
Gesture-controlled Automated

Residency Via Intelligent

Systems (GARVIS)

Joshua Illes, Andres Mujica, Jackson Schleich,

and Sarah Strauss

Dept. of Electrical Engineering and Computer

Science, University of Central Florida, Orlando,

Florida, 32816-2450

Abstract — The Gesture-controlled Automated Residency
Via Intelligent Systems is a household control network that
provides the necessary tools for a household environmental
database and an algorithm based approach to regulating a
residential environment. User interface is modernized with a
capacitive touch light switch, a touchscreen central manager,
and a motion sensor glove interface. Environmental control is
achieved though AC load control with triacs, DC load control,
and an actuated HVAC vent damper. The system modules all
share a common power, communication and control module,
and the desired function is achieved through specialized
interface circuit boards.

Index Terms — Home automation, gesture recognition,
algorithms, capacitive touch, HVAC, traic.

I. INTRODUCTION

With prevalence of smartphones, and the movement

toward convenience through autonomy we began to

wonder how one’s residence could also benefit through

increased autonomy. GARVIS aims to make up for where

other “home automation” systems fall short. GARVIS is a

network of interconnected sensors and actuators that are

all connected to a central host and is designed to

intelligently automate one’s residence rather than merely

controlling it with a complicated set of timers. Our sensors

are housed in our “Smart Switch”, a light switch

replacement. Each smart switch will collect data from each

room and send it back to our Central Manager. The

Central Manager can interpret this data and relay

commands to the actuators placed throughout the

residence. We have designed two types of actuators, the

first being our Load Controller which has analog control

over both AC and DC electrical loads. The second type of

actuator is our HVAC control, which is charged with

controlling the heating/cooling cycles, the HVAC fan, and

the damper system. While the primary goal of GARVIS is

to keep user interaction to a minimum, we do offer three

unique ways of interacting. The first being through a 7

inch LCD touch screen housed within the Central

Manager. We have a smart switch to take capacitive touch

inputs from the user from each room. Our final user

interface method is a motion sensitive glove. The glove

can be mapped to specific functions via the Central

Manager to control the residence’s actuators.

II. SYSTEM OVERVIEW

GARVIS is the combination of a smart home automation

system with gesture based control. The goal of GARVIS is

to create a home automation system that adapts to the

user’s lifestyle through adaptive algorithms and gives the

user control of their house with multiple interfaces. It’s

also hoped to achieve this with a design that is plug and

play so the user has to do as little work possible to get the

system working.

 GARVIS consists of 5 major systems. The Central

Manager, the Smart Switches, the Load Control, the Vent

Control, and the Smart Glove.

The Central Manager is the brains of the operation. This

system has a 7 inch LCD screen that allows the user to

control their whole house from it. It also collects data from

all the Smart Switches in the house in order to make

“smart decisions” through adaptive algorithms. For

example, turning off the HVAC system when it knows you

aren’t home. It also processes gestures from the Smart

Glove.

The Smart Switch is a device that replaces the standard

light switch. Not only does it allow you to turn devices on

and off, it allows you to control more than one device at a

time as well as allowing you to control the percentage of

power being used by them. So you can dim your lights or

control the speed of your fans. It does this by having a

capacitive touch interface with multiple pads that allows

for both single taps and fluid, natural feeling slide motions.

It also collects data from sensors that it sends to the

Central Manager to process for its adaptive algorithms.

The Load Control is a device that allows control over

two standard AC outlets and two DC RGB LED strips.

The commands for the level of power to output can come

from either the smart switch in the room or from the

central manager. This allow the central manager to take a

more active role in reducing household power usage.

The Vent Control is a device that allows control over the

airflow to each room. With this device, the system can

further reduce power consumption by only heating the

rooms that are being used by the resident. This serves as a

critical factor for adaptive control.

The Smart Glove is a device that allows us to combine

wearable technology with home automation. The user can

wear this glove that can control devices in the house by

predefine gestures such as swiped your hand across the air

or holding up three fingers.

Fig 1. High level system integration chart

III. CENTRAL MANAGER

The Central Manager acts as the control station for

GARVIS. It is the destination point for all data and it acts

at the main interface for the user to control the system,

with alternative interfaces being the Smart Switches and

the Smart Glove. The Central Manager is composed of a

BeagleBone Black Rev C, a 7 inch touch LCD screen

display from 4D Systems, and a custom built cape for I/O

and HVAC control.

As the main controller of the system, the Central

Manager has three critical responsibilities—data collection,

data interpretation, and controlling the system via adaptive

commanding. Data is collected as sensor data from any

number of Smart Switches, as gesture data from the glove,

and through user input from the touch screen. Once data

has been obtained, it is processed in order to provide

current home environmental information to the user and to

create commands to control the home. Furthermore, if the

system is in Smart Decision Mode, additional adaptation

features are available to control the home. The Central

Manager has the ability to send control messages to the

Load Controllers to turn on and off home electronics and

appliances. While all of this is happening, current home

information is easily accessible to the user on the LCD

screen as a Qt embedded application.

A. Hardware

The BeagleBone Black Rev C with an ARM Cortex A8

processor was the chosen development board because of

its high number of GPIO pins and peripherals, the ability to

custom create a cape for the board, and library availability

for integrating with the BeagleBone Black hardware. The

use of the LCD screen tied up a lot of pins on the

development board so it was critical that the BeagleBone

Black had more than enough to begin with. With 512MB

of RAM, the same amount as the Raspberry Pi B+, it had

plenty of RAM for the system’s needs.

In order to provide the best user experience, the main

interface for user interaction was decided to be an LCD

screen. At a minimum it needed to be of a 7 inch size and

touch screen. 4D System’s 7 inch LCD screen provided

the GARVIS system with those features at an 800x480

resolution display. In addition it was very easily set up,

with the drivers already installed on the Debian distribution

used on the BeagleBone Black. The LCD screen hardware

is a cape for the BeagleBone Black which leaves it securely

connected at all times but it also has headers for additional

capes to be stacked.

A BeagleBone cape was created to mate with the LCD

screen and allow the central manager to communicate with

the peripheral devices, and control AC and DC loads. The

communication is achieved through interface with the half-

duplex RS-485 bus, and the load control is achieved

through electromechanical relays. For the prototype system

created, these relays control demonstration aids to indicate

if the HVAC system is heating, cooling or off. In a full

implementation, these relays would control household

HVAC systems.

B. Backend Software

All Central Manager backend software is housed on the

BeagleBone Black running the embedded Debian Linux

distribution. Creating the software with Qt on this

platform allowed for the most optimal library availability

and software functionality for the Central Manager.

A basic overview of the main software components in

the Central Manager software architecture is as follows.

Integrating the Central Manager software with the UART

and GPIO ports of the BeagleBone along with the

touchscreen required the use of and IO class, the IO

Manager. Constant polling for environmental data and the

processing of that data occurred in the Command Creator

class. Synchronizing communication for the RS485

protocol between hardware devices occurs in the Status

Monitor class. The user interface is managed by the Main

Window class of the Qt application. Gesture recognition

and glove setup is managed from the Glove API and while

housed on the Central Manager, will be explained in great

detail in Section VII.

The IO Manager utilizes the singleton design pattern

because it is very critical to all other classes. By creating

only one instantiation of the IO Manager class, this ensures

that all other classes have access to the same data at all

times. The IO Manager’s responsibility is to control

UART communication and house all current home status

data, making it readily available for all other classes. It is

able to control UART communication through the use of a

separate UART class and an outside library named

BlackLib [1]. The UART class provides for a threading

scheme to allow for the IO Manager to be able to spin off a

read UART thread to constantly poll for new UART data

while still carrying out all other functionality.

The next class, the Command Creator, also is a thread

class that monitors all data coming in and determines how

to process it. The Command Creator interprets raw

messages from the Smart Switches around the house to

determine what type of sensor data they contain and how

to use that data. For example, if the capacitive touch

screen was activated on a Smart Switch the Command

Creator would receive that information and formulate a

Load Controller command message to send out

accordingly.

The last fundamental part of the Central Manager

backend software is the Status Monitor which is

responsible for synchronizing the RS485 communication of

the entire system. Through the use of timers and message

sending the Status Monitor is able notify other hardware in

the system of who is allowed to use the communication

line at any point in time.

C. Adaptive Algorithms

 One of the notable features of GARVIS is its ability to

adapt to certain environmental conditions if the user

desires. This is done through the use of adaptation

algorithms in the Command Creator. The user is able to

setup thresholds for a room—whether they are minimum

or maximum temperatures, humidity, or lighting needs.

With these thresholds set, whenever the Central Manager

receives sensor data from a Smart Switch it compares that

data to the user’s desired thresholds. If this data is out of

bounds from these thresholds then the Command Creator

will find the nearest device to control to remedy the

situation and send the appropriate Load Controller

message. This will turn on or off the device or limit the

power given to that device for a dimming effect. For

example, if user sets the maximum temperature to 75

degrees Fahrenheit for their bedroom and their bedroom

Smart Switch detects a temperature of 80 degrees, the

Central Manager will receive this information and check if

there is a fan in the room. If so it will turn on the fan by

sending a Load Controller message. If not it will command

the HVAC system to turn on to cool the room.

D. User Interface

The frontend of the Central Manager consists of a Qt

graphical user interface with event driven functionality. Qt

is beneficial because it is cross platform, open source,

written with C++, and usable in desktop, mobile or

embedded applications. Kits can be used to assist with

cross platform build and run settings to allow for different

back ends to support the same front end of a UI. They

configure environmental values for specific devices and

tool chains. This ability to run the same Qt application on

different platforms gives GARVIS the ability to grow and

host the Central Manager on an Android device or home

computer with very minimal effort if at a future date the

team wants to add remote control to the system.

The UI portion of the Central Manager has four main

pages—the homepage, room manager page, setup and

configuration page, and help page. The homepage has the

current date readily available and average house

information displayed. The room manager page allows for

the user to select a room, view all of its devices and their

current statuses along with environmental information

about the room. It also allows the user to manually control

any of the room’s devices and set thresholds for

adaptation. The setup and configuration page lets the user

add any number of rooms to the system, to add or remove

smart devices to or from any room, and to enable or

disable Smart Decision Mode. The last page, the help

page, provides the user with some important information

for using their GARVIS system.

IV. SMART SWITCH

The Smart Switch is a powerful yet simple data

acquisition system and control interface for the home

automation system. Since the goal of GARVIS is to make

a system that can adapt to the user’s lifestyle, the Smart

Switch has to gather as much data as possible from each

room for the Central Manager. This data includes

temperature, humidity, and motion through passive

infrared, and ambient light. The Smart Switch also gives

the user control of devices in the room such as the lights

and the fan or anything hooked up to the outlets of the

Load Control.

The Smart Switch hardware fits in a single gang box so

any standard light switch in a home can be replaced with a

Smart Switch. The only things needed to make a Smart

Switch active is power from power lines and 2 wires for

the RS485 bus that connects every device together. RS485

was utilized since these wires need to run for multiple feet.

The Smart Switch consists of three custom PCBs. The

Front End Board, the Microcontroller Board, and the

Power board. The Front End Board is unique to the Smart

Switch but the Microcontroller board and the Power board

are made to be reused in the Load Control, and Vent

Control. This makes for a modular design which allows us

to make new devices for the home automation system if

desired. The created possibilities for modular combinations

are shown in figure 2, below.

Fig 2. System Peripheral Modularity

A. Front End Board

The goal for the Front End Board is to provide the user

with a sleek user interface. To achieve this a custom PCB

was created with 9 capacitive touch pads. A big pad in

middle that acts as a button and then 4 pads for a slider on

the left and 4 pads for a slider on the bottom. It also has 8

RGB backfire LEDs that light up an acrylic plate that

diffuses the light. These RGB LEDs will be used for the

user to see the device at night and also to convey certain

data to the user which is explained further in the software

section.

The Front End Board is composed of Atmel’s QT1085

capacitive touch chip which handles all the processing and

detection of the capacitive touch pads as well as control

for the haptic engine. It uses Texas Instrument’s TLC5947

LED driver paired with 8 of the HSMF-C113 RGB LEDs,

the TI DRV2603 haptic motor driver, and the Avago

APDS-9006 ambient light sensor. There is also a passive

infrared sensor that physically rests on the board but

doesn’t actually connect to it. The PIR connects to the

microcontroller board.

B. Microcontroller Board

The goal for the Microcontroller Board is to create a

reusable custom PCB that can be used as the control for

the Smart Switch, Load Controller, and Vent Controller.

Along with this it also provides the communication

interface for the peripheral devices. The requirements of

interfacing with multiple, unique interface boards meant

that careful design of the locations of signals and the

capabilities of the microcontroller pins that they were

driven by, resulting in efficiencies such as the load

controller and the front end boards using the same SPI

communication lines.

In addition to the microcontroller controlling the devices

on the various interfacing boards, it also mounts several

sensors. It can measure temperature with the TMP36

temperature sensor by analog systems, allowing it to

monitor the temperature in a room (smart switch), an air

duct (vent controller), or the running temperature of the

load controller, which could overheat at heavy loads. The

HIH-4030 humidity sensor is also mounted to this board,

but due to the high cost of humidity sensors it would only

be mounted on the smart switch. The board also has a set

of three mounting holes for the three leads of the

EKMC1603 passive infrared sensor by Panasonic.

The microcontroller Board is made of Texas

Instrument’s MSP430F5529 microcontroller paired up

with an external 16MHz crystal oscillator. It has a TMP36

analog temperature sensor from Analog Devices and a

HIH-4030 analog humidity sensor from Honeywell. It also

has an EKMC1603 passive infrared sensor from Panasonic

hat can detect motion up to 12 meters. It uses an RS485

interface to talk to all the other devices in the house. This

is done by using Texas Instrument’s DS3695 RS485 logic

converter. This chip allows us to convert the UART

channel in a differential RS485 communication interface.

RS485 was utilized since these wires need to run long

distance, and it is better suited for long distance

communication than other common protocols. The use of

RS485 calls for differential pairs of twisted wires to

improve signal quality. To achieve this the group utilizes

the use of common CAT5 cables and snap connectors,

which allows the system to be connected with widely

available and cheap cabling. Each board requires two

Ethernet jacks so that all of the peripheral devices are on a

single bus without the use of any type of router or signal

switch as a central hub.

B. Power Board

In order to allow the modularity of the various interface

boards, the power supply needed to be powerful and

versatile enough to meet the needs of a diverse set of tasks.

This required a 3.3V supply capable of supplying power to

the microcontrollers, sensors and the various other digital

ICs described, as well as a 5V line for providing power to

several parts that were unable to run at 3.3V. A high

power 12V line was also needed for moving the motor of

the vent controller and supplying the power to the DC

loads of the load controller. The 12V line was also to be

used for a power line communication interface, but this

communication protocol was dropped and replaced by

RS485.

The power distribution hierarchy is as follows and is

graphically displayed in Figure 3. The household mains are

transformed down to 12VAC, then rectified to ~17VDC.

The 12V line is created with the TPS54336 DCDC

switching regulator by TI. The 5V line is created in a

similar manner, except using a LM43602 DCDC switching

regulator by TI. The 3.3V line is generated by using a

LMS8117 adjustable low dropout regulator by Texas

Instruments.

Fig 3. Power Supply Voltage Hierarchy

The use of switching DCDC regulators for the large

voltage drops allows the power supply to be both cool and

power efficient, both of which are critical to getting

reliable temperature measurements from a smart switch.

D. Software

The Smart Switch software is in charge of taking in data

from the sensors, process the data from the capacitive

touch chip and convert it into commands, manage the LED

peripherals on the front end, and handle the RS485

communication interface.

The first thing to consider is the LED management. The

colors of the RGB LEDs will tell the user what device is

being controlled. For example, red means that light is being

controlled, and blue indicates the fan is being controlled.

Variations in a pattern of LED flashes will tell the user

whether the message is being sent or not.

The communication is also handled by the

microcontroller. A half duplex RS485 interface was used

because multiple devices needed to give data as a master.

But no device can talk at the same time due to bus

contention. To avoid this each Smart Switch will have a

unique ID. This will be combined with a time multiplexing

technique. The Central Manager is going to send enable

messages to all the Smart Switches constantly in certain

order. These messages will be sent with a separation of

62.5 milliseconds. Whenever a Smart Switch receives an

enable message it now has 62.5 milliseconds to talk on the

bus knowing no other Smart Switch is going to talk during

its turn. Now all Smart Switches can talk on the bus

without bus contention. They just have to hold any

messages they want to send until they get the enable signal

from the Central Manager.

The Smart Switch has three different types of messages it

can send to the Central Manager. The first type is a passive

infrared message. Whenever the passive infrared has a

rising edge or falling edge it sends a message in order for

the Central Manager to know when the user is in the room.

The next type of message is a capacitive touch message.

The message sent depends on what device is selected.

Which device is selected depends on what color the LEDs

are set to. For example if the LEDs are red then the user is

controlling the lights, if the LEDs are blue the user is

controlling the fan, etc. The user can change what device

he has selected by sliding their finger on the bottom slider.

If the user touches the big button, or slides the left slider

then a message will be sent. The big button is to turn the

device that is currently selected full on or full off. The left

slider is to control the amount of power going into a device

allowing the user to dim the lights or control the speed of

the fan. This interface is shown in figure 4. The last kind of

message the Smart Switch can send is a response to a poll

message. A poll message is the message that the Central

Manager sends the Smart Switch when it wants to know all

the analog sensor data. When that message is received the

Smart Switch will respond with 3 messages. One with the

temperature, one with the humidity, and another one with

the ambient light data.

Fig 4. Front End User Interface, Smart Switch

V. LOAD CONTROLLER

The load controller board is designed to be able to

control both AC loads and DC loads in an analog fashion.

The load controller also monitor’s load current so it can

determine energy efficiency/ circuit faults. Using a

Microchip Technologies MCP9701 temperature sensor, the

board temperature is monitored so power can be cut if the

temperature reaches an unsafe temperature.

To control the six DC lines, a TLC5947 is used. The

TLC5947 is a shift register that takes in values from the

microcontroller board and outputs the appropriate PWM

signal for each of the six channels into a power MOSFET.

The load controller can control up to six 12V DC lines, or

two common RGB led strips. To read the current through

the DC lines, a low value, high power, shunt resistor is

used and the voltage is read across it using an analog to

digital converter.

To control the two AC lines, triacs in combination with

a zero crossing detector are used. Triacs are a type of a

silicon controlled rectifier that allows current to travel in

two directions when its base is biased. The triac latches off

when the voltage across it drops to zero, which in the case

of 60 Hz US mains, happens 120 times a second. We use a

zero crossing detector circuit to feed an interrupt into our

microcontroller. On the interrupt, a delay is in effect

before sending a signal to the triac gate, turning it on and

allowing current to flow. The analog control, or the ability

to “dim the lights” is established by adjusting the delay

time before activating the triac. The longer the delay, the

less power delivered. The current of the AC lines is

monitored by an ACS714 chip by Allegro which outputs a

corresponding analog voltage. To read all the analog

voltages from the current monitors, there is an external I2C

ADC from Maxim, their MAX11123. AC mains voltage

levels do not integrate well with low voltage digital

applications. All the AC/DC interactions are galvanically

separated, that is we used optoisolators between the two

levels. We used two types of optoisolators, the first for the

zero crossing detector was one that contained two internal

LEDs, so that the current could flow either way which

alerts us of both zero crossings in a 60 Hz period.

VI. VENT CONTROLLER

 The Vent Controller is a digitally controlled, motor

driven air damper that allows the central manager to

impact the temperature in individual rooms of the house.

The mechanical framework of the Vent Controller is a

commercially available vent damper manufactured by

SunCourt. Devices to open or shut the HVAC vents

leading to a room already exist, but most require constant

power to a motor to counteract a spring that normally

opens or normally closes the vent.

For the Vent Controller a modified SunCourt damper

was used with a stepper motor instead of an AC motor so

that the vent can be partially open. The stepper motor is

controlled with a low cost, off-the-shelf stepper motor

driver. The use of a stepper motor allows for a position to

be selected, and then the motor driver is powered down to

conserve energy.

The Vent Controller is a piece of hardware that would

have to be installed as the house is being constructed, or

the installation costs would be very large. Other features of

the Vent Controllers include the ability to return the

temperature of the air in the HVAC ducts to the central

manager, which allows for better environmental controls.

VII. SMART GLOVE

The Smart Glove is an alternative form of controlling the

home automation system. It is a non-critical part of the

project but was added in order to give the project a twist

that would catch people’s attention. The idea was inspired

from wanting to making a glove to be compatible with the

Oculus Rift for virtual reality gaming. Instead it is going to

be used to control the home automation system inspired by

JARVIS from Ironman. This device gets the kinesthetic

data from the user’s hand and fingers which get interpreted

into gestures by the Central Manager. These gestures are

mapped to control certain devices like your light or fan.

The Smart Glove is made up of a custom PCB that is

powered from a single cell 850mAh polymer lithium ion

battery. The data acquisition part of the PCB is composed

of a 3-axis accelerometer to gather linear acceleration data,

3-axis gyroscope to gather radial acceleration data, 3-axis

magnetometer to interpret the direction relative to north,

and flex sensors to determine the bend angle from every

finger on the hand. Each flex sensor also has a dedicated

potentiometer on the PCB in order to fine tune the

readings. The PCB also carries a microphone for the user

to give voice commands. This is included in hardware but

is currently not used by the software due to time

limitations. All this data is sent wirelessly with the Xbee

radio to the Central Manager.

Along with the data acquisition system, the PCB also has

external peripherals in order to make the device user

friendly. To achieve this the Smart Glove is equipped with

a haptic motor, a piezo buzzer, two pushbuttons, and two

RGB LEDs in order to give the user as much data possible

so it is relatively easy to learn how to use the device. The

glove also comes with a SPDT switch that allows the user

to turn on and off the glove to conserve battery life.

A. Hardware

 The LSM303DLHC chip from STMicroelectronics was

used for the 3-axis linear acceleration and magnetometer.

This has a ±16g scale with 16 bit resolution for linear

acceleration and ±8.1 gauss scale with 16 bit resolution for

magnetic field readings. This chip was paired up with the

L3GD20 Gyroscope also from STMicroelectronics. This

chip has a 2000 degrees per second (dps) scale with 16 bit

resolution. Both of these chips have an I2C interface which

made them perfect candidates for the PCB in order to

make it as small as possible.

 The flex sensors being used are the FSL0055253ST from

SpectraSymbol. These are a simple carbon film flex sensor

that changes resistance proportional to the bend of the

sensor. There is a total of five of these in order to get the

bend angle of each finger.

 The microcontroller being used is the ATMEGA328

paired up with an 8MHz crystal oscillator. The

microcontroller is used to gather all the data from the

sensors through I2C and its ADCs, manage all the

peripherals, and send the data to the Xbee through UART.

 The battery being used is the 063048 by Unionfortune.

This has a nominal voltage of 3.7V, and a capacity of

850mAh. This is paired up with a MCP1825 3.3V LDO

voltage regulator by Microchip technology. The Smart

Glove has a peak current draw of 100mA and an average

current draw of 70mA. Due to the drop out voltage of the

regulator, once the battery drops below 3.4V the board

starts behaving unpredictable. Therefore the battery life of

the glove is around 4 hours, leaving around 40-45% of the

battery unused.

 The peripherals of the system include the PS1240 Piezo

Buzzer from TDK, the CEM-C9745 electret microphone

by Challenge Electronics, two RGB LEDs, and a small

pushbutton for resetting the system or interfacing with the

user.

 For wireless transmission it was in the team’s best

interest to go with the 2.4GHz Series 1 XBee module from

Digi. This module uses the 802.15.4 stack. This is a very

simple plug and play module with 100 meter range.

B. Glove Software

The goal of the Smart Glove is to gather data as fast as

possible for the Central Manager but also to make the

device as user friendly as possible. Upon startup the user

must lay his hand as parallel to the ground as possible. The

microcontroller will gather 10 readings from the

accelerometer, gyroscope, and magnetometer during this

time in order to calculate an offset. Then the device will go

into calibration mode. This is a mode where the user has to

put his hand in 3 different predefined positions in order for

the Central Manager to gather important data helping it

recognize gestures. These positions are flat palm down, fist

palm up, and flat palm to the left.

When in calibration mode the RGB LEDs will first turn

red letting the user know to go to position 1, then turn blue

to go to position 2, and then turn green to go to position 3.

Every time the user needs to change the position the piezo

buzzer will also beep so it is even easier for the user to

know when to change positions. Once calibration is over

then 1 RGB LED will remain off and the other will be a

heartbeat for the user to know you are in normal operation

mode. This means the glove is now gathering data and

sending it to the central manager constantly. If the LED

that is supposed to be off during normal operation turns

red, it means that the communication speed is not meeting

the 100Hz requirement.

If the glove is not working well the user can reenter

calibration mode by pressing the pushbutton closest to the

microcontroller or they can reset the glove by using the

pushbutton to the left of that one.

There are a couple of important numbers that need to be

noted with the software of the Smart Glove. The

microcontroller gathers all the sensor data through I2C and

ADCs. This is packaged into a 34 byte message where the

first and last two bytes are for syncing. The first two bytes

are always ‘S’ and ‘T’ and the last two bytes are always

‘E’ and ‘N’. Therefore the amount of actual data is 30

bytes. This full 34 byte message is sent at a 100Hz to the

central manager in order to have good enough resolution

of hand movement.

The glove communicates with the Xbee with 38.4 kBaud

UART. This baudrate was picked in order to have enough

speed to send the whole 34 byte message at a 100Hz

without having too much clock divider error since 115200

would have 7.8% clock divider error [2] with the 8MHz

clock.

C. Glove API Software

The Glove API is a program that allows for the

integration of the Smart Glove with external devices such

as desktop computers running Linux or Windows

operating systems and the GARVIS Central Manager with

further potential applications including the Oculus Rift.

The Glove API software is responsible for receiving the

raw glove data, converting it into usable sensor data, and

interpreting that data to recognize gestures, and turning

that user gesture into a command to control various

entities. These include mouse control, keyboard control,

GARVIS Qt application control, and external application

control such as PowerPoint.

In order to recognize the sliding gestures accelerometer

data is collected constantly at 100Hz. The sliding motion

creates acceleration in the axis coming out of the palm of

the hand, regardless of orientation. By taking this

acceleration along with the acceleration due to gravity, the

direction, magnitude and duration of the sliding gesture

can be recognized. Gravity helps to orient the glove’s

direction and the palm acceleration shows how long the

user is sliding. Other gestures that are recognized are the

holding up of a certain number of fingers. This is done by

taking flex sensor data and determining which fingers and

to what level they are flexed to figure out which number is

being gestured by the user. The main gestures the Glove

API is recognizing to convert to commands is the holding

up of fingers to denote which room to control and sliding

gestures to turn on or off devices accordingly.

VII. CONCLUSION

The GARVIS system began from two project ideas, a

smart gesture recognition glove and an adaptive home

automation system. It has converted into a hybrid of both

ideas to form a very user friendly, energy efficient, and

modular system. Through plenty of research and design

development, the team was able to create a home

automation system capable of taking input from a smart

glove, a smart switch to replace a light switch on a wall,

and a central control station with a touch LCD screen.

We were able to accomplish our goals for this project by

examining the team’s strengths and molding our

expectation and requirements based on our skill set. After

doing this and considering our time and money constraints

we determined our needs and wants for the system.

Overall we feel that GARVIS was very successful as a

usable system and as a learning tool to prepare us for

professional engineering projects.

ACKNOWLEDGEMENT

We would like to thank our review committee for their

time and consideration in their critique of our project. We

would also like to thank Dr. Richie for his assistance,

advice, and encouragement throughout the design and

development process for GARVIS. Thank you to our

sponsors—SoarTech for providing us with advice and

funding to accomplish our goals as well as Leidos and

Duke for their financial contributions.

Additional thanks to Kenneth Schleich of WiTronix for

financial assistance and technical consulting throughout the

design and implementation process.

REFERENCES

[1] "BlackLib V2.0 - Main Page." BlackLib V2.0. Doxygen, 2
Oct. 2014. Web. 05 Apr. 2015.
<http://blacklib.yigityuce.com/index.html>.

[2] “WormFood’s AVR Baud Rate Calculator.” WormFood.

WormFood, 2013. Web. 08 Apr. 2015.
<http://wormfood.net/avrbaudcalc.php>.

BIOGRAPHY

Andres Mujica will be graduating from the University of

Central Florida with a Bachelors of Science in Electrical

Engineering. During his time at UCF,

Andres held a co-op position with

Lockheed Martin focusing on firmware

design. After graduation Andres will

be entering Lockheed Martin’s

Engineering Leadership Development

Program as a full time FPGA firmware

engineer.

Sarah Strauss will be graduating from the University of

Central Florida with a Bachelors of

Science in Computer Engineering.

During her time at UCF, Sarah held a

co-op position with Lockheed Martin

focusing on embedded software. After

graduation Sarah will be entering

Lockheed Martin’s Engineering

Leadership Development Program as a

full time embedded software developer.

Jackson Schleich will be graduating from the University of

Central Florida with a Bachelors of

Science in Electrical Engineering.

While studying at UCF, Jackson held a

co-op with Lockheed Martin. After

graduation Jackson will be working

with Texas Instruments as a MEMS

characterization engineer in Dallas,

Texas.

Joshua Illes will be graduating from the University of

Central Florida with a Bachelors of

Science in Electrical Engineering in

August 2015. During his time at

UCF, Josh participated in the CWEP

program with Lockheed Martin, and

later worked as a student intern with

Digikey.

