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Abstract  —  Using a quadcopter with an attached camera, 
a video stream will be sent to a processing hub for image 

processing which will use maze a solving algorithm to 
generate a list of commands that will be wirelessly 
transmitted to a ground vehicle situated in front of a 

reconfigurable maze. The ground vehicle will use these 
commands in order to navigate through the maze by using 
embedded software on an Atmega328p chip to interpret those 

command and to also avoid collision with the maze walls. 

 

I. INTRODUCTION 

With the advent and subsequent popularity growth of 

UAVs (unmanned air vehicles) and autonomous vehicles, 

we have begun to see their use and functionality expand 

and diversify in both civilian and military applications. 

Piggybacking on this technology boom, we have decided 

to explore ways in which UAVs and wheeled robots might 

be implemented to work in concert in a semi-autonomous, 

Internet of Things type of application in an effort to aid 

ground personnel in high-risk scenarios. Military 

departments and public safety organizations with Search 

& Rescue or Search & Destroy type needs could benefit 

from the added efficiency and reduced manpower 

facilitated by such technology.  

 

For our project, we decided to incorporate aspects of 

robotics, communications, computer vision, and UAV 

technology by designing a ground vehicle that is capable 

of navigating a maze based on images taken from a 

quadcopter positioned above. This will be done by using 

computer vision techniques to generate a binary image 

that can be solved through algorithms such as Breadth-

First Search and A*. Once a solution is obtained, it will be 

translated into navigational cues that can be sent to the 

ground vehicle. The ground vehicle will interpret these 

commands by using a pre-programmed MCU and onboard 

sensors such as ultrasonics and rotary encoders. It will 

continue to traverse the maze until it locates an object 

placed within (such as a tennis ball) and then exit. The 

maze itself will be constructed to have a braid-type layout; 

this will add another dimension to the project by requiring 

not only a solution to the maze to be obtained but also for 

the computed path to be the shortest. 

 

This project is a culmination of our research into the 

various components and concepts needed to realize this 

design. Hardware will be constructed based on several 

aspects such as, component cost, power consumption, 

transmission rate, effective range, resolution, and 

efficiency. Likewise, algorithms and techniques will be 

chosen based on ease of implementation, effectiveness, 

and computation time. A PCB will be designed for the 

ground vehicle that allows the selected hardware to 

communicate with the programmed MCU. Once the PCB 

has been assembled and programs have been written for 

image processing, maze solving, and navigation, a 

prototype of the system will be built.   

II. SYSTEM COMPONENTS 

There are several different overall system components 

that will be involved to get our ground vehicle through the 

maze successfully including both hardware (ground 

vehicle design, quadcopter, wireless communication 

system, wireless video transmission) and software (image 

processing, maze solving, and embedded programming). 

Each system component in the flow relies on the previous 

component to operate successfully, so each component is 

integral to the overall design, no matter how complex or 

simple it may be. An overall block diagram of the system 

can be seen below in figure 1.  

Camera sends video stream 
to Base

Base solves maze and creates 
commands for ground vehicle

Base sends commands 
through XBee module

Xbee module on ground 
vehicle receives commands

Microcontroller interprets 
commands

Ground Vehicle goes through 
maze

Figure 1 Overall Design Flow 



A. Quadcopter & Video Transmission 

 

The first component in the flow of the overall design is 

the quadcopter and camera. We chose the DIY Quad from 

3DRobotics mainly because it was generously provided to 

the group by Dr. Richie. Attached to the quadcopter will 

be a camera that will stream video to a computer which 

has a receiver attached to it. In order for the video stream 

to be processed correctly in software, a high quality 

camera is required, so a GoPro Hero3 camera which is 

capable of transmitting live standard video was purchased 

which also has a built-in video transmitter and battery, 

which also saves on cost and weight, because we want the 

quadcopter to be as light as possible. 

 

B. Ground Vehicle 

 

The ground vehicle we chose was the Pirate 4WD 

Mobile Platform, which was also generously given to us 

by Dr. Richie. This was an optimal choice because the 

platform was designed to mate with Arduino development 

boards and has locations to put onboard sensors which 

allowed us to create a working prototype. The ground 

vehicle has 4 DC motors, which allows us to have 

accurate in-place turning, and has a speed of 90cm/s. This 

platform is also small enough so a reasonably complex 

maze can be built without having to worry about fitting it 

to the size of our ground vehicle. 

 

C. Microcontroller 

 

After researching extensively on which microcontroller 

would be best suited for our purposes, we decided to go to 

with the Atmega328p. We chose this microcontroller 

because it has more than enough digital I/O and analog 

I/O, and also has 32kB flash memory with read-while-

write capabilities. It also has an operating frequency of 

20MHz which will allow us to have fast processing time 

which is needed for our robotics application. Another 

reason we chose this is has many different open source 

libraries and support for robotics. It uses the Arduino 

environment which uses C code, which makes it easier to 

code as the group is familiar with it. And lastly the cost of 

these microcontrollers are very low.  

 

D. PeripheralComponents 

 

There are peripheral components and sensors that must 

be added to our ground vehicle if it is to get through the 

maze successfully. We must attach ultrasonic sonic 

sensors  

to our ground vehicle for collision detection, and add 

wheel encoders to accurately measure how far the ground 

vehicle has traveled. We chose the HC-SR04 Distance 

Sensor due to its supported library in the Arduino 

environment and its accuracy of .3cm, and its more than 

enough of range of 400cm. For our wheel encoders, the 

wheel encoder kit from Sparkfun was purchased. After 

testing these encoders we discovered they had 8 degrees of 

freedom, but that was accurate enough for our design 

specifications. 

 

E. Wireless Communications 

 

The wireless communications between the computer 

that solves the maze and generates commands (in a form 

of a string), and to the ground vehicle is a very crucial part 

of the design. It was decided that best solution to 

effectively send these commands was to use two XBee 

modules (using ZigBee protocol), one connected to the 

computer, and one connected to the microcontroller to the 

ground vehicle. The XBee modules were chosen for their 

overall low power consumption, throughput capacity, long 

range, and relatively small size. A note should be made 

that a USB adapter is required to use the XBee module 

with a computer. 

 

III. HARDWARE DESIGN AND IMPLEMENTATION 

 

The quadcopter is the first part of the design that will 

operate. In order to safely fly the quadcopter we needed to 

incorporate a gyroscope, accelerometer, compass, and 

GPS to the flight controller. We will be giving the 

quadcopter a pre-programmed mission using the provided 

Mission Planner software so there won’t be any need to 

manually fly the quadcopter once we start the 

demonstration. Safety is also a factor we have to consider, 

so we implemented a geofence so if the quadcopter goes 

out of range, it will safely land instead of continuously 

flying. We also needed a flight time of at least 30 minutes 

so we decided to use a 11.7V 5100 mA/h battery to power 

the quadcopter. 

 

The overall system flow of the design can be seen in 

figure 1. It can be seen that overall flow is linear, and each 

process requires the results of the previous process in 

order to operate correctly, which does pose risk in the 

sense of if one step fails, it can cause failure in the entire 

system.Once the commands reaches our ground vehicle, 

the microcontroller on the ground vehicle will use the 

embedded software to interpret these commands. The 

three main components attached to the MCU are the 

ultrasonics sesnsors, wheel encoders, and the XBee 



Module. The block diagram below in figure 2 represents 

how the microcontroller communicates with the overall 

system. 

 

 

From the block diagram you can see that XBee module 

is receiving and also transmitting data back to the 

computer. This data being transmitted is the ultrasonic 

sensor data which sends the distance to the left, right, and 

front walls in centimeters, and also the wheel encoder data 

so we can see on our side that all peripheral components 

are operating correctly. There are four DC motors on the 

ground vehicle, but we have tied the left two motors’ 

enable and control pins together so they can operate 

simultaneously, and also to save on digital I/O pins. We 

did this for the right two DC motors as well, so one line of 

code would be able to operate either side of the vehicle. 

We attached a wheel encoder to the two front DC motors 

of the ground vehicle, but we realized we actually only 

needed one encoder, because no matter the type of 

movement (forward, left, right), every wheel will be 

turning, so we were able to calibrate the turns off just one 

wheel encoder. 

 

The embedded programming was one the most 

challenging parts of the overall design mainly due to the 

constant tweaking and changing required when 

prototyping and calibrating.With a preset size of the maze 

in mind, we are able to send commands to the ground 

vehicle in the form of letters and numbers. If “F, 20” is 

sent, where the first letter is the command, and second is a 

number in the unit of pixels. The “20” is converted to a 

distance in cm and the robot interprets this as “Go 

Forward, X cm”. Using this information we program the 

wheel encoders to travel this distance because we know 

the distance of one revolution of a wheel.  

Using libraries for the ultrasonic sensors, we’re able to 

convert the pings we receive into a distance to 

centimeters. In order to effectively use the ultrasonic 

sensors in the code, we have to constantly check the 

distance while the ground vehicle is moving, instead of 

checking the distance after movement. In order achieve 

this we implemented interrupts into our embedded code 

which is always running in the background. It uses the 

encoder pin input which always reads a HIGH or LOW 

depending on the eight possible states of the wheel 

encoder. Whenever there is a state change, the interrupt 

code will be activated and will use the ultrasonic sensors 

to determine if the robot is too close to the walls. If it is, it 

will correct itself by having one side of the ground vehicle 

move faster, and the other one slower in order to get itself 

on a straight path again. If the robot is at safe distance 

from the wall, the code will go back to where it left off 

and continue to run. Below in figure 3 you can see a block 

diagram of the embedded programming flow. 

 

 

 

Figure 3 Embedded Programming Diagram 



IV. SOFTWARE DESIGN 

    We will identify the maze in the image sent by the 

camera on the quadcopter and solve it through the use of 

software. The two fields that our project incorporates the 

most are image processing and graph theory. 

 

A. Image Processing 

    A substantial part of this project involves analyzing and 

manipulating images. This will be done with the 

implementation of the OpenCV image processing library. 

We will use the following techniques in order to correct 

distortion, locate the maze, and prepare the image for 

binarization. 

 1) Camera Calibration: Prior to being used to detect the 

maze, the original camera was calibrated to remove 

distortion by using a chessboard image to develop a 

camera matrix. However, a higher quality camera (GoPro 

Hero3) was purchased for the final demo as it gives much 

less distortion when in video mode. Minimizing distortion 

is necessary because its presence could reduce the 

accuracy of the solution by warping the maze walls. 

 2) Color Thresholding: The boundaries of the maze 

were found by thresholding for the color blue and 

analyzing the resulting contours. The largest blue region 

(contour) is assumed to be the outline of the maze and a 

bounding box is drawn. The same technique is used to 

locate the start location (robot position) and goal in the 

maze. These pixel coordinates are stored for later use. 

 

 

 3) Maze Extraction: The bounding box outlining the 

maze considers the rotation of the maze and minimizes the 

area enclosed. This is done to prevent additional 

background artifacts from appearing in the extracted 

image. Our program is robust to rotation and will rotate 

the maze such that it has either a horizontal or vertical 

orientation. Once positioned correctly, the maze is 

cropped and extracted. 

4) Binarization: Once the maze image has been isolated, 

binary thresholding is applied to create a black and white 

image. The black pixels will represent the walls of the 

maze and white pixels will represent the floor of the maze. 

The image is also eroded to enhance the accuracy of the 

solution. 

 

 

B. Maze Solving 

Once a binary image of the maze has been created through 

image processing techniques, it will be interpreted by 

utilizing the NetworkX library to construct a graph of 

interconnecting nodes representing the paths of the maze. 

Next, an algorithm will iterate through the maze and 

produce a solution which will be translated and sent to the 

robot as movement commands. The nature of the BFS 

algorithm will enable the robot to take the optimal path. 

The following steps were performed in order to 

accomplish this. 

1) Interpreting Pixel Data: The values of every pixel in 

the binary image are stored in the form of an iterable list. 

The list of pixel values is iterated through and a text file is 

created which represents the layout of the maze. In the text 

file a pixel value of zero (black, wall) is represented by a 

‘1’, a pixel value of 255 (white, floor) is represented by a 

‘0’, the start location is represented by an ‘S’, and the end 

location is represented by an ‘E’. Both the start and end 

locations are padded with zeros so that the start and goal 

node are accessible.The created text file is then processed 

further to reduce the likelihood of false turns (turn 

commands generated by the meandering nature of the BFS 

Figure 4 Camera image is thresholded for the colors blue, red, 

and green to identify the bounds of the maze, robot position, and 

the goal, respectfully 

Figure 5 Binary maze which will be converted into a text file and 

solved 



algorithm that are not found in the physical maze layout) 

being sent to the robot once the solution is obtained. 

2) Determining Maze Path Width: A threshold value 

which differentiates vertical paths from horizontal paths is 

found by reading the text file created above and counting 

the number of zeros between two ones. These values are 

stored in a list and can then be interpreted to find the 

average path width which will be used to path threshold in 

when finding Hough lines in the image. 

3) Finding Hough Lines: The Hough transform is used 

to condense the maze paths to one pixel in width. This is 

accomplished by determining if a detected Hough line is 

actually a wall in the maze by subtracting neighboring 

Hough lines of the same orientation and comparing the 

result to a predetermined path threshold. If the distance 

between two Hough lines is greater than the path threshold 

the lines are assumed to form a path and a line is drawn in 

the middle of them. Once the paths of the maze have been 

found, the mid-lines are overlaid on the original binary 

image and this image is subtracted from a solid black 

image of the same size. The resulting image is a black and 

white one pixel width line representation of the maze. 

4) Connecting Nodes and Solving the Maze: The nodes 

of the maze will be created and connected by analyzing 

the text file and interpreting the characters ‘S’, ‘E’, ‘1’, 

and ‘0’. When the ‘S’ character is found in the text file the 

root node is created. The root node ‘S’ is connected to 

other nodes by comparing the characters above, below, to 

the right, and to the left of it. If either of these characters is 

a ‘0’ the node will be added to a graph and connected. All 

of the floor nodes (‘0’) and the goal node (‘E’) will be 

linked together in this manner. Once all nodes are 

connected a BFS algorithm will run and the shortest path 

connecting ‘S’ and ‘E’ nodes will be found. After 

completion, backtracking will be used to obtain the 

coordinates of every node in the path.  

5)Translating the Solution and Sending Commands: 

When the solution is obtained by backtracking it is 

received as a list of nodes named by their coordinates. 

Their positions relative to one another were translated into 

cardinal directions and these were then interpreted to 

generate the forward (‘F’), right (‘R’), and left (‘L’) 

commands. These commands were then filtered according 

to the size of the maze and distance the robot travels in 

one revolution. The resulting string was then sent to the 

robot through serial communications.  

V. MAZE LAYOUT 

The maze is the final part of the project that needs to be 

addressed. It will be built using black foam boards for the 

walls and for the floor we’ll be using a white surface so 

we can easily identify the maze in software. In our design, 

we are planning to use a modifiable maze and also there 

should be more than one way to reach to the end of the 

maze so we can choose the most optimal path. All 

pathways’ dimensions will have same size based on the 

ground vehicle’s specific dimension. For instance, the 

corridors will be reasonably twice as big as the ground 

vehicle to prevent the vehicle from getting stuck while 

navigating through the maze. The angle for turning left or 

right is to be 90 degrees. We will also be able to move the 

walls so we can test different maze layouts and prove that 

the design can work with more than one maze layout. 

 

VII. PCB DESIGN 

The main hardware design component in this project 

came with the implementation of the DFRobot Pirate 

4WD robot platform and the design and integration of the 

PCB used to power it. This is the most important part of 

our design as it contains all the circuitry needed for the 

operation of the ground vehicle. Creating a PCB is one of 

the major requirements for this project provided by the 

Accreditation Board for Engineering and Technology, so 

learning how to do it properly was crucial. The ground 

vehicle PCB is a custom, 2-layer microcontroller that was 

designed to handle minimal processing, with the bulk of 

the processing done on the remote processing hub. The 

Atmel ATmega328p was chosen as the ground vehicle’s 

MCU, given its reliable architecture and its compatibility 

with the straightforward, easy-to-use Arduino IDE for 

programming. The ATmega328p also had adequate 

memory (32KB ISP flash) and clock rate (16MHz, 

upgradeable to 20MHz) to allow for sufficiently robust 

and responsive operation of the ground vehicle. 

Figure 6 Reconfigurable color-coded maze layout 



Peripherals operated by the MCU include two H-bridges 

to drive the DC motors on the ground vehicle, an XBee 

module to talk to the processing hub, and power regulation 

circuitry to supply the correct power to all the 

components. Below in figure 4 you can see the final 

layout of the PCB and see how everything interconnects. 

The ultrasonic sensors and wheel encoders were mounted 

offboard. The MCU I/O to interface with these sensors 

was broken out from the MCU to SIP sockets, mounted at 

the periphery of the PCB, to allow for maximum 

configurability. We decided to wire the ultrasonic sensors 

to the board instead of placing them directly on the board 

because they may need to be moved in the future for 

optimization, and the wheel encoders are attached to the 

DC motors, so they would not be placed onto the final 

PCB design (figure below). 

 

 

 

In order to ensure that all the circuitry worked before 

making and ordering the final design of the PCB, we 

prototyped the board out onto a breadboard to finalize and 

validate our design before sending it off to the PCB 

manufacturer OSH Park.  

The ground vehicle has two power supplies: one to 

power the microcontroller and all peripherals and one to 

power the DC motors. A 9V cell powers the 

microcontroller; this is fed into the PCB where it is 

stepped down to supply a 5V rail to the MCU and all 

peripherals. The Pololu D24V6F5 5V switching regulator 

was chosen in order to minimize power consumption. 

Serial communication is achieved through the onboard 

XBEE module, which requires 3.3V VCC and input to all 

pins. To achieve this, a Linear Technology LT1086 linear 

regulator was chosen to provide a 3.3V rail for the XBEE 

module. The 3.3V rail feeds incestuously off of the 5V 

rail, thus a linear regulator was chosen because of their 

reliability and also because a 1.7V voltage drop would be 

only slightly above the dropout voltage rating of the 

LT1086 and therefore power loss would be minimal. The 

Tx output the ATmega328 is also 5V; a voltage divider 

circuit was chosen to drop this voltage down to 3.3V since 

this is not a constant signal (Can be seen in figure 7). 

Vertical mounted PTH resistors were chosen to help 

dissipate any heat. The power supply for the DC motors is 

governed by the H-bridges. We used five 9.5V cells. 

 

 

Figure 2 PCB Layout 



Next we had to design the MCU circuitry and place it in 

the board layout. The reset pin is required to be connected 

to our Vcc with a 10kΩ resistor. The MCU also requires a 

16 MHz crystal oscillator to operate, which is placed on 

pins 9 and 10. We use two 22pF capacitors on each pin of 

the oscillator connected to ground for decoupling and 

tuning. We put two headers on each side of the board so 

we can connect our ultrasonic sensors and wheel encoder. 

This can all be seen in figure 6 below. 

The four DC motors each power a separate wheel of the 

ground vehicle. Control of the DC motors by the MCU is 

facilitated by two Texas Instruments L293d H-bridge ICs, 

each controlling one pair of wheels, both on the same side. 

Although two H-bridges can allow for independent control 

of up to all four wheels, the control pins of each H-bridge 

were tied together to the same output pin of the MCU, 

effectively syncing each pair of motors together. This 

reduces path deviation, since both motors spin in lockstep 

with each other, and also reduces the number of occupied 

GPIO pins of the MCU. A larger PCB layout was  

implemented, with the H-bridges mounted away from 

other components, and copper pours were added to the top 

and bottom layers of the PCB to allow for enhanced 

heatsinking. Locomotion is achieved through 5V DC input 

signals to the enable pins (to control wheelspin direction) 

and a 5V PWM signal to the control pin, with wheelspin 

speed adjusted by varying the duty cycle. 

VIII. CONCLUSION 

   Overall this project allowed us to use the concepts and 

techniques we have learned in our electrical engineering 

program at UCF. It was a challenging and rewards 

experience for all four members of the team. We were able 

academia or in the industry. 
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