

SLIG
Sign Language Interpreter Glove

Department of Electrical and Computer Engineering

University of Central Florida

Dr. Samuel Richie & Dr. Lei Wei

Senior Design II

Spring 2016

GROUP 24

Christopher Delgado Christopher.Delgado@knights.ucf.edu Electrical Engineer

Emmanuel Hernandez Emmanuelh@knights.ucf.edu Electrical Engineer

Jason Balog JasonBalogucf@knights.ucf.edu Electrical Engineer

Ramon Santana Santana@knights.ucf.edu Electrical Engineer

v

Table of Contents

1. Executive Summary .. 1

2. Project Description ... 2

2.1 Motivation .. 2

2.2 Goals and Objective .. 2

2.3 Requirements and Specifications .. 2

3. Research .. 4

3.1 Similar Projects ... 4

3.1.1 High Six .. 4

3.1.2 GloveSense .. 5

3.2 Hardware .. 6

3.2.1. Flex Sensors ... 6

3.2.1.1 Functionality ... 6

3.2.1.2 Models and Specifications ... 6

3.2.1.3 Integration and Schematics ... 8

3.2.2 Accelerometer & Gyroscope ... 10

3.2.2.1 Functionality ... 10

3.2.2.2 Models and Specifications ... 11

3.2.3 Contact and Pressure Sensors ... 14

3.2.3.1 Functionality ... 14

3.2.3.2 Models and Specifications ... 14

3.2.4 Microcontroller Unit... 17

3.2.5 Wireless Communication .. 20

3.2.5.1 Wi-Fi and Li-Fi.. 20

3.2.5.2 Near Field Communication .. 22

3.2.5.3 Bluetooth Classic & Bluetooth Low Energy 23

3.2.6 Power Source ... 25

3.2.6.1 Batteries ... 25

3.2.6.1.1 Nickel Cadmium & Nickel Metal Hydride Batteries 26

3.2.6.1.2 Lead Acid Batteries ... 26

3.2.6.1.3 Lithium Ion Batteries (Li-ion) ... 27

3.2.6.2 Charging .. 29

3.2.6.2.1 Charging Ni-Cad and Ni-MH Batteries 30

 i

3.2.6.2.2 Charging Lithium-ion Batteries .. 31

3.2.6.2.3 Charging Lead Acid Batteries .. 33

3.2.6.3 Voltage regulation .. 34

3.2.6.3.1 Series Voltage Regulators ... 35

3.2.6.3.2 Shunt Voltage Regulators ... 35

3.2.6.3.3 Switching Voltage Regulators .. 36

3.2.7 FPGA .. 36

3.2.8 Printed Circuit Board .. 37

3.2.9 Serial Communication .. 39

3.2.9.1 Analog to Digital Converters .. 40

3.2.10 Glove .. 41

3.2.10.1 Functionality ... 41

3.2.10.2 Models and Specifications ... 41

3.2.11 Onboard LCD Display ... 43

3.2.12 Bluetooth Low Energy Module .. 44

3.2.12.1 Nordic Semiconductor nRF8001 .. 44

3.2.12.2 Microchip RN4020 ... 45

3.2.12.3 Texas Instruments CC2541 ... 46

3.3 Software .. 47

3.3.1 Mobile Application .. 47

3.3.1.1 Mobile Application Overview .. 48

3.3.1.2 Potential Mobile Platforms ... 49

3.3.1.2.1 Android .. 49

3.3.1.2.2 iOS .. 51

3.3.1.2.3 Windows Mobile .. 52

3.3.1.3 Conclusion ... 54

3.3.2 Control System ... 55

3.3.2.1 Machine Learning .. 59

3.3.3 Programming Languages ... 61

3.3.3.1 Mobile Application Languages ... 61

3.3.3.1.1 Java ... 61

3.3.3.1.2 Swift & Objective-C ... 62

3.3.3.1.3 C#, C++, and Visual Basic .. 62

3.3.3.1.4 XML & XMAL ... 63

 i

3.3.3.2 Control System Languages .. 64

4. Constraints ... 65

5. Standards ... 67

5.1 Bluetooth ... 67

5.2 Android Applications ... 67

5.3 Lithium-Ion Batteries ... 68

6. Design .. 69

6.1 Hardware Design .. 69

6.1.1 Flex Sensors .. 69

6.1.1.1 Selection .. 69

6.1.1.2 Integration and Schematics ... 69

6.1.2 Accelerometer and Gyroscope ... 70

6.1.2.1 Selection .. 70

6.1.2.2 Integration and Schematics ... 71

6.1.3 Contact Sensor ... 73

6.1.3.1 Selection and Integration ... 73

6.1.4 Glove .. 73

6.1.4.1 Selection .. 73

6.1.4.2 Integration .. 74

6.1.5 Printed Circuit Board .. 74

6.1.5.1 Design .. 74

6.1.5.2 Assembly and Testing .. 76

6.1.6 MCU ... 77

6.1.6.1 Selection and Integration ... 77

6.1.7 Hand Gesture Recognition ... 77

6.1.7.1 Interpreting Flex Sensor Data .. 77

6.1.7.2 Determining Ideal Voltage Level .. 79

6.1.7.3 Calibration .. 80

6.1.7.4 Non-Standard Hand Gesture Recognition 82

6.1.7.5 Networking With User Interface ... 84

6.1.7.6 UART (Universal Asynchronous Receiver/Transmitter) 85

6.1.8 Power Source ... 86

6.1.8.1 Battery ... 86

6.1.9 Bluetooth Module ... 87

 i

6.1.9.1 Bluetooth Generic Access Profile... 89

6.1.9.2 Bluetooth Generic Attribute Profile ... 90

6.1.9.3 Allowing a Bluetooth Connection ... 92

6.1.10 TI LP2985 Regulator .. 93

6.2 Software Design .. 95

6.2.1 Control Systems ... 95

6.2.1.1 On-Board vs External Processing .. 95

6.2.1.2 Functions ... 96

6.2.2 Mobile Application .. 97

6.2.2.1 Bluetooth Communication .. 99

6.2.2.1.1 Mobile Phone Compatibility ... 99

6.2.2.1.2 Finding BLE Devices ... 100

6.3.2.1.3 Bluetooth Permissions ... 100

6.2.2.1.4 Enabling Bluetooth Features ... 101

6.2.2.2 Graphical User Interface .. 101

6.2.2.3 Menu Layout, Interface, and Usability .. 103

6.2.2.4 Translator Mode ... 107

6.2.2.5 Learning Mode ... 110

6.2.2.6 Bluetooth Connection Interface .. 111

6.3 Bill of Materials .. 113

7. Construction ... 114

7.1 Testing and Evaluation Plan ... 114

7.1.1 Hardware Testing ... 114

7.1.2 Software Testing .. 115

7.1.2.1 Control System Test Plan .. 115

7.1.2.2 Mobile Application .. 116

7.2 Facilities and Equipment ... 117

7.3 Suppliers ... 119

8. Project Operation .. 120

8.1 Translator Mode .. 120

8.2 Learning Mode .. 120

9. Administrative Content ... 121

9.1 Project Budget .. 121

9.2 Milestones ... 123

 i

9.3 Division of Labor ... 124

9.4 Personnel .. 125

10. Conclusion .. 127

Appendix A: Copyright Permission ... 129

Permission to use Figures from SparkFun Electronics 129

Appendix B: References ... 137

Similar Projects ... 137

Wireless Communication .. 137

Power Source ... 137

Flex Sensors ... 137

Accelerometer and Gyroscope .. 138

Contact, Force and Pressure Sensors .. 138

Gloves ... 139

iOS .. 139

Android ... 140

Windows Mobile .. 141

User Interface ... 141

Menu Layout ... 142

Miscellaneous ... 142

Appendix C: Datasheets ... 144

Flex Sensors ... 144

LSM9DS1.. 147

ATmega328 .. 147

HM-10 ... 147

Li-Po Battery ... 147

 1

1. Executive Summary

For its senior design project, Group 24 has come together to develop SLIG, a
sign language interpreter glove. As the name suggests, this project is meant to
be a glove that can be worn on a person's hand and have the ability to recognize
the American Sign Language (ASL) signs the person may be signing. Whatever
sign the glove has recognized will be displayed through the designated user
interface. The project was chosen with two purposes in mind; the first being to
help ASL speakers communicate with those who do not understand ASL and the
second to help non-ASL learn and practice signing. SLIG will be made to the
same specifications that characterize most modern electronics; i.e. it will be a
lightweight, energy efficient and inexpensive device with wireless connectivity.

Through research, the team has developed a design that will allow the SLIG to
function according to the objectives and requirements previously mentioned.
SLIG will require the use of flex sensors, an accelerometer, a gyroscope and
contact sensors to capture all of the necessary information to identify each and
every ASL sign for the English alphabet. All the information collected through
these sensors will be processed by an MCU, which will be part of a PCB that will
bring all the components together. The glove will be Bluetooth capable and will
transmit all data to an Android smart phone application where the final
interpretation will be displayed visually. A lithium-ion battery will power all the
electronics on SLIG. The rest of the supporting electronics will include voltage
regulators, analog to digital converters and others of that nature.

The team expects this project and the current design to be further influenced by a
number of realistic design constraints. Among all the possible constraints, only a
few will be highly relevant to the nature of this project. The most pertinent
constraints will be from an economic, a health, an ethical and a manufacturing
perspective. This project will after all be a glove meant to be worn by people and
meant to facilitate interactions between an ASL speaker and someone who does
not understand ASL. This brings about the health and ethical implications that will
shape this project. The economic and manufacturing constraints are strongly in
effect because this is a project run solely by engineering students who have
limited resources, experience and connections.

Another influential force that has and will continue to shape SLIG are existing
standards on the various technologies that the current design intends to employ.
The standards the team has chosen to consider have been standards regarding
Bluetooth technology, lithium-ion battery technology and android application
creation. Although adherence to these standards is not mandatory, it would most
likely be beneficial to the overall performance of SLIG. Thus, this document will
guide the reader through the process of research and design that group 24 has
followed in its endeavor to produce the best sign language interpreter glove
possible.

 2

2. Project Description

The sense glove is a lightweight, thin, Bluetooth-enabled glove that allows the
user to translate the American Sign Language (ASL) sign of the letters of the
alphabet to an external display. This glove is equipped with a series
of flex sensors, an accelerometer, an embedded processor on a printed circuit
board and Bluetooth technology that combine to give the user the ability to
accurately communicate to any individual who doesn't understand sign
language. The original motivation to pursue this project comes from one of our
team members who has experienced the difficulty of communicating with his
speech-impaired sister. This project got us thinking along the lines of wearable
technology and opened the door for our extensive research in the area.

Our objective is to establish communication between a sign language speaker
and a non-sign language speaker. Through the use of flex sensors and an
accelerometer, any letter the user signs will be displayed through a user interface
where the non ASL-speaker can read the letter.

2.1 Motivation

The original motivation to pursue this project comes from one of our team
members who has experienced the difficulty of communicating with his speech-
impaired sister. Upon further research into this topic, the team became more
aware of the number of people who have a disabling hearing loss. The following
statistics elaborate on this point. The Survey of Income and Program
Participation (SIPP) – estimates that about 1,000,000 are functionally deaf in the
United States while the World Health Organization estimates that over 5% of the
world’s population – 360 million people – has disabling hearing loss (328 million
adults and 32 million children). These facts made it apparent that a device that
could facilitate communications between people who are speech-impaired and
those that do not know how to sign would be very valuable and useful.

2.2 Goals and Objective

The objective for this project is to establish communication between a sign
language speaker and a non-sign language speaker. Any letter the user signs
will be displayed through a user interface where the non ASL-speaker can read
the letter. The glove will also implement a learning mode, where the user has the
option to learn the American Sign Language letters.

2.3 Requirements and Specifications

There will be some limitations and constraints that the team needs to be ready
for if it wants to make the glove lightweight, portable and energy efficient. There
is so much data that can collected out of the sensors, but making sure that the

 3

software and the machine both understand the data the glove is sending to them
will be the team’s greatest challenge. Anyone that uses the glove will do the
gestures slightly differently, even if it's the same person. This means that the
machine and the software both need to be dynamic enough to be able to make
the correct command.

In order to accomplish this “smart” glove, the team needs to take into
consideration how many parts the glove will need. The team anticipates to use at
least five flex sensors (one for each finger), one accelerometer since is just one
glove, one microcontroller and one li-ion battery. Since the glove should be
energy efficient, the team wanta the user to just have to charge it for two hours
for every 24 hours of normal usage.

Specifications:

 Glove Weight: <1.5 lb.

 Battery Type: Lithium-ion 3.7 V 2000mAh

 Device Battery Life: 13 hours

Figure 2.1: Final SLIG prototype

 4

3. Research

3.1 Similar Projects

The group researched other similar Senior Design projects in order to determine
how feasible it was going to be to accomplish the design of the Sign Language
Interpreter Glove in just 2 semesters. The group was able to find previous senior
design projects that used the same or very similar technology to the one that is
required by the Sign Language Interpreter Glove. The group then narrow all
those projects and focused on projects that related to the idea of a “smart” glove.
This section will talk about two of the projects that the group though were the
most interesting.

3.1.1 High Six

During the spring semester of 2014, a group of students from the University of
Central Florida created a project called High Six. High Six consisted of three
main subsystems which are hand gesture detection, Bluetooth communication
and an android application. The High Six glove was able to interpret data being
fed from several sensors and decide which letter of the American Sign Language
was being gestured by the glove. In order for High Six to determine which of 26
American Sign Language letters was being gestured by the glove, it needed to
distinguish the different parameters that make each of those letters unique. High
Six was able to accomplish this task by using several sensors that would provide
the orientation of the palm, the hand shape being made and the movement of the
hand.

The main difference between the High Six project and the Sign Language
Interpreter Glove project is the fact that High Six was only able to translate
letters. The Sign Language Interpreter Glove project will not only translate ASL
letters, but also it will be able put this letters together to create words and put the
words together to create sentences. The Sign Language Interpreter Glove project
will also use other parts and components that we think might be best for the
implementation of the SLIG design.

High Six was much expensive than expected, they estimated an initial cost of
$518 but the actual cost was $919. The Sign Language Interpreter Glove project
is expected to cost around $450, meaning it would be about half of the cost of the
High Six project. High Six also offers a 20 hour battery life (from one charge), the
Sign Language Interpreter Glove is shooting for at least 24 hours of battery life.
Last but not least, the Bluetooth connection range was up to 50 meters, SLIG
wants to double that distance to 100 meters. The main takeaway from High Six is

 5

that the project will take lots of time and dedication to complete. The group was
able to see the hard work they put into the High Six design.

3.1.2 GloveSense

During the spring semester of 2011, a group of students from Boston University
created a project where they were able to communicate with non-verbal
gestures. Their goal was to create an electronic communication device that
would silently send signals inside a building or across walls, through the use of
hand gestures. Team GloveSense was able to send information to emergency
personnel or military personnel with this technology. Team GloveSense
emphasized there was a lack of reliable communication systems and said non-
verbal communication was needed in order to help keep first responders out of
danger.

Team GloveSense used National Instruments hardware and software in order for
their project to be able to recognize and wirelessly transmit the hand gestures.
Their project required to be capable of detecting movement, as well as the
incorporation of a lightweight design. Their project also required a library of
gestures and to be able to send signals over a long distance. This project is very
similar to the Sign Language Interpreter Glove because SLIG is also a
lightweight design that via hand gestures will wirelessly communicate by sending
its signals over a far distance. The Sign Language Interpreter Glove will also
include a library of gestures just like GloveSense. Basically both projects are
pretty much using similar technologies that will accommodate different purposes.
GloveSense focused on helping firefighters and police officers while the Sign
Language Interpreter Glove focuses on helping the deaf community.

In order to accomplish their goal, they decided to split the project into two main
parts. Their first design was a glove connected to a PC. To facilitate reading
data, they utilized a supplementary board which also powered their aux
components. To alert the users of an oncoming message, they used a small
vibration motor. Their glove software was able to distinguish between finger
gestures and hand gestures motions, then using the pre-computed library it
determined what message to send. They even had an option to select to who
send the message to over a ZigBee protocol.

Their final prototype consisted of a microprocessor that was used to process
signals and provided wireless output. Combining the microprocessor with many
different sensors together and you get a “smart” motion capturing glove capable
of recognizing gestures using a LabVIEW software interface. Team GloveSense
was so successful with their project, that they received the top prize award at
their school. The P.T. Hsu Outstanding Senior Design Project was given to all the
members of the team, Luke Anderson, Anna Evans, Patrick Henson, Jonathan
Kwan, and Angelo Luo.

 6

In conclusion, when it comes to technology, just about everything is getting
smart. We have smart phones, smart watches, smart TV’s, smart cars, smart
homes, smart wallets and the list goes on. This project shows that the concept of
a “smart” glove is probably going to be added to that list very soon.

3.2 Hardware

3.2.1. Flex Sensors

3.2.1.1 Functionality

Flex sensors will be the primary sensors employed in this projects. They will be
used to detect the degree to which each finger is bent on the hand performing
the sign language. The combination of different degrees of flex for each finger
will be the identifying mark for most of the letters. This will be the main method in
determining which letter of the alphabet the user is trying to sign. For example, if
the user wanted to form the sign for the letter 'A' he or she would have to
completely bend down every finger except for his or her thumb. The flex sensors
corresponding to these four fingers would increase their internal resistance as
they are bent and in turn they would output a minimum voltage that could be
measured and ultimately recognized as the signal configuration for the letter A.

3.2.1.2 Models and Specifications

In the market there is a plethora of different flex sensors available; each one with
features that would benefit our project. For the scope of this project the chosen
flex sensors must meet certain requirements to ensure SLIG will be an efficient
and manageable device. The proposed specifications are as follows:

 Flat Resistance: 25K Ohms

 Resistance Tolerance: +/- 30%

 Bend Resistance Range: 45K to 125K Ohms

 Power Rating: 0.5 Watts continuous. 1Watt Peak

SpectraSymbol Long Flex Sensor- This is a one-directional flex sensor with a
base resistance (resistance when unflexed) of about 10Kohms. When the sensor
is fully flexed, the resistance can increase to as much as 110Kohms. This can be
connected to the analog input of a microcontroller or a digital input if a 0.1uF
capacitor is used. It is reported to have a power rating 0.50 Watts continuous, a
resistance tolerance of +/- 30%, a bending resistance range of 60K to 110K
Ohms and a length of 112.5 mm. It is important to note this flex sensor is
reported to have a fragile bottom piece where any unnecessary strain could rip
the part away from its contacts. Below is a visual representation of how the flex
sensor functions from SparkFun.

 7

Figure 3.1: Bend range of Flex Sensor

Reprinted with permission from SparkFun Electronics.

The main advantage of this flex sensor would be its wide availability, being sold
by a multitude of vendors all at competitive pricing. It has been used in a
multitude of different projects and application including but not limited to robotics,
virtual motion gaming, medical devices, computer peripherals, musical
instruments and physical therapy. The team will consider purchasing this product
from either Digikey or SparkFun, which are both well-established companies with
reputable support services. Also, it is compatible with most microcontroller units.

Images Two-Directional Bi-Flex Sensor – This sensor has an un-flexed nominal
resistance of 10k ohms. This sensor has two leads that can be bent in both
directions and still have its resistance changed. Unlike the one-directional flex
sensors, bending the sensor actually decreases its resistance and
correspondingly increases the voltages that would be measured. The sensor has
a length of 4.5", width of 0.375" and a thickness of .038". This sensor's main
advantage is that it is also pressure sensitive and may be used as a force or
pressure sensor. This could possible eliminate the need to purchase a separate
pressure sensor as will be discussed further on. This particular sensor has been
useful in many applications including collision avoidance on moving robots,
virtual reality gloves and suits and physics experiments. Images Scientific
Instruments may not be as well-known as the previous two vendors but it has
been functioning for over thirty years and sells a wide range of instruments
including Geiger counters. Again, this sensor will definitely be compatible with
any of the circuit boards and part we choose.

littleBits Bend Sensor – The littleBits bend sensor is like most other sensors. It
activates when the long strip is flexed and an output signals are sent to the
output bits. This exact model has been used in many student created projects
including but not limited to 'Soccer Accuracy Trainer', 'Waste Paper basketball
cheering machine', a dancing robot, a virtual table tennis opponent and a waiving
hand. The manufacturer littleBits is completely geared towards small
independent projects and has even made it is mission to support open source
hardware. It is especially helpful in providing ideas on how to best use this flex

 8

sensor and other parts. Although, it may be optimal to match it with other littleBits
parts it is also compatible with other parts.
Tactilus Flex – This sensor is designed with screen-printed resistive ink think
films sensors that give the sensor the ability to repeatedly measure the degree of
bending movements. According to experiments performed by the manufacturers,
bending the sensor ninety degrees can generate 200,000 different voltage levels.
They are intended to be integrated into an existing feedback and control system
or to a multimeter or oscilloscope. The recommended applications include but
are not limited to human body interface, biomechanics, air fluid flow and
industrial controls. The manufacturers claim it has the following benefits over
other technologies: it has a lightweight, thin and low profile, it is available at a
fraction of the price of conventional actuators, it has a non-mechanical solid state
and it is extraordinarily durable (>35 million cycles).

Each sensor is sequentially serialized and quality tested to minimize the chance
of any defects and maximize the repeatability and durability of the product. On
top of that the sensors make use of high quality Berg connectors, which should
reduce the problem that many other sensors have with the base connection. The
manufacturers claim they can build these bend sensors to the buyer's specific
requirements. On top of all of these advantages, the manufacturer Sensor
products has been in business for approximately 25 years and specializes in
sensors starting with pressure and surface sensors.

3.2.1.3 Integration and Schematics

There are a few ways the flex sensors can be integrated into the glove. One of
the simpler flex sensor circuits makes use of a voltage divider and an impedance
buffer. The impedance buffer is a single sided operational amplifier, used with
these sensors because the low bias current of the op amp reduces error due to
source impedance of the flex sensor as a voltage divider. Suggested op amps
are the LM358 or LM324. Below is SparkFun’s schematic for this circuit.

Figure 3.2: Basic Flex Sensor Circuit

Reprinted with permission from SparkFun Electronics.

 9

There are other configurations that can be used to achieve certain results. With
the Adjustable Buffer circuit, a potentiometer can be added to the circuit to adjust
the sensitivity range. Below is SparkFun’s schematic for this circuit.

Figure 3.3: Adjustable Buffer Circuit

Reprinted with permission from SparkFun Electronics.

In the "Resistance to Voltage Converter" circuit, the sensor is used as the
input of a resistance to voltage converter using a dual sided supply op-amp. A
negative reference voltage will give a positive output. This should be used in
situations when you want output at a low degree of bending. Below is
SparkFun’s schematic for this circuit.

Figure 3.4: Resistance to Voltage Converter

Reprinted with permission from SparkFun Electronics.

 10

3.2.2 Accelerometer & Gyroscope

3.2.2.1 Functionality

Though flex sensors are a great way to capture many useful pieces of
information from the physical state of the user’s hand, they are limited in the
range of motions that they are capable of sensing. The flex sensors can only
detect how much bending they are experiencing and so they neglect motions like
tilting the hand back and forth at different angles. Instead, accelerometers and
gyroscopes can be used to measure this type of motion, which are crucial in
identifying certain sign language letters such as "j" and "z". The two parts work in
conjunction with one another where accelerometers can sense the orientation or
tilt of the users hands and fingers while the gyroscope actually measure the
angular motion of the wrist movements. Below are some figures that partially
illustrate how an accelerometer and how a gyroscope would function from
SparkFun.

Figure 3.5: Output Response vs. Orientation to Gravity

Reprinted with permission from SparkFun Electronics.

 11

Figure 3.6: Pin Diagram showing measurable angular velocities

Reprinted with permission from SparkFun Electronics.

3.2.2.2 Models and Specifications

For the scope of the project the accelerometer we choose must meet certain
requirements to ensure SLIG will be an efficient and manageable device. The
candidate models are listed below.

SparkFun Triple Axis Accelerometer ADXL335 – This is a triple axis MEMS
accelerometer from Analog Devices with a competitively low noise and power
consumption - only 320uA. It also boasts a full sensing range of +/-3g. Because it
does not have any integrated voltage regulation, the power provided should be
between 1.8 and 3.6 VDC. The board brings 0.1uF capacitors that set the
bandwidth of each axis to 50Hz. This specific model measures 0.7” by 0.7”.
Accelerometers of its type has been used in a wide range of projects including
collision analysis projects, guiding systems for mobile creations and a seemingly
endless number of smart phone applications. The supplier as mentioned before
is a reliable source with a multitude of accelerometers with different
specifications. They also supply plenty of documentation and support and
provide this component both on its own and as part of a breakout board to make
integration flexible and straightforward.

 12

SparkFun Triple Axis Accelerometer ADLXL345 – This version of the
SparkFun accelerometer features 2 standoff holes along with an extra decoupling
capacitor. It is small, thin, energy efficient with a high-resolution measurement at
up to +-16g. The output data is digital and formatted in a 16-bit two complement
accessible through either a SPI or 12C digital interface.

This accelerometer effectively measures the static acceleration of gravity in
projects that require tilt sensing and dynamic acceleration from movement. It can
measure precise changes in inclination less than 1.0 degree. It also makes use
of special sensing functions. It can detect the presence or lack of motion and if
the acceleration in any direction passes a user-set maximum value. It can also
detect if a device is free falling. All of these sensing functions can be mapped to
up to two interrupt output pins. IT comes with a 32-level FIFO buffer designed to
store data in order to reduce host processor intervention. Some of the top
features are the 2.0-3.6 VDC supply voltage requirement, the ultra low power
consumption of just 40uA in measurement mode, 0.1uA in standby mode at 2.5V,
tap/double tap detection, free-fall detection and SPI and I2C interfaces.

SparkFun Triple Axis Accelerometer MMA8452Q – This model is a smart
energy efficient, triple axis, MEMs accelerometer with 12 bits of resolution. It
comes with certain functions including user programmable options that can be
configurable to two interrupt pins. These functions are valuable because they
enable power saving, keeping the host processor from repeatedly polling data. It
has multiple dynamically selectable scales ranging from +/- 2g to +/- 8g.

Other important specifications include the 1.95 V to 3.6 V supply voltage
requirement, an interface voltage of 1.6 V to 3.6 V, output data rates (ODR) from
1.56 Hz to 800 Hz, 12-bit and 8-bit digital output choices, I2C digital output
interface (operates to 2.25 MHz with 4.7 kΩ pullup), two programmable interrupt
pins for six interrupt sources, three embedded channels of motion detection, an
orientation (Portrait/Landscape) detection with set hysteresis, high pass filter
data available real-time and a current consumption of 6 μA – 165 μA.

SparkFun Triple Axis Accelerometer ADXL362 – This is another energy efficient
model that possesses more or less the same functionality as the ones before.
Some important specifications are the 3-Axis capability with selectable
measurement ranges of ±2, ±4, or ±8g, its ultralow power consumption, an SPI
digital interface, a high resolution of 1 mg/LSB, low noise as low as 175 μg/√Hz,
a wide voltage range of 1.6 V to 3.5 V, an adjustable threshold for motion
activation and the ability to select measurement ranges via SPI commands.
Accelerometers of its kind have been used extensively in a wide array of
applications including but not limited to Hearing aids home healthcare devices,
motion enabled power save switches, wireless sensors and motion enabled
metering devices.

 13

SparkFun Triple Axis Accelerometer LIS331 – This is comparably low power
full-scale linear accelerometer. The top features are a 2.16-3.6V input, the ultra
low-current mode which can decrease consumption down to 10uA, selectable
ranges of 6g, 12g, 24g, a I2C/SPI digital output and a16 bit data output.

Gyro Breakout Board IDG500 Dual 500°/s – This product is no longer available
for purchase but is an excellent base model to which other gyroscopes can be
compared. It measures angular velocity on two axes and has all necessary
electronics built into one chip. The top specifications are the 3-7V single-supply
operation, integrated X- and Y-axis gyros on a single chip, two separate outputs
per axis for standard and high sensitivity on the
X-/Y-Out pins of 500°/s, full scale range 2.0mV/°/s sensitivity
X/Y4.5 out pins of 110°/s and full scale range 9.1mV/°/s sensitivity. Moreover, it
features integrated amplifiers and low-pass filters, an auto-zero function, an on-
chip temperature sensor, a high vibration rejection over a wide frequency range,
a high cross-axis isolation by proprietary MEMS design, being hermetically
sealed for temperature and humidity resistance and being 10,000 g shock
tolerant.

SparkFun Tri-Axis Gyro L3G4200D – This is a more advanced model that has
a greater degree of user customizability when it comes to measurements. The
specifications for this part are three selectable full scales (250/500/2000 dps),
I2C/SPI digital output interface, a 16 bit-rate value data output, an 8-bit
temperature data output, a wide supply voltage ranging from 2.4 V to 3.6 V, a low
voltage-compatible IOs (1.8 V), an embedded power-down and sleep mode, an
embedded temperature sensor and a high shock survivability

SparkFun 6 Degrees of Freedom IMU Digital Combo Board
ITG3200/ADXL345 – This board provides a full 6 degrees of freedom by
combining the integrated accelerometer and gyroscope while keeping the size to
a minimum.

SparkFun 9 Degrees of Freedom IMU BreakoutLSM9DS1 – This option
provides the functionality of an accelerometer, a gyroscope and a magnetometer
all in one board. The magnetometer function might be beyond the scope of this
project but would definitely reduce any inconsistencies in measurements. It is a
carefully designed combination of a triple-axis digital-output gyroscope, a 13-bit
resolution, ±16g, triple-axis accelerometer and a triple-axis, digital magnetometer
fitted onto a single, flat board for a total of 9 degrees of Freedom. That means it
produces nine pieces of data: acceleration in x/y/z, angular rotation in x/y/z, and
magnetic force in x/y/z. Data that can be interfaced either through an I2C and
SPI connection and features the following ranges of measurement: ±2/±4/±8/±16
g linear acceleration full scale, ±4/±8/±12/±16 gauss magnetic full scale and
±245/±500/±2000 dps angular rate full scale.

 14

3.2.3 Contact and Pressure Sensors

3.2.3.1 Functionality

Due to the fact there are a few pairs or groups of sign language letters that are
not distinguishable by the degree a person’s finger is bent nor any tilting motion,
we will need to implement contact sensors or pressure sensors. The former can
identify when two or more fingers are touching and may be precise enough to
detect where along each finger the contact is being made. The latter in the form
of piezoresistive force sensors are typically used to measure any type of applied
force. However, it may be necessary to have these types of measurements for
this project and not just determine whether two fingers are touching. Either type
of these sensors will be helpful if not crucial in telling apart the following pairs of
sign language: R and U, S and T and M and N.

3.2.3.2 Models and Specifications

For the scope of the project the contact sensors or pressure sensors we choose
must meet certain requirements to ensure SLIG will be an efficient and
manageable device. The candidate models are listed below.

Flexiforce Pressure Sensor 25lbs – Different levels of pressure created by any
means, including pressure between fingers that are touching, will lower the
sensor’s resistance. These varying resistances can be used measured to
determine which finger is making contact. This model has resistances that range
from infinite to about 300kohms and can measure from 0 to 25lbs of pressure.
This a product sold by Sparkfun Electronics, which has a large inventory of
sensor with a similar purpose. The following is a table detailing the physical
specification of this model from SparkFun.

Figure 3.7: Physical Specifications of Flexiforce Sensor

 15

Reprinted with permission from SparkFun Electronics.

Force Sensitive Resistor 0.5" – This would be the product that would precede a
full-fledged pressure sensor. It works similarly to a pressure sensor and sends its
output through two pins at the end. They are less expensive than the typical
pressure sensor but are also less accurate and are best used to tell if they being
pressed and not for exact measurements. For the scope of this project, this may
be sufficient but actual testing is the only way to be sure. This part has an overall
length of 2.375", an overall width of 0.75" and a sensing diameter of 0.5". The
following two figures from Sparkfun show the inner workings of this type of
sensor.

Figure 3.8: The construction of an FSR

Reprinted with permission from SparkFun Electronics.

Figure 3.9: Force Applied Vs Resistance

 16

Reprinted with permission from Sparkfun Electronics.

Phidgets Touch Sensor – This is a capacitive touch sensor that can detect
contact through different pieces of material such as plastic, glass or paper or in
the case of this project the lining of the SLIG glove. It works well at close
distances, detecting any object with half an inch of the board in any direction.
Some of the most noticeable features are the recommendable material thickness
of up to 1/2”, attachability of the sensor to metallic objects to allow for a larger
touch pad, the sensor's ratiometric nature and the standard 3-pin cable that
comes with the sensor.

Phidgets Linear Touch Sensor – This sensor can measure changes in
capacitance between electrodes on the device and the objects touching the
board. It is meant to be mounted behind a sheet of glass or plastic close to an
eighth inch in depth. It can alter its input value from 0 to 1000 in about 125
different steps as contact is made across its surface. This analog input isn’t used
unless the two digital inputs are set to one, which occurs only when contact is
made and an object is in the close proximity of the board. This sensor also
comes in a circular version, which may prove more useful for this project.

Phidgets Force Sensor – It is a typical force/pressure sensor in most ways. It
has the capability of measuring forces relative to 3 kilograms. The output is
relayed as a varying resistance value that spans all the way from 100kohm down
to 1kohm. Its resistance is in a voltage divider arrangement with a 7.5K ohm
resistor.

Softpot Linear Potentiometer – This is a series of linear potentiometers that
come in a range of sizes including 50mm, 100mm, 150mm and 200mm. These
are competitively thin variable potentiometers. Pressing down along any part of
the sensor will linearly shift the resistance anywhere from a small 100ohms to
10,000ohms giving very precise information of the position where contact was
made. Below is a comparison of different potentiometers from the SparkFun
website.

Figure 3.10: Electrical Specification

 17

Reprinted with permission from SparkFun Electronics.

Softpot Rotary Potentiometer- This is the circular equivalent to the potentiometer
above. The possible advantage of a potentiometer based sensor over the
contact, force and pressure sensors discussed previously is that these will
probably allow for the easiest way of pinpointing the exact place of contact. This
will be useful to distinguish between the trickiest pairs of sign language letters
where whether one finger is slight under the second calls for a completely
different sign than if the finger was directly adjacent to it. Below is a diagram
detailing the dimensions of the rotary potentiometer.

Figure 3.11: Dimensions of Rotary Potentiometer

Reprinted with permission from SparkFun Electronics.

3.2.4 Microcontroller Unit

There are many options available to us when it comes to choosing an
appropriate microcontroller unit for the SLIG. The unit that is chosen will have to
employ at least 6 analog input pins (with analog to digital converters for each),
have digital outputs, and also be able to output information through the use of
serial communication. When considering the microcontroller unit, it is also
important to note that units that come with their own native programming
environments, as well as pre-written functions such as the UART initiation
functions would be overwhelmingly more convenient than a unit that does not
employ these conveniences.

The group has considered several options, including Texas Instruments’
MSP430, the ATMega32 series which is popular in Arduino development boards,
as well as the popular Atmel AVR microcontroller. These microcontroller units all
have their advantages and disadvantages, and those will be discussed at length
in this section.

 18

For the scope of this project, the initial leaning of the group was towards the
MSP430 from Texas Instruments. In comparison to the next best option, the
ATMega32, the MSP430 seems to have many significant limitations. For one,
the MSP430 can only be used for developments on the Microsoft Windows
platform and can only be programmed using the integrated development
environment provided by Texas Instruments, Code Composer Studio. On the
other hand, ATMega32 allows many forms of cross-platform development that
includes development on Windows, iOS, Linux, and others.

This may seem like a big issue to when beginning to look into the subject, but
upon further research the group decided on developing the entirety of the control
system for the Sign Language Interpreter Glove on a Windows machine
anyways, so this limitation is not a deterrent from using the MSP430. In fact, all
four group members already have some experiencing developing on the MSP430
and using Code Composer Studio because they have all had to use this same
setup while completing the laboratory experiments in the class, “Embedded
Systems”. However, the MSP430 has a significant advantage over the
ATMega32 microcontroller in the sense that it consumes significantly less power
than the ATMega32 does.

This is important because this glove will only have one battery powering all of the
electronic devices. A processor that has a high power consumption will be
inadequate for our purposes because we will need to allocate more power to the
microcontroller and it will require a higher amount of power to be available for all
of the circuits that will be employed in the project. From this standpoint, the
MSP430 would be superior to the ATMega32 for the purposes of the project and
what is waned from a microcontroller unit.

There are other factors in play that have helped tip the scales towards the
MSP430 in favor of the ATMega32. Both microcontroller units operate at about
the same speed of about 16 MHz, however the MSP430 has higher capabilities
with this 16 MHz because it has double the size of the data bus than that of the
ATMega32. The ATMega32 microcontroller unit is an 8-bit unit, while the
MSP430 is a 16-bit unit. This allows significantly more data to be processed at a
time while using the same exact clock speed. This can be significant because
there will be a lot of data being processed simultaneously: there are five different
flex sensors which will constantly be supplying data into the microcontroller unit,
there is an accelerometer an gyroscope, which will also be constantly supplying
data into the microcontroller, there are pressure sensors also supplying data. All
of this leads to the importance of having more bits available so that every time
that the clock ‘hits’, more data can be processed.

Even if the ATMega32 was a bit faster than the MSP430, it would have to be
significantly faster in order for the clock speed to make up for the MSP430’s

 19

ability to simply crunch much more data with each clock cycle. On the other
hand, the ATMega32 has much more random-access memory available than the
MSP430 does. The MSP430 has 512 bytes of random-access memory, while
the ATMega32 has 2.5 kilobytes. This is a significant difference. However, the
group does not plan on having to use the machine learning algorithm to decipher
what hand gesture the user is trying to make, and rather use a more intuitive
method by creating a function (described is sections above). Because of this, it
is not necessary for the microcontroller unit that is used in the SLIG to employ a
high amount of memory. If the machine-learning algorithm was to be used, more
memory would be required because the machine learning algorithm would be
based on storing many different iterations of the same gesture and referencing
those iterations later on when the system is asked to make a decision on a
current hand gesture input. For this reason, the group believes that the 512
bytes of memory offered by the MSP430 should be sufficient to supply the
memory needs of the control system of the SLIG.

The biggest, and perhaps most significant factor in choosing between these two
very comparable microcontroller units is the price. The ATMega32 is offered by
many different vendors, for an average price more than double that of the
MSP430. The ATMega32 is offered for an average price of about $25. The
MSP430, on the other hand, is offered for $9.99. This is significant given that the
group is on a slightly tight budget and would benefit greatly from having a
microcontroller unit that is that much more affordable than the next option. For
these reasons, the MSP430 is the microcontroller unit that the group chose, and
the vendor of choice is Mouser Electronics.

It should be noted that the group already has a significant amount of experience
developing on the MSP430 which should reduce the time that it takes to learn the
specifics about the microcontroller as well as the development environment in
which that microcontroller must be developed (Code Composer Studio). These,
as well as the other reasons mentioned above, make it so that the use of the
MSP430 seems like the most reasonable choice to make. Below is a table
illustrating the mentioned differences between the ATMega32 and the MSP430.

Feature MSP430 ATMega32

Analog Input Pins 8 12

Digital Input Pins 8 20

Random Access
Memory

512 Bytes 2.5 Kilobytes

Data Bus 16 bits 8 bits

Speed 16 MHz 16 MHz

Cost/Vendor $9.99 mouser.com $24.95 ebay.com

 20

Table 3.1: MSP430 vs. ATMega32 comparison

As seen in the table above, the MSP430 seems to be the most reasonable option
for the purposes of the Sign Language Interpreter Glove. It is significantly
cheaper, it has double the size of the data-bus than that of the ATMega32, and
all members of the group are intimately familiar with it. Although the ATMega
does have more RAM than the MSP430, that is not enough of a deterrent to
make the group go against the MSP430.

3.2.5 Wireless Communication

This section talks about the different types of wireless communication that were
researched by the group, how this different types of wireless communication
works and which of the thousands of wireless communication technology the
group decided to use for the implementation of the Sign Language Interpreter
Glove. The group would like to connect to an external display without the use of
any cables or wires, because the group wants the project to have a clean and
modern look. Using cables or wires could also be a bad idea because the cables
or wires are at possibility of bending or disconnecting and might cause the
project to fail. Therefore, it is a must that the Sign Language Interpreter Glove
uses some type of wireless technology to establish the communication between
the glove and the external device.

As stated earlier, there were so many different options available in the market
that the group could of have chosen for this project, when it comes to deciding
what type of wireless technology to use. Through researched, the group was able
to narrow down the options to just three choices. These three choices were, Near
Field Communication also known as NFC, Wi-Fi and Bluetooth. Keeping in mind
that efficient and portability are the two biggest factors that is required by the
Sign Language Interpreter Glove, the group was able to make a final decision in
which technology would be best for implementation of this design.

3.2.5.1 Wi-Fi and Li-Fi

Wi-Fi, also known as Wireless Fidelity or WLAN ‘Wireless Local Area Network” is
one of the most popular types of wireless communication used today to transfer
and receive data, like surfing on the web. Wi-Fi uses radio waves frequencies
that operate between the 2.4 - 5 Gigahertz ranges. The use of high frequencies
is use to reduce the possibility of interference with other devices like a car radio,
mobile devices or even walky talkies. Also high frequency is use so that Wi-Fi
can provide more data at faster speeds.

Wi-Fi signal could be interrupted or the speed could lower if other devices
connect to the same router. The solution to avoid other devices to connect to the
same router, is giving the user the option to create a password. One of the most

 21

secure ways to protect a Wi-Fi network is via WPA2 which stands for Wi-Fi
Protected Access 2. WPA2 gives the user the power to control who connects to
their network and at the same time it has an encryption mode to provide the user
with extra security. Bluetooth devices, security cameras, cordless phones, and
many more devices can also cause a significant amount of interference to Wi-Fi.
The Wi-Fi range for indoor use is about 70 feet since wall also cause
interference, but it’s range is much greater when use outdoors.

Li-Fi, is a new type of technology that will soon be available in the market. Li-Fi is
a uses visible light or IR light to communicate at high speeds and carry even
much more information than Wi-Fi. Li-Fi works by turning the led bulb on and off
to send pulses within nanoseconds, too fast for the human eye to notice. Even
more amazing is the fact that the led bulbs could be dimed enough, to the point
that the bulbs are still able to transmit data and look like if they are turned off to
the human eye. Li-Fi signals can bounce of the wall, which means a direct line of
sight is not necessary. The downside of Li-Fi is that is not able to penetrate walls,
but at the same time it means is more secure. Li-Fi will be a great technology in
places where electromagnetic interference is a problem, such as airplanes and
nuclear power plants. Li-Fi is expected to transmit data at the speed of 10
Gigabits per second and its cost to be 1/10 cheaper than Wi-Fi. Unfortunately, Li-
Fi is still very new for it to be implemented in our design.

In conclusion, the group knows there will be no problem as far as connectivity if
Wi-Fi is use as the primary way of transmitting the data from the glove to the
external device. The only problem is that the group wants the design to be
portable and light weight. If the group uses Wi-Fi the group would need a router,
which means the project will be more expensive, more time consuming and not
very portable friendly like the group want it to be. Also, Wi-Fi consumes lots of
power compare to the other wireless communication devices that the group
research. For these reason the group eliminated Wi-Fi from being used in the
design. Table 1 below, shows some of the parameters of Li-Fi vs Wi-Fi.

Parameters Li-Fi Wi-Fi

Speed High High

Range Low Medium

Data Density High Low

Security High Medium

Reliability Medium Medium

Power Available High Low

Transmit/Receive Power High Medium

Ecological Impact Low Medium

Device-to-device Connectivity High High

Obstacle Interference High Low

Bill of Materials High Medium

Market Maturity Low High

 22

Table 3.2: Li-Fi vs Wi-Fi

3.2.5.2 Near Field Communication

Near field communication also known as NFC, has become very popular now at
days. It can be found not only in cellphones, but also in laptops and cars. Near
field communication can send and receive data, but like its name implies, the
digital devices using this technology have to be very close to each other. Near
field communication works with electromagnetic radio fields unlike Wi-Fi and
Bluetooth that use ultra-high frequency radio waves. NFC comes in three
different types of forms, Type A, Type B and FeliCa. These forms are very similar
but communicate in different ways.

NFC devices could be either passive or active. Passive means that the device
contains information that another device can read. Pretty much like an NFC tag,
in other words a passive device does not read any information from other vices.
A good example of this can be the nutrition facts label found in the foods we buy;
anyone can read the information but the nutrition facts label cannot read
anything. All it does is provides the information.

In the other hand, an active near field communication device is much smarter. It
can do the same thing a passive device does, so not only it can transmit
information but it can also read information. Active near field communication is
found in most mobile devices. When you send a picture, video or any other file
via near field communication to a friend, your device is transmitting the
information. When your friend sends you a file back via near field communication,
your device needs to read the information. Therefore, cellphones have an active
near field communication.

Security is very important in all types of wireless communication. Especially now
at days that near field communication is being used in the industry of
automobiles, public transportation, banks, credit cards, and much more. For
example, you can open your car and turn it on by just having your keys near you.
Make a payment by just waving the credit card or phone without having to touch
or swipe the card. Near field communication can even store personal information
to give you access to a secure building. For this reasons and many more, near
field communication uses a secure channel with encryption when it’s transmitting
or sending information.

In conclusion, although near field communication is contactless and very simple
to use, because of the fact that the operating range (distance) is so limited, the
group automatically eliminated near field communication from being used as the
primary form of communication in the design. Nevertheless, the group might still
use near field communication tags to possibly provide a unique feature to the
Sign Language Interpreter Glove.

 23

3.2.5.3 Bluetooth Classic & Bluetooth Low Energy

Bluetooth could be considered like a combination of near field communication
and Wi-Fi. Bluetooth will transmit data at a much lower frequency than Wi-Fi,
therefore it will consumes less power. The operating distance for Bluetooth
ranges between 10 meters to 100 meters depending on the manufacture, which
is way more than what the design requires. Bluetooth is also very affordable and
reliable. Bluetooth is not only power efficient, but also is easy to use.

Bluetooth works by using ultra high frequency radio waves. Ultra-high
frequencies are stablish in a range of 300 Mega Hertz and 3 Giga Hertz. This
ultra-high frequencies unfortunately are not good for transmitting through objects
such as hills or tall buildings, but the good news is that the walls in our homes
can’t stop this signal. Wi-Fi, baby monitors, garage door openers, cordless house
phones, portable speakers and other numerous devices use this type of
frequency.

Bluetooth is use in almost everything nowadays, and is perfect to use for devices
that only need to communicate over a short distance, like the Sign Language
Interpreter Glove. There are several different types of Bluetooth, with the two
most common being Bluetooth Low Energy (BLE) and Bluetooth Basic Rate /
Enhanced Data Rate (BR/EDR). The difference between the enhanced data rate
and basic rate is very simple; the enhanced data rate supports a bit rate of 2
Megabits per seconds and basic rate only supports a bit rate of 1 Megabits per
second. Their similarities are that they both use a six-digit passkey that is much
safer and more secure so that the possibility of another device interfering or
intercepting the information is reduced. They both are also optimized to send
high quality data while using the minimum power possible in order to save
battery.

Bluetooth low energy is what allows developers to create tiny sensors that can
run off a small coin cell battery for months or sometimes even years. The main
difference between Bluetooth Low Energy and BR/EDR is that not only BLE is
much more energy efficient, but also is built on a new development framework.
Bluetooth low energy is also known as Bluetooth Smart because is being used to
power the Internet of Things (IoT). Bluetooth Smart allows users to quickly send
large data, like videos at very high speeds only when needed it, which means a
longer battery life.

Pairing is what is needed when two Bluetooth devices wish to communicate with
one another. The pairing between two devices must be a trusted; this can be
accomplished by a passkey. Most devices are pair so often that the passkey or
password is saved in order to avoid having to enter it each time the devices

 24

wished to communicate. Pairing is a very important and essential for the project,
since there is only one sign language interpreter glove but multiple devices that
should be able to connect to it. It is crucial to understand how pairing works
because pairing is the part of Bluetooth that maintains a list of the devices that
have made successful connections in the past. Nevertheless, pairing can also
make sure to not permit the previous devices to connect if the user wishes to do
this.

Bluetooth can connect to multiple devices at the same time without causing
interference with one another. This is made possible thanks to spread-spectrum
frequency hopping technique, which allows the transmitters to change
frequencies about 1600 times per second. Even if there was interference, it will
only last for a fraction of a second. In other words, Bluetooth meets every
demand that the group is looking for the design. Therefore, the group decided to
use Bluetooth Low Energy (BLE) for the design of the SLIG. Table 2 below, is a
comparison of Classic Bluetooth vs Bluetooth Low Energy Technology from
Intelligent Systems.

 25

Table 3.3: Classic Bluetooth vs. Bluetooth low energy

Reprinted with permission from Intelligent Systems Source.

3.2.6 Power Source

The power source is one the most important parts of this project. Without a
power source, none of the components use in the project would be able to
operate. Also if the group does not give it the right amount of power then the
components will fail. It is crucial to also make sure the group gets the most out of
the battery. A charging station will be needed to recharge the battery of the Sign
Language Interpreter Glove.

3.2.6.1 Batteries

 26

In this section the group will talk about some of the different types of batteries
available in the market. Powering the microcontroller is one of the most crucial
parts of this project. The battery is uses to power the design will make a
significant contribution; therefore, the group needs make sure the group uses the
best battery that’s available in the market. The group will only research
rechargeable batteries that can be use with the microcontroller. The group will
also talk about charging the rechargeable battery, this is very important because
using a cheap charger could kill off the cells in the battery.

3.2.6.1.1 Nickel Cadmium & Nickel Metal Hydride
Batteries

Nickel Cadmium batteries also known as Ni-Cad batteries, where popular in the
late 19th century, until nickel metal hydride (Ni-MH) batteries took over. Nickel
cadmium batteries are very inexpensive and retain their charge for long if left
alone. They also offer great cycle life and low temperature performance when
compared to other types of rechargeable batteries. The charging rate for nickel
cadmium batteries depends on how the cell was manufactured, but regardless
they offer a great charge and discharged life cycle. However, nickel cadmium
batteries are low on power density. These batteries need to be frequently
exercised in order to prevent the memory effect. Nickel cadmium batteries
contain toxic metals, causing them to be environmentally unfriendly. Therefore,
because of this reasons the group decided to not use it in the project.

Nickel metal hydride batteries are more popular than nickel cadmium because of
the much higher power density. They also contain mild toxins which makes it
more environmental friendly than nickel cadmium batteries. Nickel metal hydride
batteries are usually used to replace non-rechargeable alkaline batteries and
have about 30% – 40% more capacity than nickel cadmium. These batteries also
have their cons, they cost more than nickel cadmium and their service life cycle
does not last very long. They also self-discharge very quickly and their
performance drops when they are exposed to high temperatures. To prevent
crystalline formation, these nickel metal hydride batteries requires to be
frequently fully discharged. For this reason, the group decided not to use Ni-MH
batteries for the Sign Language Interpreter Glove.

3.2.6.1.2 Lead Acid Batteries

Lead acid batteries were invented in the late 18th century. It is the oldest type of
rechargeable battery and it is still being use today in cars, marine and other
power machines. Most of the battery consists of soft lead, but other small metals
are used to get much better electrical properties and to improve its mechanical
strength. Lead acid batteries come with an even number of volts since each cell
is approximately 2 volts. Lead acid batteries should not be discharged completely
because it will cause permanent damage on the battery. A full discharge will take

 27

away a small amount of capacity from the battery. Lead acid batteries provide
about 250 discharge and charged cycles, depending on the depth of the
discharged. When temperatures are high or when the battery draws high
currents, corrosion and depletion can occur.

Recently, there has been advancement in lead acid batteries. In the past, it was
known that lead acid battery performance was affected by sulfate accumulation.
Scientist discovered that by adding carbon to the negative plate, the charging
and discharging performance of the lead acid battery increased tremendously.
This type of battery is known as Advanced Lead-Carbon (ALC). ALC batteries
can operate between 30% - 70% state of charge, unlike the regular lead acid
batteries. Below is a diagram from Battery University.

Figure 3.12: Advance lead-carbon battery

Reprinted with permission from Battery University.

Lead acid batteries are very popular and are currently one of the bestselling
batteries in the market. Advantages of lead acid batteries are that they take
about a year for it to lose about 40 percent of its stored energy. They also work
well in cold temperatures. Lead acid batteries are very powerful and cheap.
Nevertheless, the battery is very bulky and is less durable than nickel cadmium
and lithium ion batteries. The lead content inside these batteries also damage the
environment. This type of battery is mostly used in projects where weight is not
an issue and lots of power is needed.

3.2.6.1.3 Lithium Ion Batteries (Li-ion)

If you open the back of cover of your phone, most likely you will find a li-ion
battery powering your device. Li-ion batteries are the most common batteries
used in electronics at the moment. The pros of li-ion batteries are that they are
very lightweight and have high power and energy density, which makes them
great for portable devices. Li-ion batteries are like a combination of nickel

 28

cadmium batteries and nickel metal hydride batteries. They are very similar to
nickel cadmium batteries when it comes to not losing much charge when not in
use, but also very similar to nickel metal hydride when it comes to having small
memory effect.

Compared to nickel cadmium, li-ion’s energy density is twice as much. One of the
limitations of using li-ion batteries is that a protection circuit is required in order to
limit de voltage and current. Also, li-ion batteries are more expensive compared
to Ni-Cad and Ni-MH. In conclusion, there are many different types of batteries
available in the market. They all have their advantages and disadvantages.
Nevertheless, at the moment the group believes that the lithium ion battery will
be best for the design. Below is a diagram on Li-Ion batteries from Battery
University.

Figure 3.13: Ion flow in lithium-ion battery

Reprinted with permission from Battery University.

 29

Table 3.4: Comparison of the batteries researched

Reprinted with permission from Battery University.

3.2.6.2 Charging

 30

3.2.6.2.1 Charging Ni-Cad and Ni-MH Batteries

First let’s talk about some of the benefits of slow charging a battery. Cells inside
a nickel-cadmium battery may have self-discharged so it is important to slow
charge the battery to bring all the cells to an equal charge level. It is always
recommended to slow charge the batteries for about 24 hours before first time
use. Slow charging the battery also helps when the electrolytes are at the bottom
of the cell, which happens when the battery is stored for a long period of time.
Slow charge will help redistribute the electrolytes and eliminates the dry spots on
the separator.

These types of batteries don’t reach optimal performance until they have been
charge and discharged several times. Some batteries, if made with good quality
could reach optimal specification requirements with just about five to seven
cycles. Nevertheless, it could also take about 50-100 cycles if is a cheap battery.
Other important factor is that these rechargeable batteries should not be charge
incorrectly. Most batteries will come with a safety vent to make sure it releases
extra pressure if is ever incorrectly charged. For nickel-cadmium batteries the
vent opens between 150-200 psi. The vents are re-sealable, but damage could
happen if vent keeps opening up, causing a leakage due to the electrolytes
escaping the battery. The battery should be charge correctly to avoid the battery
becoming in a dry-out condition. The graph below is from Battery University.

Figure 3.14: Charge characteristics of a nickel-cadmium battery

Reprinted with permission from Battery University.

 31

The way that some cheap charger know that the battery is fully charged is by
measuring or sensing the skin temperature of the battery. Once the battery
temperature is 50°C (122°F) the charger will stop charging the battery.
Nevertheless, that’s not a very accurate way of deciding a fully charged battery
because the core of the cell is much warmer than the skin of the battery. This can
cause over charging. Also, temperatures above 45°C (113°F) are harmful to the
battery. A better quality charger or more advance charger will determine when to
stop charging a battery by sensing the rate of temperature increase over time.
This method is much accurate than waiting for maximum temperature to occur
and it also keeps the battery cooler when charging. These advance chargers will
stop charging the battery once the temperature rises 1°C or (1.8°F) per minute. If
unable to detect this rate of change in temperature, the charger will also stop
once battery reaches 60°C (140°F). Other advanced chargers use a defined
voltage to determine when to stop charging a battery. The reason for this is to
have more accurate full charge detection. This method is also known as the
negative delta V (NDV). This types of chargers also include an absolute
temperature and time out timer for back up, just in case is unable to determine
the voltage drop across the battery. A major advantage of nickel cadmium
batteries with ultra-fast charging cells is that they can be charged extremely fast
and cause minimal stress on the battery.

3.2.6.2.2 Charging Lithium-ion Batteries

Charging lithium-ion batteries requires a voltage-limiting device, very similar to
the same charger use in lead acid batteries. The exception is that a lithium-ion
battery charger will have a higher voltage per cell with more voltage tolerance
and no trickle at full charge. Lithium-ion batteries do not accept overcharge;
therefore, manufactures are very strict when it comes to the voltage cut off unlike
lead acid batteries which offer some flexibility. A prolonged charging above 3%
(4.3 Volts) on a 4.20 volts per cell lithium-ion battery will cause plate metallic
lithium on the anode. The reason for this is because the cathode material loses
stability and becomes an oxidizing agent that produces carbon dioxide. Also a
prolonged charging will cause the cell pressure to rise.

Current interrupt devices (CID) are responsible for the safety of the battery, they
should stop current from flowing at about 145-200 psi. Some lithium-ion batteries
even have a safety membrane to avoid the battery from getting on fire, which
opens the battery at about 500 psi. Just like lead acid batteries, nickel cadmium
batteries and nickel metal hydrate batteries; lithium-ion batteries will melt down
and might get on fire when overcharged.

A lithium-ion battery is done charging once the current drops to 3% of rated
current or when it drops to a set level. Sometimes, elevated internal resistance
can cause the temperature of the lithium-ion battery to rise by 9º F. Nevertheless,
the lithium-ion battery and/or the charger should be decreasing when a rise of
18º F occurs. As previously stated, it is not desirable to fully charge a lithium-ion

 32

battery because high voltage stresses the battery. A portable device should be
turn off when charging to avoid stress on the battery because a parasitic load
confuses the charger, causing it to continue charging a battery although the
battery is already full charged. The graph below is from Battery University.

Figure 3.15: Charge stages of lithium-ion

Reprinted with permission from Battery University.

When charging lithium-ion batteries, is better to have the device turn off to allow
the battery to reach threshold voltage and lower saturation current when full.
Lithium-ion battery should not be charged while below freezing or at very high
temperatures. Lithium-ion batteries and chargers need to be discontinued if the
battery gets excessively warm while charging. Before storing, a 40-50 percent
charge is recommended. Partial charge is better than a full charge to prolong the
lithium-ion battery life.

In conclusion, the current and voltage limitations on lithium-ion batteries are
much easier to analyzing than complex voltage signatures because the current
and voltage will not change as the battery ages. The lithium-ion batteries do not
need saturation and they do not need to be fully charge to operate. In other
words, charging lithium-ion batteries is simpler than charging other types of
batteries. The advantages of charging lithium-ion batteries are the absence of
float charge and equalizing charges is not necessary.

 33

3.2.6.2.3 Charging Lead Acid Batteries

The most common method of charging a lead acid battery is by the method
called constant current constant voltage (CC/CV). A current that is regulated is
used to increase the terminal voltage, once it reaches upper charge voltage limit
it saturates and the regulated current will be reduce. One of the downsides of
lead acid batteries is that they require a long time to charge. Depending on their
size, it could take between 12 hours to 48 hours for a full charge. A multi-stage
charge method can charge a lead acid battery much faster, sometimes reducing
the charge time by 8-10 hours. Nevertheless, the multi-stage method cannot fully
charge the battery to its 100% capacity.

A lead acid battery goes through 3 stages when it is charging. The first stage is
called the CCC also known as the constant current charge. During this stage, the
battery is capable of charging up to 70% in just 5 to 8 hours. The next stage is
call the TC, toping charge. At this stage the current lowers and provides
saturation. This stage is necessary so that the battery does not lose its ability to
accept a full charge and to keep the battery performance at its peak. Toping can
pretty much be compared to resting after a hard and long workout. The final
stage is the FC, float charge. This is what makes it possible for the battery to
maintain its full charge. The graph below is from Battery University.

Figure 3.16: Charge stages of a lead acid battery

Reprinted with permission from Battery University

 34

When a lead acid battery is not being used, then it must be kept on float charge.
Float charge makes sure to stop the float current when the battery has reach full
charge and is at standby. This is good to do in stationary batteries that do not
draw any load. However, to prevent sulfation a lead acid battery needs a topping
charge at least twice a year. In order to determine the state of charge of the
battery, the open circuit voltage (OCV) must be measured. If the value measured
of 2.10 volts at room temperature indicates that the battery is about 90%
charged. Meaning the battery is in great conditions and only need a quick charge
prior to use.

For optimal charging, a lead acid battery should be charged in a well ventilated
location because the hydrogen gas that builds up is explosive. Lead acid
batteries should always be fill with distilled / de-ionized water. Lead acid batteries
should not be overfilling when it is on a low charge because it can cause the acid
to spill. If hydrogen appears on the negative plate or oxygen on the positive plate,
this is an indication that the battery is reaching a full stage of charge. Float
charged should be minimized when the ambient temperature exceeds a
temperature greater than 29°C (85°F). Also, lead acid batteries should not be
charged for temperatures above 49°C (120°F) neither should they be charged if
frozen. This is a good reason to not let the battery discharged too low, because
the battery would freeze sooner than a fully charged battery. Most important, is to
watering the battery. A new lead acid battery should only be inspected every few
weeks for watering maintenance. Never add electrolyte because this will cause
corrosion.

3.2.6.3 Voltage regulation

This section talks about the most popular types of voltage regulators and which
one is the best choice for the project. The purpose of voltage regulators is to
keep a constant voltage level. Voltage regulator can be used to regulate either
alternating current or direct current voltages. Computer power supplies use
electronic voltage regulators to stabilize the direct current voltages that is used
by the processor. In a distribution substation, large size voltage regulators are
used to make sure that the customers receive stable voltage no matter how
much power is taken away from the line. The reason why voltage regulators will
be use in this project is to make sure that each component gets the appropriate
voltage it needs to function and operate properly.

There are a couple things the group needs to consider when deciding what type
of voltage regulator the group plans on using for the design. First whether the
group needs a fixed voltage regulator or adjustable voltage regulator. Most of the
times the fixed voltage regulator is the right choice if there is no need to trim the
output voltage. Also a fixed voltage regulator has less parts than the adjustable.
Another thing to consider is whether the group needs a linear voltage regulator or
a low voltage regulator, also known as ULDO. The major difference between the
two is that a linear regulator needs a minimum of about 3 volts change between

 35

the output and the input voltages. The ULDO in the other hand, only needs
between 0.035 volts to 1 volts difference.
The group needs to consider not only the dropout voltage, but also the maximum
output current. This is critical because it can cause instability issues in the design
if the output current rating is not within the same ratings of the maximum required
current by the circuit. The group also needs to be careful that the voltage
regulator rating is not too high, because this can also cause the short circuit
current to be high as well. The Power Supply Rejection Ratio also known as the
PSRR is another factor to consider.

Voltage regulators also sometimes produce output noise, which could interfere
with the sensitive components in or design. Stability can also cause poor
performance because poor stability degrades the power supply rejection ratio.
Finally, the last factor the group needs to consider is the output impedance. If the
regulator has low output impedance, then it will perform better and the lower the
chances of instability.

3.2.6.3.1 Series Voltage Regulators

Series voltage regulators, also known as series pass regulator, is one of the most
popular types of voltage regulators. The way it works is by having a variable
element in series with a load in order to provide effective voltage regulation.
When the resistance of the series element is changed, the voltage across the
load remains constant because the regulator varies the voltage drop. Series
voltage regulators provide voltage regulation within a linear power supply. The
advantage of a series voltage regulator is that is doesn’t draw the full current and
the amount of current that it draws is as effective as the current used by the load,
making it more efficient than other types of regulators.

3.2.6.3.2 Shunt Voltage Regulators

Shunt voltage regulators use variable resistance to provide a path from the
power supply voltage to ground. Shunt voltage regulators are mostly used when
the amount of wasted current is so small that it is not even consider. This types
of voltage regulators are very simple and usually consist of just voltage reference
diodes. Shunt voltage regulators are found in many DC power supplies and in
many voltage reference circuits. Shunt voltage regulators come in different
packaging type with different operating temperature ranges, accuracy and even
reference voltage. The most popular being the 1.24 volts. Some applications of a
shunt regulator are used for precision current limiters, voltage monitoring, error
amplifiers, low output voltage, current source, analog/digital circuits and many
more. One of the disadvantages of a shunt voltage regulator is that it draws
maximum current from the source.

 36

3.2.6.3.3 Switching Voltage Regulators

Switching voltage regulators are very similar to a linear regulator, except that
thanks to a feedback mechanism is able to turn on and off devices in series. This
is great because then the group can either have fully conducting series elements
or switched off series elements with no power dissipation. One of the advantages
of a switching voltage regulator is that its output voltage can be greater than its
input voltage. There are several types of switching regulators and they come with
different input voltages, maximum output currents and maximum switching
frequency. The most common frequencies are between 300 kilohertz and 4
megahertz. Its maximum switching frequency could be 2.5 GHz. With a
maximum output current of up to 3 amps. Most switching regulators are used for
direct current to direct current conversion.

3.2.7 FPGA

As mentioned in above sections, certain parts of the project may require the use
of logic gates to perform hardware implementations of certain things. For
example, logic gates can be used to determine when the glove is in ‘standby’
mode and not actually being used so that it does not randomly send outputs
when the user is not trying to communicate anything, but their hand moves
slightly, causing the SLIG to output erroneous characters.

A great solution for logic gates is a Field Programmable Gate Array. This is an
integrated circuit that can be programmed with a computer and simulates the
presence of physical logic gates. The group would use a developing
environment for the FPGA such as Xilinx. In this way, the FPGA can be
programmed in any way that is desired such that it represents the actual
functionalities of physical logic gates. Many different circuits that would require a
large amount of physical logic gates can be implemented through the use of one
chip in the FPGA. An FPGA development board that all members of the group
have experience using and are proficient with is the Basys and the Basys II from
Digikey.

This board comes equipped with input and output devices, as well as LED lights,
and other equipment that allows the user to interact with the FPGA. For the
purposes of the SLIG, it would be unnecessary to have all of that extra
equipment, since the project has its own input and output equipment (the
sensors, data, etc.). Therefore, the development board would be unneeded and
only the chip (the actual gate array) will be needed, which can be included on the
printed circuit board and use the input and output that is present on the glove
from the sensors. This chip that comes on the Basys board is the Xilinx3E.

To program the FPGA so that it simulates any circuit that involves physical logic
gates, the group can employ the use of a programming language known as
Verilog. Verilog would allow the circuits to be built by the way of typing out the

 37

logic, and not necessarily having to physically connect all of the components
together to build the circuit. This makes it much more convenient to implement
the circuit because the circuits can get quite large and having wires and busses
running through the entire workspace can be daunting and make the design of
the circuits be difficult and tedious. However, if desired, programming
environments for FPGA design such as Xilinx also allow the developer to use the
workspace area to actually draw out the gates that are wanted to implement the
digital circuit. Below is a schematic diagram that was generated by the group
that shows how an FPGA array is laid out, as well as the input and output pins
that accompany it.

The group is not yet certain if the use of the Field Programmable Gate Array will
be employed because it has not yet been decided if the group will implement the
‘standby’ mode through the use of a hardware solution or a software solution. In
the case that it is a software solution, the group would simply program in the
‘standby’ mode into the microcontroller unit without the need to employ the use of
the FPGA and use hardware to determine if the glove is not being used at the
time.

3.2.8 Printed Circuit Board

The group has many options when it comes to choosing the manufacturer for the
printed circuit board that will be employed by the SLIG. The group would need to
keep in mind that that printed circuit board must be small (to fit on the glove, not
be too bulky, and also allow the end user to move their hand around freely
without having to worry about damaging or even sensing the presence of the
printed circuit board.

Because of the constraints present upon the project such as economic and time,
the group needs to find a compromise with a manufacturer that will provide the
printed circuit board at a reasonable price, but whom can also have the PCB
available in a relatively short amount of time. Of the many printed circuit board
manufacturers that are available, most of the ones that best fit the economic
constraint are shipping the board from overseas. This makes it imperative that
the group has the printed circuit board ordered at an early time because
otherwise it could arrive too close to the deadline, not giving the group ample
time to test and implement the printed circuit board fully into the project. The
main manufacturers that the group has been inquiring about are: Smart
Prototyping, ShenZhen2u, PCB Zone, Express PCB, among others.

Of all the possible manufacturers that can provide the group with the printed
circuit board, PCB Zone seems to be the manufacturer that has the most
reasonable price. To produce a 4-layer PCB, PCB Zone is charging $74.64 plus
shipping and handling. For the same 4-layer PCB, Smart Prototyping has it for
$88.85, ShenZhen2U has it for $91.97, and Express PCB has it for $204. All of

 38

these prices are plus shipping and handling. The manufacturers will not provide
the final cost of the PCB until after it has been designed and ordered, upon which
point the group can have a better idea of how much it will actually cost from each
manufacturer and how long it would take for the board to arrive from each
manufacturer. Given the information that the group has at the moment, it seems
as if PCB Zone will offer the group the best deal in manufacturing the PCB.
Below is a table with the four manufacturers that are under consideration, the
price from each, and the location from which the PCB would be shipped.

Manufacturer Price (Before Shipping) Manufacturer Location

Express PCB $204 USA

Smart Prototyping $88.75 China

ShenZhen2U $91.97 China

PCB Zone $74.64 New Zealand

Table 3.5: PCB Manufacturer Comparison

The printed circuit board will also have to be designed using some type of CAD
software. If the group was to go with Express PCB, they provide free CAD
software in which the design of the printed circuit board can be created. This is
very helpful because in this case the PCB will be able to be designed in their
native software and the group will not need to use some type of external CAD
software to design the printed circuit board. However, if the group decides to go
with one of the other printed circuit board manufacturers that do not provide a
CAD design software tool, there are many options out there that would provide
the service of designing the circuit board. The most popular software tool for
designing the printed circuit board is EAGLE. This is software in which the
printed circuit board can be fully designed. This would allow the manufacturer to
just read the design that was made in EAGLE and build the PCB in the exact way
that is needed for the particular application at hand.

Besides EAGLE, there are a number of other free options in which the printed
circuit board can be designed. Some of these software tools are: PCBWeb
Designer, ZenitPCB, Osmond PCB, DesignSpark PCB, Fritzing, as well as
others. These software tools have the ability to import specific parts and design
the printed circuit board to include the exact parts in the exact locations that is
needed for the project. The group will have to gain proficiency in using these
CAD software tools and design the printed circuit board that will go into the SLIG.
At this point in time, the group thinks that the software design tool that is most
likely to be used are either EAGLE or Fritzing. These are two very well-known
and well respected software tools that have credibility and have a plethora of

 39

resources available online to learn how to use and troubleshoot in creating the
design.

3.2.9 Serial Communication

Serial communication is when data is transmitted one bit at a time. This data
uses a specific channel with a known standard that is used to transmit data
through a known and tested method. Serial communication will be used in the
implementation of the SLIG to transmit data from the microcontroller unit to the
Bluetooth module. The Bluetooth module can be configured using serial
communication and use the data received to transmit it through the ether and out
to the receiving end of the Bluetooth setup (the Android smartphone). The most
popular form of serial communications is the use of RS-232. This is a standard
that is very popular in the electrical engineering industry and is used world-wide.
Through RS-232, data is transmitted through a cable that has a number of wired
connections in it. There are different types of cables that can be used to transmit
data via the use of serial communication, and it all depends on the type of setup
that is being used that will determine the type of cable that is used. For example,
if a regular, “straight” cable is used, that means that each pin on each end of the
cable is a straight shot and corresponds to the same pin on the other side of the
cable.

This type of setup requires the use of a modem. A modem in between the two
sides of the communication medium is helpful at changing the send and receive
bits and aligning them with the corresponding bit that would go on the other side
of the communication line. This is the more traditional method for using serial
communications. In this scenario, the setup consists of: the transmitter, which is
producing an output which is the data that is trying to be transmitted, a
transmitting modem, which does the job of “changing” the send bit from the
sending side of the cable to the “receive” bit on the receiving end of the
communication, a straight shot RS-232 cable that connects from the transmitting
modem to the receiving modem, a receiving modem which takes in the data that
was transmitted through the straight cable, and finally the receiver, which is the
intended target that the information was trying to be sent to in the first place.

The alternative to using a straight cable with modems to do the job of switching
the orientation of the send and receive bits and make the communication
possible, is through the use of a “null-modem” cable. A null-modem cable is a
cable that is specifically designed to not need a modem. This type of cable can
be connected from the transmitter straight through to the receiver without the
need of any interference.

The way that this type of cable works is that within the cable, the send and
receive bits are actually changed, internally within the insulation of the cable. For

 40

this reason, this type of cable is sometimes colloquially referred to as a “twisted
cable”. This type of cable makes it a lot more convenient to use serial
communication because an engineer or technician need only to have a null-
modem cable in their bag and they can simply connect to whatever they are
trying to communicate with without the use of large amounts of hardware such as
modems.

Below is a simple schematic diagram that was generated by the group that
illustrates how the null-modem cable works and switches the wires internally so
that pin 2 on one end is actually continuous with pin 3 on the other end, and not
the same pin 2. As is evident below, the null-modem cable can send information
without the use of a modem because the wires inside of the cable are set up in
such a way that the send from the transmitting side is twisted to match the pin on
the receive pin of the receiving side of the link. This makes it more practical to
use the null-modem cable and not have to have modems in the system.

Figure 3.17: Illustration of Null-Modem RS-232 Cable

3.2.9.1 Analog to Digital Converters

The implementation of the Sign Language Interpreter Glove will need the use of
analog-to-digital converters. This is because the output that is received from the
sensors is a continuous, analog voltage level. The microcontroller naturally
operates at the digital level and it would be impossible to perform digital
computations on an analog signal. For these reasons it is necessary to convert
the analog voltage that is taken from the flex sensors, pressure sensors, and
accelerometer into a corresponding digital voltage level.

There are many different types of analog to digital converters. They all use a
slightly different method to provide an output that is a digital voltage but that is
proportional to the analog voltage that was input. One type of analog to digital
converter is the “flash” analog to digital converter. This type of analog to digital
converter uses a series of comparators that all operate simultaneously to

 41

determine what the voltage level of the analog signal coming in is. The “flash”
converter has a specific voltage level “assigned” to each comparator, and each
comparator is constantly examining the input analog signal to determine if that
signal matches up to its assigned level. Eventually one of the comparators will
have a match with the analog input signal, and it will output its digital version of
that voltage level.

3.2.10 Glove

3.2.10.1 Functionality

The glove of course will serve the purpose of holding all of the different
electronics and sensors and making this project a usable device. In choosing a
glove we must consider certain important features of said glove to make sure the
electronics function properly and that the end results is a comfortable but efficient
product. These features include but are not limited to the size, type of the
material and number of layers of the glove. To elaborate, this project would
require a glove that could fit most people but definitely be large enough to hold all
required electronics. Furthermore, different materials could possibly conduct heat
differently and so some may prove less than optimal for working along with
electronics and sensors. Lastly, the team has noticed that there are some gloves
available with two layers which would be convenient in the sense that the
electronics of the place between the two layers improving the overall aesthetics
of the glove.

3.2.10.2 Models and Specifications

As could be expected there is a plethora of different gloves for all types of
purposes available in the market. As mentioned before it is important to pick a
glove that best matches the needs of this project. Below are some of the models.

Under Armour Yard Baseball Glove – This glove makes use of very high
quality, soft cabretta leather for optimal feel. This would probably make a very
popular choice among users and improve the overall comfort of using the SLIG
glove. Along with the leather this glove makes use of synthetic materials to
increase the durability and flexibility of the glove which is a great advantage
when it comes to applying electronics this glove and the repeated use that will
have to endure.

Under Armour ColdGear Infrared Fleece – This is glove is made from micro-
fleece which is a thermal conductive material that is very efficient in keeping onto
heat without adding bulk of the glove. Although this may be helpful to a consumer
who may need the glove for outdoor purposes it may prove troublesome for this
project as electronics used for the Slagle most likely generate heat and trapping
this he would only make it uncomfortable for the user. However, it should still be

 42

noted that it seems to be more flexible with the use of spandex than most other
leather gloves, which will enable the user to fully flex their hands and form the
sign language letters correctly.

Under Armour ColdGear Infrared Engage Run Gloves – These gloves are not
made of fleece like the previous but they do retain the same heat absorbing
properties of the ones before. Again, this is this will probably be a disadvantage
for indoor use where he will just make it more comfortable for the user however
this particular model has a very prominent distinct feature. It claims to have
touchscreen compatible fingertips which would mean that the user can make use
of the screen will be displaying the information using the same hand that they’re
using to to make the sign language letters. Moreover, this is a very aesthetically
pleasing glove out visually match our PCB board and all the electronics. This
would make the end product more satisfying to the user.

Under Armour Strike Skin Tour – This was originally designed to be a golf
single glove that features premium high-performance leather that can stay soft
and flexible after heavy use. It is made of the top quality cabretta leather that
enables this glove to deliver the promised level of control and flexibility, which will
be crucial in allowing the user to fully form every single sign language letter
properly. Plus, since it is sold as a single glove, the team would be saving the
cost of buying two gloves. Finally, it has small incisions all throughout the fingers
that will most likely be useful if we have to tie any of the electronics through the
glove.

Under Armour Charge Will Run – This glove is made out of very soft wool that
is advertised to dry much faster than traditional material. But like many of the
previous gloves, this model claims a high-level of flexibility that is always a
necessary feature to allow the user to fully form the sign language letters and like
ones before, it has techtouch technology that allows you to use touchscreen
devices without having to remove the glove. Wool is said to be an insulator so it
should not interfere with any of the activities from the electrical on the device.

Summary of Features

Model UA Yard
Baseball

UA Coldgear
Infrared

UA ColdGear
Infrared
Engage Run

UA
Strikeskin
Tour

UA Charged
Wool Run

Price $47.99 $29.99 $24.99 $21.99 $49.99

Material Leather Polyester,
Nylon,
Polyurethane

Polyester Sheepskin
Leather,
Nylon

Nylon,
Wool,
Elastane

Top
Feature

Soft
Leather

Tech Touch
technology

Thermo-
Conductive

Maximum
Control

Tech Touch
Technology

 43

Table 3.7: Summary of Glove Options

3.2.11 Onboard LCD Display

Although the main method for the end user to view the text that is being
generated by the Sign Language Interpreter Glove is the use of an Android
application that will display the output in real time. However, the group has
considered the idea of including an LCD display on the actual glove itself. This
can be helpful to the user because with the Android application, the person with
whom the user is trying to communicate with can see what is being said, but the
actual user cannot know if the gesture that they have made actually produced the
correct output on the display, unless they are right next to the person with whom
they are speaking and can physically view the cell phone.

For this reason, it would be helpful to have a display that is native to the glove.
The user can be performing their gestures, and simultaneously monitoring that
the control system is producing and transmitting the proper character. In the
unlikely case of an error being made by the control system, the user can
communicate with the receiving person, and let them know that they in fact were
not trying to say what was displayed on the cell phone, and try to correct it. The
on-board LCD module would have several pins, normally about 16. These pins
would be configured with the output from the microcontroller and the display
would show the corresponding character that was outputted from the
microcontroller unit and also sent out through the Bluetooth module. The onboard
LCD display would employ the use of the pins that are on it and it would interpret
the characters through the use of hexadecimal values that illuminate specific
parts of the display. In this way the SLIG will show the hand gesture that the
user is trying to make and display it right on their glove, so that the receiver of the
message can be sitting away from the user (within Bluetooth’s range) and the
user can perform their hand gestures with confidence that the receiver is reading
the actual character that the user is trying to communicate.

Though the addition of the LCD display to the SLIG would add an extra layer of
convenience for the end user, given the economic, health, safety and time
constraints that are imposed onto this project, the group will have to go through
an in-depth process of determining whether or not the implementation of the LCD
would be a worthy endeavor when designing the Sign Language Interpreter
Glove. On top of this addition taking quite a bit of time to design and implement,
it would also cost more money to purchase the display and additional parts

 44

needed to seamlessly implement it into the project. In addition, this display
would also add another piece of electronic equipment to the glove, and as
mentioned in another section, the group would like to keep the glove as sleek as
possible, avoiding any bulging electronic components that the end user can
inadvertently damage and/or hurt themselves.

3.2.12 Bluetooth Low Energy Module

The job of the Bluetooth module is to collect all the information from the external
sensors, could be either digital or analog data. Once it collects the information it
should send it via radio frequency to the external device. There are several types
of Bluetooth modules. This section will talk about the pros and cons of several
different types of Bluetooth modules.

One of the first decisions that the group needed to make in regard to the
Bluetooth module was whether a single mode or a dual mode was need it. Single
mode is when only a Bluetooth low energy module is used and dual mode is
when a Bluetooth Classic and a Bluetooth low energy module is used. Because
of cost and simplicity of the Sign Language Interpreter Glove, the group decided
to go with just a single mode Bluetooth module. Dual mode would have allowed
older devices that do not support Bluetooth low energy to be able to
communicate with our project. Nevertheless, if the group would of have used
dual mode, the power consumption of the Bluetooth module would have been
much greater and more expensive.

Bluetooth modules also come in two different packages options, which are Quad
Flat No Leads package also known as QFN and Wafer Level Chip Scale
package also known as WLCSP or CSP. Some differences between the Quad
Flat No Leads package and the Wafer Level Chip Scale package is that the QFN
is much larger and cost more because it contains more material than CSP.
Nevertheless, using a WLCSP will be more expensive when used in a PCB
design because it requires tighter tolerances and more than two layers. So QFN
might be more inexpensive when use in a PCB design. CSP is more suitable for
really small product design where QFN doesn’t fit.

3.2.12.1 Nordic Semiconductor nRF8001

The group is considering the Nordic Semiconductor nRF8001 Bluetooth low
energy chip. The nRF8001 runs the Bluetooth low energy stack internally. The
nRF8001 Bluetooth chip features a very simple serial interface that is compatible
with many microcontrollers. The peak current of the nRF8001 Bluetooth chip
could be as low as 12 mA. Having such low peak current allows the nRF8001
Bluetooth chip to have a battery lifetime that last months and depending on the

 45

application could even last years. The nRF8001 Bluetooth chip supports security
functions as well as GAP role, server role and client role. Basically the nRF8001
Bluetooth chip is design for the slave role (peripheral operation).

The nRF8001 Bluetooth chip comes in a 32-pin 5 by 5 Quad Flat No Leads
package. The nRF8001 Bluetooth chip also has an analog to digital converter
which can be used for managing the level of the battery. The nRF8001 Bluetooth
chip also includes a low tolerance 32 kHz RC oscillator which is used to remove
the need for an external crystal. The nRF8001 Bluetooth chip also includes a DC
to DC voltage regulator and a linear voltage regulator. The DC to DC voltage
regulator is used to lower the current consumption when using a 3 V battery by
20 percent. The linear voltage regulator is used to provide a voltage supply range
of 1.9 – 3.6 volts.

Below are some of the features the nRF8001 BLE Chip offers.

 Ultra-low power consumption
 11mA Active TX peak current at 0dBm output power
 12.5mA Active RX peak current

 2.4GHz Radio
 Fully Bluetooth Smart v4.0 compliant
 0, -6, -12, and -18dBm programmable TX output power

 System Peripherals and I/O
 Temperature sensor
 UART for DTM

 Embedded Bluetooth Smart stack
 LL, L2CAP, GAP, SM, ATT and GATT mandatory features

for peripheral role operation
 GATT Client and GATT Server

 Temperature range
 -40 to +85 ºC

3.2.12.2 Microchip RN4020

The second option would be the RN4020 by Microchip. The RN4020 Bluetooth
low energy chip is compatible with many of the affordable microcontrollers in the
market today. The RN4020 offers internal scripting capabilities to accomplish
those basic functions, avoiding the need for software development tools or an
external host MCU. The RN4020 Bluetooth chip features digital analog inputs
and outputs, ASCII command interface API over UART, MCU and it includes all
Bluetooth SIG profiles. Users can remotely control the RN4020 Bluetooth chip
using a secure connection with another Bluetooth chip. Updating the RN4020
Bluetooth chip is easy; it can be done over the air or even via the UART
interface. Optimize for long range of over 100 meters, the RN4020 Bluetooth chip
offers a built in high performance printed circuit board antenna. The RN4020

 46

Bluetooth chip is the perfect size for the Sign Language Interpreter Glove, only
11.5 by 19.5 by 2.5 mm.
Some of the features of the RN4020 are:

 GAP,GATT,SM, L2CAP and integrated public profiles
 Data streaming with Microchip's Low Energy Data Profile (MLDP)
 7 dBm transit power for 100m+ range
 Software configurable role as peripheral or central, client or server
 UART interface, GPIO, ADC
 64KB internal serial flash
 Castellated SMT pads for easy and reliable PCB mounting

Figure 3.18: RN4020 Pin Diagram

Reprinted from the Microchip RN4020 datasheet.

3.2.12.3 Texas Instruments CC2541

The group is also considering the CC2541 chip by Texas Instruments. The
CC2541 Bluetooth chips has several applications but are mostly used in mobile
phone accessories, home automation, lighting control, alarms, wireless sensor
networks and many more. The CC2541 Bluetooth chip is one of the most recent
Bluetooth chip that Texas Instruments has manufactured. The CC2541 Bluetooth
chip does not requires much power to function, which means that it can operate
on a small coin cell battery and it can provide excellent battery lifetime. Overall
the CC2541 Bluetooth low energy chip provides high performance, it’s very
affordable.

The CC2541 is composed of several different parts. The CC2541 comes with the
option of a 128 KB Flash Ram or 256 KB Flash Ram. The CC2541 contains a
single cycle 8041 CPU core. The CC2541 Bluetooth chip connects all the
hardware to the memory via an SFR bus. The CC2541 SRAM is able to keep its

 47

information even when is powered off thanks to its ultralow power. The CC2541
also offers a 5 channel DMA controller. The CC2541 also comes with a watchdog
timer and a sleep timer. The main difference between the CC2540 which is
another popular TI Bluetooth low energy chip and the CC2541 is that the
CC2541 has an I2C device. I2C stands for inter-integrated circuit, and its purpose
is to support the slave and master operation. Multiple master devices are able to
connect thanks to the bus design of the I2C. With a simple command, I2C allows
slave and master devices to switch their roles.

Below are some of the features that the CC2541 Bluetooth Chip offers.

 RF
o Excellent Receiver Sensitivity (–94 dBm at 1 Mbps), Selectivity,

and Blocking Performance
 Layout

o 6-mm × 6-mm QFN-40 Package
 Low Power

o Active-Mode RX Down to: 17.9 mA
o Active-Mode TX (0 dBm): 18.2 mA
o Power Mode 1 (4-µs Wake-Up): 270 µA
o Power Mode 2 (Sleep Timer On): 1 µA
o Wide Supply-Voltage Range (2 V–3.6 V)

 TPS62730 Compatible Low Power in Active Mode
o RX Down to: 14.7 mA (3-V supply)
o TX (0 dBm): 14.3 mA (3-V supply)

 Peripherals
o Powerful Five-Channel DMA
o Battery Monitor and Temperature Sensor

3.3 Software

There are multiple software components required for the sign language glove
which are explained in detail in the following few sections. The first section will
explain the mobile application being created for the user interface. The mobile
application is responsible for wirelessly displaying hand gestures performed by
the glove onto a mobile phone screen as text. The next section will discuss the
control systems portion of the software, which includes programming the
microcontroller and writing machine learning algorithms used for hand gesture
recognition. Some of the programming languages will be considered too so that
we are sure we make the most informed choice for the mobile platform and
microcontroller.

3.3.1 Mobile Application

 48

In the next few sections, we will compare the top three mobile platforms available
to use for our mobile application.

3.3.1.1 Mobile Application Overview

The mobile application is an important feature of this project that will serve as the
user interface for the sign language glove. The functionality of the glove will be
determined by the success of the mobile application which is easily forgotten in
many technical applications. Many designers are concerned with meeting the
technical specifications and requirements of their design but forget that the user
(consumer) is the end-goal of the project. In order for the mobile application to be
successful, the design of the app should consider the user, be simple and
elegant, and meet all design requirements. A more detailed discussion of the
design process for the mobile app user interface is explained later in the Mobile
Application section under Design (6.2.2.3 Menu Layout).

The purpose of the mobile application is to provide the user with a visual
interface for the sign language glove that displays feedback of the gestures in
real time. The mobile application will not be performing the gesture recognition
processes; it will mainly be responsible for receiving data from the glove via
Bluetooth and displaying it on the phone screen. Therefore, the amount of
processing power required for graphical user interface (GUI) of the mobile app
will not be very demanding and will not be a major concern when choosing a
mobile device platform. The three main mobile platforms available are Android™,
iOS, and Windows Mobile which all have their advantages and disadvantages.

When choosing a mobile platform, each design requirement for our sign
language glove cannot be looked at individually. For example, designing the GUI
for an iPhone would be much easier than designing the GUI for an Android
phone because iPhone displays only come in a few standard sizes and Android
displays can range from a mobile phone screen to a tablet. However, the
approval process of putting an app in the app store for Android is much easier
than iOS. Therefore, choosing the mobile platform that supports the most
important design features will be the best option. One factor that will make the
decision a little easier is that some of the design constraints for the mobile
application come with the mobile platform which means that there is no choice.
One example where this comes in handy is when choosing a programming
language because Android, iOS, and Windows Mobile all have different
languages. These languages all have about the same capabilities and
performance but it doesn’t really make a difference which one is used except for
the developer’s preference.

In order to determine which mobile platform is the best fit for the sign language
glove, a more detailed analysis needs to be done on each platform. As
mentioned above, only a select few features make a significant difference for the
mobile platform and these features need to be identified before proceeding. In

 49

general, developers choose their mobile platform based on the
hardware/software compatibility, programming languages, audience base,
security, and available resources. Not all of these considerations are weighted as
heavily as others but need to be included in the decision process. Determining
which features are important and which are not, the functionality of the sign
language glove comes into play. Taking a look at the hardware and software
needed is the first step because it is the most prominent part of the design.

Some common mobile phone hardware components consist of a combination of
the following: display, keypad, battery, memory (ROM/RAM), microprocessor,
USB, speaker, microphone, camera, Bluetooth, GPS, antenna, volume control
switch, and on/off switch. From this list, the mobile application for the sign
language glove will only use the battery, display, Bluetooth, microprocessor, and
possibly memory components, so these are the main hardware features that will
be compared when choosing a mobile platform. As far as the software goes, the
design considerations include programming languages, developer access to the
mobile development environment and mobile phone, and access to the app
store. The biggest factors are whether the developers (us) have access to the
mobile development environment and which mobile phones the developers own
because if the majority of our team has Android it would not make sense to use
iOS as our mobile platform since we would have to get ahold of more iPhones.
The next step is to take a look at the other criteria required for making a mobile
application like the audience base, security, and available resources because
these can make a big influence in our decision too. However, these factors must
be discussed in more detail for each mobile platform since they are considered
facts more than they are design options.

3.3.1.2 Potential Mobile Platforms

3.3.1.2.1 Android

Android is a very popular and powerful operating system that runs on phones,
tablets, watches and more. Having the largest installed base of any mobile
platform, Android provides a platform for creating apps and games for Android
users across the globe as well as a well-supported developer environment. The
Android Developer Tools offer a complete Java Integrated Development
Environment (IDE) called Android Studio, which is basically an application that
provides tools for developing, debugging, and packing Android apps. In addition,
Android Studio provides developers with the option of running their apps on any
available Android device or creating a virtual device that emulates any hardware
configuration. Therefore, Android apps are compatible with all Android supported
phones, tablets, and other devices and it automatically adapts to your UI.
Another feature that makes Android so attractive to developers is the fact that it
is open source, which means that there are better quality apps, more
documentation, and more customization. The Android Open Source Project is led
by Google and ensures that all Android developers using their open source

 50

community also maintain the Android Compatibility Program. This means that
every app on Google Play will be compatible with most Android devices and
keeps Android developers all on the same page.

All of these bells and whistles that make Android so popular are great but now it
is time to assess how Android can satisfy the needs of the sign language glove.
As mentioned above, the display is not a compatibility issue for Android
applications since their framework is designed to adapt to the UI of the device.
The biggest hardware compatibility issue predicted will be communicating
between the glove and the mobile app, so we will start there. Standard hardware
on and Android phone offer a few different methods of sending/receiving data by
antenna like radio frequency (RF), Wi-Fi, Bluetooth, and GPS but the decision
process for choosing the best option is discussed in the communication section
of the report. Therefore, the sign language glove will only be using Bluetooth as
its means of transmitting data. Most new Android devices are Bluetooth
compatible so this should not be an issue; however, the latest version of
Bluetooth is not supported by all mobile devices. Making sure that the data sent
from the glove to the mobile app is an essential element of the project but it will
be one of the more challenging obstacles during mobile development and thus,
the easier we can make this process the better. The newest Bluetooth
technology, Bluetooth Low Energy (BLE), offers the best reliability and efficiency
so we will be taking advantage of this feature if possible. Thankfully, all of
Android’s latest mobile devices are al BLE compatible so it passes the test.

Another hardware consideration for the mobile application is the power
consumption of the app on the mobile device because battery life is an important
factor for anything to do with mobile devices. However, since using Bluetooth
Low Energy is the best option for wireless communication, there is no need to
worry about the power consumption demanded by Bluetooth because it is
already designed to be very power efficient. The other two hardware components
that come into question are the processor and the memory on the mobile device.
After learning more about Android’s Compatibility Program, we discovered a
compatibility test that all Android apps must be evaluated by during the
development process which makes our job that much easier. The test ensures
that an app is compatible with all software and hardware requirements of a
compatible Android device, so as long as our mobile app is not pushing the limits
of the processor and memory it should be fine. Most of the processing will be
done on the glove’s MCU anyways so the processing power required will be
minimal.

Now that the hardware compatibility options are exhausted, we will test Android
for software compatibility issues. The first main concern with software is whether
the developers have access to the mobile development environment and a
compatible Android mobile device. After surveying the team, it appears that three
out of four members own an Android mobile phone and one owns an iPhone.
With three compatible Android devices in the group, the next question is whether

 51

we have access to the mobile development environment. Having access to
Android’s mobile development environment simply means that you have access
to a computer capable of running Android studio and testing the mobile
application. With four senior Electrical Engineering undergraduates at UCF, we
have plenty of options for computers such as our own personal computers to the
computer labs open on campus and other locations that should be able to run the
software. Android Studio is capable of running on any of the popular operating
systems like Windows, Mac, and Linux and therefore will be easy to find access.

The last few considerations which have been briefly mentioned already are
security, audience & availability, and resources. In the introduction paragraph to
Android, it claimed to have the largest install base of any other mobile platform.
So, not having enough users will not be an issue; especially since UCF is a large
public university and has one of the largest concentrations of mobile phone users
in the world. Building on top of that, the resources available for Android
developers are abundant since Android is open source and comes with tons of
documentation and third-party applications that will make developing a new app
much easier than starting from scratch. However, with such a big Android
community comes lots of security threats which can be a major issue for certain
types of applications like banking and online shopping which require a lot of
personal information to be entered into their system. Luckily, our mobile
application does not need any vital personal information and our project scope
does not reach past building a prototype so we should not have to concern
ourselves with security.

3.3.1.2.2 iOS

iOS is another very popular mobile platform that is just one of Apple’s operating
systems (OS). Apple has an OS for mobile phones, tablets, computers, watches,
and TVs which are all written in the same programming languages but applied to
each platform differently. The global market share of iPhones is only about 20%
but the U.S. market share is about 50:50 compared to Android. This means that
iPhones are about just as popular as Androids are in the U.S. to date and is a
viable option for our project based on user availability. Just like Android, iOS
comes with its own integrated development environment (IDE) called Xcode that
allows apps for Mac, iPhone, and iPad to be built and tested in one program.
There are some pros and cons between using different IDEs but these reasons
are not as important as the other differences between mobile platforms. The iOS
Developer Library is another important bonus for developers; this library has API
references, programming guides, sample code, and many other resources to
help build your apps. iOS mobile app development is just as popular as Android
development, if not more in the U.S., and according to the market, iPhone apps
generate more revenue on average than Android apps. The reason for this is that
iOS users tend to buy more apps and there is research that shows that iPhone
owners generally belong to an above average social class. A big portion of
Android’s user base is in third-world countries because Android phones are

 52

generally less expensive than other mobile devices; this means that a lot of
Android’s users either don’t buy apps or don’t spend much money on apps. In
most cases, more revenue from apps is appealing to new mobile developers, but
the mobile app created for this project is not intended to be sold on the market for
profit which makes this unbeneficial for us. Another road block for iPhone apps is
that the process of getting an app approved in the Apple app store is notoriously
difficult and takes a long time.

Moving on to the more important developer constraints, the hardware and
software compatibility of iPhones needs to be considered. As mentioned in the
mobile platform overview, the most important hardware features required for the
sign language glove’s mobile app are the display, Bluetooth, battery, processor,
and memory components. The display for iPhones is not an issue because
iPhones only come in a few standard sizes, unlike Android, and will be relatively
easy to work with. One note is that although iPhones and iPads both operate
using iOS, the apps for each platform are different because of the screen size
and therefore require developers to make an app for each platform individually.
Luckily, the scope of this project does not need an iPad app because that would
just be an additional feature which doesn’t add significant value. Another feature
that won’t be an issue with iPhone compatibility is Bluetooth because iPhones
are all manufactured by Apple who only produces a couple different models of
their phone. Thanks to Apple’s high quality standards, all of the latest iPhones
have Bluetooth Low Energy (BLE) which will be used for communicating with our
glove. Using BLE also means that our battery life will not be a big concern for the
mobile app because the power consumption from the other features will be
negligible in comparison to the Bluetooth. The last piece of hardware to consider
is the memory, but we know that since the mobile app will not be doing many
computations there should be plenty of memory available. So now a look at the
software side of mobile development on iOS will determine its feasibility.

When talking about the software side of mobile development, this is referring to
the operating system required to run the IDE and the type of mobile phones that
our team has access to. The types of mobile phones that our team owns are
discussed in the Android section so it will not be brought up again here. The IDE
for iOS is not compatible with any other computer OS other than Mac however,
which will cause an inconvenience because nobody on our team owns a Mac
computer. There are Macs available in the Engineering building on campus, but
having a personal computer for mobile app development will be necessary for a
proper testing environment. The only other main consideration for choosing the
mobile platform is the security of iOS which can be ignored because this project
will only be building a prototype of the sign language glove. The mobile app for
this project will not be collecting personal information or storing data onto servers
so there should be no need to worry about security anyways like was discussed
in the Android section.

3.3.1.2.3 Windows Mobile

 53

Windows Mobile is the last mobile platform that we will be considering for the
mobile application of our sign language glove. After going through the design
considerations for the last two mobile platforms, Android and iOS, we can
already deduce that Windows Mobile will not be a viable option for our mobile
platform mainly because none of our team members own a Windows phone.
However, it is still important to discuss what Windows Mobile is and some of the
reasons why it might be a good option for a mobile platform if the circumstances
were right. There will be no need to look at the Windows phone’s
hardware/software compatibility though since that won’t affect our decision.

Windows Mobile is a mobile platform created by Microsoft and it is the third most
popular mobile platform in world. Based on the Windows operating system (OS),
Microsoft tried to merge the computer based interface of Windows with the
mobile interface and create a new experience for mobile users. If you take a look
at the newest Windows operating systems, Windows 8 and Windows 10, their
GUI looks very similar to the GUI of Windows Mobile which is no surprise.
Microsoft’s goal is to have universal Windows applications that can be accessed
on all Windows devices like the PC, phone, tablet, and more so that developers
target device families and not just an OS. This allows developers to easily make
applications for multiple platforms and allows users to have access to all of their
apps on any Windows device. Now users have a convenient and productive way
of getting the most out of their applications without having to spread themselves
thin over multiple platforms and applications that aren’t cross compatible.

Taking a deeper look into the Windows Mobile platform, the development tools
for Windows Phone applications are actually very good. Just like the other mobile
platforms, Windows Mobile has its own integrated development environment
(IDE) called Visual Studio which is the preferred IDE for Windows Phone
development. “It has built-in support for version control, code analysis, TDD (Test
Driven Development), and even UML (Unified Modeling Language) diagram
generation” (). These tools, in addition to the Windows phone community, make
developing for the Windows Mobile platform a great option for developers looking
to support Microsoft’s vision.

Another big factor for mobile developers is the programming language used to
create the mobile application. Microsoft gives developers the flexibility of working
with a few different languages such as C#, C++, and Visual Basic in addition to
the markup language XAML (these languages will be discussed in more detail in
the programming languages section). Having three programming language
options allows Windows phone developers to choose which language will give
them the best performance for their mobile app’s purpose or choose the one that
is most comfortable to use.

The downsides of using Windows Mobile are that the user base is a small
fraction compared to that of Android and iOS and the IDE, Visual Studio, requires
purchasing a license which starts at about $500. In the global market today,

 54

Android and iOS own over 90% of the mobile devices which leaves Windows
Mobile and Blackberry at about only 4-5% each. Therefore, getting access to a
Windows phone will be difficult, especially because none of our team members
own one. Also, the Windows Mobile community is not as strong as Android’s or
iOS’s because the small user base leads to a small developer community. Even
though developing on Windows Mobile is still possible, it is very inconvenient and
therefore will not be used.

3.3.1.3 Conclusion

In the Android section, it was already concluded that three out of four of our
members own Android phones so it would be much easier to use Android as our
mobile platform for this reason alone. However, detailed research of each mobile
platform was necessary to ensure that there was not something preventing us
from using Android or advantageous to using one of the other platforms for the
sign language glove. So, now it is time to compare how each mobile platform
performed against the given constraints and make a final decision. Looking at the
more basic features first, there were no issues with security or audience base for
either Android or iOS which means that we can focus on the other more
prominent issues like the hardware and software. From a hardware standpoint, if
one of the mobile platforms does not support all of the vital features of our sign
language glove, then there will be a big problem with that platform. Thanks to our
simple design, both Android and iOS support all of the hardware components
that the mobile application will use. The only hardware compatibility difference is
that Android devices can have a wide variety of screen sizes compared to
iPhones, which have only a couple standard screen sizes. Although developing a
variable sized GUI for mobile apps is more work and can cause applications to
not look as they were intended, it is not a serious issue.

A more prominent decision is the software aspect of each mobile platform
because developing the mobile application requires access to the IDE and a
mobile device for testing, which our team does not have for all three platforms.
These requirements seem fairly simple, but iOS and Windows both don’t give
free access to their IDE (iOS notably because Apple only supports their IDE on
Mac OS) whereas Android not only has free access to its IDE but it is open
source and has tons of free resources available. It only makes sense to use
Android for a short-term project such as this one, given our teams’
circumstances, where the cost and accessibility of the mobile platform’s software
are the second priority behind hardware compatibility. In order to make the
situation a little clearer, consider using iOS instead of Android from our
perspective. Switching to a new computer OS and getting a mobile device for
testing would be a huge waste of resources (time and money) if there is no
significant benefit to the design process or functionality. Another point to consider
is the goal of our project, which is to create a working prototype, not a fully
functional product that demonstrates our knowledge of electrical engineering.
With the goal in mind, our investment into this project should only be for

 55

educational purposes and not for a profitable business model. Therefore,
creating a mobile application for educational purposes makes Android an even
better choice because all of the open source resources that are available to our
developers. These resources will help smooth out some of the more time
consuming parts of the mobile app development process and give more time for
learning and helping out with other parts of the design; plus, we can give back by
adding our finished mobile app to the Android open source community.
Therefore, with everything in consideration, we feel the best option for our mobile
application platform will be Android.

3.3.2 Control System

While developing the best approach plan for the control software of the SLIG, the
first step was formulating a plan and approach. First, the group had to determine
whether the group wanted to process the data on the glove using the
microcontroller, or if the group wanted to send the raw data to a device with more
computing power. Before the group could answer this question, the group had to
have a better idea as to which path the group wanted to take to interpret the
hand-gesture data provided by the sensors. First, the group looked into the
sector of computer science called “machine learning”. Machine learning uses
highly specialized algorithms which “train” the system to “learn” from the data to
avoid mistakes (see section “Machine Learning”).

If the group decide to use machine learning in our project, the group would likely
process the data externally (not on the microcontroller) due to the higher
computing power. Given that the SLIG will also be used with a stronger
processor (Android phone for user interface), the group figured it would be
possible to use this processor to interpret the hand gestures. In that case, the
group could potentially use the microcontroller unit to collect the raw data from
the sensors, normalize the data, and bundle it up into “packets” that the group
can send to the Android phone via Bluetooth. Then, the group would be able to
implement the machine learning algorithm on the phone to interpret which letter
the raw data represents.

Given the relative complexity of implementing a machine learning algorithm, and
how that complexity gets a little bit more complex by the fact that our project is a
wearable, with a small microprocessor, the group looked into other methods of
deciphering the data provided by the sensors. If the group went through with the
machine learning, the group would likely use what is referred to as “supervised
learning”. This method relies heavily on repetition, as there is a long “training”
period, in which the developer would have to perform every single unique hand
gesture, multiple times. This is almost like a “brute-force” method, in which the

 56

processor would have a massive pool of data from different hand gestures in the
past. The processor would rely on this past data when making decisions. This
requires a lot of storage on the processor, and becomes more accurate as the
pool of data gets larger (more and more iterations of the same gesture, at
different times and performed by different people).

The group figured that there had to be a better, more intuitive way to determine
which gesture was being made by the user of the glove. The group purchased
some flex sensors and performed some simple experiments with them to
determine how precise they would be. What the group found was that the data
coming from the sensors was not necessarily very precise, or even consistent.
This was a bit surprising, but it also gave us some new ideas as to where to go
with our software design approach. When the group say “inconsistent” the group
mean that the output from the sensors is not always the same for a given amount
of bend. It was always within the same ballpark, but it would non-
deterministically vary 2kΩ-͎4kΩ. However, the group also noticed that the
change in impedance between the different ranges of bend on the sensors was
so great that it is essentially impossible to mistake the position of the sensor. For
example, when the sensor is completely straight with no bend, the impedance
measured across the sensor was about 20 kΩ. When the sensor was bent about
half way, the impedance was about 35 kΩ, and when the sensor was fully bent
the impedance was about 50 kΩ. This became more apparent when the group
hot-glued three sensors onto a glove and built a simple voltage divider circuit on
a breadboard. As the group wore the glove and measured the output at different
levels of bend, the group discovered that the changes in output voltage were
large enough to determine whether a finger was straight, halfway bent, or bent all
the way. This didn’t change for different people wearing the glove. The output
was consistently about 2V when the finger was straight, and it would go down to
less than 1V whenever the finger was fully bent.

This experimentation with the flex sensors lead us to realizing that the specific
amount of bend in the fingers, down to the degree, was not that important to
determine what gesture the user is trying to make. If the group know the range
of values that can be considered “fully bent”, “not bent”, etc. then the group can
proceed to programming the MCU without having to implement a machine
learning algorithm. The group can write a function that takes in the input from
each sensor as its parameters, and determines the levels of bend in each
sensor. At this moment, the group think that three different “levels” would be
able to accurately depict which ASL hand gesture the user was trying to perform.
This is because almost every letter in the alphabet (excluding special ones which
will use an accelerometer and pressure sensors) either have a finger being
completely unbent, slightly bent, or “curled”, and fully bent. The output from the
function would be an integer, for example “1”, “2”, or “3” which represent the
different “positions” of the fingers. If the group can successfully create this
function to accurately output an integer for each “range” of bend, then the
problem is simplified quite a bit. At this point, the process of actually computing

 57

what letter is being gestured by the user is a little bit easier to do because the
inputs that the group would be working with are all discrete. This would
essentially eliminate the problem which lead us into looking at machine learning:
different iterations of the same hand gesture producing a different output due to
discrepancies in the exact value of the input. Once the group have the data from
the flex sensors as a discrete integer, the group can go through a series of
conditional statements which to interpret the hand gestures. These conditional
statements will determine if the value from each finger is an exact combination of
values that represents a certain letter (i.e.: Thumb = 1, Index= 3, Middle = 3, Ring
= 3, Pinky = 2).

Another potential issue that the group had to consider was the glove sending
outputs to the user interface while the user was not trying to actively make a
hand gesture. This is an issue that can be mitigated by some way to put the
microcontroller on “standby”. This would be a mechanism that disables the
functionality of the device while it is not intended to be used. A potential solution
to this can be a push button on the printed circuit board that disables the device.
This push button can potentially be placed between the output of the MCU and
the Bluetooth module. Under these circumstances the MCU is always analyzing
the data from the hand gestures and sending outputs to the user interface, but
the button breaking the line between the output and Bluetooth unit would stop the
Bluetooth module from constantly sending outputs while the glove is on this
“standby” mode. Alternatively, the push button could be placed on the printed
circuit board in between the resistors for the voltage divider, and the input pins on
the microcontroller. This would be breaking the line that provides the input to the
MCU. Under these circumstances, the MCU would simply not be computing any
values because the data from the user’s hand gestures would never be reaching
the microcontroller.

Potentially, software can provide another solution that can be used to prevent the
glove from constantly putting out outputs when the glove is not intended to be
used by the user. Above, mentioned, a push button that would physically
interrupt the circuit and in this way put the device on ‘standby’. Perhaps there
can be a hand gesture that is used to put the device in this ‘standby’ mode. In
this scenario, there would be no need to have actual hardware which ‘breaks’ the
circuit. This would be a bit challenging because the microcontroller is
continuously running an infinite loop, and even if the group can come up with a
gesture that puts the device into this ‘standby’ mode, it would be a bit of a
challenge to hold this standby mode because the glove would be constantly
reading any movements that may be being made by the user. This can
potentially be mitigated by making the ‘standby’ gesture a gesture that can be
easily held. In this case the user can make a hand gesture (for example, a fist),
and hold this gesture until they are ready to use the glove again.

The third, and perhaps least complicated of the three methods that the group can
use to put the device in some sort of ‘standby’ mode can be to simply cut off the

 58

power from the microcontroller. Naturally, the MCU will be equipped with a
button or switch to turn the power to it on or off. The group would have to do
some research and experimenting with this to determine in what ways cutting the
power on and off on the microcontroller unit would affect the software. Naturally,
the MCU would have to start from the beginning, and go through its ‘initial setup’
before it goes into its infinite loop, every time that the device is brought back from
the standby mode.

Regardless of which method the group uses to put the glove on ‘standby’ mode
while it is not intended to be used, the glove will have some type of indication that
it is in this standby mode. Perhaps an LED on the glove that changes state,
depending on the state of the glove. This LED can be connected to one of the
digital output pins on the microcontroller, and can be commanded by a
conditional statement in the main loop. For this purpose, it would be beneficial to
us if the group is able to implement the ‘standby’ mode on the glove using a
software solution. This would allow us to implement into the software a
conditional statement that would activate the LED which indicated to the user that
the glove in on ‘standby’ mode.

If the group is not able to implement the ‘standby’ mode by using software, then
the group would have to somehow use hardware to determine when the circuit is
broken by the push button that the group would have, and to activate the
indication light without the use of software and the microcontroller.

This can maybe be achieved through the use of hardware integrated circuits like
logic gates which can determine when a certain branch of a circuit is ‘hot’. If we
were to go this route we can implement technologies such as Field
Programmable Gate Arrays and use a programming solution such as Verilog in
order to implement the task at hand, which is to activate the indication light
without the use of hardware, but using hardware solutions such as logic gates.
In this case the group would use a solution such as a Field Programmable Logic
Array, which is essentially an integrated circuit on a chip that can be programmed
on a computer and allows the developer to simulate any combination of physical
logic gates to create a number of different circuits that would take a large number
of physical gates to implement, and it would allow the developer to implement it
all on the one FPGA board. This is significant because the SLIG is a small
device, and if the group had to find space to implement a number of physical
logic gates, plus the printed circuit board, sensors, and other equipment, the
glove would get quite crowded and not be as practical. The next page contains
general schematics of what the hand gesture interpretation system of the SLIG
will look like and how it will interact with the other parts of the project.

 59

Figure 3.19: General Schematic of Gesture Interpretation

Figure 3.20: Control System Schematic

3.3.2.1 Machine Learning

The process of beginning to design the control system for the SLIG lead us to
research into the subfield of computer science called “Machine Learning”.
Machine learning is a subfield of computer science which, in essence, deals with
computers making their own decisions based on their current environment and
past events. This area of computer science is used in the implementation of
things like artificial intelligence and pattern recognition. To implement Machine
Learning into a project, the developer must use what is known as a “Machine
Learning Algorithm”. These algorithms are used to learn from past data in order
to make accurate decisions in the future. Normally, when implementing machine

 60

learning into a project, one uses one of the many established machine learning
algorithms which can be adapted to the particular application at hand.

Although all machine learning applications deal with trying to use past data to
make decisions and predict future events, there are different types of machine
learning algorithms. These algorithms are different in the way in which they
“learn” the information. One main type of learning style that is used in machine
learning is the “Decision Tree Learning”. This is actually a very expansive subject
matter in and of itself. Besides machine learning, decision trees are used in many
other areas, specifically in data-mining. This type of algorithm uses a style similar
to a flowchart. The system makes an output decision on certain inputs, based on
a series of “yes or no” decisions. “This or that”. The system finally makes its way
to the end of the tree and arrives at a decision.

There are many more types of learning styles available for a machine learning
application including “Reinforcement Learning” and “Association Learning”.
However, if the group decides to go with a Machine Learning algorithm to
decipher hand gestures coming in from the user of the SLIG, the group would
likely use what is known as “Supervised Learning”. This is a method where the
developers perform many different iterations of the same “input” and “teach” the
system what to do in the case of said input. In the case of our sign language
glove, the group would go through “training” where the group performs the same
letter many times, at different times, and by different people. This gives the
processor memory of many different forms of the same gesture, so that when a
user makes a certain hand gesture, there is a big enough pool of data inside the
microcontroller that it can make an accurate decision.

After the “training” has been completed, the group would put the system through
a “testing” phase. This is a time in which the group performs many different hand
gestures and has the microcontroller make a decision. Naturally, there would be
many errors in the decisions made at this phase. This is sort of a phase to “fine-
tune” the system, after it has a big enough pool of data to make decisions.
Eventually, after thousands of iterations of each gesture during the training
phase, and thousands more during the testing phase, the errors made by the
system should be at a minimum. Ideally, the best way to make sure that the
system is flexible enough so that it can make the correct decision despite the
differences in the hands of the users and their ranges of motion, is to have as
many different people as possible involved in the training and testing phases.
Doing this ensures that the microcontroller has a big enough sample size that it
can make the correct decision nearly every time, regardless of who the user is.
Though the group has done some extensive research in the area of machine
learning, and the group is also researching other methods to decide whether
something so powerful like machine learning will be necessary in the
implementation of our sign-language interpretation glove. Below is a simple

 61

schematic that shows the basic working principle of implementing a machine
learning algorithm into a system.

Figure 3.21: Working Principle of Machine Learning Algorithm

3.3.3 Programming Languages

The programming languages used by the software components will be discussed
in this section. We will look at the programming paradigm of each language, what
they will be used for, and how it will affect our other decisions concerning the
mobile application and microcontroller.

3.3.3.1 Mobile Application Languages

3.3.3.1.1 Java

The main programming language used for Android development currently is
Java, which is a very popular language created in 1995 by James Gosling and
others at Sun Microsystems. Java was established to be used for creating
internet applications and other software programs. It is an object-oriented
programming (OOP) language just like Objective-C, C++, and C#, which means
that it is based on the concept of “objects”. These objects are data structures that
contain properties just like a real object does. For example, a dog has a breed,
hair color, age, weight, and more which are all properties of that dog. OOPs also
have methods which are essentially a procedure created in the code that can be
called upon just like the properties of the objects. One of the most important
features of object-oriented programming languages is that they are class-based,
meaning that objects are instances of classes. A class is simply like a template or
blueprint for creating objects that provides initial values for state variables like the
properties and methods. Using classes, properties, and methods are essential to
programming in an object-oriented language like Java and they can be very
useful for certain applications.

 62

Taking a more advanced look into object-oriented programming, there are other
capabilities that these languages have to offer. One of the most commonly used
features is inheritance, which is when an object or class is based on another
object or class. Inheritance takes on the same implementation as the object or
class that it is based from and changes something about it to make it unique but
still have the same basic properties and methods as before. Inheritance in OOP
is just like inheritance with people; a child inherits many of the same genes as
their parents. The benefit of inheritance is to minimize the amount of repetitive
code so it is easier to create new classes and reuse old ones without writing
them again.

3.3.3.1.2 Swift & Objective-C

The two programming languages used for iOS mobile phone applications are
Swift and Objective-C. Swift is the new language that Apple is pushing iOS
developers to start using more because it is supposed to be much easier to work
with than Objective-C; however, Objective-C is still available for those to prefer.
With Swift, developers are still using a language that is based on the best
features of C and Objective-C, but it removes the compatibility issues that come
with them. It is a multi-paradigm programming language that was created not
only for iPhone developers but for all Apple software like iOS, OS X, watchOS,
and tvOS. Swift was Apple’s way of creating a new programming language that
was simpler and easier to use than Objective-C and was described as
“Objective-C without the C”.

Since we don’t know anything about Objective-C, we will take a look into it so we
can understand the differences from Swift. Objective-C used to be the primary
programming language used for writing applications and software for iOS and OS
X. Just like Swift was a spin-off of Objective-C, Objective-C is based off of the
language C. The difference between Objective-C and C is that Objective-C is an
object-oriented programming language that has many more capabilities and
better runtime.

Taking a look into the compatibility issues, we have to make sure that the
programming languages used are compatible with the version of the operating
systems and the hardware on the phones. The old software operating systems
that Swift supports are iOS 7, iOS 8, and iOS 9. This is good news for us
because Apple releases updates for their iPhones relatively frequently and users
will most likely have upgraded from any phone that doesn’t support iOS 7 or
higher. As far as the hardware goes, Swift will support iPhone 4, 4s, iPhone 5,
5C, 5S, and iPhone 6, 6 Plus. Therefore, we have no issues with compatibility
and we don’t have to worry about this aspect of using iOS as a potential mobile
platform.

3.3.3.1.3 C#, C++, and Visual Basic

 63

The programming languages used by Windows Mobile development are C#,
C++, and Visual Basic. When you begin developing on Windows mobile you
have to consider which programming language will be best used for your
application because all three have advantages and disadvantages. We will begin
by looking at C++ because it is the native language for Windows Mobile.

The term native language means that the language talks directly to the hardware;
so in this case, C++ talks directly to the hardware on the Window’s phone. There
are many benefits to using the native language of a device because it has more
control of the hardware, the application size is smaller, and it is capable of better
performance since there are no intermediate steps during execution. However,
native languages are usually a lower-level language which means that it is more
complicated to use and can cause issues during execution like a memory-leak
that will cause the device to crash. Knowing these limitations, developers are
able to create applications that run quickly and efficiently for improving the
performance of apps such as fast-action games.

When a developer is creating an application that does not require high-
performance, there are other programming languages available like C# and
Visual Basic (VB). These languages are both managed development languages,
meaning that they have built-in services that handle memory-management and
garbage collection. These services come at a cost of performance, but using an
unmanaged language like C++ requires more attention to memory management
and security. A couple other features available to developers using C# and VB
are the libraries and developer tools. Both of these languages support the .NET
Compact Framework – a library of common classes that simplify many tasks that
a developer may encounter. There are also developer tools for the visual
interface designer that allows developers to drag and drop buttons, text boxes,
and more. For more advanced interface design, there is another window that has
the auto-generated code from the drag and drop interface and all of the
properties that can be modified as needed.

3.3.3.1.4 XML & XMAL

The programming languages used for the entire graphical user interface (GUI)
design are XML and XMAL. XMAL is just Microsoft’s version of XML used for
Windows phone development only. These markup languages are designed for
formatting documents, web pages, and more just like the language HTML is used
for most web pages. These languages don’t really do anything, meaning that
they just carry information wrapped in tags and require some software application
to send, receive, store, or display it. Below is an example of XML source code
that displays a note to Mike, from Jones, stored as XML. As you can see, the
XML code is just formatting the information inside of the note by using tags that
interpret the content of the page. The IDE Android Studio comes with its own
XML graphical layout editor which will be used to design the interface of the
mobile application. This editor comes with drag and drop capabilities and allows

 64

you to preview your design as you create the layout. Also, if there needs to be
more advanced editing of the layout there is a text editor interface in addition to
the drag and drop interface that looks like the XML source code.

3.3.3.2 Control System Languages

The control system part of the software for the SLIG can be implemented using a
number of different languages. The group has considered several languages,
including Java, C++, C#, Python, etc. One thing that came up several times while
conducting our research was that though it is possible to implement an object-
oriented language on a microcontroller system, it is not the most practical and is
often decided against.

The control system in our project will be consisting of several functions (seen in
sections above) which the group will write. However, there does not seem to be a
need to create multiple classes, and have a hierarchy of files containing all of the
parts of the program. For this reason, the group has shied away from employing
an object-oriented language for the control system portion of our project. Given
the requirements of the control system, the group believe that using a language
such as “C”, will provide us with enough resources to decipher what hand
gesture is being performed by the user. C allows us to structure the program the
way that the group want, in the way that the group can have an infinite loop
contained in our main routine, write and call functions as the group need, and
contain the entire program for the control system easily in one file.

Since the control system that the group is writing is going to be implemented on a
microcontroller unit, it will be close to the hardware and believe that using a
language such as C would be the best option. The program could also be written
using assembly language, but it would be quite the challenge to keep track of
stacks and individual registers, so C seems to be the best option for the control
system.

 65

4. Constraints

There will be many constraints that will keep the group from implementing this
project as efficiently as hoped for. For one, there is an obvious time constraint.
The project must be built within the time frame of two semesters. This means
that there is not enough time to perform really extensive research that could yield
a much more efficient and desirable result. Also, the time constraint prevents the
group from being able to really test with several different solutions to make the
glove the best that it can possibly be. Ideally, with more time, the group would be
able to build several prototypes. In each prototype, something new can be
improved on from the previous iteration. After several prototypes, the final result
should be something that is completely free of errors and provides the user with
a bug-free experience that has been tested many times over and is ensured to
be functioning at the best level possible. With the time that is given, there will
inevitably be several setbacks, and there will only be time to build one, maybe
two prototypes. At which point the group will have to go with what is built by
then, and live with the limitations.

There will also be some health constraints to the project. This is a product that
will ideally be operated by persons with some form of speech impediment which
keeps them from performing efficient oral communication. This product will be
very helpful to said individuals. However, it must be ensured that the user can
safely use the product without potential to affect their health in a negative way.
For one, the materials that may be used for the actual glove itself can cause an
allergic reaction on some users. This makes the selection of the material used
on the glove very important (discussed in the “Glove” section). It is also important
to note that the glove is going to be worn on people’s bodies. This is a glove that
has live electronic parts functioning on it and it can be very possible for a user to
experience a shock if the electronic components are not properly placed in an
area where it will be unlikely for the user to inadvertently touch them and hurt
themselves. For these reasons, the health of the end user of the Sign Language
Interpreter Glove needs to be taken into consideration when finalizing the design.

Manufacturability is also a very real constraint that will be faced when
implementing the SLIG. This is a fairly complex product, and to build it as sleek
and efficient as would be liked, some rather specialized materials will be needed.
For example, in an ideal world, the glove would look like any other glove that
somebody would wear. Nothing about it would indicate that it is in fact an
electronic device with electrical parts inside of it. This would require some handy
textile skills and tools. For example, we would be able to sleekly sew over all of
the sensors. To hide the printed circuit board, battery, and all other electronic
components, the glove would have to have some sort of hidden compartment,
perhaps around the sleeve, or somewhere where it would be difficult to see and

 66

also where it would be safe for the user to wear the glove and not have to worry
about damaging the glove or potentially hurting themselves by the way of an
electrical shock encountered by touching an electronic component.

An alternative would be to use two gloves. An inner glove, which has all of the
electronic components mounted on top of it, and an outer glove which goes over
the inner glove, and over all of the electronic components such as to “hide” the
electronics. This, however, is fairly inefficient. The user would experience the
“sag” between the gloves. Also, as the outer glove moves and glides over the
inner glove, there is a real potential for electronic components to get damaged by
being rubbed against the outer glove constantly.

There are ethical constraints involved in implementing the SLIG as well. This
project and its design are fully original from the group. However, the idea of a
glove that translated sign language into text has been done several times. In
fact, a UCF group implemented the same idea several semesters back.
Following the ethics of engineering, it is imperative that the group makes clear
that although the idea for this project has been done in the past, the Sign
Language Interpreter Glove has been fully designed by the group. There is also
the issue of permission to use certain images. The group has emailed all
appropriate entities to ask permission for the use of certain images, as needed.
At the end of this document, the appendices will have more information regarding
permissions and will include all emails sent.

Economic constraints also have to be taken in to account in the implementation
of the Sign Language Interpreter Glove. The group must be sure that every step
taken and every part purchased is correct. If things have to be purchased twice,
or if a wrong part is purchased, or any other setback that causes the group to
have to spend more money than anticipated would be a big blow. For this
reason it is important for the group to be very meticulous and determine that
each part that is ordered is in fact the part that is actually needed for the project.
It will also be beneficial to try to purchase certain parts together and from the
same vendor, so as to save some money when it comes to shipping and
handling.

Ultimately, every part should be researched by every possible vendor that offers
it, and should be purchased from the most economically viable option possible.
This may mean that some parts will need to be ordered from overseas and will
take quite some time to arrive. This ties in with the time constraint mentioned
above. The parts will have to be ordered in a timely fashion (ideally before the
end of the Senior Design I semester) because sometimes parts ordered from
overseas vendors can take up to a month to arrive. In case of a setback, the
group will try to refer to domestic vendors which can have the parts delivered
within a short period of time. However, this may affect the economic constraint,
as it will cost more.

 67

5. Standards

5.1 Bluetooth

IEEE Std 802.15.1™-2005(Revision of IEEE Std 802.15.1-2002): This standard
discusses Wireless Body Area Networks (WBAN) which have become an
important technology in providing real-time health monitoring of a patient and
diagnosing many life threatening diseases. IEEE 802 has established a Task
Group called IEEE 802.15.6 for the standardization of WBAN. The purpose of
the group is to establish a communication standard optimized for low-power in-
body/on-body nodes to serve a variety of medical and non-medical applications.
Bluetooth technology falls right in this field of communications and so the team
should heed any pertinent recommendation in this standard.

5.2 Android Applications

Google's Android developers have set up a multitude of standards and
qualification on the different aspects of an android application. These aspects
include visual design, user interaction, functionality, performance, stability and
interaction with Google Play. Each standard has a four character ID and details
specific instructions on how a finalized application should look or function. These
standards as a whole are an excellent rubric by which the group's application
should be measured. The details on "Standard Design" UX-B1 are shown below
as an example.

Table 5.1 Standard Design Android App

 68

Portions of this page are reproduced from work created and shared by the
Android Open Source Project and used according to terms described in the
Creative Commons 2.5 Attribution License.

5.3 Lithium-Ion Batteries

The group decided on using a polymer li-ion battery to power the SLIG. Thus,
available standards on the safety of Lithium-Ion batteries would be very relevant
to the project as it continues from the design stage to the construction stage. The
team may use these standards as guidelines for the proper management of the
SLIG's battery. Separate international standards organizations have generated
the following safety standards for Lithium-ion batteries (International
Electrotechnical Commission (IEC) and International Organization for
Standardization (ISO). The most relevant standards are listed below.

 IEC 62133-2: safety requirement for portable battery cells

 IEC 62660: batteries for EV/HEV applications

 IEC 61427: secondary cells and batteries for renewable energy storage

http://code.google.com/policies.html
http://code.google.com/policies.html
http://creativecommons.org/licenses/by/2.5/

 69

6. Design

6.1 Hardware Design

6.1.1 Flex Sensors

6.1.1.1 Selection

For this project the team decided to choose the spectrasymbol flex sensor of 4.5-
inch length supplied by SparkFun electronics. This model was chosen for its wide
availability from multiple vendors and its strong reputation as a reliable part. It
should be the ideal length to fully cover the SLIG glove and allow a full range of
flexing motions for the user. The only possible fault with this model was the
problematic base connection that was reported to break easily if not handled with
care. Below is a picture of the flex sensor showing its size relative to a person's
hand.

Figure 6.1: Flex Sensor

Reprinted with permission from SparkFun Electronics.

6.1.1.2 Integration and Schematics

This project called for the use of five separate flex sensors, one for each finger of
the glove. They ran from the tip of the fingers to just past the knuckle and they
were secured with cyanoacrylate adhesive. Each sensor was connected to two
leads; one for power and one four output. As the sensors are bent, their varying
resistance will yield different output voltages across the secondary resistors,

 70

which can be measured and interpreted to determine the configuration of the
user's hand.

The flex sensors were integrated onto the PCB as efficiently as possible. Each
flex sensor was integrated into a voltage divider circuit consisting of a lead to the
power supply and a 10kohm resistor from which the output was read. Below is a
screenshot from the PCB schematic illustrating the voltage divider circuits.

Figure 6.2: Flex Sensor Circuits

6.1.2 Accelerometer and Gyroscope

6.1.2.1 Selection

For this project the team ended up choosing the 9 Degrees of Freedom IMU
Breakout - LSM9DS1 supplied by SparkFun electronics for its lower price. This is
a simple breakout board that provides two important functions in one; that of an
accelerometer and that of a gyroscope. This board provides an extra three
degrees of motions with an integrated magnetometer however this data was not
needed for the SLIG. The board had a digital interface and supported both I2C
and SPI ensuring it would communicate effectively with the glove’s Atmega32
MCU. The board is shown below.

 71

Figure 6.3: Relative size of Combo Board

Reprinted with permission from SparkFun Electronics.

The two components for this IMU breakout board each offer impressive
specifications as briefly mentioned in the sections before. Each sensor in the
LSM9DS1 supports a wide spectrum of ranges: the accelerometer’s scale can be
set to ± 2, 4, 8, or 16 g and the gyroscope supports ± 245, 500, and 2000 °/s.

6.1.2.2 Integration and Schematics

Due to the nature of this breakout board, integrating it to the main circuit board
was not difficult. It was attached using Velcro adhesives to the top center of the
glove in order to capture the full range of motion from the user’s hand. Below is a
schematic detailing the breakdown of the board.

 72

Figure 6.4: Schematic for Combo Board

Reprinted with permission from SparkFun Electronics.

 73

6.1.3 Contact Sensor

6.1.3.1 Selection and Integration

Although the team initially considered using commercial pressure sensors to
determine whether contact is being made between any two fingers, it ultimately
decided to construct its own contact sensors. These were made using strips of
copper braids that were carefully placed along the most important points of
contact which were between the middle finger, index finger, ring finger and thumb
of any one hand. The thumb contact sensor was connected to power through a
single lead while every other contact sensor had one lead for output. The
concept behind these sensors were that as two sensors come in contact they
form a closed circuit that the MCU interprets as a high voltage output. As long as
the contact sensors were not making contact, the output will remain completely
zero. Below is a visual representation of the sensor the team designed.

Figure 6.5: Contact Sensor

6.1.4 Glove

6.1.4.1 Selection

The team has decided to go with the UA Strikeskin Tour glove as the base glove
for the SLIG. The primary motive behind this decision was the team's stringent
budget. Nonetheless, this is still a quality glove that is mostly made out of leather
(so there are virtually no concerns with allergies) and boasts a high level of

 74

flexibility and movement control, which is crucial to the proper functioning of the
SLIG.

6.1.4.2 Integration

The glove will be the base to which the sensors, the PCB and all other
electronics will be attached. This will be accomplished using a combination of
adhesives, ties, sowing and possibly other methods.

6.1.5 Printed Circuit Board

6.1.5.1 Design

The PCB for this project will integrate all the major components of the glove
including the different set of sensors employed in the glove, the MCU, the
Bluetooth module, the power supply and the charging circuit. From the beginning,
the group agreed that a basic two layer board that measures roughly 3in by 4in
would be the best option for the SLIG. A four layer board that would have
dedicated two of the middle layers to just power and ground was briefly
discussed but it was decided that our board’s complexity didn’t require this extra
feature that could easily double the price of the board. It was also decided that
the majority of the components for the board would be through hole mounted.
More group members had experience with soldering through-hole parts than
surface mount technologies and felt the former would leave less room for error.

The group used the Eagle CAD software to design the schematic for the glove's
printed circuit board. The same program was used to design the layout of the
board and generate the Gerber files and bill of materials. Eagle CAD was chosen
since it’s a very popular program with a plethora of support materials and
additional libraries (discussed further below) that could facilitate the board design
process.

In order to design the PCB board, additional libraries with specific parts were
downloaded into the Eagle CAD software. The most critical one was the ATmega
MCU library which helped manage the multiple pins. After the schematic was
developed, the group used the autowire feature of the Eagle program to initiate
the layout of the PCB board. From that point the last remaining connections were
routed manually using multiple vias from the top and bottom layers. Below are
the schematic and layout for the board in Eagle.

 75

Fig. 6.7 PCB Schematics in Eagle

 76

Fig. 6.8 PCB Layout in Eagle

6.1.5.2 Assembly and Testing

 Once the board was fully designed, the group ordered a set of four boards from
Bay Area Circuits. This company had a reliable reputation for accurate and timely
PCB board production. To source all the parts for the board, the group made use
of Eagle CAD’s design link feature which matches each component used in the
schematic to the closest matching part in the Newark database. This was used
mostly as reference and the group still had to manually search for many parts
that weren’t assigned a correct match. The actual orders were made through
Mouser.com and Digikey as these proved to have a much wider selection of
parts.
 The PCB board was assembled using the equipment at the TI Innovation lab in
UCF’s Engineering II building. When it came to testing the board, the sensors
were fixed on the glove and connected through a set of cables and headers that
would match those on the board. From there the board was tested to ensure it

 77

was designed and assembled properly and that the glove had all functionalities.
Below is the final PCB board.

6.1.6 MCU

6.1.6.1 Selection and Integration

Although the team originally planned on using the MSP430 as the glove’s MCU,
its opinion changed as it was apparent that the higher number of pins of the
ATmega328 would be crucial for an optimal design. Furthermore, upon finding
the ATmega328 at a reduced price from the Digikey website the team had very
few reasons left to use the MSP430. The only remaining reason was the team’s
previous experience with the MSP430 however the performance advantages of
the ATmega at this point in far outweighed that.

Integration with the glove was rather straightforward. The footprint for the
ATmega was designed onto the glove’s PCB and adding a socket piece made it
possible to remove and place the MCU from the PCB. The additions of headers
made the connections to the MCU’s pin easier and virtually foolproof.

6.1.7 Hand Gesture Recognition

6.1.7.1 Interpreting Flex Sensor Data

Regardless of which method the group chooses to use to decipher the hand
gestures performed by the user, the group will first need to interpret the data
coming into the microcontroller from the flex sensors. The way in which the flex
sensors work is, they are essentially variable resistors which change their
resistance in proportion to the amount of bend present on the flex sensor. In
order for the microcontroller to sense resistance from the sensors, it would need
to have some intricate things going on such as a constant current source and
then perform some calculations to determine what the resistance is across the
sensor. To mitigate this, the group simply hooks up a voltage divider circuit to the
sensors. To do this the group places the sensor in series with a fixed resistor,
and put a constant voltage across the two resistors. Depending on how much the
sensor is bent (and, as a result the resistance across it), the ratio of the total
voltage that will be across the sensor will change. In this regard, the group can
simply say that the voltage across one of the resistors is our “output”. Note, that
even though the sensor is a variable resistor, the ‘output’ of the sensor that the
group sends into the microcontroller is a voltage amount.

Once the group has the output of the sensors as a voltage, this voltage will go
into one of the pins on the microcontroller. The group would have to either
choose a microcontroller that comes equipped with analog-to-digital converters
or the group would have an external analog-to-digital converter elsewhere on the

 78

printed circuit board. This is because the microcontroller is a digital processor,
and it can only interpret digital data. The voltage coming out of the sensors is an
analog signal, so the group would need to convert that signal into a digital signal.

However, before the group can implement the design for the sensor circuit, the
group would need to decide what the optimal voltage level is to hook up to the
voltage dividers. One thing to take into consideration when deciding what the
optimal voltage level is the voltage available from our power source (lithium-ion
battery). At this point the group is still undecided on whether or not the group will
need to have regulation at different voltage levels. The group would also need to
take into consideration the optimal voltage level that the microcontroller can read
and interpret. Also, another important factor in interpreting the sensor data is
choosing the correct resistor value for the voltage divider. The flex sensors that
the group are using have a resistance that fluctuates somewhere between about

 and . This means that the group would have to optimize the voltage
level hooked up to the two resistors (the sensor and the fixed resistor), and also
wisely choose the resistor that is fixed.

The group has performed some elementary experimentation with flex sensors
and resistors on a breadboard. Our results show that if the group use about 5V
as our source for the voltage divider and use for the fixed resistor, the
group get a nice range of values in our output. When the group say a ‘nice’ range
of values, the group mean that the output voltage from the voltage divider is
small enough to be able to go into the microcontroller, but also large enough so
that there is a large, discernable difference between the voltage levels when the
sensor is completely straight, about half-way bent, and fully bent. For example,
with a 5V source and a 10 resistor, the output from the voltage divider circuit
is about 3.5V, which is right in the wheelhouse of ‘preferred’ voltage levels of
most microcontroller units. The values mentioned above may change as the
group proceed with the building and prototyping of our project, but at the moment
it seems as if these are the optimal values for best performance from the flex
sensor circuit. After these things have been established, the microcontroller will
be receiving the data from the flex sensor as a voltage level, and then the group
can proceed with the software solution that the group decides is best for our
project. Below is a schematic of the function that will go through and determine
which hand gesture is currently being performed.

 79

Figure 6.9: Hand Gesture Recognition Function

6.1.7.2 Determining Ideal Voltage Level

Another big, important factor in designing the system with the flex sensors is
determining the ideal conditions for the voltage divider that the group is building
for each finger. As mentioned previously, the flex sensor is a variable resistor, so
two things are constant in the circuit: the total voltage level, and the resistance of
the resistor which combines with the sensor to create the voltage divider. It is
important to choose the correct values for these components, because if not, it
will be difficult for the microcontroller to make correct decisions if the group are
not providing it with an ideal representation of what is going on at the sensor
level.

The first thing to consider here is that the output voltage will be sent into the
microcontroller unit. So, the voltage divider has to be designed in a way so that
when the flex sensors are fully straight, (the output voltage will be at its
maximum), the voltage is low enough as to not damage or be out of the range
that the microcontroller can handle. But, it also cannot be too low, because when
the fingers begin to bend, the output voltage will begin to drop and the group
want it so that when the fingers are fully bent (the output voltage is at its

 80

minimum) the voltage is still high enough so that the microcontroller can
accurately read it and make a decision on it. For most microcontroller units, an
ideal voltage level for its input and output pins are at about 3.5 volts. The group
wants to choose levels that do not exceed this amount of 3.5 volts, but also large
enough to be somewhere near that range when the output voltage is at its
maximum value (fully straight).

Clearly, these values will have to be tweaked along the way the group actually
have the system built and the group see what results the group are getting. But,
from our calculations and early experimentation, a total voltage into the voltage
divider of about 5 volts seems to be ideal. With this voltage level, the group can
pair it will a resistor of about . This will create results that send a good
output out to the microcontroller. When the fingers are fully straight, the output
voltage will be about 2.5 volts, and while the fingers are fully bent, the output
voltage will be at about 1.67 volts. This creates a clearly identifiable change in
the output from when the hand is fully straight and when it is fully bent. This also
ensures that the output voltage is always within a safe range that will not harm
the microcontroller. Below is a schematic that shows how the flex sensor will be
connected to the voltage divider.

Figure 6.10: Sensor Voltage Divider Circuit

6.1.7.3 Calibration

Everybody has hands of different shapes and sizes. Some people have larger
fingers, and others have shorter ones. Also, different people have a different
range of bend in their fingers. This would create some degree of difficulty when it
comes to determining what hand gesture a user is trying to make. Each hand
gesture will be a set, universal instruction, while the users are inputting slightly
different inputs due to the differences in their hands and bending motions. To
mitigate this, the group can come up with a way to calibrate the system prior to
first use every time that it is powered on. In this way, the group can ensure that
the system knows how this particular person’s hands move and it can tell what
gesture the person is trying to make, based on the characteristics of their hand.

The calibration process will be completed by a function dedicated to calibrating
the glove. The first big piece of information that the group want to retrieve from
the user, is what their range of motion is. To do this, the group will have the user

 81

put on the glove, and power it on. At this point, the control system software will,
as almost every other microcontroller unit does, have a set of ‘preliminary’
instructions that take place before the main, infinite loop is initiated. In this step is
where the group will include the function for calibration. The group will have the
user bend each finger all the way, almost as if making a fist. The function will
take this information and record it in certain variables that the group will use
when determining which hand gestures are being performed. One variable that
the group would need to record is the maximum amount of bend in each one of
this particular user’s fingers. This would inform the system how far this particular
user can bend their fingers. Had the group not done this, the system wouldn’t be
able to tell when one user is trying to perform a certain gesture which required a
certain finger to be fully bent, while another user may perform a hand gesture
that has the same amount of bend on that finger (from the flex sensor’s
perspective) while that is not ‘fully bent’ for that user because of the
characteristics of his hand. Now that the system has a reference as to what the
current user considers his ‘maximum bend’, it can make decisions accordingly
when it comes to deciding what hand gesture that user is making. Similarly,
another key piece of information that the calibration process would get from the
user is the current user’s minimum bend amount.

Some people have some degree of bend on their fingers even when they are not
actually ‘bending’ them. This can cause errors if the system does not have an
accurate representation as to what the current user’s ‘fully straight’ hand position
is, in terms of degrees of bend felt by the flex sensors. Having the calibration
process measure the minimum amount of bend found in that user’s hand when
they just relax their hand with no particular intention of bending make the
program assume that when this amount of bend is present on the fingers, for the
purposes of the control system the hand is ‘fully straight’.

Once the calibration process acquires all of this data from the user, it now has to
‘normalize’ it, in a sense, so that the main program (infinite loop) knows what to
do with the live data that it will be receiving later. To do this, the group will write a
function that does something similar to the ‘mapping’ that the group will also be
using to decipher the actual hand gestures. As mentioned earlier in the “Control
System Research” section, the typical amount of resistance found on the flex
sensors as a result of an average person wearing the glove and bending their
fingers ranges from about to . As you know, these ranges of
resistances will produce a specific range of output voltages from the voltage
divider (depending on the total voltage chosen and the constant resistors).

The group will ‘map’ this data collected from the initial calibration process to the
‘reference’ level, which the group will choose based on experimentation when the
group choose our voltage level for the voltage divider and the constant resistor.
The calibration function is essential because this will provide the gesture
interpretation function with normalized information that the function can use to

 82

make more informed decisions. Below is a simple schematic displaying the
working principle of the calibration function.

The calibration process will begin when the microcontroller is first initialized. This
will occur before the infinite loop begins its course. To re-calibrate the glove, the
user will have to re-start the microcontroller by pushing the reset button on the
PCB or turning power off and on to the microcontroller. This will allow the
microcontroller to begin all of its processes again, and in this way re-initiate the
calibration process for a new user.

Figure 6.11: Calibration Function

6.1.7.4 Non-Standard Hand Gesture Recognition

One big issue faced when designing the control system for the SLIG is that there
are a number of letters in the American Sign Language alphabet that are not able
to be captured fully by the flex sensors. This is because they are either very
similar to another letter, and the flex sensors will not be able to determine which
of the two letters are being performed, or because the actual letter requires some
specific motion that is not necessarily just a certain bend in the fingers. To
mitigate these issues, the group will need to equip the glove with other hardware
and implement this hardware into our software.

 83

One main piece of hardware that can help us with many things is the
accelerometer. As described in another section, the accelerometer essentially
measures the hand’s position with respect to Earth’s axis. This device can give
us an (x, y, z) representation of the orientation of the hand. With this information
the group can determine whether the hand is being tilted in a certain direction.
For example, the letter “J” will be the biggest component of our project that will
make use of the accelerometer. This letter literally requires the user to draw out a
“J” in the air with their pinky.

In these cases, there is not much that can be captured by the flex sensors. So,
the accelerometer can measure the change in position of the orientation of the
hand and determine when the user is making that “J” motion with their pinky.
From a software perspective the group would be able to measure when the
change in orientation coincides with that of the “J” motion. To do this the group
would have to experiment with the accelerometer once the group have it on our
glove, and see what kinds of fluctuations happen when that specific hand motion
is made. This change in orientation would be combined with the combination of
bend on the flex sensors to accurately make a decision on what hand gesture is
being made. The output from the accelerometer that would go into the
microcontroller is a voltage that is proportional to the change in orientation of the
accelerometer (see the “Piezoelectric Accelerometer” section above).

Another difference that the group will have to deal with is the fact that the letters
“U, V, and R” are very similar. Looking at it from the perspective of the amount of
bend experienced by the flex sensors, these three letters are almost
indistinguishable. The glove would have to be further equipped with a little more
additional hardware to distinguish between these three very similar gestures.
The letters “U and V” are almost identical: they both have the index and middle
fingers fully straight, while the thumb, pinky, and ring fingers are fully bent down.
The only thing that distinguishes these two letters in American Sign Language is
that the letter “U” has the index and middle fingers separated (like making a “two”
or “peace” sign).

The letter “V” on the other hand, is essentially the same gesture, but with the two
fingers touching each other. It can clearly be seen that the amount of bend
present on the fingers as a result of these two similar hand gestures is identical.
The only way for us to be able to distinguish the two is to insert some type of
hardware that can determine if the two fingers are separated or not. The simplest
way of determining this would be to simply apply some metal contacts on the
side of the fingers. These contacts would touch each other whenever the letter
“V” was being performed, and through our software solutions the group can
identify the gesture as a “V”. From the software perspective, the group can
simply add a condition in the conditional statement in the main loop that
determines if the letter being performed is a “V”, or an “R” and the statement
would check to see if the two contacts are touching (they would complete a

 84

closed circuit, of which one end would be provided as an input to the
microcontroller).

Another potential solution for this problem of determining between the “U” and
the “V” would be to use a pressure sensor. Essentially the group would be getting
the same information from the glove (are the two fingers separated or not)
without them having to be in flush, solid contact. The contacts would work fine,
but only under the condition that the two fingers are in perfect contact with each
other. This can be accommodated by the user, who would make sure to
consciously try to bring the fingers together fairly strongly. However, a pressure
sensor would eliminate the need for the two fingers to be actually touching. The
output of the pressure sensor would tell us the position of the two fingers relative
to each other.

This dilemma between the “U” and the “V” also extends to the letter “R”. The “R”
also consists of having the index and middle fingers being fully straight, while the
rest of the fingers are fully bent down. In the case of the “R”, the index and
middle fingers are also touching, as in the letter “V”. However, this time instead
of the two fingers being touching side-by-side like in the “V”, the index finger
goes in front of the middle finger. This provides us with a very similar dilemma
that was described above. The group can also use contacts to determine if the
fingers are this position. But, again, the fingers would have to be in that exact,
precise position in order for the system to identify that the user is trying to
perform an “R”. In addition, the differences between the shapes and sizes of the
hands of different people would provide a challenge as to choosing the ideal
location on the glove to place the contacts. This can also potentially be made up
for by using the pressure sensors instead of going with the contacts. Either way,
the group need to accurately make sure that the group can depict whether the
user is trying to perform a “U”, a “V”, or an “R”, while getting the same exact
readings from the flex sensors.

6.1.7.5 Networking With User Interface

The control system and user interface parts of the software for the SLIG will be
designed and produced independently from each other. The control system has
the job of reading in the sensor data from the flex sensors, accelerometer, and
pressure sensors/contacts. The user interface has the job of reading whatever
information is being sent to it from the control system, and displaying this
information on the screen of the user’s device (Android phone) in a way that is
both visually appealing and easy to operate. There needs to be a bridge to get
the information from the control system to the user interface, and this bridge
needs to be robust so that changes in one system or the other does not
negatively affect the other system. To communicate between the control system
and the user interface, the group will be using Bluetooth communications. The
information will leave the control system as an output from the microcontroller
unit.

 85

The microcontroller will send the information out to the Bluetooth module through
the use of one of its UART pins (which will be described in further detail below).
This information will go through the Bluetooth module and through the ether into
the device where the user interface will be running. At the receiving end (the
user interface), the device will need to be paired with the Bluetooth module on
the glove, and establish a strong connection. Through the strong Bluetooth
connection, the group would send the data to the user interface from the control
system. This data would be sent through the use of hexadecimal characters to
depict the letter being represented by the hand gesture. The user interface will
be designed so that it can receive the data that is being sent to it from the control
system through the Bluetooth module.

6.1.7.6 UART (Universal Asynchronous
Receiver/Transmitter)

Once the microcontroller has made a decision on what letter the user was trying
to perform with a given hand gesture, that data will be transmitted out through a
Bluetooth module (see “Networking with User Interface” section above).
However, this information will need to be sent through some type of receiving
and transmitting system, such as RS-232 (serial). This is typically done using
some hardware like a Universal Asynchronous Receiver/Transmitter (UART).
This device is typically embedded in the microcontroller unit and is used to send
and receive serial data to and from external sources. The UART takes a large
chunk of data (such as a byte or word) and sends (or receives) it one bit at a
time, at a speed dependent on the clock speed of the microcontroller. In our case
the group would be sending data out using the UART.

As the group has experienced in the course “Embedded Systems”, the group will
have to write a function that initialized the UART for our microcontroller, and the
group will be using the UART pins as the output that send out the data that is
being sent out by the microcontroller to the Bluetooth module. The UART uses a
series of shift registers and other internal components to properly time the data
and be able to accurately send (or receive) the data. In the process of choosing a
microcontroller unit, the group would have to ensure that the group chooses one
that employs the use of a UART or another type of transmitting and receiving
hardware. From the research that the group have done, it seems as if the familiar
MSP-430 is actually a microcontroller that can potentially serve the purpose of
our project.
This microcontroller has a UART embedded in it, has the analog inputs that the
group would need, and seems to have plenty computing power to perform the
work that the group need from the microcontroller. Another microcontroller that
can potentially also be a fit for out project is one from the ATMEGA series.
These microcontroller units are typically used in many Arduino applications and
can also be a good fit for our project. There are many advantages and some
disadvantages to both, but ultimately the MSP-430 seems like it might be the

 86

best fit because the group are more familiar with it, it is readily available, it comes
with its own programming environment, and it is the more powerful of the two.

6.1.8 Power Source

6.1.8.1 Battery

The group decided on using a polymer li-ion battery to power the SLIG. The
reason for using this type of battery is because polymer li-ion batteries are one of
the thinnest batteries available in the market. Polymer cells are much thinner
than prismatic cells which means they are much lighter. At the same time,
polymer li-ion batteries are able to store more energy than nickel-based batteries.
Polymer li-ion batteries also retain their charge for longer.

The group decided to purchase the 3.7 volts polymer lithium ion battery – 2000
mAh from SparkFun. The batteries have a 5 start rating and are said to be super
slim, which is why the battery are so light weight. The battery includes a build in
protection circuit for minimum voltage, over voltage and over current. Rated at
2C continuous discharged, this polymer lithium ion battery has what it takes to
power the Sign Language Interpreter Glove.

The battery model is a 585460 with cell dimension of 5.8 by 54 by 60 mm^3.
The following are cautions that need to be taken when charging or discharging
the battery.

 The battery charging current must be 1C5A or lower.
 The battery charging voltage should be 4.25 V or lower.
 When discharging the battery, the discharging current should be 2C5A or

lower.
 The discharging voltages has to be 2.75 V or greater.

Below are some of the battery specifications:

Item Specifications Remarks

Nominal Capacity 2000 mAh 0.2 A discharge

Charge Current
Standard 0.2 C5A

Max 1 C5A
Working temp. 0° to 40° C

Charge cut-off Voltage 4.2±0.03 V N/A

Standard Discharge Current 0.2 C5A Working temp. -20° to 60° C

Max Discharge Current 2.0 C5A Working temp. 0° to 60° C

 87

Discharge cut-off Voltage 2.75 V N/A

Cell Voltage 3.7 – 3.9 V When leaves factory

Weight Approximate: 37g N/A

Storage humidity 65±20% RH N/A

Table 6.1: Polymer lithium ion battery specification

6.1.9 Bluetooth Module

The group decided to go with the HM-10 4.0 Bluetooth low energy module from
the JNHuaMao Technology Company. The reason the group decided to go with
the HM-10 it’s because it uses the TI chip CC2541. The HM-10 is affordable and
reliable based on customer’s reviews. In this section the group will discuss some
of the parameters and the specifications of the HM-10 BLE module. Below are
some of the important parameters provided by the HM-10 datasheet.

 Working frequency: 2.4GHz ISM band
 RF Power: -23dbm, -6dbm, 0dbm, 6dbm, can modify through AT

command AT+POWE.
 Power: +3.3VDC 50mA
 Size: HM- 10 26.9mm x 13mm x 2.2 mm; HM-11 18*13.5*2.2mm

Below is the HM-10 schematic also provided by the datasheet.

 88

Figure 6.12: HM-10 Schematic

Reprinted from the HM-10 datasheet.

 89

6.1.9.1 Bluetooth Generic Access Profile

Generic Access Profile, also known as GAP, is what makes a Bluetooth device
visible to other devices. Basically the Generic Access Profile controls the
connection and advertising in Bluetooth Low Energy. GAP is also responsible for
deciding how the devices will interact with each other. Just like the Generic
Attribute Profile, the two main roles in GAP are the central devices and the
peripheral devices.

Scan response payload and advertising data payload are the two ways that the
Generic Access Profile can send advertising. Both the scan response payload
and the advertising data payload are similar with the exception that the
advertising data payload is obligatory. The reason why the advertising data
payload is mandatory is because it should always be transmitting so that the
central device is able to recognize the peripheral device. The scan response
payload is optional and is used by the device designers to be able to fit more
information in the advertising payload. Basically a string for the name of a device
would go in the scan response payload. Unlike the Generic Attribute Profile, in
the Generic Access Profile a peripheral device is able to connect to more than
one central device. Broadcasting in Bluetooth Low Energy is when a peripheral
device sends data to other central devices within range. Because the data sent
and received can only be seen by two connected devices, this type of
configuration can only be possible by using the advertising packet. Below is a
Bluetooth profile from Adafruit.

Figure 6.13: Bluetooth Advertising Profile

 90

Reprinted from adafruit.com

6.1.9.2 Bluetooth Generic Attribute Profile

As previously implied, Bluetooth paring requires at least to devices. One device
will be transmitting the data while the other device will be receiving the data. In
order to understand how and why the devices need to play a different role in
Bluetooth communication, this section will talk about the Generic Attribute Profile
also known as GATT. The Generic Attribute Profile explains how Bluetooth Low
Energy or Bluetooth Smart devices are able to send data back and forth.

Generic Attribute Profile explains that there is a central device and a peripheral
device. Examples of central devices could be a phone, computer, or a tablet. An
example of a peripheral device could be a Bluetooth speaker or Bluetooth
headphones. In other words, a central device has more processing power and
memory and the peripheral device are low power and resource constrained
devices. In GATT the difference between a central device and a peripheral
device is that a central device can be connected to multiple peripherals devices,
while peripheral devices can only be connected to one central device. Once a
central device and a peripheral device are successfully paired, the
communication between these devices can take place in either direction. A
Bluetooth “mailbox” system is needed when data needs to be exchanged
between two peripheral devices, this means that all the data needs to pass
through the central device.

The Generic Attribute Profile also explains who the peripheral device is known as
the “GATT Server” while the central device is known as the “GATT Client”. The
GATT Client sends requests to the GATT Server and the GATT Server looks up
data and sends back a response. In other words, the GATT Client is the master
device while the GATT server is the slave device.

Usually the central device is the one that initiates the request to connect to the
peripheral device. To avoid causing interference with other devices, the central
device will limit its radio transmission when scanning for connection with a
peripheral device. Another important feature used to limit the radio transmission
of a central device is using short intervals to accomplish a faster detection and
connection. The tradeoff of using short intervals is a much greater power
consumption.

Slave latency is sometimes limited in order to lower the power consumption on
the GATT Server. The slave latency is what defines how many times the GATT
server can ignore a consecutive connection. Ignoring a consecutive connection
means that the peripheral device is not sending data back to the central device,
so it can stay in sleep mode for a longer period of time.

 91

 92

6.1.9.3 Allowing a Bluetooth Connection

In order for the Sign Language Interpreter Glove and the external device to
communicate, permission must be granted by both devices. Requesting a
connection, transferring data or even accepting a connection requires
permission.

When the Sign Language Interpreter Glove is turned on, an established device is
needed to connect. The microcontroller is responsible for sending the Bluetooth
transceiver the command for it to find an android device to pair up with. The
peripheral device, which is the Sign Language Interpreter Glove will send out a
signal known as “advertisement”. This advertising signal is needed so that the
central device, in our case the android phone, knows that the Sign Language
Interpreter Glove would like to establish a wireless connection. Once a
connection has been made, the peripheral devices sends another signal to the
central device letting it know about the successful connection. The Sign
Language Interpreter Glove will implement a single device configuration. Single
device configuration consumes less power than the network processor
configuration. Single device configuration is the most common and is easier to
use. The Sign Language Interpreter Glove should be smart enough to stop
scanning once it has been pair up with a device. When scanning for an external
device, the Sign Language Interpreter Glove should have a time limit to avoid the
battery to drain. Also, if the Sign Language Interpreter Glove does not have any
data to send, it should skip the number of connection acknowledgements and go
into sleep mode. This feature will help extend the battery life of the SLIG design.
The diagram below by Mr. Meng shows BLE connection procedure.

 93

Figure 6.14: Bluetooth Low Energy connection procedure
Reprinted with permission from the author Mr. Meng.

6.1.10 TI LP2985 Regulator

The group decided to use regulators from the TI LP2985 family. These regulators
are not only affordable, but also provide excellent performance for all types of
applications. The LP2985 regulators are available in many different variations,
ranging from 1.8V – 10V. The LP2985 comes in two different version. Version A
offers an amazing output tolerance of just 1% and the standard version provides
1.5% output tolerance. Nevertheless, both versions deliver 150-mA of continuous
load current.

The LP2985 regulators feature ultra-low dropout, ranging from 280 mV at a full
load of 150 mA and 7 mV at 1 mA. The LP2985 can accept a maximum input
voltage of 16 V. The LP2985 offers low IQ, 850 μA at a full load of 150 mA. The
shutdown current is 0.01 μA and thanks to a 10-nF bypass capacitor it provides a
low noise of just 30 μVRMS. The LP2985 includes overcurrent and over-
temperature protection. LP2985 regulators also feature high peak current
capabilities. Overall the LP2985 regulators will provide great voltage regulation
for the Sign Language Interpreter Glove.

 94

Figure 6.15: LP2985 Functional Block Diagram

Reprinted with permission from Texas Instruments

 95

6.2 Software Design

6.2.1 Control Systems

6.2.1.1 On-Board vs External Processing

One of the biggest decisions that need to be made in regard to the control
system of the SLIG is whether the group will process the data using the
microcontroller unit on the glove or if the group will send the data to an external
processor with more computing power to process the data. This depends highly
on which approach the group are going to take to interpret the sensor data. If the
group choose to go with “Machine Learning” (see “Machine Learning” section), it
is highly likely that the group would decide to send the data out to be interpreted
by another computer. This is because efficiently implementing a machine
learning algorithm requires quite a bit of computing power and especially
memory. The group can recall from the “Machine Learning” section that a
machine learning algorithm essentially stores a large amount of previous
iterations of each ‘input’ and uses all of that information to make a decision and
produce an output. During the training process, thousands of iterations of each
hand gesture would be performed, and then the control system would be
expected to very rapidly interpret the input, “scan” through all of the data stored
during the training and testing process, and make a decision on the output. This
would be quite a challenging task for a small microcontroller unit.

If the group decides to send the data to an external computing device, the group
would still be making great use of the microcontroller unit. The MCU can be used
to receive the data coming in from the sensors, and interpret what the values are.
The group can then use the microcontroller to essentially organize that data into
‘packets’ that would be sent out to the external device. Each packet would
contain the data received from one gesture. In our case the group can use
Bluetooth or a hard-wired connection to send this data. For the external
computer, the group can undoubtedly use a desktop computer. However, the
group would try to use an Android device. In that case, the group would
essentially use the same application that the group are using for the user
interface (See “User Interface” section) and “piggyback” some back-end
programming onto that application. At that point the group can implement the
machine learning algorithm on the android device and interpret the hand
gestures, and display it on the same application.

Perhaps a more straightforward way to interpret the data being received from the
sensors would be to perform all of the programming on-board of the glove. If the
group were to go this way, the group would probably shy away from the machine
learning algorithm, and explore some other options to interpret the data. This

 96

would require significantly less memory and computing power because in this
situation, the group would likely have a static set of instruction which run
indefinitely on a loop and can interpret the data.
The group believe that it would be preferable if the group can do all of our
processing on the actual glove. If the group can help it, this is our preference.
Firstly, in this way, the group can have our two software components (control
system and user interface) working independently of each other. This would
mean that if the control system is working, the group know that the data that the
user interface is receiving is correct. Conversely, if the user interface is having
problems displaying the correct character, then debugging can be a little bit
simpler.

The group would be able to debug the two systems independently and find the
error. However, if the group were to use the Android device to perform the
computing of the data, it would be ‘blended’ together with the user interface
program. In this scenario, if the group were to have an issue with the system, it
would be a bit more complicated to debug. Also, processing the data on the
glove provides us with the opportunity to have a stand-alone glove which can
process data from the user itself. This is the ideal situation because anybody who
owns the glove and would like to use another medium to view the letter can do
so.

6.2.1.2 Functions

The control system for the SLIG will employ a few functions, which the group will
write ourselves. This function will be used to ‘map’ the range of values retrieved
from the user in the calibration phase. As described in the “Calibration” section
above, the calibration process will involve the user closing and opening their
hand, as to provide the system with information about how much bend will be
present on that person’s hand. The function will be provided with parameters for
the minimum and maximum amount of bend that was measured from the user
during the calibration process. The function will then take this data and it will
“normalize” it through the use of some arithmetic, to make it represent the
‘standard’ maximum and minimum values. These standard values will have to be
determined by us as the group go along with the implementation of the project,
once the group see what are typical values that the group get from the sensors
and how the system behaves when the group try to implement the hand-gesture
recognition (without calibration). Once the group have an idea of how the system
works without the use of calibration, the group can see the amount of error that
the group experience due to the differences in the users’ hands and the group
can pick a range of values that can mitigate this error.

Another function that would have to be written by us would be the ‘mapping’
function that takes in the minimum and maximum values (after being normalized
by the calibration process) and breaks up that range of values into a certain
amount of “levels”. In our preliminary planning, the group believe that about 4

 97

different ‘levels’ of bend can be appropriate and enough to determine what
position each finger is currently placed on. For example, after going through the
calibration function and through this mapping function, a gesture performed by
the user will produce an output such as “1, 2, 3, or 4”.

Even through the range in voltages being read from the sensors varies greatly
within each one of these ‘levels’, each of the four levels are distinguishable
enough so that the system can easily tell if the finger is fully straight, slightly
curved, halfway bent, or fully bent. This is all that is necessary for the
determination of what hand gesture the user is trying to perform. If this can be
accomplished successfully and accurately, then actually having the infinite loop
make decisions on what hand gesture is being performed by the user becomes
exponentially less difficult. At this point the infinite loop can be populated with a
series of conditional statements that inquire about the state of each sensor, only
using 1 of 4 possible outputs from the sensor. If the group did a good job of
providing an accurate depiction of each position of bend as an integer between 1
and 4, then this part should go by fairly smoothly.

6.2.2 Mobile Application

A successful mobile application is essential to the project because it is the final
piece of the puzzle that displays the output of the glove to the user. Learning how
to create a mobile application is very complex and there are many things that a
beginning developer will learn along the way such as how to approach the design
from the start. Therefore, it is a good idea to create a preliminary mobile
application before diving into the actual mobile app used for the project because
of the steep learning curve that will cause errors and redesign in the long run.
However, the preliminary mobile application is for learning purposes only and will
not be discussed in this paper.

Now that the group has come to a consensus on using Android as the mobile
platform, the design of the mobile application needs to be completed. The best
approach for designing the mobile application will be to keep it simple and focus
on the main objective, which is displaying the letters translated by the sign
language glove. The first step will be to go through the process of what we want
our mobile application to do and how the sign language glove uses it. Below is a
flowchart that shows the mobile application’s processes and expected behavior.

 98

 99

Figure 6.16: Mobile Application Flowchart

When the user is performing sign language gestures with the Sign Language
Interpreter Glove (SLIG), the flex sensors and accelerometer are sending data to
the microcontroller. This data is then translated into a hex equivalent value for
the letter of the alphabet and sent wirelessly over Bluetooth to the mobile phone
which will decipher the hex values and convert it to the corresponding letter of
the alphabet to be displayed it in real time onto the screen as text. In this
process, the mobile application is responsible for receiving data via Bluetooth,
converting the data being send into text, and displaying the text onto the screen
and constantly updating the value. The main design features of the mobile
application are the graphical user interface, Bluetooth communication, and the
translating & learning mode features which will all be discussed in detail in the
following sections.

6.2.2.1 Bluetooth Communication

The research, design, and connection of the hardware for the Bluetooth module
have already been discussed in other sections but the design of how the mobile
application software will interact with the Bluetooth module needs to be covered.
Establishing Bluetooth communication between the glove and the mobile
application requires using the programming language Java in Android Studio, but
this will be explained in more detail later. The first requirement for our mobile
application to communicate with the Bluetooth module is to ensure that they are
both compatible. After this has been established, the Bluetooth module on the
glove must connect with the mobile device and maintain a stable connection so
that the mobile application is ready to be used. Making a connection with the
Bluetooth adapter on the glove requires calling methods in Java that use the
Generic Attribute Profile (GATT) – explained in section 6.2.7.2 Bluetooth Generic
Attribute Profile. Once the mobile device has made a connection with the glove,
the mobile application is still not allowed to use this connection for sending or
receiving information; the application must be given permission to use the
Bluetooth connection within the source code to ensure security. The next couple
sections will explain which devices are compatible with the Bluetooth module
selected and how to give permission to the mobile application so that it can use
this Bluetooth connection for its purpose.

6.2.2.1.1 Mobile Phone Compatibility

The Bluetooth module selected for the Sign Language Interpreter Glove (SLIG)
will be using Bluetooth Low Energy (BLE), which was adopted into the main
Bluetooth Standard in 2010 along with the adoption of the Bluetooth Core
Specification Version 4.0. In order for the mobile phone to be compatible with
BLE the version of Android on the device must be Android 4.3 or newer;
Bluetooth Low Energy is not backwards compatible unfortunately. Most phones
on the market today are compatible with BLE but there could be other software

 100

compatibility issues if the Android API level used for the application is newer than
the API used by the device. The API level determines which versions of Android
that an application is compatible with and can be used as a tradeoff between
having more features or more compatible devices. The list of requirements for
Android mobile phones to use Bluetooth Low Energy is shown below in Table
6.2.

Minimum Requirements

Device Type Android

Mobile Platform Smartphone

Bluetooth Version Bluetooth Low Energy v4.0

Platform Version Android 4.3

Codename Jelly Bean-MR2

Android API Level 18

Table 6.2: Minimum Software Requirements for Bluetooth Low Energy

6.2.2.1.2 Finding BLE Devices

When the glove is ready to be paired with the mobile phone via Bluetooth, both
the Bluetooth adapter and the mobile phone have to begin searching for each
other. This section will be discussing how the mobile application will search for
the Bluetooth Low Energy devices and pair with them. Using a method in Java
called startLeScan(), the mobile application will scan for a peripheral device – the
sign language glove – and return any devices using the supported GATT
services. After the application has recognized the glove as a compatible BLE
device, it needs to connect the mobile device to the GATT server hosted by the
BLE device. This connection can be made by using the Java method
connectGatt() that handles connecting the BLE device as soon as it becomes
available. The connectGatt() method also passes back an object that contains
information about the connection status and other GATT client operations that
can be used to perform more GATT client operations. When the Android
application has successfully connected to the glove it can begin to receive data
wirelessly using the Bluetooth adapter.

6.3.2.1.3 Bluetooth Permissions

Android mobile applications do not automatically have permission to use
Bluetooth features; the developer must declare the Bluetooth permission
BLUETOOTH in the application manifest file. The mobile application needs this
permission in order to use Bluetooth communication for actions such as

 101

requesting a connection, accepting a connection, and transferring data. There is
another Bluetooth permission used for initiating device discovery, pairing
devices, and managing Bluetooth settings called BLUETOOTH_ADMIN. An
example of how both of these permissions would be declared in the application
manifest file is shown on the top of the next page.

<uses-permission android:name="android.permission.BLUETOOTH"/>
<uses-permission android:name="android.permission.BLUETOOTH_ADMIN"/>

6.2.2.1.4 Enabling Bluetooth Features

Once the mobile application has enabled the Bluetooth permissions, the
application must perform a compatibility check for Bluetooth Low Energy (BLE).
This can be done by adding the following code into your application manifest file,
the same place that the Bluetooth permissions were added:

<uses-feature android:name="android.hardware.bluetooth_le"
android:required="true"/>

The application must also verify that BLE is enabled on the device if it is
supported. There is a class called “BluetoothAdapter” that can ask the user for
permission to enable BLE and it won’t leave the application. There are two steps
required in this process, getting the “BluetoothAdapter” and enabling Bluetooth.
Getting the “BluetoothAdapter” means that there needs to be a call made in the
application that finds the adapter by using other Bluetooth specific classes. An
object is made when the Bluetooth adapter is found, which is an instance of the
class “BluetoothAdapter”, and can now be used to perform any Bluetooth actions.
But first, the application needs to confirm that the Bluetooth is enabled by calling
the method “isEnabled()”, which is provided in the Android SDK.

6.2.2.2 Graphical User Interface

The graphical user interface (GUI) is a type of interface for applications and
programs that uses visual features to control the application/program instead of
text-based instructions. The main purpose of a GUI is to offer users an interactive
and user-friendly navigation system for an application that gives the user control
of the available features. Some examples of a GUI are Windows and Mac OS for
computers which both have a visual interface with icons, buttons, and much more
that are used to navigate and perform tasks. The main design considerations
when it comes to the graphical user interface are the menu layout schemes,
appearance, and the usability of the application. The menu layout will be one of
the first impressions of the application where user will have a choice to receive

 102

gesture inputs from the Sign Language Interpreter Glove for either translating
mode or learning mode as well as manage the Bluetooth connection, so it is
important to make the menus easy to use and look good.

When it comes to designing the appearance of the GUI, it is critical to make the
application proportionally fit the screen size of the phone or else everything else
will appear distorted. For example, an application UI that was designed for a
mobile phone would not fit onto a tablet screen without being fit for a bigger
screen size and vice versa. Having to adapt the screen size to every Android
mobile device on the market would be a hassle because each cell phone carrier
has their own line of smart phones and each smart phone has multiple
generations of models with varying screen sizes and resolutions. Thankfully,
Android provides APIs that support multiple screen sizes and will simplify this
process by splitting the range of screen sizes and densities into four groups:
small, normal, large, and extra-large. The range of these screen sizes are not
exact, but to get a better idea of what they look like view Figure 6.21a which
displays an approximate range of screen sizes that these four groups are used
for.

These groups are based on the screen size of the device, measured as the
screen’s diagonal, and the screen density, the number of pixels within a given
physical area (measured in dpi, or dots per inch). However, when defining a UI
layout, there is another unit that is used instead of the size and screen density
called a density-independent pixel (dp or dip). A “dp” is a physical unit of
measurement that represents a virtual pixel unit used for expressing UI layout
dimensions or positioning independent of the screen density. The main purpose
of a “dp” is to allow the mobile application software to work in pixels as a unit of
measurement and then convert from a virtual pixel to a physical pixel using
different scaling factors based on the device’s screen density. There are six
generalized screen densities shown below in Figure 6.21 ranging from low (120
dpi) to extra-extra-extra-high (640 dpi), but the standard measurement for many
calculations is 160 dpi corresponding to a medium density screen.

Figure 6.17: Illustration of how AndroidTM roughly maps actual sizes and

densities to generalized sizes and densities (figures are not exact).

Reprinted with licensing permission from Creative Commons Attribution 2.5

 103

The calculations required to render the UI layout for each device is executed by
the system in the background, so there is no need to manually calculate the
resolution. Using these four predefined layout sizes, the mobile application
should be able to automatically detect the screen size of the device and select
the appropriate UI resolution. For most cases, Android will resize the application
UI to fit the device screen fittingly but there are a couple other measures that
should be taken to guarantee a proper screen configuration. The first measure is
to explicitly declare the screen sizes that your application supports in the
manifest file – a file required by Android applications that contains essential
information needed by the device in order to run – which guarantees that only
devices with supported screen sizes may download the application. For more
specific UI layouts, configuration qualifiers can be used to adjust the size of the
screen and the elements within it as well as other features such as changing the
language and direction of the layout. The four screen size groups discussed
earlier (small, normal, large, and extra-large) are actually one set of configuration
qualifiers but there are many more that can be used to provide alternative
resources for the application. One of these qualifiers that will not be used in this
application is the landscape orientation, which is an alternative view of the
application layout when the screen is held horizontally. The reason landscape
orientation is not useful for this application is because the main functionality is to
translate gestures into letters and having a landscape orientation will just add
more complexity to the UI layout without any added benefits. Using these
configuration qualifiers for alternative layouts is a nice addition to many
applications, but the scope of the project does not require many of these features
and therefore will only use the qualifiers that are necessary.

6.2.2.3 Menu Layout, Interface, and Usability

The mobile application’s graphical user interface (GUI) design requires more
than just configuring the UI layout to each device; the developer must also design
the menu layout which involves creating a menu and the navigation through the
application. Creating the menu can be done using Android Studio’s built-in GUI
workspace for drag and drop features and the programming language XML for
more customizable interface design (found in section 3.3.3 Programming
Languages). All of the available features of the app are accessed through the
menu and can have an infinite number of unique designs thanks to the
customization options provided by Android Studio. This section will go through
the different menu layout styles and which one will fit the needs of the mobile
application best.

The menu layout gives an application a certain look and feeling depending on the
different shapes, colors, text, and positioning that are used. When creating a
mobile application you don’t want the interface to look like a scaled down

 104

website; instead, there needs to be a more mobile theme behind the design.
There are a few of the features that websites and mobile apps share such as
buttons, drop-down menus, scrolling, and more that need to be changed for
mobile use. One example is that on websites it is common to use drop-down
menus to access layers of information, but on mobile applications users generally
don’t want a drop-down menu at all because of the limited screen size and
difficulty accessing multi-leveled menus on a phone. The best approach for this
situation is to keep the menus simple and only have one or two levels of
information. There are many other examples like this one but first it is more
important to talk about the different tools available to Android developers for
creating a menu layout.

Since menus are common in many mobile applications, Android provides a list of
menu APIs to use for actions and other functions to maintain a familiar and
comfortable user experience. This means that there are a few different menu
layout options available to developers depending on how he/she wants to design
the application. The three main types of menus available through Android are an
options menu, context menu, and popup menu (or submenus) which have
different usage and workflow. An options menu is a very common type of menu
which is displayed when a user selects the menu button on his/her phone. This is
generally where users can access global items like the settings, search bar, help,
and other additional information. An example of an options menu is shown below
in Figure 6.22a when the user presses the menu button on an Android phone,
which displays the different options available to users viewing an email using
Gmail. The second type is the context menu which displays a floating menu with
various options when a user long-clicks an element. The reason this type of
menu is called a context menu is because the floating menu that appears is
related to the context of the element and selecting an option will affect the
content or context frame. In Figure 6.22b, a context menu is shown using the
Android text messaging application and long-clicking on the selected word that is
being typed which allows the user to edit the message. The last type of menu is a
popup menu that provides a list of extended options from an element but do not
actually change the context of the item selected. An example of a popup menu is
the menu displayed when trying to manage a message shown in the thread of
and Android messaging application as shown below in Figure 6.22c.

After going over the different menu types available in Android Studio, it is time to
design the menu layout of the SLIG’s mobile application. As the interface is being
constructed, the developer always wants to look at the layout from the user’s
point of view so that the application is user-friendly. The audience base using the
SLIG will be mostly be new people who are testing the glove for the first time,
and thus creating a user-friendly environment for new users requires making the
application intuitive to learn. This process of designing an application interface
based on the ease of navigating through the menus and accessing the features
defines the usability of the mobile application and is a big part of the interface
design process.

 105

As mentioned earlier, one of the most important aspects of usability for mobile
platforms is implementing mobile-friendly features such as simple drop-down
menus, buttons, etc. that will complement the user interface and take advantage
of the mobile phone’s capabilities. Hence, one of the simplest ways to design the
application is to have the real-time gesture translator open first and serve as the
‘home’ screen since this is the main purpose of the app. Once the application is
open, there needs to be a general menu where the user can switch between the
different features like the translator, learning mode, and Bluetooth features. As
shown below in Figure 6.22, there are a few different methods for accessing
menus depending on how the developer wants their application to look and feel.
Out of the three choices, the ‘options menu’ appears to be the best choice for
creating a general menu since this type of menu is designed to access global
features. The next step is deciding how to access this general menu which can
be implemented in many different ways.

(a) Options Menu (b) Context Menu (c) Popup Menu

Figure 6.18: Different Types of Menus on Android Version 4.4.4

As a developer, opening a menu is a simple task and many applications use the
same method for completing this task because they want users to be familiar with
their menu navigation before they even use it. Seeing that the SLIG’s mobile
application will open to the gesture translator screen first, the main menu will
have to be accessed from this screen somehow and needs to be obvious to the
user. This must be done using some kind of interaction between the user and the
mobile application like touching a button, swiping, voice commands, etc. The
simplest and most common methods among mobile applications for opening a

 106

menu are pressing a button or swiping to open a new screen/menu. Using one of
these options is advantageous simply because most people using these
applications already own a mobile phone and they are very familiar with the
functionality of buttons and swiping already.

Generally, buttons and swiping can be used for the same purpose but they each
have their own pros and cons. Buttons are good for developers and users
because they are quick, intuitive, and visual means of navigation that lets the
user know that tapping the button will do something related to what is displayed
on the icon (text and symbols). The bad parts about buttons are that having too
many can clutter the screen and a misplaced tap can open an unwanted feature
during use and cause an issue. The good news is that swiping features don’t
have these problems and can be used in replacement or in addition to a button.
Swiping is a natural movement for users that allows developers to open features
by swiping in any direction, however the four basic directions (up, down, left, and
right) are the most popular. Some of the biggest benefits of swiping are that it
doesn’t take up as much screen space as a button and it can’t be accidentally
opened as easily as a button. The bad parts are that swiping can cause users to
accidentally use other features such as scrolling or tapping a button instead of
swiping. Also, if there is no visual indication that swiping is an available feature
many users will overlook that feature without realizing it exists. However, if the
visual icon of a button is combined with a swiping motion this will eliminate one of
the issues with swiping and make it a better choice. Using this information, a
visualization of what the application should look like is shown on the next page in
Figure 6.23 where the menu button is at the bottom and can be swiped upwards
to open the menu. As you can see, the menu button is easy to access, does not
take up much screen space, and will not accidentally open which makes swiping
the best option for the mobile application’s menu. Also, the user can zoom in or
out to fit the letter to their screen manually and view the changes in the
background without closing the menu which is another big plus for usability.

There are other design requirements needed to completely design the menu and
user interface, but the most important design features have already been
discussed. The rest of these features are negligible in terms of functionality for
this project but will be briefly mentioned so there are no misunderstandings about
the design of the interface for the application. The most obvious design factor
that was left out is making sure that the application is readable. Readability is an
important factor in mobile design but as long as the developer uses appropriate
font sizes/styles, colors, and contrast for the interface there should be no issues.
Also, developers must keep in mind how much screen space their features
require so that the application functions as intended. For example, in Figure 6.23,
the letter displayed must be large enough for the user to read but not too large
where it will overlap the list of gestures in translating mode. Also, in learning

 107

mode, the gesture displayed by the user must leave enough space to allow for
the image of the ASL letter to be readable too.

(a) Translator Mode (b) Learning Mode

Figure 6.19: SLIG App Menu Layout Interface

6.2.2.4 Translator Mode

The main purpose of the application is to translate the sign performed by the user
of the Sign Language Interpreter Glove (SLIG), so creating the interface for the
translating feature is a very important part of the mobile application. When the
user opens up the application, putting the interface for the most important
features is in the group’s best interest. Although, if the phone has not been

 108

connected to the Bluetooth yet, this process will still need to be done but that
does not take away from the first impression of the translator feature being the
main screen because now the user will know how to navigate backwards through
the application.

109

There are two main components to the translator mode that need to be
implemented which are displaying the current gesture and keeping track of the
previous gestures performed. The reason the translator mode needs to have
both of these features is because in order to successfully communicate with
someone, the user needs to be able to see the current gesture being performed
by the glove user as well as read the previous letters being displayed in the case
that the glove user is spelling out words. As you can see in Figure 6.24 below,
the big letter ‘Z’ is being displayed at the bottom half of the screen to distinguish
itself from the list of previous letters show in the top half of the screen. The
different sizes of the text for the current gesture and the gesture list allow a long
list of letters to be accumulated on the top as well as an easily readable gesture
on the bottom. There is also a “Clear Screen” button at the bottom of the screen
that will erase the gesture list for different purposes such as a new user or after a
while of communicating and there is a large list of letters displayed.

Figure 6.20: Translator Mode Menu Layout

110

6.2.2.5 Learning Mode

The learning mode feature of the mobile application is a very important feature
that allows the user to learn American Sign Language (ASL) if they need practice
signing. In addition to the functionality of learning mode, a menu layout will need
to be created for this feature because it is the second most important aspect of
the mobile application after the translator. In the Menu Layout section (6.2.2.3), a
general menu for the translator screen was created which will be the main theme
of the application. Therefore, a second menu must be created for learning mode
which has the same theme as the main menu. There are a couple different
options for creating this second interface such as creating a separate interface
for learning mode or using the same screen as translator mode but implementing
a tab that can be easily accessed from without changing context. If a separate
interface was created for learning mode that would require loading a new activity
in the application which requires processing time and may not be as simple as to
use as the other option (using tabs). Therefore, the best option that allows this
new interface to take advantage of the translator mode interface will be to create
a tab for both modes. The tabs allows the user to simply swipe or press a button
to switch from one mode to the other and since these features are both very
important to the application, using tabs makes the main interface user friendly.
Also, the interface for the learning mode needs to be simple just like the
translator mode, so only necessary features will be added to keep the user
focused on the task at hand. A sample of the user interface for the learning mode
feature is shown in Figure 6.25, on the next page.

After discussing the accessibility of learning mode, the functionality of this feature
contains a unique ability to display an image of a sign language gesture and asks
the user to perform it in order to move onto a different gesture. If the user
correctly performs the sign, a new image of a gesture will appear and the user
may keep matching these signs until he/she is done practicing. Also, there is a
“Skip Gesture” button at the bottom of the screen that allows the user to skip
whatever gesture is displayed on the screen if they are having trouble performing
it. The main idea behind the learning mode feature is to teach people the
American Sign Language alphabet. Adding this feature to the mobile application
gives the Sign Language Interpreter Glove a second purpose in conjunction with
the communication aspect in translator mode.

111

Figure 6.21: Learning Mode Menu Layout

6.2.2.6 Bluetooth Connection Interface

After creating the menu layout for the main features of the application, the
Bluetooth menu layout needs to be created so that the user is able to connect
wirelessly to the Sign Language Interpreter Glove with ease. Taking a look at
Figure 6.25 in the previous section, there is a Bluetooth button in the top right
corner of the screen which will take the user of the application to the Bluetooth
device scanning screen as shown below in Figure 6.26 (a). From the device
scanning screen, the user has the ability to search for Bluetooth devices in range
and attempt to connect to the device selected from the list. Once the user selects
a device, the application will bring the user to a second screen, shown in Figure
6.26 below, which will allow them to attempt to connect/disconnect to the device.
After successfully pairing the mobile device with the glove, the user is able to
navigate back to the main screen of the application using the back arrows in the
top left menu bar of both screens. Also, the Bluetooth connection screen displays
additional information about the device such as the device address, connection

112

state, and advanced data such as the letter and hex values received by the
mobile application.

 (a) Bluetooth Device Scan Screen (b) Bluetooth Connection Screen

Figure 6.22: Bluetooth Connection Menu Layout

113

6.3 Bill of Materials

Below is a listing of the key components that were used in creating the SLIG. The
team chose to omit consumable such as resistors, wiring and the like for the sake
of simplicity.

Item Description Vendor Part Number Quantity
Unit

Price

1 4.5" flex sensor SparkFun SEN-08606 15

$12.95

2

6 Degrees of Freedom

IMU Digital Combo

Board

SparkFun SEN-10121 2

$39.95

3
UA Strikeskin Tour

glove

Dicks

Sporting

Goods

1275442 1 $24.99

4

3.7 Volts Polymer

Lithium Ion Battery –

2000 mAh

SparkFun

PRT-08483

1

$12.95

5

TI LP2985 Regulators

Digikey

595-LP2985-

33DBVR

5

$0.55

6

HM-10 4.0 BLE

Module

Amazon

B00C2FIHKQ

4

$11.29

7

ATmega328P

Digikey

ATMEGA328-

PU-ND
1

$9.99

8 PCB
Bay Area

Circuits
N/A 1 $49.60

9
Soldering Materials et

al
Various N/A 1 $120.00

10
Google Play Developer

fee
Google Play N/A 1 $25.00

Table 6.4: Bill of Materials

114

7. Construction

7.1 Testing and Evaluation Plan

7.1.1 Hardware Testing

Most of the hardware can be tested independently and multiple times throughout
the different stages of the project. This team will plan to test these hardware
components at least once before integrating all the parts together. After some
sort of functional prototype has been constructed, all the hardware can be
(re)tested through similar examinations that will most likely result in a trial, error
and adjustments process.

Pre-Prototype:

Flex Sensors – The flex sensors could very well be the most straightforward of
all the hardware components to test. All that is required is to assemble the
voltage divider circuit mentioned previously and apply some sort of power or
voltage supply. A multimeter must be connected to this circuit (with a parallel
connection to the flex sensor) so that the voltage across the flex sensor can be
measured. Then as the sensor is slowly flexed from its un-bent form to its
maximum angle, the measured voltage should be monitored to verify that it is
varying accordingly. More precisely, the voltage measured should be decreasing
steadily.

Contact Sensors – The contact sensors can be checked in a similar manner.
The key difference would be is that instead of bending the sensor, contact must
be made between two contact sensors. Assuming proper contact has been
made, the voltage read at the end of the second sensor (the one that isn’t the
thumb sensor) should equal the voltage supplied to the thumb sensor.

Post-Prototype:

Flex Sensors – Once a prototype has been assembled the output from the
sensors will be left to the MCU to interpret. However, the idea will continue to be
the same. The voltages signals sent to the MCU will need to be decreasing as
the sensor is flexed. Once the mobile application interface has been established,
the more logic manner of testing would be to form different letters that solely
depend on flexing each finger and see whether the correct letter is displayed
through the application. If there are ever any inconsistencies either the way the
voltage variation are being interpreted needs to be the adjusted or the wiring

115

connecting the flex sensors need to be adjusted. This process should be
repeated until the right letter is read.

9 Degrees of Freedom IMU – There are two components to this combo board
and the two will require slightly different test approaches. The accelerometer's
most important function will be to identify the orientation or tilt to the user's hand.
This is important distinguish between pairs of letters and even to ensure single
letters are being formed with the proper tilt since this is characteristic of those
letters just as much as the shape of the hand. So a letter such as "Q" can be
used to check the accelerometer since this letter requires that the user's hand be
pointed downwards. If both the physical connections and the programming are
set up correctly, the glove should only read the letter "Q" when then the hand is
tilted downwards. If the user forms the right shape with his hand abd flexes the
right fingers but down not tilt his or her hand in the right direction, the glove
should not interpret the letter "Q" at that moment.

The accelerometer portion of the combo board is tuned to identify the two letters
that are distinguished by their motion. Thus, in order to check whether this
portion is functioning properly, one of those letters such as "J" should be tested
along with the letter "I" which is nearly identical to "J" in all other respects except
that is lacks the swinging motion. If the glove recognized the letter to be "J" after
every repetition of the experiment then no further corrections need to be made.
Otherwise, some adjustments will have to be made and the testing will have to
be repeated.

Contact Sensors – The central idea will remain the same as this final major
component of the hardware is tested. The contact sensors will be used to
distinguish between certain pair of letters that differ by which, if any, of the
fingers are touching one another thereby creating some sort of force as the
fingers are held together. One such pair could be "U" and "V". Both letters should
be tested and the glove should be able to tell them apart on different trials.

7.1.2 Software Testing

7.1.2.1 Control System Test Plan

The control system will have to be tested after it is implemented. This requires
making sure that the input from the user’s hand gestures matches the output that
is viewed at the user interface, whether it be the Android application, and the on-
board LCD display if the group decides to go ahead with the on-board display.
To do this, there will need to be a method to meticulously test every possible
hand gesture to make sure that can be performed by the user produces the
desired outcome on the user end.

116

To efficiently test the control system and truly make sure that the control system
is actually designed to make correct decisions based on certain outputs, the
system will need to be pushed to its limits. This means that the group will need
to provide the system with controversial inputs where the system may be likely to
make a mistake. For example, as mentioned in an above section, certain letters
like U, V, and R are very similar to each other. During the testing of the control
system, the group will make hand gestures that are clearly a certain letter, but
performed in ways that may be close to one of the other similar letters while
trying to induce an error. This will put to test the implementation of the pressure
sensors or contact sensors. Also, the software that interprets the data provided
by these sensors will likely have to be tweaked because it is highly likely that the
control system will produce some level of error when processing these very
similar letters. Performing this for a number of times will find the errors that were
made when initially writing the code for the control system and will allow the
group to take any necessary mitigations to correct the errors that were found
while performing these tests.

Similar to the U, V, and R, the letter J will also be a controversial letter that will
need to be tested very carefully. It is highly likely to produce an error because
this letter not only depends on the position of the fingers, but also on the motion
of the hand. The hand gesture interpretation function will use the data collected
from the accelerometer in order to determine when the hand was moved in a
certain direction which corresponds with the motion required to make a J, and
also that the data from the flex sensors concur that the fingers are actually
positioned in the position that corresponds with the J.

As seen, it is evident that this letter is multiple degrees more complicated than
the rest of the letters. This letter will require some ample testing and there will
inevitably be issues. The group suspects that it will be necessary to perform this
letter in a certain way every time so as to remove some of the uncertainty that
comes with the letter J.

All of the testing described above will be checked by monitoring on the computer
screen within the development environment (likely a HyperTerminal window).
However, it is also necessary to check that the data is able to make it out to the
Bluetooth module correctly as well. The testing of the Bluetooth module will be
handled in that section, but the group needs to make sure that the output from
the control system that is being sent out to the Bluetooth module is actually the
correct data that is being seen on the HyperTerminal window when the control
system is being tested on the computer screen.

7.1.2.2 Mobile Application

The mobile application is a big portion of the project that operates to display the
gestures translated by the rest of the sign language glove. In order to test the
mobile application, it is necessary to identify the inputs and outputs of the

117

application because these will determine the overall functionality. Since these
parameters cannot be tested until a working prototype of the glove is built, testing
the mobile application will require using simulated gestures from the computer.
Also, it is standard programming procedure while building any software
application to test the program during the development process and make sure
each component works separately. On a good note, Android Studio, along with
most IDEs, provides tools to help developers fix the errors in their code so this
type of testing will come with the process of building the application.

7.2 Facilities and Equipment

There will be a number of facilities the team has used and plans on using in order
to create a final working prototype.

The first of these was the eli2 Idea Lab located in the UCF Engineering II
building. Known for its unique design; a glass enclosed space with sails flying
above, LED lighting, eccentric chairs and stools and large projection screen to
display concepts that will invite creativity, this lab was modeled after creativity
spaces at GOOGLE and Pixar. It was here that the team first brainstormed ideas
about what it wanted to attempt for Senior Design and the innovative
environment helped the team refine their ideas until they came to a consensus of
what it was they wished to do. That consensus was to attempt a redesign of the
Sign Language Interpreter Glove.

Second, the team plans to use the Senior Design Lab extensively for further
research, development and possibly testing of the final prototype. This laboratory
which is located in Engineering I building of UCF is a facility that provides 24/7
access to a workspace with instrumentation, equipment and software for
students specifically enrolled in Senior Design. It has a wide range of equipment
that includes things such as an oscilloscope, function generator, multimeter and
different software such as Multisim that will most likely prove invaluable in
troubleshooting and refining our project.

Moreover, another possible laboratory that might prove itself useful is the Texas
Instruments Innovation Lab. This was designed to allow students to bring their
ideas to this space, strategically located next to the Idea Lab, to quickly build
prototypes with 3D printers, laser cutters, TI components and equipment and
other high-tech machines. Materials such as plastic, foam and metal are also
available. These types of resources will come especially in handy as the team
begins constructing the prototype.

Aside from the equipment said to be available in the different facilities above, this
project will most likely require use of other tools. A soldering iron will be needed
to bring different electronic components together at one point or another.
Although it may seem trivial, a computer with the correct software will

118

nonetheless be crucial when it comes to programming the MCU and building the
user-interface application for the android system.

119

7.3 Suppliers

In order to create the SLIG the team will need various parts supplied by different
vendors. As far as the different sensors are concerned, the team's preferred
supplier will be SparkFun Electronics. SparkFun Electronics is an electronics
retailer in Niwot, Colorado, United States. It manufactures and sells
microcontroller development boards and breakout boards. All products designed
and produced by SparkFun are released as open-source hardware.

For the glove, the team has chosen a model made by Under Armour because of
it solid reputation and sturdy, high quality products. This way no more than glove
will be needed throughout the entire prototype creation process. The team
purchased the glove from Dick’s sporting goods in order to reduce costs and
have a chance to inspect the glove in person before buying it.

One such third-party website could definitely be Amazon.com. The team was
already chosen to order both a charger and a Bluetooth module from the retail
giant. There is no doubt that Amazon will be a speedy, reliable supplier with a
myriad of other parts to offer for future need.

Mouser Electronics and Digikey Electronics are both global leading authorized
distributor of semiconductors and electronic components for more than 500
industry leading suppliers. Their vast inventory of products include
semiconductors, interconnects, passives, and electromechanical components.
They have even won awards for their reputable performance in global customer
service. The team has decided to order the SLIG's ATmega328 and voltage
regulators from Digikey after seeing their competitive prices.

Bay Area Circuits was selected for the printed circuit board construction. They
are known to specialize in small quantity PBC manufacturing and have one of the
fastest lead times available. The team selected them especially for their
competitive pricing is achieved as it turns out by combining several clients'
designs on one manufacturing panel and sharing the tooling costs between them.
They cater to both large-scale and small-scale customers; never sacrificing
reliability or quality for their speedy delivery.

120

8. Project Operation

8.1 Translator Mode

The SLIG will most likely be made as a right handed glove given that most users
will have a dominant right hand. The glove will need to be placed over the user's
hand and secured using the straps around the wrist. From this point, the user can
begin to form any sign language letter from the 26 letters of the English alphabet
he or she chooses. The user must make sure to form the signs as accurate as
possible paying close attention to how much he or she is bending each finger,
the overall direction his or her hand is pointing and to complete each additional
motion that may be part of the letter.

As the user performs each letter carefully and with sufficient time in between
distinct letters, someone will have to access the mobile application to verify the
correct letters are being displayed on the screen. The mobile application will
most likely have a very simple interface and will automatically synchronize itself
with the SLIG once it has been initialized. Each letter the user wearing the SLIG
signs should appear on the screen and remain there until the next letter is
signed. For the user's benefit, the team recommends he or she attempt every
single letter at least once to make sure they are making the correct sign. When
done with his or her exercises, all the user needs to do is power off the glove and
remove it from his or her hand.

8.2 Learning Mode

The SLIG mobile application also implements a learning mode. In the learning
mode, the operation of the glove remains the same however the purpose behind
the application changes to helping the user master signing the ASL letters
correctly. The application will randomly display one of the twenty six letters on
the screen and the user must try to adjust their hand to match that sign as closely
as possible. If the user signs is close enough that the glove can recognize it, the
app will move on to the next letter. This mode is perfect for beginners who need
a way to test their signing. Lastly, the learning mode includes a “skip gesture”
feature so the user can manually move on to the next letter in case the glove is
not well calibrated or they simply cannot perform the sign at hand.

121

9. Administrative Content

9.1 Project Budget

The proposed budget for the SLIG took into consideration all of the parts required
to make the product as well as extra/replacement parts along the way. The prices
listed were estimates from online research and will be updated in the future once
the final product is built.

Part Description Price ($) Quantity Cost ($)

Power source $10 1 $10

Microcontroller $50 1 $50

Flex sensors $10 10 $100

Accelerometer $30 1 $50

Glove $20 1 $20

PCB $150 1 $200

Bluetooth adaptor $10 1 $10

Feedback LEDs $1 10 $10

Miscellaneous parts $100 ? $100

Total Cost

$550

Table 9.1: Initial Project Budget

122

The team received funding from Boeing and Leidos; a total of $360. In the end,
the team spent a significant amount more for the glove than was originally
planned. The final budget is listed below.

Table 9.2: Final Project Budget

123

9.2 Milestones

The project milestones show a tentative schedule for the entire Senior Design
course that breaks the project down into a list of tasks to be completed. Each
team member is responsible for their own tasks as well as participating in team
tasks so that by the end of the timeline everything will be completed as planned.

Number Task Start End
Duration

(weeks)
Responsible

Senior Design I

1 Brainstorming 9/1/2015 9/8/2015 1 The Team

2
Project Selection &

Role Assignments
9/8/2015 9/15/2015 1 The Team

Project Report

3
 Initial Document -

Divide & Conquer
9/8/2015 9/15/2015 1 The Team

4 First Draft 9/15/2015 11/3/2015 7 The Team

5 Final Document 11/3/2015 12/8/2015 5 The Team

Research &

Documentation

6 Bluetooth 9/15/2015 10/5/2015 3 Ramon

7 Flex Sensors 9/15/2015 10/5/2015 3 Chris

8 Accelerometers 9/15/2015 10/5/2015 3 Chris

9 Software 9/15/2015 10/5/2015 3 Jason

10 Power Source 9/15/2015 10/5/2015 3 Jason

11 Microcontroller 9/15/2015 10/5/2015 3 Emanuel

Design

12 Bluetooth 10/6/2015 11/3/2015 4 Ramon

13 Flex Sensors 10/6/2015 11/3/2015 4 Chris

14 Accelerometers 10/6/2015 11/3/2015 4 Chris

15 Software 10/6/2015 11/3/2015 4 Jason

16 Power Source 10/6/2015 11/3/2015 4 Jason

17 Microcontroller 10/6/2015 11/3/2015 4 Emanuel

18 Order & Test Parts 11/3/2015 12/8/2015 5 The Team

Senior Design II

19 Build Prototype 1/11/2016 3/1/2016 7 The Team

20 Testing & Redesign 3/1/2016 3/29/2016 4 The Team

21 Finalize Prototype 3/29/2016 4/15/2016 2 The Team

22
Committee

Presentation
4/20/2016 4/20/2016 - The Team

23
Senior Design

Showcase
4/22/2016 4/22/2016 - The Team

24
Final

Documentation
05/2/2016 5/02/2016 2 The Team

Table 9.3: Milestones for Senior Design I & II

124

9.3 Division of Labor

Group 24 is composed of four electrical engineering students from the University
of Central Florida. Every member of Group 24 had his responsibilities and roles
throughout the design phase that will carry into the following school semester as
the team begins creating and optimizing a prototype. In general, Emmanuel
Hernandez was in charge of the control unit, both from a hardware perspective
and from the software perspective. Christopher Delgado was in charge of the
different sensors, which are the primary means of data collection, while Ramon
Santana divided his efforts between the power supply system and the Bluetooth
communication. Lastly, Jason Balog is creating and handling the android
application that will be the output interface for the project. Each member is listed
below followed by specifics on his responsibilities and by his contributions to the
group dynamics.

Emmanuel Hernandez – Emmanuel has taken up one of the main roles in
designing SLIG. He is in charge of the physical aspects and the programming for
the SLIG's control unit. This includes but is not limited to selecting a proper MCU,
working out all the analog-to-digital conversions, making the leading decisions
regarding the PCB and writing and developing all the necessary code and
algorithms to interpret the data the glove collects. When it comes to the PCB, he
will be deciding which software program to use to design the PCB board and
whom the team will use to create the board. Essentially, Emmanuel has played
the main role in helping the team define how they would design the sign
language glove acting as the lead engineer for this project. Moreover, he has
participated in every document for this project thus far.

Christopher Delgado – Christopher was in charge of researching and selecting
the best model for the three different types of sensors the glove will require. As
mentioned before, these are the flex sensors, the accelerometer and gyroscope,
which are typically sold as part of a single unit and the sort of contact sensor. He
was also responsible for determining how these sensors will work and to
integrate them to the main circuit board. Moreover, he has participated in writing
every document for this project thus far.

Ramon Santana – Ramon has two separate features of the project to research
and design. First, he was in charge of the power system for the entire glove. This
included researching what type of battery technology would best power the glove
as well as developing voltage regulation circuits to ensure each component of the
glove will receive the proper supply voltage. Secondly, Ramon was in charge of
the researching how to add Bluetooth capabilities to the glove to allow it to
communicate to any android cell phone device, which has the user interface
application. Aside from his technical responsibilities Ramon took it upon himself
to keep the team in order and on track. He played the biggest role in coordinating
team meeting and recommending due dates for different parts of the project in a
sense taking up the role of group supervisor.

125

Jason Balog – Jason's roles are on the software side of the project where he
has to design the android application that will allow the team to use any android-
based smart phone as an output interface for the glove. He began by researching
different mobile platforms before deciding on Android, then, he looked into which
programming language would be most suitable to develop the application and
lastly planned out how to develop the application. His efforts were crucial to the
team, which lacked a computer-engineering student who typically take up the
software tasks in most other senior design projects. Moreover, he has
participated in writing every document for this project thus far.

9.4 Personnel

Ramon Santana – Electrical Engineering
Ramon Santana is a first generation, electrical engineer student at the University
of Central Florida. He has maintained leadership presence on campus in
numerous ways. Santana was a Teaching Assistant for two engineering classes.
Currently, Santana is a Peer Mentor and Peer Tutor for engineering students at
the office of Prime STEM at UCF. Santana is the Mentoring Program Coordinator
for the Society of Hispanic and Professional Engineers at UCF. Santana is also a
brother of Lambda Theta Phi Latin Fraternity Incorporated. During the summer of
2015, Santana did an internship at Florida Power & Light (FPL) as a Protection
and Control Engineer. His responsibilities at that time were to make sure that all
the equipment inside transmission and distribution substations were working and
functioning properly; by performing maintenance on feeder breakers, calibrating
relays, completing trip by lockouts and much more. His hands on experience will
be a significant contribution to the implementation of the Sign Language
Interpreter Glove. Santana will be responsible for the wireless communication of
the SLIG and also for providing the right amount of power to all the components
in the design.

Christopher Delgado – Electrical Engineering
Christopher Delgado is a first generation electrical engineering undergraduate
student at the University of Central Florida. He has been a student there since
2011 and has been part of the Burnett Honors College since the beginning. Since
the summer semester of 2015, he has been working as a System Performance
intern for Verizon Wireless and has gained valuable experience in networking.
Prior to his internship with Verizon, Christopher worked as a tutor for the SDES
TRIO Center in UCF where he helped other students improve their performance
in their physics, calculus and elementary engineering courses. His years at UCF
have given him the background knowledge and learning skills to contribute to the
success of Group 24 and the creation of the SLIG. Christopher has been
assigned the task of researching, selecting and designing for the different
sensors the SLIG will require. His successful completion of both Electronics I and
II and their accompanying laboratories have prepared Christopher to deal with
the hardware components to the SLIG.

126

Emmanuel Hernandez – Electrical Engineering
Emmanuel Hernandez is an electrical engineering undergraduate student. He
has been at the University of Central Florida since 2011, where has developed
the skills necessary to participate in this project. He has been a mathematics
tutor at the UCF Mathematics Assistance & Learning Lab (MALL) since 2012,
and has completed 3 semesters of internships with two different companies.
During the first internship at The Walt Disney Company, Emmanuel was given
the opportunity to work with programmable logic controllers (PLC). In this time
he gained his first experiences with control systems, although it doesn’t have
much to do with microcontrollers. About a year later, he was given the
opportunity to participate in an internship at Florida Power & Light Company,
where he was given the opportunity to work with microprocessor relays and get
more of an experience with control logic, and this time a little more in-depth in the
microprocessor side of control systems. This being said, Emmanuel was
responsible for the control system aspect of the Sign Language Interpreter
Glove. He designed the control system, and performed the research necessary
to formulate the best plan of action when it came to having the SLIG determine
which hand gesture is being performed by the user. He feels like his previous
experience in the industry, specifically with control systems made it so that he
had a little bit more of an intuition at the time of analyzing the best course of
action for the SLIG control system. In the building and implementation part of the
project, he will be responsible for programming the microcontroller to make
decisions on what hand gestures are currently being performed.

Jason Balog – Electrical Engineering
Jason Balog is an undergraduate majoring in Electrical Engineering and minoring
in Mathematics at the University of Central Florida. He has focused on learning
about power systems and computer simulation in his technical elective courses
which has prepared him to take on the software application portion of the project.
There are two main software components to the project – the mobile application
and gesture recognition – which need two different people to work on since each
component is not related to the other. The mobile application will be more
software intensive than the gesture recognition feature and will require a good
background in computer programming. Since all four of the team members are
majoring in Electrical Engineering, nobody on the team is well equipped with the
required programming skills to write an Android application using the languages
Java and XML. However, Jason has taken multiple elective courses that required
programming in Matlab and other software along with some programming
experience on his own which gives him the best opportunity to successfully
complete the mobile application. Also, he has expressed personal interest in
learning how to write a mobile application and all of the hurdles that come with
this unfamiliar territory for most Electrical Engineers so that he can expand his
skillset.

127

10. Conclusion

In conclusion, the Sign Language Interpreter glove is a lightweight, thin glove that
can be worn by individuals who have a speech impediment which translates sign
language hand gestures into text. This text will be displayed on a mobile
application that will run on an Android smartphone device. The device will make
the use of flex sensors, which are variable resistors that change their resistance
in proportion to the amount of bend that is currently present on the sensors. This
allows the control system of the glove to determine how much bend is present on
each finger. Other hardware that will be used to determine what hand gesture is
currently being performed by the user is an accelerometer. The accelerometer
will determine the X, Y, Z position of the hand at all times, which is important in
determining when certain hand gestures are being made that require a specific
movement of the hand in addition to simply bending the fingers in certain ways.

In addition to the flex sensors and accelerometer, the group employed the use of
contact sensors that determine when two fingers are close together or not. This
is necessary because there are certain letters that have very similar amount of
bend on each finger, and the only way to determine between them is the actual
position of the fingers relative to each other. By using contact sensors, the
control system of the SLIG can determine which of these very similar hand
gestures is currently being performed.

The control system of the SLIG will consist of an ATmega328p microcontroller
unit. This unit already comes equipped with the necessary analog to digital
conversion hardware that is needed to convert the analog signals that is coming
from the sensors into a digital signal that can be analyzed and processed by the
microcontroller unit. The ATmega328p will go through its program which is
designed to determine which of the many possible hand gestures is currently
being performed, and it will constantly be sending the output out to the user
interface.

The user interface will be an Android application that will receive the data that is
being transmitted from the microcontroller and it will display it on the screen for
the receiver of the message from the user to read. This mobile application will be
capable of wirelessly receiving the information that is being sent out from the
microcontroller unit. The mobile application will be written using the Java
language and it will be capable of interfacing with the microcontroller unit
mounted on the glove via the use of wireless communication.

The wireless communication that will be used to transmit the data between the
microcontroller unit on the glove and the user interface will be the Bluetooth
communication technology. Bluetooth essentially uses low power radio waves to
wirelessly transmit data between electronic devices. There will be a Bluetooth

128

module mounted on the glove which will receive the output messages from the
microcontroller unit. This module will transmit the message through the air, and it
will be received at the user interface device. The Android smartphones come
Bluetooth enabled, so all that will be necessary is to pair the device with the
Bluetooth module mounted on the glove, and communication will be established.

All of the aforementioned electronic components will mounted on a printed circuit
board. Because of the small size of the SLIG, a circuit board no larger than one
square foot is desired. This will require the group to employ the use of a printed
circuit board with multiple layers. The Bluetooth module, microcontroller unit, DC
to DC converters (or voltage regulators), pull-down resistors, charging circuit, as
well as all of the other electronic components that go into the SLIG will be
mounted on the printed circuit board. The printed circuit board will ideally be
placed on the palm of the glove, and it will be in a location that will allow the user
of the glove to seamlessly move their hand around without having to worry about
possibly damaging the electronic components or injuring themselves by the way
of an electrical shock.

129

Appendix A: Copyright Permission

Permission to use Figures from SparkFun Electronics

Re: Fw: Permission to use picture from website

SparkFun Customer Service <cservice@sparkfun.com>

Mon 12/7/2015 12:30 PM

To: christopher.delgado <christopher.delgado@knights.ucf.edu>;

Type your response ABOVE THIS LINE to reply

christopher.delgado
Subject: Permission to use picture from website

DEC 07, 2015 | 10:29AM MST
Nick M replied:

Hello Christopher-

As long as the pictures you do end up using, whether from the site or the datasheet, are properly

credited, we have absolutely no problem with you using them!

Please let me know if there is anything further I can do to help.

Nick Miranda

SparkFun Electronics

Distributor and Customer Service

303-945-2984 x 607

DEC 07, 2015 | 09:33PM MST
christopher.delgado replied:

Hello,

My name is Christopher Delgado. I am an electrical engineering student at the University of Central

Florida. Currently, I am working on a Senior Design project and I would like permission from you to

use the circuit schematics from the following data sheets

http://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/2010-10-26-DataSheet-FSR400-Layout2.pdf

and https://www.sparkfun.com/datasheets/Sensors/Pressure/fsrguide.pdf

.<https://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/FLEXSENSORREVA1.pdf> These

schematics will not be modified or published; only used as reference material for my project report.

Thank you in advance for your time. Your permission will be greatly appreciated.

Christopher Delgado

University of Central Florida

Electrical Engineering Student

130

DEC 07, 2015 | 08:29PM MST
christopher.delgado replied:

Hello,

My name is Christopher Delgado. I am an electrical engineering student at the University of Central

Florida. Currently, I am working on a Senior Design project and I would like permission from you to

use the circuit schematics from the following data sheet

http://cdn.sparkfun.com/datasheets/Sensors/IMU/IMU_Digital_Combo_Board%20_-

_6_Degrees_of_Freedom_-_ITG3200_-

_ADXL345.pdf.<https://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/FLEXSENSORREVA1.pdf

> These schematics will not be modified or published; only used as reference material for my project

report.

Thank you in advance for your time. Your permission will be greatly appreciated.

Christopher Delgado

University of Central Florida

Electrical Engineering Student

DEC 07, 2015 | 07:36PM MST
Original message

christopher.delgado wrote:

Hello,

My name is Christopher Delgado. I am an electrical engineering student at the University of Central

Florida. Currently, I am working on a Senior Design project and I would like permission from you to

use the circuit schematics from the following data sheet

https://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/FLEXSENSORREVA1.pdf.<https://cdn.spark

fun.com/datasheets/Sensors/ForceFlex/FLEXSENSORREVA1.pdf> These schematics will not be

modified or published; only used as reference material for my project report.

Thank you in advance for your time. Your permission will be greatly appreciated.

Christopher Delgado

University of Central Florida

Electrical Engineering Student

This message was sent to christopher.delgado@knights.ucf.edu in reference to Case #: 93507.

[[a789b3773ee0bba577465454d51395a41bc6d8ec-587827608]]

131

Permission to use Figures from Sensor Products INC.
RE: Senior Design Permission

Vadim Shalyt <vshalyt@sensorprod.com>

Tue 12/1/2015 3:39 PM

To: christopher.delgado <christopher.delgado@knights.ucf.edu>;

Yes you can. Did you actually need to order any film Chris?

--
Vadim Shalyt
Sr. Application Specialist
Sensor Products Inc. USA
300 Madison Ave.
Madison, NJ 07940
1.973.428.8985 (phone)
1.973.495.9800 (cell)
vadim@sensorprod.com

Please contact me DIRECTLY for BEST Prices, Delivery, Service & Expert Advice.

The finest compliment I can ever receive from doing business is a referral from my clients.

From: christopher.delgado [mailto:christopher.delgado@knights.ucf.edu]

Sent: Tuesday, December 01, 2015 3:02 PM
To: Vadim Shalyt

Subject: Re: Senior Design Permission

There is a research section to our paper where we have to discuss different technologies/ models available

even ones we might not end up using. Having the specs table would make it easy to compare and contrast

with other parts.

Sent from my iPhone

On Nov 30, 2015, at 6:39 PM, Vadim Shalyt <vshalyt@sensorprod.com> wrote:

Thank you Chris, but I am not understanding how you can use specs without the product. Can
you elaborate?

 --
Vadim Shalyt
Sr. Application Specialist
Sensor Products Inc. USA
300 Madison Ave.
Madison, NJ 07940
1.973.428.8985 (phone)
1.973.495.9800 (cell)
vadim@sensorprod.com

mailto:vadim@sensorprod.com
mailto:vshalyt@sensorprod.com
mailto:vadim@sensorprod.com

132

Please contact me DIRECTLY for BEST Prices, Delivery, Service & Expert Advice.

The finest compliment I can ever receive from doing business is a referral from my clients.

From: christopher.delgado [mailto:christopher.delgado@knights.ucf.edu]
Sent: Monday, November 30, 2015 5:22 PM

To: Vadim Shalyt
Subject: Re: Senior Design Permission

Vadim,

I found your website through Google.

Thanks,

Chris

Sent from my iPhone

On Nov 30, 2015, at 5:19 PM, Vadim Shalyt <vshalyt@sensorprod.com> wrote:

Chris,

 May I ask how you heard of our products?

 --
Vadim Shalyt
Sr. Application Specialist
Sensor Products Inc. USA
300 Madison Ave.
Madison, NJ 07940
1.973.428.8985 (phone)
1.973.495.9800 (cell)
vadim@sensorprod.com

Please contact me DIRECTLY for BEST Prices, Delivery, Service & Expert Advice.

The finest compliment I can ever receive from doing business is a referral from my clients.

 From: Info [mailto:info@sensorprod.com]

Sent: Monday, November 30, 2015 4:22 PM

To: 'Vadim Shalyt'
Subject: FW: Senior Design Permission

 See below

From: christopher.delgado [mailto:christopher.delgado@knights.ucf.edu]
Sent: Saturday, November 28, 2015 10:36 AM

mailto:christopher.delgado@knights.ucf.edu
mailto:vshalyt@sensorprod.com
mailto:vadim@sensorprod.com
mailto:info@sensorprod.com
mailto:christopher.delgado@knights.ucf.edu

133

To: sales@sensorprod.com

Subject: Senior Design Permission

 Hello,

I am an electrical engineer student at the University of Central Florida. I would like to use the attached
specifications table in my senior design paper. Do I have permission to use this figure?

 Thank you,

Christopher Delgado

mailto:sales@sensorprod.com

134

135

136

137

Appendix B: References

Similar Projects

"GloveSense » Electrical & Computer Engineering | Boston University." Electrical
Computer Engineering RSS. Web. 4 Sept. 2015.

Troili, Brian, Laura Rubio-Perez, Ali Mizan, and Kirk Chan. "High Six." The Sign
Language Glove - Home. Web. 4 Sep. 2015.
<http://www.eecs.ucf.edu/seniordesign/fa2013sp2014/g06/>.

Wireless Communication

"A Guide to Selecting a Bluetooth Chipset." Argenox Technologies. Web. 17 Oct.
2015. <http://www.argenox.com/bluetooth-low-energy-ble-v4-0-
development/library/a-guide-to-selecting-a-bluetooth-chipset/>.

"Bluetooth Low Energy." Bluetooth Low Energy. Web. 6 Dec. 2015.
<http://developer.android.com/guide/topics/connectivity/bluetooth-le.html>.

Brain, Marshall, Tracy V. Wilson and Bernadette Johnson. "How WiFi Works" 30
April 2001. HowStuffWorks.com. <http://computer.howstuffworks.com/wireless-
network.htm> 08 November 2015.

Franklin, Curt, and Julia Layton. "How Bluetooth Works" 28 June 2000.
HowStuffWorks.com. <http://electronics.howstuffworks.com/bluetooth.htm> 07
November 2015.

Meng, Yeo. "Introduction to Bluetooth Low Energy." Introduction to Bluetooth
Low Energy. Web. 28 Oct. 2015.

Power Source

"BU-107: Comparison Table of Secondary Batteries." Secondary (Rechargeable)
Batteries – Battery University. Web. 1 Nov. 2015.
<http://batteryuniversity.com/learn/article/secondary_batteries>.

"Learnabout Electronics." Regulated Power Supplies. Web. 18 Oct. 2015.
<http://www.learnabout-electronics.org/PSU/psu22.php>.

"What’s the Best Battery?" Advantages and Limitations of the Different Types of
Batteries. Web. 30 Nov. 2015.
<http://batteryuniversity.com/learn/article/whats_the_best_battery>.

Flex Sensors

138

"Long Flex/Bend Sensor." Adafruit. Web. 1 Dec. 2015.
<https://www.adafruit.com/products/182>.

"Two-Directional Bi-Flex Sensors™." Flex Sensors. Web. 8 Dec. 2015.
<http://www.imagesco.com/sensors/flex-sensor.html>.

"Tactilus® Flex Sensor." Tactilus. Web. 1 Dec. 2015.
<http://www.sensorprod.com/flex-sensor.php>.

"Bend Sensor." - LittleBits Electronics. Web. 1 Dec. 2015.
<https://littlebits.cc/bits/bend-sensor>.

Accelerometer and Gyroscope

"SparkFun Triple Axis Accelerometer Breakout - ADXL335." - SEN-09269. Web.
2 Dec. 2015. <https://www.sparkfun.com/products/9269>.

"SparkFun Triple Axis Accelerometer Breakout - ADXL345." - SEN-09836. Web.
2 Dec. 2015. <https://www.sparkfun.com/products/9836>.

"SparkFun Triple Axis Accelerometer Breakout - MMA8452Q." - SEN-12756.
Web. 2 Dec. 2015. <https://www.sparkfun.com/products/12756>.

"SparkFun Triple Axis Accelerometer Breakout - ADXL362." - SEN-11446. Web.
2 Dec. 2015. <https://www.sparkfun.com/products/11446>.

"Gyro Breakout Board - IDG500 Dual 500°/s." - SEN-09094. Web. 2 Dec. 2015.
<https://www.sparkfun.com/products/retired/9094>.

"SparkFun Tri-Axis Gyro Breakout - L3G4200D." - SEN-10612. Web. 2 Dec.
2015. <https://www.sparkfun.com/products/10612>.

"SparkFun 6 Degrees of Freedom IMU Digital Combo Board - ITG3200/ADXL3."
45. Web. 3 Dec. 2015. <https://www.sparkfun.com/products/10121>.

"9 Degrees of Freedom - Razor IMU." - SEN-10736. Web. 3 Dec. 2015.
<https://www.sparkfun.com/products/10736>.

Contact, Force and Pressure Sensors

"Flexiforce Pressure Sensor - 25lbs." - SEN-08712. Web. 3 Dec. 2015.
<https://www.sparkfun.com/products/8712>.

"Force Sensitive Resistor 0.5"" - SEN-09375. Web. 4 Dec. 2015.
<https://www.sparkfun.com/products/9375>.

139

"Force Sensitive Resistor - Square." - SEN-09376. Web. 4 Dec. 2015.
<https://www.sparkfun.com/products/9376>.

"Pressure Sensor." - LittleBits Electronics. Web. 4 Dec. 2015.
<https://littlebits.cc/bits/pressure-sensor>.

"Phidgets Touch Sensor." Phidgets Touch Sensor. Web. 4 Dec. 2015.
<http://www.trossenrobotics.com/p/phidgets-touch-sensor.aspx>.

"Phidgets Linear Touch Sensor." Phidgets Linear Touch Sensor. Web. 4 Dec.
2015. <http://www.trossenrobotics.com/p/phidgets-linear-touch-sensor.aspx>.

"Phidgets Circular Touch Sensor." Phidgets Circular Touch Sensor. Web. 4 Dec.
2015. <http://www.trossenrobotics.com/p/phidgets-circular-touch-sensor.aspx>.

"FlexiForce Adapter." FlexiForce Adapter. Web. 4 Dec. 2015.
<http://www.trossenrobotics.com/store/p/6526-FlexiForce-Adapter.aspx>.
"Phidgets Force Sensor." Phidgets Force Sensor. Web. 4 Dec. 2015.
<http://www.trossenrobotics.com/p/phidgets-force-sensor.aspx>.

Gloves

"Under Armour | Men's Gloves." Under Armour®. Web. 5 Dec. 2015.
<https://www.underarmour.com/en-us/mens/accessories/gloves>.

"Men's Versaliner™." OutdoorResearch.com. Web. 5 Dec. 2015.
<http://www.outdoorresearch.com/en/mens-versaliner.html>.

iOS

Wikipedia. Wikimedia Foundation. Web. 9 Dec. 2015.
<https://en.wikipedia.org/wiki/Swift_(programming_language)>.

Grimes, Shawn. "Mobile Development Overview." Mobile Development
Overview. 26 Mar. 2012. Web. 9 Dec. 2015.
<http://www.slideshare.net/shawngrimes/mobile-development-overview>.

Oliver, Chris. "Will Swift Apps Work on Older IPhones?" Will Swift Apps Work on
Older IPhones? 16 Sept. 2014. Web. 9 Dec. 2015.
<http://learn.onemonth.com/will-swift-apps-work-on-older-iphones>.

"The Swift Programming Language (Swift 2.1): About Swift." The Swift
Programming Language (Swift 2.1): About Swift. 21 Oct. 2015. Web. 9 Dec.
2015.
<https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_P
rogramming_Language/>.

140

"Xcode - IDE - Apple Developer." Xcode - IDE - Apple Developer. Web. 9 Dec.
2015. <https://developer.apple.com/xcode/ide/>.

"Android vs IOS: Which Platform to Build for First?" Savvy Apps. Web. 9 Dec.
2015. <http://savvyapps.com/blog/android-vs-ios-which-platform-to-build-for-
first>.

"IOS Technology Overview." About the IOS Technologies. 17 Sept. 2014. Web. 9
Dec. 2015.
<https://developer.apple.com/library/ios/documentation/Miscellaneous/Conceptua
l/iPhoneOSTechOverview/Introduction/Introduction.html>.

Android

"Android, the World's Most Popular Mobile Platform." Android, the World's Most
Popular Mobile Platform. Web. 9 Dec. 2015.
<https://developer.android.com/about/android.html>.

"Introduction to Android." Introduction to Android. Web. 9 Dec. 2015.
<http://developer.android.com/guide/index.html>.

Agarwal, Tarun. "IOS vs Android Development." Build Blog by ThinkApps
Content on Entrepreneurship Mobile Apps Web Platforms and More IOS vs
Android Development Comments. 25 Aug. 2014. Web. 9 Dec. 2015.
<http://thinkapps.com/blog/development/platform-build-first-ios-vs-android/>.

Henneke, Cameron. "Android vs. IOS: Comparing the Development Process of
the GQueues Mobile Apps." GQueues. 29 July 2013. Web. 9 Dec. 2015.
<http://blog.gqueues.com/2013/07/android-vs-ios-comparing-development.html>.

Thomas, Carter. "How Much Does It Cost to Develop an App?" How Much Does
It Cost To Develop an App. 6 Mar. 2011. Web. 9 Dec. 2015.
<http://www.bluecloudsolutions.com/blog/cost-develop-app/#>.

"The Android Source Code." The Android Source Code. Web. 9 Dec. 2015.
<https://source.android.com/source/>.

"Android Compatibility." Android Compatibility. Web. 9 Dec. 2015.
<https://source.android.com/compatibility/index.html>.

Noyes, Katherine. "10 Reasons Open Source Is Good for Business." PCWorld.
Web. 9 Dec. 2015.
<http://www.pcworld.com/article/209891/10_reasons_open_source_is_good_for_
business.html>.

141

Windows Mobile

Yusuf, Sani. "Windows Phone 8: Platform Overview - Envato Tuts Code Tutorial."
Code Envato Tuts. 20 Aug. 2014. Web. 9 Dec. 2015.
<http://code.tutsplus.com/tutorials/windows-phone-8-platform-overview--mobile-
20387>.

"What's a Universal Windows Platform (UWP) App?" - Windows App
Development. Web. 9 Dec. 2015.
<https://msdn.microsoft.com/library/windows/apps/dn726767.aspx>.

"Choosing a Programming Language for Windows Mobile Development."
Choosing a Programming Language for Windows Mobile Development. 19 Apr.
2010. Web. 9 Dec. 2015. <https://msdn.microsoft.com/en-
us/library/bb677133.aspx>.

User Interface

Cerejo, Lyndon. "The Elements Of The Mobile User Experience – Smashing
Magazine." Smashing Magazine. 11 July 2012. Web. 9 Dec. 2015.
<http://www.smashingmagazine.com/2012/07/elements-mobile-user-
experience/>.

"Multi-Screen Resources – Google." Multi-Screen Resources – Google. 1 Apr.
2014. Web. 9 Dec. 2015. <http://www.google.com/think/multiscreen/whitepaper-
sitedesign.html>.

Rocheleau, Jake. "Responsive Web Layouts for Mobile Screens: Intro, Tips and
Examples." Hongkiat. Web. 9 Dec. 2015.
<http://www.hongkiat.com/blog/responsive-for-mobile-screens/>.

Jain, Richa. "7 Best Practices for Designing a Mobile User Experience." RSS. 8
Apr. 2015. Web. 9 Dec. 2015. <http://www.sitepoint.com/7-best-practices-
designing-mobile-user-experience/>.

Bhatnagar, Samir. "Importance of User Interface | GovernmentCIO Magazine."
Importance of User Interface | GovernmentCIO Magazine. 1 Dec. 2011. Web. 9
Dec. 2015. <http://www.governmentciomagazine.com/2011/12/importance-user-
interface>.

Singh, Manpreet. "Mobile App Development Considerations | Sourcefuse
Technologies." Sourcefuse Technologies. 9 Sept. 2014. Web. 9 Dec. 2015.
<http://www.sourcefuse.com/mobile-app-development-considerations/>.

142

Wikipedia. Wikimedia Foundation. Web. 9 Dec. 2015.
<https://en.wikipedia.org/wiki/Mobile_application_development>.

Menu Layout

Prince, Darryl. "Tap Vs Swipe: The Good, The Bad, and The Ugly - User Insight."
User Insight. 8 Apr. 2014. Web. 9 Dec. 2015. <http://www.userinsight.com/tap-
vs-swipe-good-bad-ugly/>.

"Menus." Menus. Web. 9 Dec. 2015.
<http://developer.android.com/guide/topics/ui/menus.html>.

Sun, Terrence. "How to Write an Android App with Activity Lifecycle Function
Examples." How to Write an Android App with Activity Lifecycle Function
Examples. 18 Nov. 2013. Web. 9 Dec. 2015.
<http://www.thegeekstuff.com/2013/11/write-an-android-app/>.

"Menu." Menu. Web. 9 Dec. 2015.
<http://developer.android.com/reference/android/view/Menu.html>.

Miscellaneous

"Gathering Lab, IdeaLab, and Innovation Lab Concepts to Be Implemented."
Gathering Lab, IdeaLab, and Innovation Lab Concepts to Be Implemented. Web.
6 Dec. 2015. <http://iems.ucf.edu/news/gathering-lab-idealab-and-innovation-lab-
concepts-be-implemented>.

ECE Department. Web. 8 Dec. 2015. <http://www.ece.ucf.edu/labs/sdl.php>.

"T.I. Innovation Lab (ENG2)." Center for Entrepreneurial Leadership RSS. Web.
6 Dec. 2015. <http://cel.ucf.edu/portfolio/t-i-innovation-lab/>.

"Bluetooth." Web. 8 Dec. 2015. <http://arxiv.org/pdf/1102.4106.pdf>.

"Core App Quality." Core App Quality. Web. 8 Dec. 2015.
<http://developer.android.com/distribute/essentials/quality/core.html>.

"Content License." Content License. Web. 8 Dec. 2015.
<http://developer.android.com/license.html#attribution>.

"Lithium-Ion Batteries." Web. 8 Dec. 2015. <http://www.rechargebatteries.org/wp-
content/uploads/2013/07/Li-ion-safety-July-9-2013-Recharge-.pdf>.

143

Brownlee, Jason. "A Tour of Machine Learning Algorithms." Machine Learning
Mastery. N.p., 25 Nov. 2013. Web. Nov.-Dec. 2015.

"FPGA Architecture for the Challenge." FPGA Architecture for the Challenge.
N.p., n.d. Web. 09 Dec. 2015.

Giovino, Bill. "Lowest Power MSP430 Microcontrollers from Texas Instruments."
Microcontroller.com. N.p., 19 Mar. 2011. Web. 09 Dec. 2015.

"PCB Basics." Learn.sparkfun.com. N.p., n.d. Web. 09 Dec. 2015.

Shamim, Toxin. "Bluetooth Module Interfacing with Microcontroller." Vshamu.
N.p., 19 Mar. 2011. Web. 09 Dec. 2015.

144

Appendix C: Datasheets

Flex Sensors

145

146

147

LSM9DS1

"LSM9DS1." LSM9DS1. Web. 1 May 2016.
<https://cdn.sparkfun.com/assets/learn_tutorials/3/7/3/LSM9DS1_Datasheet.pdf>.

ATmega328

"ATmega328." ATmega328. Web. 1 May 2016. <http://www.atmel.com/images/atmel-
8271-8-bit-avr-microcontroller-atmega48a-48pa-88a-88pa-168a-168pa-328-
328p_datasheet_summary.pdf>.

HM-10

"HM-10." HM-10. Web. 1 May 2016. <http://www.pridopia.co.uk/pi-doc/BT4.0-HM-10-
Serial_Port_BLE_Module_Master_Slave.pdf>.

Li-Po Battery

"Li-Po Battery." Li-Po Battery. Web. 1 May 2016.
<https://www.sparkfun.com/datasheets/Batteries/UnionBattery-2000mAh.pdf>.

