Prepaid Energy System

Group 21

Sponsored by:

- Youssef Ojeil (EE)
- Michael Cuervo (EE)
- MD.S. Rahaman (EE)
- Sahin Okur (EE)

Supervised by Dr. Chung-Yong Chan

Goals and Objectives

- Alternative pre-paid solution to conventional utility billing
- RFID/NFC technology allows for quick payment
- Enables the Internet of Things (IoT) so the user can always be connected to the system
- Android application provides the user with real-time data in the palm of their hands
- Easy access to statistics gives the user more awareness and control of usage
- Automatic connect/disconnect capability relieves the burden from the utility providers

Requirements

- Must facilitate mobile payment via RFID/NFC
- Incorporating Texas Instrument's 3 Phase Power Meter
- Data usage accessible through Wi-Fi
- Friendly User Interface (Android Application)

Relevant Standards

- Wi-Fi
 - o IEEE 802.11 b/g/n
 - WPA/WPA2/WEP
- RFID/NFC
 - o ISO-14443A
 - o ISO-14443B
 - o ISO-15693
 - o FeliCa

Design and Implementation

Power Meter

EVM430-F6779 - 3 Phase Electronic Power Meter

- Run real-time electricity metering applications
- Provide AC power measurements for up to 3 phase
- GUI for calibration, measurement display, etc
- RS-232 interface for external communication
- 160 segment LCD display
- Supports Wi-Fi and ZigBee

Solid State Relay

- Load current 75 A
- Input:
 - Input DC control 3-32 V
 - Trigger current 7.5mA/12 V
- Output:
 - Operating voltage 90-480V
 - Weight: 125g

Comparator TL084

- MCU Output voltage 3.3
- Raise the voltage to 12 V.
- Using as a logic circuit either 0 to 12 volt output.

Comparator Logic Circuit

@3.3V INPUT OUTPUT LESS THAN 0

@OV INPUT OUTPUT 12 V

RFID

- NFC is chosen since near field communication is more secure
- Operates at 13.56 MHz
- Contains two separate parts: the Host and the Tag
- Used for payments

RFID Transceiver - TRF7970A

- RFID/NFC Reader, NFC Peer, or in Card Emulation mode
- RF Field Detector for NFC Physical Collision Avoidance
- •13.56MHz HF RFID Reader/Writer
- Supports ISO 15693, 18000-3, 14443A/B, and FeliCa
- Operable at Full Power or Half Power (5 or 3.3 V)
- Ultra Low-Power System Design (Power Down <1 μA)
- Parallel or SPI Interface

RFID BoosterPack - TRF7970ABP

- Compatible with NFCLink Library
- Compatible with CC3200 LaunchPad
- Supply Voltage 2.7 5.5 V
- 127 byte FIFO buffer
- 0.5 uA Power Down
- 2 mA Stand by Mode
- On-board Antenna
- Operational Power Supplied by LaunchPad

TRF7970A Operable Modes

Reader/Writer		Card Emulation		P2P	
Technology	Bitrate (kbps)	Technology	Bitrate (kbps)	Technology	Bitrate (kbps)
NFC-A/B (ISO14443A/B)	106,212, 424, 848	NFC-A/B	106	NFC-A	106
NFC-F (JIS: X6319-4)	212,424	N/A	N/A	NFC-F	212, 424

RFID & MCU Block Diagram

Phone Selection

- Android Open Source & NFC since 2008
- Nexus S & Nexus 4
- Nexus S was initially used because it was cheap
- Nexus 4 used because of Android 4.4
- Broadcom NFC chip, which emulates a Tag 4 Type ISO14443A
- Android 4.4 was the minimum OS for implementing Host Card Emulation which uses the NDEF protocol

NDEF

- NFC Forum Data Exchange Format is a lightweight binary message communication protocol
- NDEF Messages are the basic "transportation" mechanism for NDEF records. Each message can contain one or more records.
- NDEF Records contain a specific payload, and follow a specific structure that identifies the contents and size of the record.
- Since we are emulating Type 4 tags, APDU commands (like READ BINARY and STORE BINARY) are used to read and store NDEF data to complete the communication between the reader and the phone.
- •A wait time extension request was being sent out by the phone. This had to be echoed by the RFID reader.

Android Application

- User Interface
- Mobile app will have alert system
- Emulating a transponder tag using HCE
- Emulate Android Pay
- Retrieve Data through Wi-Fi

Interform Reader Info Metrology kWh: 0.000000	PAY		VIEW	
kWh: 0.000000 Remaining Credit: 0.00 Current Usage: 0.00 Average Usage: 0.00 EST Time Remaining Based On Avg Usage 0 (minutes): 0 EST Time 0 Remaining Based 0 On Current Usage 0 (minutes): 0 EST Time 0 Remaining Based 0 On Current Usage 0 (minutes): 0 Relay Status: 0FF	figuration Reader Inf	o Metrology		
Remaining Credit:0.00Current Usage:0.00Average Usage:0.00EST Time Remaining Based (minutes):0EST Time Remaining Based On Current Usage (minutes):0EST Time Remaining Based (on Current Usage (minutes):0Relay Status:0FF	kWh:	0.00000		
Current Usage:0.00Average Usage:0.00EST Time Remaining Based On Avg Usage (minutes):oEST Time Remaining Based On Current Usage (minutes):oRelay Status:OFF	Remaining Credit:	0.00		
Average Usage:0.00EST Time Remaining Based (minutes):0EST Time Remaining Based On Current Usage (minutes):0Relay Status:OFF	Current Usage:	0.00		
EST Time Remaining Based On Avg Usage (minutes): EST Time Remaining Based On Current Usage (minutes): Relay Status: OFF	Average Usage:	0.00		
EST Time Remaining Based On Current Usage (minutes): Relay Status: OFF	EST Time Remaining Based On Avg Usage (minutes):	0	_	
Relay Status: OFF	EST Time Remaining Based On Current Usage (minutes):	0		
	Relay Status:	OFF		

Wireless Communication

Parameter	Bluetooth	ZigBee	Wi-Fi
Frequency	2.4 GHz	800-900 MHz, 2.4 GHz	2.4 GHz, 5 GHz
Range	10 m	10 - 100 m	Up to 100 m
Data Rate	1 Mbps	250kbps	54 Mbps
Power Consumption	Medium	Low	High
Implementation Complexity	Easy	Moderate	Difficult

Microcontroller Unit

- CC3200 Wireless MCU
 - ARM Cortex-M4 CPU at 80 MHz
 - Integrated Network Processor
 - SimpleLink Library
 - 4 Low-Power Modes

9mm x 9mm

Microcontroller Unit: Prototyping

CC3200 LaunchPad

- On-board Antenna
- BoosterPack Headers
- Powered From USB
- JTAG/FTDI

Process Flow Diagram

Process Flow Diagram

Wi-Fi: Power Meter

- CC3100 on power meter hosts HTTP web server
- CC3200 acts as HTTP Client

c.net					
SimpleLink CC3100	Status	IP Config	Profiles	Tools	About
All EVM Readings:	Date/Time/Energy	Phase A	Phase B	Phase C	Neutral
WiFi e-meter demo					
				Phase C	
RIIS Voltage(V)				229.52	
RMS Current(A)				010.033	
Active Power(W)				01148.80	
Reactive Power(var)				01989.64	
Apparent Power(VA)				02297.44	
Power Factor				0.5000L	
Frequency(Hz)				49.97	

Wi-Fi: Phone

- mDNS broadcasts to phone
- Sends payment confirmation and alert to email and phone

? 🖿	🖹 直 12:07	K Back (1) 1 (410) 100-231	Details
← •	Î M :	Text Message Today 11:23 AM	
PREPAID POWER - PAYME	NT 📩	FRM:theseniordesign@g	
theseniordesign@gmail. to me Yesterday View details	com 🔨 🗄	SUBJ:PAYMENT MSG:CONFIRMATION	K Back (1) 1 (410) 100-232 Details
PAYMENT CONFIRMATION Scanned NFC TAG type:	IS014443A	Payment Amount: \$500.00 Remaining Credit:	Text Message Today 11:26 AM
Scanned NFC Tag's content:	08486320	\$500.00	FRM:theseniordesign@g
Payment Amount: \$500.00 Total Number of Payments: 6 Remaining Credit: \$500.00		PrePaid Energy System	SUBJ:LOW BALANCE MSG:LOW BALANCE
Reniv Reniv all	Forward		Remaining Balance: \$257.00
nopiy an	. on a c		Prepaid Energy System
0			

PCB

Power Supply Design

12 V DC to 3.3 V DC (Stage 2) VERTEXAS

Design : 4550765/86 TPS54425PWPR

VinMin = 11.5V VinMax = 12.5V Vout = 3.3V lout = 1.0A Device = TPS54425PWPR Topology = Buck BOM Cost = \$2.21 BOM Count = 12 Total Pd = 0.21W

PCB

PCB DC to DC

Administrative Content

Responsibilities

Youssef Ojeil	Michael Cuervo	Sahin Okur	MD. Rahaman
Android Application	Power Supply	Microcontroller	Power Meter
RFID	PCB Design	Wi-Fi Communication	Relay

Facilities and Equipment

- University of Central Florida (UCF) Smart Lab
- UCF Senior Design Lab
- Texas Instruments Innovation Lab
- Three-phase power outlet found in Engineering 1, Room 456

Budget

* Parts provided free of charge by sponsor

Part	Supplier	Quantity	Cost
CC3200 LaunchPad	Texas Instruments	1	\$29.99*
TRF7970A BoosterPack	Texas Instruments	2	\$25.00*
CC3100 BoosterPack	Texas Instruments	2	\$19.99*
EVM 430-F6779	Texas Instruments	1	\$299.00*
SSR-75DAH	Fotek	1	\$10.00
Nexus 4	LG	1	\$80.00
Senior Design Paper	The SPOT	1	\$13.00
РСВ	OSH Park	3	\$140.00
Power Supply PCB	OSH Park	6	\$234.00
Miscellaneous			\$100.00
Total			

Limitations

- Currently supports only single phase measurements
- No authentication method for card payments
- User must be connected to Wi-Fi network to access data
- System does not support all modes of NFC
- Mobile App does not support official merchant/buyer system. Can further be improved by using Android Pay APIs.

Questions?