have in order to interact with the

application's components.

This file is where the permissions to use Bluetooth is

established. [4]

Fig. 10. The user permissions for Bluetooth.

B. C++ Code

The code for the project was done in the Arduino IDE in

the Arduino version of C++. The code consists of several

important parts; analog to digital conversion, frequency

calculation, Bluetooth communication, and motor control.

The most important part of the code is that which

calculates the frequency from the analog input. The

analog signal from the guitar is converted to a digital

value by the ADC. Whenever a new ADC value is ready,

an interrupt service routine stops the program to execute a

certain function. This function uses a method of threshold

crossings to determine the frequency. If the frequency is

increasing and crosses a midpoint (2.5V), it starts timing

until it crosses that point again with a positive slope to

calculate the slope of the signal.

The microcontroller communicates with the mobile

application vie Bluetooth simply by performing a

mySerial.read to read what is sent from the Android

application. The application sends over characters based

on what button is pressed. The program reads the

character and performs a certain function based on what

value was received. For example, if the tune button is

pressed, the application will send a '1' character. When

that '1' is read, it begins tuning the guitar.

TABLE I

Standard Tuning For a Four String Bass Guitar [5]

String Note Frequency

(Hz)

1 (thinnest) G 98

2 D 73.42

3 A 55

4 (thickest) E 41.2

The motor control is done simply by writing the outputs

to the H-Bridges, either high or low. In the beginning of

the program, all the motor outputs are written low, which

tells the H-Bridge not to turn the motors. When the

frequency is read and it is determined that a string needs

to be tuned, the program will write one pin on the H-

Bridge high depending on whether the frequency is above

or below the correct value. Once the correct value is

reached, the motor will stop turning and the program will

move on to the next string.

VI. BOARD DESIGN

All of the components in this project were designed to fit

on a dual layer printed circuit board. This board includes

the microcontroller, the two H-Bridges, the op amp, the

rail splitter, the voltage regulator, power input jacks, an

audio input jack, and the necessary passive components.

The board was designed in eagle and printed by OSH

park. It is roughly 100mm x 43mm in size. The board has

sockets to connect to the Bluetooth module as well as the

four motors on the guitar.

VII. CONCLUSION

This overall experience has been fulfilling, challenging

and fun. The Automatic Guitar Tuner project is a final

measurement of our knowledge that we’ve gained during

our time at the university in the College of Engineering.

 As engineering students, the team is naturally curious,

especially in electronics. During the time spent at UCF

and on this project, the team is able to apply their

knowledge to handle a real world problem that catches the

team's interest. Several meetings were taken place to

evaluate the production and testing of the prototype,

presenting certain experiences that cannot be obtained in

the classroom. For example, collaborating as a team to

compromise on a direction to take with certain subsystems

is one of those experiences. These experiences are all

fulfilling, in that there was something to be gained from

each one.

 Several challenges arose when constructing and testing

the prototype. There were instances where the team had to

order several HC-05 modules because one of the pins kept

getting fried due excess voltage. Another instance is

having the Arduino code to control three out of the four

motors. These are only a portion of challenges that the

team had to overcome in order to get the system to work

as a whole. The issues were easy fixes, however

identifying the problem was the biggest challenge.

As avid music lovers, the team enjoyed tackling a

problem pertaining to music. This gave extra motivation

to overcome a challenge that is common for musician,

especially beginners. This project gave a chance for the

team to strive for a solution in something they love.

THE ENGINEERS

 Trenton Ahrens is a 22-year old

graduating Electrical Engineering

student looking to work for a

company in the automation

industry working with PLC's. The

rides and shows industry is

particular field of automation that

he finds interesting.

Alex Capo is a 24-year old

Electrical Engineering student

graduating at the end of the

Summer semester. All throughout

his life, he has had a general

interest in electronics of all kinds.

As far as his future is concerned in

the field, he hopes to acquire a job

in either a power distribution field

or communications systems.

 Ernesto Wong is a 23-year old

graduating Electrical Engineering

student looking to pursue a career

in Systems Engineering or

Electrical Engineering. He has an

interest in testing and integration

due to experience in Systems

Engineering at Lockheed Martin.

ACKNOWLEDGEMENT

The authors wish to acknowledge the assistance and

support of Dr. Samuel Richie and the University of

Central Florida.

REFERENCES

[1] D'Addario & Co (2008), "String Tension 101," Retrieved 18

September 2014, World Wide Web:

http://www.daddario.com/DAstringtensionguide.Page?sid=

9bc4dfd7-316a-41be-9d07-6d0fc48b94eb

[2] Texas Instruments Inc. (2004), "L293, L293D Quadruple

Half-H Drivers", Retrieved 23 October 2014, World Wide

Web: http://datasheet.octopart.com/L293DNE-Texas-

Instruments-datasheet-93368.pdf

[3] Android (2015), "Activity," Retrieved 15 October 2014,

World Wide Web:

http://developer.android.com/reference/android/app/Activit

y.html

[4] Android (2015), "App Manifest," Retrieved 15 October

2014, World Wide Web:

http://developer.android.com/guide/topics/manifest/manifes

t-intro.html

[5] Grant Green (2000-2002), "Frequencies and Range,"

Retrieved 1 October 2014, World Wide Web:

http://www.contrabass.com/pages/frequency.html

