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1. Executive Summary 

For its senior design project, Group 24 has come together to develop SLIG, a 
sign language interpreter glove. As the name suggests, this project is meant to 
be a glove that can be worn on a person's hand and have the ability to recognize 
the American Sign Language (ASL) signs the person may be signing. Whatever 
sign the glove has recognized will be displayed through the designated user 
interface. The project was chosen with two purposes in mind; the first being to 
help ASL speakers communicate with those who do not understand ASL and the 
second to help non-ASL learn and practice signing. SLIG will be made to the 
same specifications that characterize most modern electronics; i.e. it will be a 
lightweight, energy efficient and inexpensive device with wireless connectivity.    
 
Through research, the team has developed a design that will allow the SLIG to 
function according to the objectives and requirements previously mentioned. 
SLIG will require the use of flex sensors, an accelerometer, a gyroscope and 
contact sensors to capture all of the necessary information to identify each and 
every ASL sign for the English alphabet. All the information collected through 
these sensors will be processed by an MCU, which will be part of a PCB that will 
bring all the components together. The glove will be Bluetooth capable and will 
transmit all data to an Android smart phone application where the final 
interpretation will be displayed visually. A lithium-ion battery will power all the 
electronics on SLIG. The rest of the supporting electronics will include voltage 
regulators, analog to digital converters and others of that nature.   
 
The team expects this project and the current design to be further influenced by a 
number of realistic design constraints. Among all the possible constraints, only a 
few will be highly relevant to the nature of this project. The most pertinent 
constraints will be from an economic, a health, an ethical and a manufacturing 
perspective. This project will after all be a glove meant to be worn by people and 
meant to facilitate interactions between an ASL speaker and someone who does 
not understand ASL. This brings about the health and ethical implications that will 
shape this project. The economic and manufacturing constraints are strongly in 
effect because this is a project run solely by engineering students who have 
limited resources, experience and connections.  
 
Another influential force that has and will continue to shape SLIG are existing 
standards on the various technologies that the current design intends to employ. 
The standards the team has chosen to consider have been standards regarding 
Bluetooth technology, lithium-ion battery technology and android application 
creation. Although adherence to these standards is not mandatory, it would most 
likely be beneficial to the overall performance of SLIG. Thus, this document will 
guide the reader through the process of research and design that group 24 has 
followed in its endeavor to produce the best sign language interpreter glove 
possible.  
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2. Project Description 

The sense glove is a lightweight, thin, Bluetooth-enabled glove that allows the 
user to translate the American Sign Language (ASL) sign of the letters of the 
alphabet to an external display.  This glove is equipped with a series 
of flex sensors, an accelerometer, an embedded processor on a printed circuit 
board and Bluetooth technology that combine to give the user the ability to 
accurately communicate to any individual who doesn't understand sign 
language.  The original motivation to pursue this project comes from one of our 
team members who has experienced the difficulty of communicating with his 
speech-impaired sister.  This project got us thinking along the lines of wearable 
technology and opened the door for our extensive research in the area.  

Our objective is to establish communication between a sign language speaker 
and a non-sign language speaker. Through the use of flex sensors and an 
accelerometer, any letter the user signs will be displayed through a user interface 
where the non ASL-speaker can read the letter. 

2.1 Motivation 

The original motivation to pursue this project comes from one of our team 
members who has experienced the difficulty of communicating with his speech-
impaired sister. Upon further research into this topic, the team became more 
aware of the number of people who have a disabling hearing loss. The following 
statistics elaborate on this point.  The Survey of Income and Program 
Participation (SIPP) – estimates that about 1,000,000 are functionally deaf in the 
United States while the World Health Organization estimates that over 5% of the 
world’s population – 360 million people – has disabling hearing loss (328 million 
adults and 32 million children). These facts made it apparent that a device that 
could facilitate communications between people who are speech-impaired and 
those that do not know how to sign would be very valuable and useful. 

2.2 Goals and Objective 

The objective for this project is to establish communication between a sign 
language speaker and a non-sign language speaker. Any letter the user signs 
will be displayed through a user interface where the non ASL-speaker can read 
the letter. The glove will also implement a learning mode, where the user has the 
option to learn the American Sign Language letters. 

2.3 Requirements and Specifications 

There will be some limitations and constraints that the team needs to be ready 
for if it wants to make the glove lightweight, portable and energy efficient. There 
is so much data that can collected out of the sensors, but making sure that the 
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software and the machine both understand the data the glove is sending to them 
will be the team’s greatest challenge. Anyone that uses the glove will do the 
gestures slightly differently, even if it's the same person. This means that the 
machine and the software both need to be dynamic enough to be able to make 
the correct command.  
 
In order to accomplish this “smart” glove, the team needs to take into 
consideration how many parts the glove will need. The team anticipates to use at 
least five flex sensors (one for each finger), one accelerometer since is just one 
glove, one microcontroller and one li-ion battery. Since the glove should be 
energy efficient, the team wanta the user to just have to charge it for two hours 
for every 24 hours of normal usage.  
 

Specifications:  
 

 Glove Weight: <1.5 lb.  

 Battery Type: Lithium-ion 3.7 V 2000mAh  

 Device Battery Life: 13 hours 
 

 
Figure 2.1: Final SLIG prototype
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3. Research 

3.1 Similar Projects 

The group researched other similar Senior Design projects in order to determine 
how feasible it was going to be to accomplish the design of the Sign Language 
Interpreter Glove in just 2 semesters. The group was able to find previous senior 
design projects that used the same or very similar technology to the one that is 
required by the Sign Language Interpreter Glove. The group then narrow all 
those projects and focused on projects that related to the idea of a “smart” glove. 
This section will talk about two of the projects that the group though were the 
most interesting. 

3.1.1 High Six 

During the spring semester of 2014, a group of students from the University of 
Central Florida created a project called High Six. High Six consisted of three 
main subsystems which are hand gesture detection, Bluetooth communication 
and an android application. The High Six glove was able to interpret data being 
fed from several sensors and decide which letter of the American Sign Language 
was being gestured by the glove. In order for High Six to determine which of 26 
American Sign Language letters was being gestured by the glove, it needed to 
distinguish the different parameters that make each of those letters unique. High 
Six was able to accomplish this task by using several sensors that would provide 
the orientation of the palm, the hand shape being made and the movement of the 
hand.  
 
The main difference between the High Six project and the Sign Language 
Interpreter Glove project is the fact that High Six was only able to translate 
letters. The Sign Language Interpreter Glove project will not only translate ASL 
letters, but also it will be able put this letters together to create words and put the 
words together to create sentences. The Sign Language Interpreter Glove project 
will also use other parts and components that we think might be best for the 
implementation of the SLIG design.  
 
High Six was much expensive than expected, they estimated an initial cost of 
$518 but the actual cost was $919. The Sign Language Interpreter Glove project 
is expected to cost around $450, meaning it would be about half of the cost of the 
High Six project. High Six also offers a 20 hour battery life (from one charge), the 
Sign Language Interpreter Glove is shooting for at least 24 hours of battery life. 
Last but not least, the Bluetooth connection range was up to 50 meters, SLIG 
wants to double that distance to 100 meters. The main takeaway from High Six is 
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that the project will take lots of time and dedication to complete. The group was 
able to see the hard work they put into the High Six design. 
 

3.1.2 GloveSense 

During the spring semester of 2011, a group of students from Boston University 
created a project where they were able to communicate with non-verbal 
gestures. Their goal was to create an electronic communication device that 
would silently send signals inside a building or across walls, through the use of 
hand gestures. Team GloveSense was able to send information to emergency 
personnel or military personnel with this technology. Team GloveSense 
emphasized there was a lack of reliable communication systems and said non-
verbal communication was needed in order to help keep first responders out of 
danger.  
 
Team GloveSense used National Instruments hardware and software in order for 
their project to be able to recognize and wirelessly transmit the hand gestures. 
Their project required to be capable of detecting movement, as well as the 
incorporation of a lightweight design. Their project also required a library of 
gestures and to be able to send signals over a long distance. This project is very 
similar to the Sign Language Interpreter Glove because SLIG is also a 
lightweight design that via hand gestures will wirelessly communicate by sending 
its signals over a far distance. The Sign Language Interpreter Glove will also 
include a library of gestures just like GloveSense. Basically both projects are 
pretty much using similar technologies that will accommodate different purposes. 
GloveSense focused on helping firefighters and police officers while the Sign 
Language Interpreter Glove focuses on helping the deaf community. 
 
In order to accomplish their goal, they decided to split the project into two main 
parts. Their first design was a glove connected to a PC. To facilitate reading 
data, they utilized a supplementary board which also powered their aux 
components. To alert the users of an oncoming message, they used a small 
vibration motor. Their glove software was able to distinguish between finger 
gestures and hand gestures motions, then using the pre-computed library it 
determined what message to send. They even had an option to select to who 
send the message to over a ZigBee protocol.  
 
Their final prototype consisted of a microprocessor that was used to process 
signals and provided wireless output. Combining the microprocessor with many 
different sensors together and you get a “smart” motion capturing glove capable 
of recognizing gestures using a LabVIEW software interface. Team GloveSense 
was so successful with their project, that they received the top prize award at 
their school. The P.T. Hsu Outstanding Senior Design Project was given to all the 
members of the team, Luke Anderson, Anna Evans, Patrick Henson, Jonathan 
Kwan, and Angelo Luo.  
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In conclusion, when it comes to technology, just about everything is getting 
smart. We have smart phones, smart watches, smart TV’s, smart cars, smart 
homes, smart wallets and the list goes on. This project shows that the concept of 
a “smart” glove is probably going to be added to that list very soon.   

3.2 Hardware 

3.2.1. Flex Sensors 

3.2.1.1 Functionality 

Flex sensors will be the primary sensors employed in this projects. They will be 
used to detect the degree to which each finger is bent on the hand performing 
the sign language. The combination of different degrees of flex for each finger 
will be the identifying mark for most of the letters. This will be the main method in 
determining which letter of the alphabet the user is trying to sign. For example, if 
the user wanted to form the sign for the letter 'A' he or she would have to 
completely bend down every finger except for his or her thumb. The flex sensors 
corresponding to these four fingers would increase their internal resistance as 
they are bent and in turn they would output a minimum voltage that could be 
measured and ultimately recognized as the signal configuration for the letter A.  

3.2.1.2 Models and Specifications 

In the market there is a plethora of different flex sensors available; each one with 
features that would benefit our project. For the scope of this project the chosen 
flex sensors must meet certain requirements to ensure SLIG will be an efficient 
and manageable device. The proposed specifications are as follows: 
 

 Flat Resistance: 25K Ohms 

 Resistance Tolerance: +/- 30%  

 Bend Resistance Range: 45K to 125K Ohms  

 Power Rating: 0.5 Watts continuous. 1Watt Peak  
 
SpectraSymbol Long Flex Sensor- This is a one-directional flex sensor with a 
base resistance (resistance when unflexed) of about 10Kohms. When the sensor 
is fully flexed, the resistance can increase to as much as 110Kohms. This can be 
connected to the analog input of a microcontroller or a digital input if a 0.1uF 
capacitor is used. It is reported to have a power rating 0.50 Watts continuous, a 
resistance tolerance of +/- 30%, a bending resistance range of 60K to 110K 
Ohms and a length of 112.5 mm.  It is important to note this flex sensor is 
reported to have a fragile bottom piece where any unnecessary strain could rip 
the part away from its contacts. Below is a visual representation of how the flex 
sensor functions from SparkFun. 



 

   7 
 

 

 
Figure 3.1: Bend range of Flex Sensor 

 
Reprinted with permission from SparkFun Electronics. 

 
The main advantage of this flex sensor would be its wide availability, being sold 
by a multitude of vendors all at competitive pricing. It has been used in a 
multitude of different projects and application including but not limited to robotics, 
virtual motion gaming, medical devices, computer peripherals, musical 
instruments and physical therapy. The team will consider purchasing this product 
from either Digikey or SparkFun, which are both well-established companies with 
reputable support services. Also, it is compatible with most microcontroller units.   
 
Images Two-Directional Bi-Flex Sensor – This sensor has an un-flexed nominal 
resistance of 10k ohms. This sensor has two leads that can be bent in both 
directions and still have its resistance changed. Unlike the one-directional flex 
sensors, bending the sensor actually decreases its resistance and 
correspondingly increases the voltages that would be measured.  The sensor has 
a length of 4.5", width of 0.375" and a thickness of .038". This sensor's main 
advantage is that it is also pressure sensitive and may be used as a force or 
pressure sensor. This could possible eliminate the need to purchase a separate 
pressure sensor as will be discussed further on. This particular sensor has been 
useful in many applications including collision avoidance on moving robots, 
virtual reality gloves and suits and physics experiments. Images Scientific 
Instruments may not be as well-known as the previous two vendors but it has 
been functioning for over thirty years and sells a wide range of instruments 
including Geiger counters. Again, this sensor will definitely be compatible with 
any of the circuit boards and part we choose.  
 
littleBits Bend Sensor – The littleBits bend sensor is like most other sensors. It 
activates when the long strip is flexed and an output signals are sent to the 
output bits. This exact model has been used in many student created projects 
including but not limited to 'Soccer Accuracy Trainer', 'Waste Paper basketball 
cheering machine', a dancing robot, a virtual table tennis opponent and a waiving 
hand. The manufacturer littleBits is completely geared towards small 
independent projects and has even made it is mission to support open source 
hardware. It is especially helpful in providing ideas on how to best use this flex 
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sensor and other parts. Although, it may be optimal to match it with other littleBits 
parts it is also compatible with other parts.  
Tactilus Flex – This sensor is designed with screen-printed resistive ink think 
films sensors that give the sensor the ability to repeatedly measure the degree of 
bending movements.  According to experiments performed by the manufacturers, 
bending the sensor ninety degrees can generate 200,000 different voltage levels. 
They are intended to be integrated into an existing feedback and control system 
or to a multimeter or oscilloscope. The recommended applications include but 
are not limited to human body interface, biomechanics, air fluid flow and 
industrial controls. The manufacturers claim it has the following benefits over 
other technologies: it has a lightweight, thin and low profile, it is available at a 
fraction of the price of conventional actuators, it has a non-mechanical solid state 
and it is extraordinarily durable (>35 million cycles). 
 
Each sensor is sequentially serialized and quality tested to minimize the chance 
of any defects and maximize the repeatability and durability of the product. On 
top of that the sensors make use of high quality Berg connectors, which should 
reduce the problem that many other sensors have with the base connection.  The 
manufacturers claim they can build these bend sensors to the buyer's specific 
requirements. On top of all of these advantages, the manufacturer Sensor 
products has been in business for approximately 25 years and specializes in 
sensors starting with pressure and surface sensors.  

3.2.1.3 Integration and Schematics 

There are a few ways the flex sensors can be integrated into the glove. One of 
the simpler flex sensor circuits makes use of a voltage divider and an impedance 
buffer. The impedance buffer is a single sided operational amplifier, used with 
these sensors because the low bias current of the op amp reduces error due to 
source impedance of the flex sensor as a voltage divider. Suggested op amps 
are the LM358 or LM324. Below is SparkFun’s schematic for this circuit. 

 
 

 
Figure 3.2: Basic Flex Sensor Circuit 

 
Reprinted with permission from SparkFun Electronics. 
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There are other configurations that can be used to achieve certain results. With 
the Adjustable Buffer circuit, a potentiometer can be added to the circuit to adjust 
the sensitivity range. Below is SparkFun’s schematic for this circuit. 
 

 
 

Figure 3.3: Adjustable Buffer Circuit 
 

Reprinted with permission from SparkFun Electronics. 
 

In the "Resistance to Voltage Converter" circuit, the sensor is used as the 
input of a resistance to voltage converter using a dual sided supply op-amp. A 
negative reference voltage will give a positive output. This should be used in 
situations when you want output at a low degree of bending. Below is 
SparkFun’s schematic for this circuit. 

 

 
Figure 3.4: Resistance to Voltage Converter 

 
Reprinted with permission from SparkFun Electronics. 
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3.2.2 Accelerometer & Gyroscope 

3.2.2.1 Functionality  

Though flex sensors are a great way to capture many useful pieces of 
information from the physical state of the user’s hand, they are limited in the 
range of motions that they are capable of sensing.  The flex sensors can only 
detect how much bending they are experiencing and so they neglect motions like 
tilting the hand back and forth at different angles.  Instead, accelerometers and 
gyroscopes can be used to measure this type of motion, which are crucial in 
identifying certain sign language letters such as "j" and "z". The two parts work in 
conjunction with one another where accelerometers can sense the orientation or 
tilt of the users hands and fingers while the gyroscope actually measure the 
angular motion of the wrist movements. Below are some figures that partially 
illustrate how an accelerometer and how a gyroscope would function from 
SparkFun. 
 

 
 

 
Figure 3.5: Output Response vs. Orientation to Gravity 

 
Reprinted with permission from SparkFun Electronics. 
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Figure 3.6:  Pin Diagram showing measurable angular velocities 
   

Reprinted with permission from SparkFun Electronics. 
 

3.2.2.2 Models and Specifications 

For the scope of the project the accelerometer we choose must meet certain 
requirements to ensure SLIG will be an efficient and manageable device. The 
candidate models are listed below. 
 
SparkFun Triple Axis Accelerometer ADXL335 – This is a triple axis MEMS 
accelerometer from Analog Devices with a competitively low noise and power 
consumption - only 320uA. It also boasts a full sensing range of +/-3g. Because it 
does not have any integrated voltage regulation, the power provided should be 
between 1.8 and 3.6 VDC.  The board brings 0.1uF capacitors that set the 
bandwidth of each axis to 50Hz. This specific model measures 0.7” by 0.7”. 
Accelerometers of its type has been used in a wide range of projects including 
collision analysis projects, guiding systems for mobile creations and a seemingly 
endless number of smart phone applications. The supplier as mentioned before 
is a reliable source with a multitude of accelerometers with different 
specifications. They also supply plenty of documentation and support and 
provide this component both on its own and as part of a breakout board to make 
integration flexible and straightforward.  
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SparkFun Triple Axis Accelerometer ADLXL345 – This version of the 
SparkFun accelerometer features 2 standoff holes along with an extra decoupling 
capacitor. It is small, thin, energy efficient with a high-resolution measurement at 
up to +-16g.  The output data is digital and formatted in a 16-bit two complement 
accessible through either a SPI or 12C digital interface.  
 
This accelerometer effectively measures the static acceleration of gravity in 
projects that require tilt sensing and dynamic acceleration from movement. It can 
measure precise changes in inclination less than 1.0 degree. It also makes use 
of special sensing functions. It can detect the presence or lack of motion and if 
the acceleration in any direction passes a user-set maximum value. It can also 
detect if a device is free falling.  All of these sensing functions can be mapped to 
up to two interrupt output pins. IT comes with a 32-level FIFO buffer designed to 
store data in order to reduce host processor intervention. Some of the top 
features are the 2.0-3.6 VDC supply voltage requirement, the ultra low power 
consumption of just 40uA in measurement mode, 0.1uA in standby mode at 2.5V, 
tap/double tap detection, free-fall detection and SPI and I2C interfaces. 
 
SparkFun Triple Axis Accelerometer MMA8452Q – This model is a smart 
energy efficient, triple axis, MEMs accelerometer with 12 bits of resolution. It 
comes with certain functions including user programmable options that can be 
configurable to two interrupt pins. These functions are valuable because they 
enable power saving, keeping the host processor from repeatedly polling data. It 
has multiple dynamically selectable scales ranging from +/- 2g to +/- 8g.  
 
Other important specifications include the 1.95 V to 3.6 V supply voltage 
requirement, an interface voltage of 1.6 V to 3.6 V, output data rates (ODR) from 
1.56 Hz to 800 Hz, 12-bit and 8-bit digital output choices, I2C digital output 
interface (operates to 2.25 MHz with 4.7 kΩ pullup), two programmable interrupt 
pins for six interrupt sources, three embedded channels of motion detection, an 
orientation (Portrait/Landscape) detection with set hysteresis, high pass filter 
data available real-time and a current consumption of 6 μA – 165 μA.  
 
SparkFun Triple Axis Accelerometer ADXL362 – This is another energy efficient 
model that possesses more or less the same functionality as the ones before. 
Some important specifications are the 3-Axis capability with selectable 
measurement ranges of ±2, ±4, or ±8g, its ultralow power consumption, an SPI 
digital interface, a high resolution of 1 mg/LSB, low noise as low as 175 μg/√Hz, 
a wide voltage range of 1.6 V to 3.5 V, an adjustable threshold for motion 
activation and the ability to select measurement ranges via SPI commands. 
Accelerometers of its kind have been used extensively in a wide array of 
applications including but not limited to Hearing aids home healthcare devices, 
motion enabled power save switches, wireless sensors and motion enabled 
metering devices.  
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SparkFun Triple Axis Accelerometer LIS331 – This is comparably low power 
full-scale linear accelerometer. The top features are a 2.16-3.6V input, the ultra 
low-current mode which can decrease consumption down to 10uA, selectable 
ranges of 6g, 12g, 24g, a I2C/SPI digital output and a16 bit data output. 
 
Gyro Breakout Board IDG500 Dual 500°/s – This product is no longer available 
for purchase but is an excellent base model to which other gyroscopes can be 
compared. It measures angular velocity on two axes and has all necessary 
electronics built into one chip. The top specifications are the 3-7V single-supply 
operation, integrated X- and Y-axis gyros on a single chip, two separate outputs 
per axis for standard and high sensitivity on the  
X-/Y-Out pins of 500°/s, full scale range 2.0mV/°/s sensitivity 
X/Y4.5 out pins of 110°/s and full scale range 9.1mV/°/s sensitivity. Moreover, it 
features integrated amplifiers and low-pass filters, an auto-zero function, an on-
chip temperature sensor, a high vibration rejection over a wide frequency range, 
a high cross-axis isolation by proprietary MEMS design, being hermetically 
sealed for temperature and humidity resistance and being 10,000 g shock 
tolerant. 
 
SparkFun Tri-Axis Gyro L3G4200D – This is a more advanced model that has 
a greater degree of user customizability when it comes to measurements. The 
specifications for this part are three selectable full scales (250/500/2000 dps), 
I2C/SPI digital output interface, a 16 bit-rate value data output, an 8-bit 
temperature data output, a wide supply voltage ranging from 2.4 V to 3.6 V, a low 
voltage-compatible IOs (1.8 V), an embedded power-down and sleep mode, an 
embedded temperature sensor and a high shock survivability 
 
SparkFun 6 Degrees of Freedom IMU Digital Combo Board  
ITG3200/ADXL345 – This board provides a full 6 degrees of freedom by 
combining the integrated accelerometer and gyroscope while keeping the size to 
a minimum.  
 
SparkFun 9 Degrees of Freedom IMU BreakoutLSM9DS1 – This option 
provides the functionality of an accelerometer, a gyroscope and a magnetometer 
all in one board. The magnetometer function might be beyond the scope of this 
project but would definitely reduce any inconsistencies in measurements. It is a 
carefully designed combination of a triple-axis digital-output gyroscope, a 13-bit 
resolution, ±16g, triple-axis accelerometer and a triple-axis, digital magnetometer 
fitted onto a single, flat board for a total of 9 degrees of Freedom. That means it 
produces nine pieces of data: acceleration in x/y/z, angular rotation in x/y/z, and 
magnetic force in x/y/z. Data that can be interfaced either through an I2C and 
SPI connection and features the following ranges of measurement: ±2/±4/±8/±16 
g linear acceleration full scale,  ±4/±8/±12/±16 gauss magnetic full scale and 
±245/±500/±2000 dps angular rate full scale. 
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3.2.3 Contact and Pressure Sensors 

3.2.3.1 Functionality  

Due to the fact there are a few pairs or groups of sign language letters that are 
not distinguishable by the degree a person’s finger is bent nor any tilting motion, 
we will need to implement contact sensors or pressure sensors. The former can 
identify when two or more fingers are touching and may be precise enough to 
detect where along each finger the contact is being made. The latter in the form 
of piezoresistive force sensors are typically used to measure any type of applied 
force. However, it may be necessary to have these types of measurements for 
this project and not just determine whether two fingers are touching. Either type 
of these sensors will be helpful if not crucial in telling apart the following pairs of 
sign language: R and U, S and T and M and N.  

3.2.3.2 Models and Specifications 

For the scope of the project the contact sensors or pressure sensors we choose 
must meet certain requirements to ensure SLIG will be an efficient and 
manageable device. The candidate models are listed below.  
 
Flexiforce Pressure Sensor 25lbs – Different levels of pressure created by any 
means, including pressure between fingers that are touching, will lower the 
sensor’s resistance. These varying resistances can be used measured to 
determine which finger is making contact. This model has resistances that range 
from infinite to about 300kohms and can measure from 0 to 25lbs of pressure. 
This a product sold by Sparkfun Electronics, which has a large inventory of 
sensor with a similar purpose. The following is a table detailing the physical 
specification of this model from SparkFun. 
 

 
 

Figure 3.7: Physical Specifications of Flexiforce Sensor 
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Reprinted with permission from SparkFun Electronics. 
 
Force Sensitive Resistor 0.5" – This would be the product that would precede a 
full-fledged pressure sensor. It works similarly to a pressure sensor and sends its 
output through two pins at the end. They are less expensive than the typical 
pressure sensor but are also less accurate and are best used to tell if they being 
pressed and not for exact measurements. For the scope of this project, this may 
be sufficient but actual testing is the only way to be sure. This part has an overall 
length of 2.375", an overall width of 0.75" and a sensing diameter of 0.5". The 
following two figures from Sparkfun show the inner workings of this type of 
sensor. 
 

 
 

Figure 3.8: The construction of an FSR 
 

Reprinted with permission from SparkFun Electronics. 
 

 
Figure 3.9: Force Applied Vs Resistance 
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Reprinted with permission from Sparkfun Electronics. 
 
Phidgets Touch Sensor – This is a capacitive touch sensor that can detect 
contact through different pieces of material such as plastic, glass or paper or in 
the case of this project the lining of the SLIG glove. It works well at close 
distances, detecting any object with half an inch of the board in any direction. 
Some of the most noticeable features are the recommendable material thickness 
of up to 1/2”, attachability of the sensor to metallic objects to allow for a larger 
touch pad, the sensor's ratiometric nature and the standard 3-pin cable that 
comes with the sensor. 
 
Phidgets Linear Touch Sensor – This sensor can measure changes in 
capacitance between electrodes on the device and the objects touching the 
board. It is meant to be mounted behind a sheet of glass or plastic close to an 
eighth inch in depth. It can alter its input value from 0 to 1000 in about 125 
different steps as contact is made across its surface. This analog input isn’t used 
unless the two digital inputs are set to one, which occurs only when contact is 
made and an object is in the close proximity of the board. This sensor also 
comes in a circular version, which may prove more useful for this project.  
 
Phidgets Force Sensor – It is a typical force/pressure sensor in most ways. It 
has the capability of measuring forces relative to 3 kilograms. The output is 
relayed as a varying resistance value that spans all the way from 100kohm down 
to 1kohm. Its resistance is in a voltage divider arrangement with a 7.5K ohm 
resistor.  
 
Softpot Linear Potentiometer – This is a series of linear potentiometers that 
come in a range of sizes including 50mm, 100mm, 150mm and 200mm. These 
are competitively thin variable potentiometers. Pressing down along any part of 
the sensor will linearly shift the resistance anywhere from a small 100ohms to 
10,000ohms giving very precise information of the position where contact was 
made. Below is a comparison of different potentiometers from the SparkFun 
website. 
 

 
Figure 3.10: Electrical Specification 
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Reprinted with permission from SparkFun Electronics. 

 
Softpot Rotary Potentiometer- This is the circular equivalent to the potentiometer 
above. The possible advantage of a potentiometer based sensor over the 
contact, force and pressure sensors discussed previously is that these will 
probably allow for the easiest way of pinpointing the exact place of contact. This 
will be useful to distinguish between the trickiest pairs of sign language letters 
where whether one finger is slight under the second calls for a completely 
different sign than if the finger was directly adjacent to it.  Below is a diagram 
detailing the dimensions of the rotary potentiometer.  

 

 
Figure 3.11: Dimensions of Rotary Potentiometer 

 
Reprinted with permission from SparkFun Electronics. 

3.2.4 Microcontroller Unit 

There are many options available to us when it comes to choosing an 
appropriate microcontroller unit for the SLIG.  The unit that is chosen will have to 
employ at least 6 analog input pins (with analog to digital converters for each), 
have digital outputs, and also be able to output information through the use of 
serial communication.  When considering the microcontroller unit, it is also 
important to note that units that come with their own native programming 
environments, as well as pre-written functions such as the UART initiation 
functions would be overwhelmingly more convenient than a unit that does not 
employ these conveniences.   
 
The group has considered several options, including Texas Instruments’ 
MSP430, the ATMega32 series which is popular in Arduino development boards, 
as well as the popular Atmel AVR microcontroller.  These microcontroller units all 
have their advantages and disadvantages, and those will be discussed at length 
in this section.   
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For the scope of this project, the initial leaning of the group was towards the 
MSP430 from Texas Instruments.  In comparison to the next best option, the 
ATMega32, the MSP430 seems to have many significant limitations.  For one, 
the MSP430 can only be used for developments on the Microsoft Windows 
platform and can only be programmed using the integrated development 
environment provided by Texas Instruments, Code Composer Studio.  On the 
other hand, ATMega32 allows many forms of cross-platform development that 
includes development on Windows, iOS, Linux, and others.   
 
This may seem like a big issue to when beginning to look into the subject, but 
upon further research the group decided on developing the entirety of the control 
system for the Sign Language Interpreter Glove on a Windows machine 
anyways, so this limitation is not a deterrent from using the MSP430.  In fact, all 
four group members already have some experiencing developing on the MSP430 
and using Code Composer Studio because they have all had to use this same 
setup while completing the laboratory experiments in the class, “Embedded 
Systems”.  However, the MSP430 has a significant advantage over the 
ATMega32 microcontroller in the sense that it consumes significantly less power 
than the ATMega32 does.   
 
This is important because this glove will only have one battery powering all of the 
electronic devices.  A processor that has a high power consumption will be 
inadequate for our purposes because we will need to allocate more power to the 
microcontroller and it will require a higher amount of power to be available for all 
of the circuits that will be employed in the project.  From this standpoint, the 
MSP430 would be superior to the ATMega32 for the purposes of the project and 
what is waned from a microcontroller unit.   
 
There are other factors in play that have helped tip the scales towards the 
MSP430 in favor of the ATMega32.  Both microcontroller units operate at about 
the same speed of about 16 MHz, however the MSP430 has higher capabilities 
with this 16 MHz because it has double the size of the data bus than that of the 
ATMega32.  The ATMega32 microcontroller unit is an 8-bit unit, while the 
MSP430 is a 16-bit unit.  This allows significantly more data to be processed at a 
time while using the same exact clock speed.  This can be significant because 
there will be a lot of data being processed simultaneously: there are five different 
flex sensors which will constantly be supplying data into the microcontroller unit, 
there is an accelerometer an gyroscope, which will also be constantly supplying 
data into the microcontroller, there are pressure sensors also supplying data.  All 
of this leads to the importance of having more bits available so that every time 
that the clock ‘hits’, more data can be processed.   
 
Even if the ATMega32 was a bit faster than the MSP430, it would have to be 
significantly faster in order for the clock speed to make up for the MSP430’s 
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ability to simply crunch much more data with each clock cycle.  On the other 
hand, the ATMega32 has much more random-access memory available than the 
MSP430 does.  The MSP430 has 512 bytes of random-access memory, while 
the ATMega32 has 2.5 kilobytes.  This is a significant difference.  However, the 
group does not plan on having to use the machine learning algorithm to decipher 
what hand gesture the user is trying to make, and rather use a more intuitive 
method by creating a function (described is sections above).  Because of this, it 
is not necessary for the microcontroller unit that is used in the SLIG to employ a 
high amount of memory.  If the machine-learning algorithm was to be used, more 
memory would be required because the machine learning algorithm would be 
based on storing many different iterations of the same gesture and referencing 
those iterations later on when the system is asked to make a decision on a 
current hand gesture input.  For this reason, the group believes that the 512 
bytes of memory offered by the MSP430 should be sufficient to supply the 
memory needs of the control system of the SLIG.   
 
The biggest, and perhaps most significant factor in choosing between these two 
very comparable microcontroller units is the price.  The ATMega32 is offered by 
many different vendors, for an average price more than double that of the 
MSP430.  The ATMega32 is offered for an average price of about $25.  The 
MSP430, on the other hand, is offered for $9.99.  This is significant given that the 
group is on a slightly tight budget and would benefit greatly from having a 
microcontroller unit that is that much more affordable than the next option.  For 
these reasons, the MSP430 is the microcontroller unit that the group chose, and 
the vendor of choice is Mouser Electronics. 
 
It should be noted that the group already has a significant amount of experience 
developing on the MSP430 which should reduce the time that it takes to learn the 
specifics about the microcontroller as well as the development environment in 
which that microcontroller must be developed (Code Composer Studio).  These, 
as well as the other reasons mentioned above, make it so that the use of the 
MSP430 seems like the most reasonable choice to make.  Below is a table 
illustrating the mentioned differences between the ATMega32 and the MSP430.  
 
 

Feature MSP430 ATMega32 

Analog Input Pins 8 12 

Digital Input Pins 8 20 

Random Access 
Memory 

512 Bytes 2.5 Kilobytes 

Data Bus 16 bits 8 bits 

Speed 16 MHz 16 MHz 

Cost/Vendor $9.99  mouser.com $24.95  ebay.com 
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Table 3.1: MSP430 vs. ATMega32 comparison 

 
As seen in the table above, the MSP430 seems to be the most reasonable option 
for the purposes of the Sign Language Interpreter Glove.  It is significantly 
cheaper, it has double the size of the data-bus than that of the ATMega32, and 
all members of the group are intimately familiar with it.  Although the ATMega 
does have more RAM than the MSP430, that is not enough of a deterrent to 
make the group go against the MSP430. 

3.2.5 Wireless Communication 

This section talks about the different types of wireless communication that were 
researched by the group, how this different types of wireless communication 
works and which of the thousands of wireless communication technology the 
group decided to use for the implementation of the Sign Language Interpreter 
Glove. The group would like to connect to an external display without the use of 
any cables or wires, because the group wants the project to have a clean and 
modern look. Using cables or wires could also be a bad idea because the cables 
or wires are at possibility of bending or disconnecting and might cause the 
project to fail. Therefore, it is a must that the Sign Language Interpreter Glove 
uses some type of wireless technology to establish the communication between 
the glove and the external device. 
 
As stated earlier, there were so many different options available in the market 
that the group could of have chosen for this project, when it comes to deciding 
what type of wireless technology to use. Through researched, the group was able 
to narrow down the options to just three choices. These three choices were, Near 
Field Communication also known as NFC, Wi-Fi and Bluetooth. Keeping in mind 
that efficient and portability are the two biggest factors that is required by the 
Sign Language Interpreter Glove, the group was able to make a final decision in 
which technology would be best for implementation of this design.  

3.2.5.1 Wi-Fi and Li-Fi 

Wi-Fi, also known as Wireless Fidelity or WLAN ‘Wireless Local Area Network” is 
one of the most popular types of wireless communication used today to transfer 
and receive data, like surfing on the web. Wi-Fi uses radio waves frequencies 
that operate between the 2.4 - 5 Gigahertz ranges. The use of high frequencies 
is use to reduce the possibility of interference with other devices like a car radio, 
mobile devices or even walky talkies. Also high frequency is use so that Wi-Fi 
can provide more data at faster speeds.  
 
Wi-Fi signal could be interrupted or the speed could lower if other devices 
connect to the same router. The solution to avoid other devices to connect to the 
same router, is giving the user the option to create a password. One of the most 
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secure ways to protect a Wi-Fi network is via WPA2 which stands for Wi-Fi 
Protected Access 2. WPA2 gives the user the power to control who connects to 
their network and at the same time it has an encryption mode to provide the user 
with extra security. Bluetooth devices, security cameras, cordless phones, and 
many more devices can also cause a significant amount of interference to Wi-Fi. 
The Wi-Fi range for indoor use is about 70 feet since wall also cause 
interference, but it’s range is much greater when use outdoors.  
 
Li-Fi, is a new type of technology that will soon be available in the market. Li-Fi is 
a uses visible light or IR light to communicate at high speeds and carry even 
much more information than Wi-Fi. Li-Fi works by turning the led bulb on and off 
to send pulses within nanoseconds, too fast for the human eye to notice. Even 
more amazing is the fact that the led bulbs could be dimed enough, to the point 
that the bulbs are still able to transmit data and look like if they are turned off to 
the human eye. Li-Fi signals can bounce of the wall, which means a direct line of 
sight is not necessary. The downside of Li-Fi is that is not able to penetrate walls, 
but at the same time it means is more secure. Li-Fi will be a great technology in 
places where electromagnetic interference is a problem, such as airplanes and 
nuclear power plants.  Li-Fi is expected to transmit data at the speed of 10 
Gigabits per second and its cost to be 1/10 cheaper than Wi-Fi. Unfortunately, Li-
Fi is still very new for it to be implemented in our design.   
  
In conclusion, the group knows there will be no problem as far as connectivity if 
Wi-Fi is use as the primary way of transmitting the data from the glove to the 
external device. The only problem is that the group wants the design to be 
portable and light weight. If the group uses Wi-Fi the group would need a router, 
which means the project will be more expensive, more time consuming and not 
very portable friendly like the group want it to be. Also, Wi-Fi consumes lots of 
power compare to the other wireless communication devices that the group 
research. For these reason the group eliminated Wi-Fi from being used in the 
design. Table 1 below, shows some of the parameters of Li-Fi vs Wi-Fi. 
 

Parameters Li-Fi Wi-Fi 

Speed High High 

Range Low Medium 

Data Density High Low 

Security High Medium 

Reliability Medium Medium 

Power Available High Low 

Transmit/Receive Power High Medium 

Ecological Impact Low Medium 

Device-to-device Connectivity High High 

Obstacle Interference High Low 

Bill of Materials High Medium 

Market Maturity Low High 
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Table 3.2: Li-Fi vs Wi-Fi 

3.2.5.2 Near Field Communication 

Near field communication also known as NFC, has become very popular now at 
days. It can be found not only in cellphones, but also in laptops and cars. Near 
field communication can send and receive data, but like its name implies, the 
digital devices using this technology have to be very close to each other. Near 
field communication works with electromagnetic radio fields unlike Wi-Fi and 
Bluetooth that use ultra-high frequency radio waves. NFC comes in three 
different types of forms, Type A, Type B and FeliCa. These forms are very similar 
but communicate in different ways. 
 
NFC devices could be either passive or active. Passive means that the device 
contains information that another device can read. Pretty much like an NFC tag, 
in other words a passive device does not read any information from other vices. 
A good example of this can be the nutrition facts label found in the foods we buy; 
anyone can read the information but the nutrition facts label cannot read 
anything. All it does is provides the information.  
 
In the other hand, an active near field communication device is much smarter. It 
can do the same thing a passive device does, so not only it can transmit 
information but it can also read information. Active near field communication is 
found in most mobile devices. When you send a picture, video or any other file 
via near field communication to a friend, your device is transmitting the 
information. When your friend sends you a file back via near field communication, 
your device needs to read the information. Therefore, cellphones have an active 
near field communication. 
 
Security is very important in all types of wireless communication. Especially now 
at days that near field communication is being used in the industry of 
automobiles, public transportation, banks, credit cards, and much more. For 
example, you can open your car and turn it on by just having your keys near you. 
Make a payment by just waving the credit card or phone without having to touch 
or swipe the card. Near field communication can even store personal information 
to give you access to a secure building. For this reasons and many more, near 
field communication uses a secure channel with encryption when it’s transmitting 
or sending information.  
 
In conclusion, although near field communication is contactless and very simple 
to use, because of the fact that the operating range (distance) is so limited, the 
group automatically eliminated near field communication from being used as the 
primary form of communication in the design. Nevertheless, the group might still 
use near field communication tags to possibly provide a unique feature to the 
Sign Language Interpreter Glove.  
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3.2.5.3 Bluetooth Classic & Bluetooth Low Energy  

Bluetooth could be considered like a combination of near field communication 
and Wi-Fi. Bluetooth will transmit data at a much lower frequency than Wi-Fi, 
therefore it will consumes less power. The operating distance for Bluetooth 
ranges between 10 meters to 100 meters depending on the manufacture, which 
is way more than what the design requires. Bluetooth is also very affordable and 
reliable. Bluetooth is not only power efficient, but also is easy to use.  
 
Bluetooth works by using ultra high frequency radio waves. Ultra-high 
frequencies are stablish in a range of 300 Mega Hertz and 3 Giga Hertz. This 
ultra-high frequencies unfortunately are not good for transmitting through objects 
such as hills or tall buildings, but the good news is that the walls in our homes 
can’t stop this signal. Wi-Fi, baby monitors, garage door openers, cordless house 
phones, portable speakers and other numerous devices use this type of 
frequency.  
 
Bluetooth is use in almost everything nowadays, and is perfect to use for devices 
that only need to communicate over a short distance, like the Sign Language 
Interpreter Glove. There are several different types of Bluetooth, with the two 
most common being Bluetooth Low Energy (BLE) and Bluetooth Basic Rate / 
Enhanced Data Rate (BR/EDR). The difference between the enhanced data rate 
and basic rate is very simple; the enhanced data rate supports a bit rate of 2 
Megabits per seconds and basic rate only supports a bit rate of 1 Megabits per 
second. Their similarities are that they both use a six-digit passkey that is much 
safer and more secure so that the possibility of another device interfering or 
intercepting the information is reduced. They both are also optimized to send 
high quality data while using the minimum power possible in order to save 
battery. 
 
Bluetooth low energy is what allows developers to create tiny sensors that can 
run off a small coin cell battery for months or sometimes even years. The main 
difference between Bluetooth Low Energy and BR/EDR is that not only BLE is 
much more energy efficient, but also is built on a new development framework. 
Bluetooth low energy is also known as Bluetooth Smart because is being used to 
power the Internet of Things (IoT). Bluetooth Smart allows users to quickly send 
large data, like videos at very high speeds only when needed it, which means a 
longer battery life.  
 
Pairing is what is needed when two Bluetooth devices wish to communicate with 
one another. The pairing between two devices must be a trusted; this can be 
accomplished by a passkey. Most devices are pair so often that the passkey or 
password is saved in order to avoid having to enter it each time the devices 
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wished to communicate. Pairing is a very important and essential for the project, 
since there is only one sign language interpreter glove but multiple devices that 
should be able to connect to it. It is crucial to understand how pairing works 
because pairing is the part of Bluetooth that maintains a list of the devices that 
have made successful connections in the past. Nevertheless, pairing can also 
make sure to not permit the previous devices to connect if the user wishes to do 
this.  
 
Bluetooth can connect to multiple devices at the same time without causing 
interference with one another. This is made possible thanks to spread-spectrum 
frequency hopping technique, which allows the transmitters to change 
frequencies about 1600 times per second. Even if there was interference, it will 
only last for a fraction of a second. In other words, Bluetooth meets every 
demand that the group is looking for the design. Therefore, the group decided to 
use Bluetooth Low Energy (BLE) for the design of the SLIG. Table 2 below, is a 
comparison of Classic Bluetooth vs Bluetooth Low Energy Technology from 
Intelligent Systems. 
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Table 3.3: Classic Bluetooth vs. Bluetooth low energy 
 

Reprinted with permission from Intelligent Systems Source. 

3.2.6 Power Source 

The power source is one the most important parts of this project. Without a 
power source, none of the components use in the project would be able to 
operate. Also if the group does not give it the right amount of power then the 
components will fail. It is crucial to also make sure the group gets the most out of 
the battery. A charging station will be needed to recharge the battery of the Sign 
Language Interpreter Glove.  

3.2.6.1 Batteries 
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In this section the group will talk about some of the different types of batteries 
available in the market. Powering the microcontroller is one of the most crucial 
parts of this project. The battery is uses to power the design will make a 
significant contribution; therefore, the group needs make sure the group uses the 
best battery that’s available in the market. The group will only research 
rechargeable batteries that can be use with the microcontroller. The group will 
also talk about charging the rechargeable battery, this is very important because 
using a cheap charger could kill off the cells in the battery.  

3.2.6.1.1 Nickel Cadmium & Nickel Metal Hydride 
Batteries  

Nickel Cadmium batteries also known as Ni-Cad batteries, where popular in the 
late 19th century, until nickel metal hydride (Ni-MH) batteries took over. Nickel 
cadmium batteries are very inexpensive and retain their charge for long if left 
alone. They also offer great cycle life and low temperature performance when 
compared to other types of rechargeable batteries. The charging rate for nickel 
cadmium batteries depends on how the cell was manufactured, but regardless 
they offer a great charge and discharged life cycle. However, nickel cadmium 
batteries are low on power density. These batteries need to be frequently 
exercised in order to prevent the memory effect. Nickel cadmium batteries 
contain toxic metals, causing them to be environmentally unfriendly. Therefore, 
because of this reasons the group decided to not use it in the project.  
 
Nickel metal hydride batteries are more popular than nickel cadmium because of 
the much higher power density. They also contain mild toxins which makes it 
more environmental friendly than nickel cadmium batteries. Nickel metal hydride 
batteries are usually used to replace non-rechargeable alkaline batteries and 
have about 30% – 40% more capacity than nickel cadmium. These batteries also 
have their cons, they cost more than nickel cadmium and their service life cycle 
does not last very long. They also self-discharge very quickly and their 
performance drops when they are exposed to high temperatures. To prevent 
crystalline formation, these nickel metal hydride batteries requires to be 
frequently fully discharged. For this reason, the group decided not to use Ni-MH 
batteries for the Sign Language Interpreter Glove.  

3.2.6.1.2 Lead Acid Batteries 

Lead acid batteries were invented in the late 18th century. It is the oldest type of 
rechargeable battery and it is still being use today in cars, marine and other 
power machines. Most of the battery consists of soft lead, but other small metals 
are used to get much better electrical properties and to improve its mechanical 
strength. Lead acid batteries come with an even number of volts since each cell 
is approximately 2 volts. Lead acid batteries should not be discharged completely 
because it will cause permanent damage on the battery. A full discharge will take 
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away a small amount of capacity from the battery. Lead acid batteries provide 
about 250 discharge and charged cycles, depending on the depth of the 
discharged. When temperatures are high or when the battery draws high 
currents, corrosion and depletion can occur.  
 
Recently, there has been advancement in lead acid batteries. In the past, it was 
known that lead acid battery performance was affected by sulfate accumulation. 
Scientist discovered that by adding carbon to the negative plate, the charging 
and discharging performance of the lead acid battery increased tremendously. 
This type of battery is known as Advanced Lead-Carbon (ALC). ALC batteries 
can operate between 30% - 70% state of charge, unlike the regular lead acid 
batteries. Below is a diagram from Battery University. 
    

 
 

Figure 3.12: Advance lead-carbon battery 
 

Reprinted with permission from Battery University. 
 
Lead acid batteries are very popular and are currently one of the bestselling 
batteries in the market. Advantages of lead acid batteries are that they take 
about a year for it to lose about 40 percent of its stored energy. They also work 
well in cold temperatures. Lead acid batteries are very powerful and cheap. 
Nevertheless, the battery is very bulky and is less durable than nickel cadmium 
and lithium ion batteries. The lead content inside these batteries also damage the 
environment. This type of battery is mostly used in projects where weight is not 
an issue and lots of power is needed.  
 

3.2.6.1.3 Lithium Ion Batteries (Li-ion) 
 
If you open the back of cover of your phone, most likely you will find a li-ion 
battery powering your device. Li-ion batteries are the most common batteries 
used in electronics at the moment. The pros of li-ion batteries are that they are 
very lightweight and have high power and energy density, which makes them 
great for portable devices. Li-ion batteries are like a combination of nickel 
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cadmium batteries and nickel metal hydride batteries. They are very similar to 
nickel cadmium batteries when it comes to not losing much charge when not in 
use, but also very similar to nickel metal hydride when it comes to having small 
memory effect.  
 
Compared to nickel cadmium, li-ion’s energy density is twice as much. One of the 
limitations of using li-ion batteries is that a protection circuit is required in order to 
limit de voltage and current. Also, li-ion batteries are more expensive compared 
to Ni-Cad and Ni-MH. In conclusion, there are many different types of batteries 
available in the market. They all have their advantages and disadvantages. 
Nevertheless, at the moment the group believes that the lithium ion battery will 
be best for the design. Below is a diagram on Li-Ion batteries from Battery 
University. 
 

 
 

Figure 3.13: Ion flow in lithium-ion battery 
 

Reprinted with permission from Battery University. 
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Table 3.4: Comparison of the batteries researched 
 

Reprinted with permission from Battery University. 
 
 

3.2.6.2 Charging 
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3.2.6.2.1 Charging Ni-Cad and Ni-MH Batteries 

First let’s talk about some of the benefits of slow charging a battery. Cells inside 
a nickel-cadmium battery may have self-discharged so it is important to slow 
charge the battery to bring all the cells to an equal charge level. It is always 
recommended to slow charge the batteries for about 24 hours before first time 
use. Slow charging the battery also helps when the electrolytes are at the bottom 
of the cell, which happens when the battery is stored for a long period of time. 
Slow charge will help redistribute the electrolytes and eliminates the dry spots on 
the separator.  
 
These types of batteries don’t reach optimal performance until they have been 
charge and discharged several times. Some batteries, if made with good quality 
could reach optimal specification requirements with just about five to seven 
cycles. Nevertheless, it could also take about 50-100 cycles if is a cheap battery. 
Other important factor is that these rechargeable batteries should not be charge 
incorrectly. Most batteries will come with a safety vent to make sure it releases 
extra pressure if is ever incorrectly charged. For nickel-cadmium batteries the 
vent opens between 150-200 psi. The vents are re-sealable, but damage could 
happen if vent keeps opening up, causing a leakage due to the electrolytes 
escaping the battery. The battery should be charge correctly to avoid the battery 
becoming in a dry-out condition. The graph below is from Battery University. 
 

 
 

Figure 3.14: Charge characteristics of a nickel-cadmium battery 
 

Reprinted with permission from Battery University. 
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The way that some cheap charger know that the battery is fully charged is by 
measuring or sensing the skin temperature of the battery. Once the battery 
temperature is 50°C (122°F) the charger will stop charging the battery. 
Nevertheless, that’s not a very accurate way of deciding a fully charged battery 
because the core of the cell is much warmer than the skin of the battery. This can 
cause over charging. Also, temperatures above 45°C (113°F) are harmful to the 
battery. A better quality charger or more advance charger will determine when to 
stop charging a battery by sensing the rate of temperature increase over time. 
This method is much accurate than waiting for maximum temperature to occur 
and it also keeps the battery cooler when charging. These advance chargers will 
stop charging the battery once the temperature rises 1°C or (1.8°F) per minute. If 
unable to detect this rate of change in temperature, the charger will also stop 
once battery reaches 60°C (140°F). Other advanced chargers use a defined 
voltage to determine when to stop charging a battery. The reason for this is to 
have more accurate full charge detection. This method is also known as the 
negative delta V (NDV). This types of chargers also include an absolute 
temperature and time out timer for back up, just in case is unable to determine 
the voltage drop across the battery. A major advantage of nickel cadmium 
batteries with ultra-fast charging cells is that they can be charged extremely fast 
and cause minimal stress on the battery.  

3.2.6.2.2 Charging Lithium-ion Batteries 

Charging lithium-ion batteries requires a voltage-limiting device, very similar to 
the same charger use in lead acid batteries. The exception is that a lithium-ion 
battery charger will have a higher voltage per cell with more voltage tolerance 
and no trickle at full charge. Lithium-ion batteries do not accept overcharge; 
therefore, manufactures are very strict when it comes to the voltage cut off unlike 
lead acid batteries which offer some flexibility. A prolonged charging above 3% 
(4.3 Volts) on a 4.20 volts per cell lithium-ion battery will cause plate metallic 
lithium on the anode. The reason for this is because the cathode material loses 
stability and becomes an oxidizing agent that produces carbon dioxide. Also a 
prolonged charging will cause the cell pressure to rise.  
 
Current interrupt devices (CID) are responsible for the safety of the battery, they 
should stop current from flowing at about 145-200 psi. Some lithium-ion batteries 
even have a safety membrane to avoid the battery from getting on fire, which 
opens the battery at about 500 psi. Just like lead acid batteries, nickel cadmium 
batteries and nickel metal hydrate batteries; lithium-ion batteries will melt down 
and might get on fire when overcharged.  
 
A lithium-ion battery is done charging once the current drops to 3% of rated 
current or when it drops to a set level. Sometimes, elevated internal resistance 
can cause the temperature of the lithium-ion battery to rise by 9º F. Nevertheless, 
the lithium-ion battery and/or the charger should be decreasing when a rise of 
18º F occurs. As previously stated, it is not desirable to fully charge a lithium-ion 
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battery because high voltage stresses the battery. A portable device should be 
turn off when charging to avoid stress on the battery because a parasitic load 
confuses the charger, causing it to continue charging a battery although the 
battery is already full charged. The graph below is from Battery University. 
 

 
 

Figure 3.15: Charge stages of lithium-ion 
 

Reprinted with permission from Battery University. 

 
When charging lithium-ion batteries, is better to have the device turn off to allow 
the battery to reach threshold voltage and lower saturation current when full. 
Lithium-ion battery should not be charged while below freezing or at very high 
temperatures. Lithium-ion batteries and chargers need to be discontinued if the 
battery gets excessively warm while charging. Before storing, a 40-50 percent 
charge is recommended. Partial charge is better than a full charge to prolong the 
lithium-ion battery life.  
 
In conclusion, the current and voltage limitations on lithium-ion batteries are 
much easier to analyzing than complex voltage signatures because the current 
and voltage will not change as the battery ages. The lithium-ion batteries do not 
need saturation and they do not need to be fully charge to operate. In other 
words, charging lithium-ion batteries is simpler than charging other types of 
batteries. The advantages of charging lithium-ion batteries are the absence of 
float charge and equalizing charges is not necessary. 
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3.2.6.2.3 Charging Lead Acid Batteries 

The most common method of charging a lead acid battery is by the method 
called constant current constant voltage (CC/CV). A current that is regulated is 
used to increase the terminal voltage, once it reaches upper charge voltage limit 
it saturates and the regulated current will be reduce. One of the downsides of 
lead acid batteries is that they require a long time to charge. Depending on their 
size, it could take between 12 hours to 48 hours for a full charge. A multi-stage 
charge method can charge a lead acid battery much faster, sometimes reducing 
the charge time by 8-10 hours. Nevertheless, the multi-stage method cannot fully 
charge the battery to its 100% capacity. 
 
A lead acid battery goes through 3 stages when it is charging. The first stage is 
called the CCC also known as the constant current charge. During this stage, the 
battery is capable of charging up to 70% in just 5 to 8 hours. The next stage is 
call the TC, toping charge. At this stage the current lowers and provides 
saturation. This stage is necessary so that the battery does not lose its ability to 
accept a full charge and to keep the battery performance at its peak. Toping can 
pretty much be compared to resting after a hard and long workout. The final 
stage is the FC, float charge. This is what makes it possible for the battery to 
maintain its full charge. The graph below is from Battery University. 
 

 
 

Figure 3.16: Charge stages of a lead acid battery 
 

Reprinted with permission from Battery University 
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When a lead acid battery is not being used, then it must be kept on float charge. 
Float charge makes sure to stop the float current when the battery has reach full 
charge and is at standby. This is good to do in stationary batteries that do not 
draw any load. However, to prevent sulfation a lead acid battery needs a topping 
charge at least twice a year. In order to determine the state of charge of the 
battery, the open circuit voltage (OCV) must be measured. If the value measured 
of 2.10 volts at room temperature indicates that the battery is about 90% 
charged. Meaning the battery is in great conditions and only need a quick charge 
prior to use.  
 
For optimal charging, a lead acid battery should be charged in a well ventilated 
location because the hydrogen gas that builds up is explosive. Lead acid 
batteries should always be fill with distilled / de-ionized water. Lead acid batteries 
should not be overfilling when it is on a low charge because it can cause the acid 
to spill. If hydrogen appears on the negative plate or oxygen on the positive plate, 
this is an indication that the battery is reaching a full stage of charge. Float 
charged should be minimized when the ambient temperature exceeds a 
temperature greater than 29°C (85°F). Also, lead acid batteries should not be 
charged for temperatures above 49°C (120°F) neither should they be charged if 
frozen. This is a good reason to not let the battery discharged too low, because 
the battery would freeze sooner than a fully charged battery. Most important, is to 
watering the battery. A new lead acid battery should only be inspected every few 
weeks for watering maintenance. Never add electrolyte because this will cause 
corrosion. 

3.2.6.3 Voltage regulation  

This section talks about the most popular types of voltage regulators and which 
one is the best choice for the project. The purpose of voltage regulators is to 
keep a constant voltage level. Voltage regulator can be used to regulate either 
alternating current or direct current voltages. Computer power supplies use 
electronic voltage regulators to stabilize the direct current voltages that is used 
by the processor. In a distribution substation, large size voltage regulators are 
used to make sure that the customers receive stable voltage no matter how 
much power is taken away from the line. The reason why voltage regulators will 
be use in this project is to make sure that each component gets the appropriate 
voltage it needs to function and operate properly.  
 
There are a couple things the group needs to consider when deciding what type 
of voltage regulator the group plans on using for the design. First whether the 
group needs a fixed voltage regulator or adjustable voltage regulator. Most of the 
times the fixed voltage regulator is the right choice if there is no need to trim the 
output voltage. Also a fixed voltage regulator has less parts than the adjustable. 
Another thing to consider is whether the group needs a linear voltage regulator or 
a low voltage regulator, also known as ULDO. The major difference between the 
two is that a linear regulator needs a minimum of about 3 volts change between 
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the output and the input voltages. The ULDO in the other hand, only needs 
between 0.035 volts to 1 volts difference. 
The group needs to consider not only the dropout voltage, but also the maximum 
output current. This is critical because it can cause instability issues in the design 
if the output current rating is not within the same ratings of the maximum required 
current by the circuit. The group also needs to be careful that the voltage 
regulator rating is not too high, because this can also cause the short circuit 
current to be high as well. The Power Supply Rejection Ratio also known as the 
PSRR is another factor to consider. 
 
Voltage regulators also sometimes produce output noise, which could interfere 
with the sensitive components in or design. Stability can also cause poor 
performance because poor stability degrades the power supply rejection ratio. 
Finally, the last factor the group needs to consider is the output impedance. If the 
regulator has low output impedance, then it will perform better and the lower the 
chances of instability.  

3.2.6.3.1 Series Voltage Regulators  

Series voltage regulators, also known as series pass regulator, is one of the most 
popular types of voltage regulators. The way it works is by having a variable 
element in series with a load in order to provide effective voltage regulation. 
When the resistance of the series element is changed, the voltage across the 
load remains constant because the regulator varies the voltage drop. Series 
voltage regulators provide voltage regulation within a linear power supply. The 
advantage of a series voltage regulator is that is doesn’t draw the full current and 
the amount of current that it draws is as effective as the current used by the load, 
making it more efficient than other types of regulators.  

3.2.6.3.2 Shunt Voltage Regulators  

Shunt voltage regulators use variable resistance to provide a path from the 
power supply voltage to ground. Shunt voltage regulators are mostly used when 
the amount of wasted current is so small that it is not even consider. This types 
of voltage regulators are very simple and usually consist of just voltage reference 
diodes. Shunt voltage regulators are found in many DC power supplies and in 
many voltage reference circuits. Shunt voltage regulators come in different 
packaging type with different operating temperature ranges, accuracy and even 
reference voltage. The most popular being the 1.24 volts. Some applications of a 
shunt regulator are used for precision current limiters, voltage monitoring, error 
amplifiers, low output voltage, current source, analog/digital circuits and many 
more. One of the disadvantages of a shunt voltage regulator is that it draws 
maximum current from the source.  
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3.2.6.3.3 Switching Voltage Regulators 

Switching voltage regulators are very similar to a linear regulator, except that 
thanks to a feedback mechanism is able to turn on and off devices in series. This 
is great because then the group can either have fully conducting series elements 
or switched off series elements with no power dissipation. One of the advantages 
of a switching voltage regulator is that its output voltage can be greater than its 
input voltage. There are several types of switching regulators and they come with 
different input voltages, maximum output currents and maximum switching 
frequency. The most common frequencies are between 300 kilohertz and 4 
megahertz. Its maximum switching frequency could be 2.5 GHz. With a 
maximum output current of up to 3 amps. Most switching regulators are used for 
direct current to direct current conversion. 

3.2.7 FPGA 

As mentioned in above sections, certain parts of the project may require the use 
of logic gates to perform hardware implementations of certain things. For 
example, logic gates can be used to determine when the glove is in ‘standby’ 
mode and not actually being used so that it does not randomly send outputs 
when the user is not trying to communicate anything, but their hand moves 
slightly, causing the SLIG to output erroneous characters.   
 
A great solution for logic gates is a Field Programmable Gate Array.  This is an 
integrated circuit that can be programmed with a computer and simulates the 
presence of physical logic gates.  The group would use a developing 
environment for the FPGA such as Xilinx.  In this way, the FPGA can be 
programmed in any way that is desired such that it represents the actual 
functionalities of physical logic gates.  Many different circuits that would require a 
large amount of physical logic gates can be implemented through the use of one 
chip in the FPGA.  An FPGA development board that all members of the group 
have experience using and are proficient with is the Basys and the Basys II from 
Digikey.  
 
This board comes equipped with input and output devices, as well as LED lights, 
and other equipment that allows the user to interact with the FPGA.  For the 
purposes of the SLIG, it would be unnecessary to have all of that extra 
equipment, since the project has its own input and output equipment (the 
sensors, data, etc.). Therefore, the development board would be unneeded and 
only the chip (the actual gate array) will be needed, which can be included on the 
printed circuit board and use the input and output that is present on the glove 
from the sensors.  This chip that comes on the Basys board is the Xilinx3E.  
  
To program the FPGA so that it simulates any circuit that involves physical logic 
gates, the group can employ the use of a programming language known as 
Verilog.  Verilog would allow the circuits to be built by the way of typing out the 
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logic, and not necessarily having to physically connect all of the components 
together to build the circuit.  This makes it much more convenient to implement 
the circuit because the circuits can get quite large and having wires and busses 
running through the entire workspace can be daunting and make the design of 
the circuits be difficult and tedious.  However, if desired, programming 
environments for FPGA design such as Xilinx also allow the developer to use the 
workspace area to actually draw out the gates that are wanted to implement the 
digital circuit.  Below is a schematic diagram that was generated by the group 
that shows how an FPGA array is laid out, as well as the input and output pins 
that accompany it. 
 
The group is not yet certain if the use of the Field Programmable Gate Array will 
be employed because it has not yet been decided if the group will implement the 
‘standby’ mode through the use of a hardware solution or a software solution.  In 
the case that it is a software solution, the group would simply program in the 
‘standby’ mode into the microcontroller unit without the need to employ the use of 
the FPGA and use hardware to determine if the glove is not being used at the 
time. 

 

3.2.8 Printed Circuit Board 

The group has many options when it comes to choosing the manufacturer for the 
printed circuit board that will be employed by the SLIG.  The group would need to 
keep in mind that that printed circuit board must be small (to fit on the glove, not 
be too bulky, and also allow the end user to move their hand around freely 
without having to worry about damaging or even sensing the presence of the 
printed circuit board. 
 
Because of the constraints present upon the project such as economic and time, 
the group needs to find a compromise with a manufacturer that will provide the 
printed circuit board at a reasonable price, but whom can also have the PCB 
available in a relatively short amount of time.  Of the many printed circuit board 
manufacturers that are available, most of the ones that best fit the economic 
constraint are shipping the board from overseas.  This makes it imperative that 
the group has the printed circuit board ordered at an early time because 
otherwise it could arrive too close to the deadline, not giving the group ample 
time to test and implement the printed circuit board fully into the project.  The 
main manufacturers that the group has been inquiring about are: Smart 
Prototyping, ShenZhen2u, PCB Zone, Express PCB, among others. 
 
Of all the possible manufacturers that can provide the group with the printed 
circuit board, PCB Zone seems to be the manufacturer that has the most 
reasonable price.  To produce a 4-layer PCB, PCB Zone is charging $74.64 plus 
shipping and handling.  For the same 4-layer PCB, Smart Prototyping has it for 
$88.85, ShenZhen2U has it for $91.97, and Express PCB has it for $204.  All of 
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these prices are plus shipping and handling.  The manufacturers will not provide 
the final cost of the PCB until after it has been designed and ordered, upon which 
point the group can have a better idea of how much it will actually cost from each 
manufacturer and how long it would take for the board to arrive from each 
manufacturer.  Given the information that the group has at the moment, it seems 
as if PCB Zone will offer the group the best deal in manufacturing the PCB.  
Below is a table with the four manufacturers that are under consideration, the 
price from each, and the location from which the PCB would be shipped.   
 
 

Manufacturer Price (Before Shipping) Manufacturer Location 

Express PCB $204 USA 

Smart Prototyping $88.75 China 

ShenZhen2U $91.97 China 

PCB Zone $74.64 New Zealand 

 
Table 3.5: PCB Manufacturer Comparison 

 
The printed circuit board will also have to be designed using some type of CAD 
software.  If the group was to go with Express PCB, they provide free CAD 
software in which the design of the printed circuit board can be created.  This is 
very helpful because in this case the PCB will be able to be designed in their 
native software and the group will not need to use some type of external CAD 
software to design the printed circuit board.  However, if the group decides to go 
with one of the other printed circuit board manufacturers that do not provide a 
CAD design software tool, there are many options out there that would provide 
the service of designing the circuit board.  The most popular software tool for 
designing the printed circuit board is EAGLE.  This is software in which the 
printed circuit board can be fully designed.  This would allow the manufacturer to 
just read the design that was made in EAGLE and build the PCB in the exact way 
that is needed for the particular application at hand.   
 
Besides EAGLE, there are a number of other free options in which the printed 
circuit board can be designed.  Some of these software tools are: PCBWeb 
Designer, ZenitPCB, Osmond PCB, DesignSpark PCB, Fritzing, as well as 
others. These software tools have the ability to import specific parts and design 
the printed circuit board to include the exact parts in the exact locations that is 
needed for the project.  The group will have to gain proficiency in using these 
CAD software tools and design the printed circuit board that will go into the SLIG.  
At this point in time, the group thinks that the software design tool that is most 
likely to be used are either EAGLE or Fritzing.  These are two very well-known 
and well respected software tools that have credibility and have a plethora of 
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resources available online to learn how to use and troubleshoot in creating the 
design. 
 
 

3.2.9 Serial Communication 

Serial communication is when data is transmitted one bit at a time.  This data 
uses a specific channel with a known standard that is used to transmit data 
through a known and tested method.  Serial communication will be used in the 
implementation of the SLIG to transmit data from the microcontroller unit to the 
Bluetooth module.  The Bluetooth module can be configured using serial 
communication and use the data received to transmit it through the ether and out 
to the receiving end of the Bluetooth setup (the Android smartphone).  The most 
popular form of serial communications is the use of RS-232.  This is a standard 
that is very popular in the electrical engineering industry and is used world-wide.  
Through RS-232, data is transmitted through a cable that has a number of wired 
connections in it.  There are different types of cables that can be used to transmit 
data via the use of serial communication, and it all depends on the type of setup 
that is being used that will determine the type of cable that is used.  For example, 
if a regular, “straight” cable is used, that means that each pin on each end of the 
cable is a straight shot and corresponds to the same pin on the other side of the 
cable.   
 
This type of setup requires the use of a modem. A modem in between the two 
sides of the communication medium is helpful at changing the send and receive 
bits and aligning them with the corresponding bit that would go on the other side 
of the communication line.  This is the more traditional method for using serial 
communications.  In this scenario, the setup consists of: the transmitter, which is 
producing an output which is the data that is trying to be transmitted, a 
transmitting modem, which does the job of “changing” the send bit from the 
sending side of the cable to the “receive” bit on the receiving end of the 
communication, a straight shot RS-232 cable that connects from the transmitting 
modem to the receiving modem, a receiving modem which takes in the data that 
was transmitted through the straight cable, and finally the receiver, which is the 
intended target that the information was trying to be sent to in the first place. 
 
The alternative to using a straight cable with modems to do the job of switching 
the orientation of the send and receive bits and make the communication 
possible, is through the use of a “null-modem” cable.  A null-modem cable is a 
cable that is specifically designed to not need a modem.  This type of cable can 
be connected from the transmitter straight through to the receiver without the 
need of any interference. 
  
The way that this type of cable works is that within the cable, the send and 
receive bits are actually changed, internally within the insulation of the cable.  For 
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this reason, this type of cable is sometimes colloquially referred to as a “twisted 
cable”. This type of cable makes it a lot more convenient to use serial 
communication because an engineer or technician need only to have a null-
modem cable in their bag and they can simply connect to whatever they are 
trying to communicate with without the use of large amounts of hardware such as 
modems.   
 
Below is a simple schematic diagram that was generated by the group that 
illustrates how the null-modem cable works and switches the wires internally so 
that pin 2 on one end is actually continuous with pin 3 on the other end, and not 
the same pin 2.  As is evident below, the null-modem cable can send information 
without the use of a modem because the wires inside of the cable are set up in 
such a way that the send from the transmitting side is twisted to match the pin on 
the receive pin of the receiving side of the link.  This makes it more practical to 
use the null-modem cable and not have to have modems in the system. 
 

 
Figure 3.17: Illustration of Null-Modem RS-232 Cable 

 

3.2.9.1 Analog to Digital Converters 

The implementation of the Sign Language Interpreter Glove will need the use of 
analog-to-digital converters.  This is because the output that is received from the 
sensors is a continuous, analog voltage level.  The microcontroller naturally 
operates at the digital level and it would be impossible to perform digital 
computations on an analog signal.  For these reasons it is necessary to convert 
the analog voltage that is taken from the flex sensors, pressure sensors, and 
accelerometer into a corresponding digital voltage level.   
  
There are many different types of analog to digital converters.  They all use a 
slightly different method to provide an output that is a digital voltage but that is 
proportional to the analog voltage that was input.  One type of analog to digital 
converter is the “flash” analog to digital converter.  This type of analog to digital 
converter uses a series of comparators that all operate simultaneously to 
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determine what the voltage level of the analog signal coming in is.  The “flash” 
converter has a specific voltage level “assigned” to each comparator, and each 
comparator is constantly examining the input analog signal to determine if that 
signal matches up to its assigned level.  Eventually one of the comparators will 
have a match with the analog input signal, and it will output its digital version of 
that voltage level. 

3.2.10 Glove 

3.2.10.1 Functionality  

The glove of course will serve the purpose of holding all of the different 
electronics and sensors and making this project a usable device. In choosing a 
glove we must consider certain important features of said glove to make sure the 
electronics function properly and that the end results is a comfortable but efficient 
product. These features include but are not limited to the size, type of the 
material and number of layers of the glove. To elaborate, this project would 
require a glove that could fit most people but definitely be large enough to hold all 
required electronics. Furthermore, different materials could possibly conduct heat 
differently and so some may prove less than optimal for working along with 
electronics and sensors. Lastly, the team has noticed that there are some gloves 
available with two layers which would be convenient in the sense that the 
electronics of the place between the two layers improving the overall aesthetics 
of the glove. 

3.2.10.2 Models and Specifications 

As could be expected there is a plethora of different gloves for all types of 
purposes available in the market. As mentioned before it is important to pick a 
glove that best matches the needs of this project. Below are some of the models. 
 
Under Armour Yard Baseball Glove – This glove makes use of very high 
quality, soft cabretta leather for optimal feel. This would probably make a very 
popular choice among users and improve the overall comfort of using the SLIG 
glove. Along with the leather this glove makes use of synthetic materials to 
increase the durability and flexibility of the glove which is a great advantage 
when it comes to applying electronics this glove and the repeated use that will 
have to endure. 
 
Under Armour ColdGear Infrared Fleece – This is glove is made from micro-
fleece which is a thermal conductive material that is very efficient in keeping onto 
heat without adding bulk of the glove. Although this may be helpful to a consumer 
who may need the glove for outdoor purposes it may prove troublesome for this 
project as electronics used for the Slagle most likely generate heat and trapping 
this he would only make it uncomfortable for the user. However, it should still be 
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noted that it seems to be more flexible with the use of spandex than most other 
leather gloves, which will enable the user to fully flex their hands and form the 
sign language letters correctly.  
 
Under Armour ColdGear Infrared Engage Run Gloves – These gloves are not 
made of fleece like the previous but they do retain the same heat absorbing 
properties of the ones before. Again, this is this will probably be a disadvantage 
for indoor use where he will just make it more comfortable for the user however 
this particular model has a very prominent distinct feature. It claims to have 
touchscreen compatible fingertips which would mean that the user can make use 
of the screen will be displaying the information using the same hand that they’re 
using to to make the sign language letters. Moreover, this is a very aesthetically 
pleasing glove out visually match our PCB board and all the electronics. This 
would make the end product more satisfying to the user. 
 
Under Armour Strike Skin Tour – This was originally designed to be a golf 
single glove that features premium high-performance leather that can stay soft 
and flexible after heavy use. It is made of the top quality cabretta leather that 
enables this glove to deliver the promised level of control and flexibility, which will 
be crucial in allowing the user to fully form every single sign language letter 
properly. Plus, since it is sold as a single glove, the team would be saving the 
cost of buying two gloves. Finally, it has small incisions all throughout the fingers 
that will most likely be useful if we have to tie any of the electronics through the 
glove. 
 
Under Armour Charge Will Run – This glove is made out of very soft wool that 
is advertised to dry much faster than traditional material. But like many of the 
previous gloves, this model claims a high-level of flexibility that is always a 
necessary feature to allow the user to fully form the sign language letters and like 
ones before, it has techtouch technology that allows you to use touchscreen 
devices without having to remove the glove. Wool is said to be an insulator so it 
should not interfere with any of the activities from the electrical on the device. 
 

Summary of Features 

Model UA Yard 
Baseball 

UA Coldgear 
Infrared 

UA ColdGear 
Infrared 
Engage Run 
 

UA 
Strikeskin 
Tour 

UA Charged 
Wool Run 

Price $47.99 $29.99 $24.99 $21.99 $49.99 

Material Leather Polyester, 
Nylon, 
Polyurethane 

Polyester Sheepskin 
Leather, 
Nylon 

Nylon, 
Wool, 
Elastane 

Top 
Feature 

Soft 
Leather 

Tech Touch 
technology 

Thermo-
Conductive 

Maximum 
Control 

Tech Touch 
Technology 
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Table 3.7: Summary of Glove Options 
 
 
 
 
 
 
 

3.2.11 Onboard LCD Display 

Although the main method for the end user to view the text that is being 
generated by the Sign Language Interpreter Glove is the use of an Android 
application that will display the output in real time.  However, the group has 
considered the idea of including an LCD display on the actual glove itself.  This 
can be helpful to the user because with the Android application, the person with 
whom the user is trying to communicate with can see what is being said, but the 
actual user cannot know if the gesture that they have made actually produced the 
correct output on the display, unless they are right next to the person with whom 
they are speaking and can physically view the cell phone. 
  
For this reason, it would be helpful to have a display that is native to the glove.  
The user can be performing their gestures, and simultaneously monitoring that 
the control system is producing and transmitting the proper character.  In the 
unlikely case of an error being made by the control system, the user can 
communicate with the receiving person, and let them know that they in fact were 
not trying to say what was displayed on the cell phone, and try to correct it.  The 
on-board LCD module would have several pins, normally about 16.  These pins 
would be configured with the output from the microcontroller and the display 
would show the corresponding character that was outputted from the 
microcontroller unit and also sent out through the Bluetooth module. The onboard 
LCD display would employ the use of the pins that are on it and it would interpret 
the characters through the use of hexadecimal values that illuminate specific 
parts of the display.  In this way the SLIG will show the hand gesture that the 
user is trying to make and display it right on their glove, so that the receiver of the 
message can be sitting away from the user (within Bluetooth’s range) and the 
user can perform their hand gestures with confidence that the receiver is reading 
the actual character that the user is trying to communicate. 
 
Though the addition of the LCD display to the SLIG would add an extra layer of 
convenience for the end user, given the economic, health, safety and time 
constraints that are imposed onto this project, the group will have to go through 
an in-depth process of determining whether or not the implementation of the LCD 
would be a worthy endeavor when designing the Sign Language Interpreter 
Glove.  On top of this addition taking quite a bit of time to design and implement, 
it would also cost more money to purchase the display and additional parts 
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needed to seamlessly implement it into the project.  In addition, this display 
would also add another piece of electronic equipment to the glove, and as 
mentioned in another section, the group would like to keep the glove as sleek as 
possible, avoiding any bulging electronic components that the end user can 
inadvertently damage and/or hurt themselves. 
 
 
 

3.2.12 Bluetooth Low Energy Module 

The job of the Bluetooth module is to collect all the information from the external 
sensors, could be either digital or analog data. Once it collects the information it 
should send it via radio frequency to the external device. There are several types 
of Bluetooth modules. This section will talk about the pros and cons of several 
different types of Bluetooth modules.  
 
One of the first decisions that the group needed to make in regard to the 
Bluetooth module was whether a single mode or a dual mode was need it. Single 
mode is when only a Bluetooth low energy module is used and dual mode is 
when a Bluetooth Classic and a Bluetooth low energy module is used. Because 
of cost and simplicity of the Sign Language Interpreter Glove, the group decided 
to go with just a single mode Bluetooth module. Dual mode would have allowed 
older devices that do not support Bluetooth low energy to be able to 
communicate with our project. Nevertheless, if the group would of have used 
dual mode, the power consumption of the Bluetooth module would have been 
much greater and more expensive. 
 
Bluetooth modules also come in two different packages options, which are Quad 
Flat No Leads package also known as QFN and Wafer Level Chip Scale 
package also known as WLCSP or CSP. Some differences between the Quad 
Flat No Leads package and the Wafer Level Chip Scale package is that the QFN 
is much larger and cost more because it contains more material than CSP. 
Nevertheless, using a WLCSP will be more expensive when used in a PCB 
design because it requires tighter tolerances and more than two layers. So QFN 
might be more inexpensive when use in a PCB design. CSP is more suitable for 
really small product design where QFN doesn’t fit. 

3.2.12.1 Nordic Semiconductor nRF8001 

The group is considering the Nordic Semiconductor nRF8001 Bluetooth low 
energy chip. The nRF8001 runs the Bluetooth low energy stack internally. The 
nRF8001 Bluetooth chip features a very simple serial interface that is compatible 
with many microcontrollers. The peak current of the nRF8001 Bluetooth chip 
could be as low as 12 mA. Having such low peak current allows the nRF8001 
Bluetooth chip to have a battery lifetime that last months and depending on the 
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application could even last years. The nRF8001 Bluetooth chip supports security 
functions as well as GAP role, server role and client role. Basically the nRF8001 
Bluetooth chip is design for the slave role (peripheral operation).  
 
The nRF8001 Bluetooth chip comes in a 32-pin 5 by 5 Quad Flat No Leads 
package. The nRF8001 Bluetooth chip also has an analog to digital converter 
which can be used for managing the level of the battery. The nRF8001 Bluetooth 
chip also includes a low tolerance 32 kHz RC oscillator which is used to remove 
the need for an external crystal. The nRF8001 Bluetooth chip also includes a DC 
to DC voltage regulator and a linear voltage regulator. The DC to DC voltage 
regulator is used to lower the current consumption when using a 3 V battery by 
20 percent. The linear voltage regulator is used to provide a voltage supply range 
of 1.9 – 3.6 volts.    
 
Below are some of the features the nRF8001 BLE Chip offers. 
 

 Ultra-low power consumption 
 11mA Active TX peak current at 0dBm output power 
 12.5mA Active RX peak current 

 2.4GHz Radio 
 Fully Bluetooth Smart v4.0 compliant 
 0, -6, -12, and -18dBm programmable TX output power 

 System Peripherals and I/O 
 Temperature sensor 
 UART for DTM 

 Embedded Bluetooth Smart stack 
 LL, L2CAP, GAP, SM, ATT and GATT mandatory features 

for peripheral role operation 
 GATT Client and GATT Server  

 Temperature range 
 -40 to +85 ºC 

 

3.2.12.2 Microchip RN4020 

The second option would be the RN4020 by Microchip. The RN4020 Bluetooth 
low energy chip is compatible with many of the affordable microcontrollers in the 
market today. The RN4020 offers internal scripting capabilities to accomplish 
those basic functions, avoiding the need for software development tools or an 
external host MCU. The RN4020 Bluetooth chip features digital analog inputs 
and outputs, ASCII command interface API over UART, MCU and it includes all 
Bluetooth SIG profiles. Users can remotely control the RN4020 Bluetooth chip 
using a secure connection with another Bluetooth chip. Updating the RN4020 
Bluetooth chip is easy; it can be done over the air or even via the UART 
interface. Optimize for long range of over 100 meters, the RN4020 Bluetooth chip 
offers a built in high performance printed circuit board antenna. The RN4020 
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Bluetooth chip is the perfect size for the Sign Language Interpreter Glove, only 
11.5 by 19.5 by 2.5 mm.  
Some of the features of the RN4020 are: 

 GAP,GATT,SM, L2CAP and integrated public profiles  
 Data streaming with Microchip's Low Energy Data Profile (MLDP)  
 7 dBm transit power for 100m+ range  
 Software configurable role as peripheral or central, client or server  
 UART interface, GPIO, ADC  
 64KB internal serial flash  
 Castellated SMT pads for easy and reliable PCB mounting  

 

 
 

Figure 3.18: RN4020 Pin Diagram 
 

Reprinted from the Microchip RN4020 datasheet. 

3.2.12.3 Texas Instruments CC2541 

The group is also considering the CC2541 chip by Texas Instruments. The 
CC2541 Bluetooth chips has several applications but are mostly used in mobile 
phone accessories, home automation, lighting control, alarms, wireless sensor 
networks and many more. The CC2541 Bluetooth chip is one of the most recent 
Bluetooth chip that Texas Instruments has manufactured. The CC2541 Bluetooth 
chip does not requires much power to function, which means that it can operate 
on a small coin cell battery and it can provide excellent battery lifetime. Overall 
the CC2541 Bluetooth low energy chip provides high performance, it’s very 
affordable. 
 
The CC2541 is composed of several different parts. The CC2541 comes with the 
option of a 128 KB Flash Ram or 256 KB Flash Ram. The CC2541 contains a 
single cycle 8041 CPU core. The CC2541 Bluetooth chip connects all the 
hardware to the memory via an SFR bus. The CC2541 SRAM is able to keep its 
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information even when is powered off thanks to its ultralow power. The CC2541 
also offers a 5 channel DMA controller. The CC2541 also comes with a watchdog 
timer and a sleep timer. The main difference between the CC2540 which is 
another popular TI Bluetooth low energy chip and the CC2541 is that the 
CC2541 has an I2C device. I2C stands for inter-integrated circuit, and its purpose 
is to support the slave and master operation. Multiple master devices are able to 
connect thanks to the bus design of the I2C. With a simple command, I2C allows 
slave and master devices to switch their roles. 
 
 
 
Below are some of the features that the CC2541 Bluetooth Chip offers. 

 RF  
o Excellent Receiver Sensitivity (–94 dBm at 1 Mbps), Selectivity,  

and Blocking Performance 
 Layout  

o 6-mm × 6-mm QFN-40 Package 
 Low Power  

o Active-Mode RX Down to: 17.9 mA 
o Active-Mode TX (0 dBm): 18.2 mA 
o Power Mode 1 (4-µs Wake-Up): 270 µA 
o Power Mode 2 (Sleep Timer On): 1 µA 
o Wide Supply-Voltage Range (2 V–3.6 V) 

 TPS62730 Compatible Low Power in Active Mode  
o RX Down to: 14.7 mA (3-V supply) 
o TX (0 dBm): 14.3 mA (3-V supply) 

 Peripherals  
o Powerful Five-Channel DMA 
o Battery Monitor and Temperature Sensor 

 

3.3 Software 

There are multiple software components required for the sign language glove 
which are explained in detail in the following few sections. The first section will 
explain the mobile application being created for the user interface. The mobile 
application is responsible for wirelessly displaying hand gestures performed by 
the glove onto a mobile phone screen as text. The next section will discuss the 
control systems portion of the software, which includes programming the 
microcontroller and writing machine learning algorithms used for hand gesture 
recognition. Some of the programming languages will be considered too so that 
we are sure we make the most informed choice for the mobile platform and 
microcontroller.  

3.3.1 Mobile Application 
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In the next few sections, we will compare the top three mobile platforms available 
to use for our mobile application. 

3.3.1.1 Mobile Application Overview 

The mobile application is an important feature of this project that will serve as the 
user interface for the sign language glove. The functionality of the glove will be 
determined by the success of the mobile application which is easily forgotten in 
many technical applications. Many designers are concerned with meeting the 
technical specifications and requirements of their design but forget that the user 
(consumer) is the end-goal of the project. In order for the mobile application to be 
successful, the design of the app should consider the user, be simple and 
elegant, and meet all design requirements. A more detailed discussion of the 
design process for the mobile app user interface is explained later in the Mobile 
Application section under Design (6.2.2.3 Menu Layout). 
 
The purpose of the mobile application is to provide the user with a visual 
interface for the sign language glove that displays feedback of the gestures in 
real time. The mobile application will not be performing the gesture recognition 
processes; it will mainly be responsible for receiving data from the glove via 
Bluetooth and displaying it on the phone screen. Therefore, the amount of 
processing power required for graphical user interface (GUI) of the mobile app 
will not be very demanding and will not be a major concern when choosing a 
mobile device platform. The three main mobile platforms available are Android™, 
iOS, and Windows Mobile which all have their advantages and disadvantages.  
 
When choosing a mobile platform, each design requirement for our sign 
language glove cannot be looked at individually. For example, designing the GUI 
for an iPhone would be much easier than designing the GUI for an Android 
phone because iPhone displays only come in a few standard sizes and Android 
displays can range from a mobile phone screen to a tablet. However, the 
approval process of putting an app in the app store for Android is much easier 
than iOS. Therefore, choosing the mobile platform that supports the most 
important design features will be the best option. One factor that will make the 
decision a little easier is that some of the design constraints for the mobile 
application come with the mobile platform which means that there is no choice. 
One example where this comes in handy is when choosing a programming 
language because Android, iOS, and Windows Mobile all have different 
languages. These languages all have about the same capabilities and 
performance but it doesn’t really make a difference which one is used except for 
the developer’s preference. 
 
In order to determine which mobile platform is the best fit for the sign language 
glove, a more detailed analysis needs to be done on each platform. As 
mentioned above, only a select few features make a significant difference for the 
mobile platform and these features need to be identified before proceeding. In 
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general, developers choose their mobile platform based on the 
hardware/software compatibility, programming languages, audience base, 
security, and available resources. Not all of these considerations are weighted as 
heavily as others but need to be included in the decision process. Determining 
which features are important and which are not, the functionality of the sign 
language glove comes into play. Taking a look at the hardware and software 
needed is the first step because it is the most prominent part of the design. 
 
Some common mobile phone hardware components consist of a combination of 
the following: display, keypad, battery, memory (ROM/RAM), microprocessor, 
USB, speaker, microphone, camera, Bluetooth, GPS, antenna, volume control 
switch, and on/off switch. From this list, the mobile application for the sign 
language glove will only use the battery, display, Bluetooth, microprocessor, and 
possibly memory components, so these are the main hardware features that will 
be compared when choosing a mobile platform. As far as the software goes, the 
design considerations include programming languages, developer access to the 
mobile development environment and mobile phone, and access to the app 
store. The biggest factors are whether the developers (us) have access to the 
mobile development environment and which mobile phones the developers own 
because if the majority of our team has Android it would not make sense to use 
iOS as our mobile platform since we would have to get ahold of more iPhones. 
The next step is to take a look at the other criteria required for making a mobile 
application like the audience base, security, and available resources because 
these can make a big influence in our decision too. However, these factors must 
be discussed in more detail for each mobile platform since they are considered 
facts more than they are design options. 

3.3.1.2 Potential Mobile Platforms 

3.3.1.2.1 Android 

Android is a very popular and powerful operating system that runs on phones, 
tablets, watches and more. Having the largest installed base of any mobile 
platform, Android provides a platform for creating apps and games for Android 
users across the globe as well as a well-supported developer environment. The 
Android Developer Tools offer a complete Java Integrated Development 
Environment (IDE) called Android Studio, which is basically an application that 
provides tools for developing, debugging, and packing Android apps. In addition, 
Android Studio provides developers with the option of running their apps on any 
available Android device or creating a virtual device that emulates any hardware 
configuration.  Therefore, Android apps are compatible with all Android supported 
phones, tablets, and other devices and it automatically adapts to your UI. 
Another feature that makes Android so attractive to developers is the fact that it 
is open source, which means that there are better quality apps, more 
documentation, and more customization. The Android Open Source Project is led 
by Google and ensures that all Android developers using their open source 
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community also maintain the Android Compatibility Program. This means that 
every app on Google Play will be compatible with most Android devices and 
keeps Android developers all on the same page. 
 
All of these bells and whistles that make Android so popular are great but now it 
is time to assess how Android can satisfy the needs of the sign language glove. 
As mentioned above, the display is not a compatibility issue for Android 
applications since their framework is designed to adapt to the UI of the device. 
The biggest hardware compatibility issue predicted will be communicating 
between the glove and the mobile app, so we will start there. Standard hardware 
on and Android phone offer a few different methods of sending/receiving data by 
antenna like radio frequency (RF), Wi-Fi, Bluetooth, and GPS but the decision 
process for choosing the best option is discussed in the communication section 
of the report. Therefore, the sign language glove will only be using Bluetooth as 
its means of transmitting data. Most new Android devices are Bluetooth 
compatible so this should not be an issue; however, the latest version of 
Bluetooth is not supported by all mobile devices. Making sure that the data sent 
from the glove to the mobile app is an essential element of the project but it will 
be one of the more challenging obstacles during mobile development and thus, 
the easier we can make this process the better. The newest Bluetooth 
technology, Bluetooth Low Energy (BLE), offers the best reliability and efficiency 
so we will be taking advantage of this feature if possible. Thankfully, all of 
Android’s latest mobile devices are al BLE compatible so it passes the test.  
 
Another hardware consideration for the mobile application is the power 
consumption of the app on the mobile device because battery life is an important 
factor for anything to do with mobile devices. However, since using Bluetooth 
Low Energy is the best option for wireless communication, there is no need to 
worry about the power consumption demanded by Bluetooth because it is 
already designed to be very power efficient. The other two hardware components 
that come into question are the processor and the memory on the mobile device. 
After learning more about Android’s Compatibility Program, we discovered a 
compatibility test that all Android apps must be evaluated by during the 
development process which makes our job that much easier. The test ensures 
that an app is compatible with all software and hardware requirements of a 
compatible Android device, so as long as our mobile app is not pushing the limits 
of the processor and memory it should be fine. Most of the processing will be 
done on the glove’s MCU anyways so the processing power required will be 
minimal. 
 
Now that the hardware compatibility options are exhausted, we will test Android 
for software compatibility issues. The first main concern with software is whether 
the developers have access to the mobile development environment and a 
compatible Android mobile device. After surveying the team, it appears that three 
out of four members own an Android mobile phone and one owns an iPhone. 
With three compatible Android devices in the group, the next question is whether 
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we have access to the mobile development environment. Having access to 
Android’s mobile development environment simply means that you have access 
to a computer capable of running Android studio and testing the mobile 
application. With four senior Electrical Engineering undergraduates at UCF, we 
have plenty of options for computers such as our own personal computers to the 
computer labs open on campus and other locations that should be able to run the 
software. Android Studio is capable of running on any of the popular operating 
systems like Windows, Mac, and Linux and therefore will be easy to find access. 
 
The last few considerations which have been briefly mentioned already are 
security, audience & availability, and resources. In the introduction paragraph to 
Android, it claimed to have the largest install base of any other mobile platform. 
So, not having enough users will not be an issue; especially since UCF is a large 
public university and has one of the largest concentrations of mobile phone users 
in the world. Building on top of that, the resources available for Android 
developers are abundant since Android is open source and comes with tons of 
documentation and third-party applications that will make developing a new app 
much easier than starting from scratch. However, with such a big Android 
community comes lots of security threats which can be a major issue for certain 
types of applications like banking and online shopping which require a lot of 
personal information to be entered into their system. Luckily, our mobile 
application does not need any vital personal information and our project scope 
does not reach past building a prototype so we should not have to concern 
ourselves with security. 

3.3.1.2.2 iOS 

iOS is another very popular mobile platform that is just one of Apple’s operating 
systems (OS). Apple has an OS for mobile phones, tablets, computers, watches, 
and TVs which are all written in the same programming languages but applied to 
each platform differently. The global market share of iPhones is only about 20% 
but the U.S. market share is about 50:50 compared to Android. This means that 
iPhones are about just as popular as Androids are in the U.S. to date and is a 
viable option for our project based on user availability. Just like Android, iOS 
comes with its own integrated development environment (IDE) called Xcode that 
allows apps for Mac, iPhone, and iPad to be built and tested in one program. 
There are some pros and cons between using different IDEs but these reasons 
are not as important as the other differences between mobile platforms. The iOS 
Developer Library is another important bonus for developers; this library has API 
references, programming guides, sample code, and many other resources to 
help build your apps. iOS mobile app development is just as popular as Android 
development, if not more in the U.S., and according to the market, iPhone apps 
generate more revenue on average than Android apps. The reason for this is that 
iOS users tend to buy more apps and there is research that shows that iPhone 
owners generally belong to an above average social class. A big portion of 
Android’s user base is in third-world countries because Android phones are 
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generally less expensive than other mobile devices; this means that a lot of 
Android’s users either don’t buy apps or don’t spend much money on apps. In 
most cases, more revenue from apps is appealing to new mobile developers, but 
the mobile app created for this project is not intended to be sold on the market for 
profit which makes this unbeneficial for us. Another road block for iPhone apps is 
that the process of getting an app approved in the Apple app store is notoriously 
difficult and takes a long time. 
 
Moving on to the more important developer constraints, the hardware and 
software compatibility of iPhones needs to be considered. As mentioned in the 
mobile platform overview, the most important hardware features required for the 
sign language glove’s mobile app are the display, Bluetooth, battery, processor, 
and memory components. The display for iPhones is not an issue because 
iPhones only come in a few standard sizes, unlike Android, and will be relatively 
easy to work with. One note is that although iPhones and iPads both operate 
using iOS, the apps for each platform are different because of the screen size 
and therefore require developers to make an app for each platform individually. 
Luckily, the scope of this project does not need an iPad app because that would 
just be an additional feature which doesn’t add significant value. Another feature 
that won’t be an issue with iPhone compatibility is Bluetooth because iPhones 
are all manufactured by Apple who only produces a couple different models of 
their phone. Thanks to Apple’s high quality standards, all of the latest iPhones 
have Bluetooth Low Energy (BLE) which will be used for communicating with our 
glove. Using BLE also means that our battery life will not be a big concern for the 
mobile app because the power consumption from the other features will be 
negligible in comparison to the Bluetooth. The last piece of hardware to consider 
is the memory, but we know that since the mobile app will not be doing many 
computations there should be plenty of memory available. So now a look at the 
software side of mobile development on iOS will determine its feasibility.  
 
When talking about the software side of mobile development, this is referring to 
the operating system required to run the IDE and the type of mobile phones that 
our team has access to. The types of mobile phones that our team owns are 
discussed in the Android section so it will not be brought up again here. The IDE 
for iOS is not compatible with any other computer OS other than Mac however, 
which will cause an inconvenience because nobody on our team owns a Mac 
computer. There are Macs available in the Engineering building on campus, but 
having a personal computer for mobile app development will be necessary for a 
proper testing environment.  The only other main consideration for choosing the 
mobile platform is the security of iOS which can be ignored because this project 
will only be building a prototype of the sign language glove. The mobile app for 
this project will not be collecting personal information or storing data onto servers 
so there should be no need to worry about security anyways like was discussed 
in the Android section. 

3.3.1.2.3 Windows Mobile 
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Windows Mobile is the last mobile platform that we will be considering for the 
mobile application of our sign language glove. After going through the design 
considerations for the last two mobile platforms, Android and iOS, we can 
already deduce that Windows Mobile will not be a viable option for our mobile 
platform mainly because none of our team members own a Windows phone. 
However, it is still important to discuss what Windows Mobile is and some of the 
reasons why it might be a good option for a mobile platform if the circumstances 
were right. There will be no need to look at the Windows phone’s 
hardware/software compatibility though since that won’t affect our decision. 
 
Windows Mobile is a mobile platform created by Microsoft and it is the third most 
popular mobile platform in world. Based on the Windows operating system (OS), 
Microsoft tried to merge the computer based interface of Windows with the 
mobile interface and create a new experience for mobile users. If you take a look 
at the newest Windows operating systems, Windows 8 and Windows 10, their 
GUI looks very similar to the GUI of Windows Mobile which is no surprise. 
Microsoft’s goal is to have universal Windows applications that can be accessed 
on all Windows devices like the PC, phone, tablet, and more so that developers 
target device families and not just an OS. This allows developers to easily make 
applications for multiple platforms and allows users to have access to all of their 
apps on any Windows device. Now users have a convenient and productive way 
of getting the most out of their applications without having to spread themselves 
thin over multiple platforms and applications that aren’t cross compatible. 
 
Taking a deeper look into the Windows Mobile platform, the development tools 
for Windows Phone applications are actually very good. Just like the other mobile 
platforms, Windows Mobile has its own integrated development environment 
(IDE) called Visual Studio which is the preferred IDE for Windows Phone 
development. “It has built-in support for version control, code analysis, TDD (Test 
Driven Development), and even UML (Unified Modeling Language) diagram 
generation” (). These tools, in addition to the Windows phone community, make 
developing for the Windows Mobile platform a great option for developers looking 
to support Microsoft’s vision. 
 
Another big factor for mobile developers is the programming language used to 
create the mobile application. Microsoft gives developers the flexibility of working 
with a few different languages such as C#, C++, and Visual Basic in addition to 
the markup language XAML (these languages will be discussed in more detail in 
the programming languages section). Having three programming language 
options allows Windows phone developers to choose which language will give 
them the best performance for their mobile app’s purpose or choose the one that 
is most comfortable to use.  
 
The downsides of using Windows Mobile are that the user base is a small 
fraction compared to that of Android and iOS and the IDE, Visual Studio, requires 
purchasing a license which starts at about $500. In the global market today, 
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Android and iOS own over 90% of the mobile devices which leaves Windows 
Mobile and Blackberry at about only 4-5% each. Therefore, getting access to a 
Windows phone will be difficult, especially because none of our team members 
own one. Also, the Windows Mobile community is not as strong as Android’s or 
iOS’s because the small user base leads to a small developer community. Even 
though developing on Windows Mobile is still possible, it is very inconvenient and 
therefore will not be used.   

3.3.1.3 Conclusion 

In the Android section, it was already concluded that three out of four of our 
members own Android phones so it would be much easier to use Android as our 
mobile platform for this reason alone. However, detailed research of each mobile 
platform was necessary to ensure that there was not something preventing us 
from using Android or advantageous to using one of the other platforms for the 
sign language glove. So, now it is time to compare how each mobile platform 
performed against the given constraints and make a final decision. Looking at the 
more basic features first, there were no issues with security or audience base for 
either Android or iOS which means that we can focus on the other more 
prominent issues like the hardware and software. From a hardware standpoint, if 
one of the mobile platforms does not support all of the vital features of our sign 
language glove, then there will be a big problem with that platform. Thanks to our 
simple design, both Android and iOS support all of the hardware components 
that the mobile application will use. The only hardware compatibility difference is 
that Android devices can have a wide variety of screen sizes compared to 
iPhones, which have only a couple standard screen sizes. Although developing a 
variable sized GUI for mobile apps is more work and can cause applications to 
not look as they were intended, it is not a serious issue.  
 
A more prominent decision is the software aspect of each mobile platform 
because developing the mobile application requires access to the IDE and a 
mobile device for testing, which our team does not have for all three platforms. 
These requirements seem fairly simple, but iOS and Windows both don’t give 
free access to their IDE (iOS notably because Apple only supports their IDE on 
Mac OS) whereas Android not only has free access to its IDE but it is open 
source and has tons of free resources available. It only makes sense to use 
Android for a short-term project such as this one, given our teams’ 
circumstances, where the cost and accessibility of the mobile platform’s software 
are the second priority behind hardware compatibility. In order to make the 
situation a little clearer, consider using iOS instead of Android from our 
perspective. Switching to a new computer OS and getting a mobile device for 
testing would be a huge waste of resources (time and money) if there is no 
significant benefit to the design process or functionality. Another point to consider 
is the goal of our project, which is to create a working prototype, not a fully 
functional product that demonstrates our knowledge of electrical engineering. 
With the goal in mind, our investment into this project should only be for 
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educational purposes and not for a profitable business model. Therefore, 
creating a mobile application for educational purposes makes Android an even 
better choice because all of the open source resources that are available to our 
developers. These resources will help smooth out some of the more time 
consuming parts of the mobile app development process and give more time for 
learning and helping out with other parts of the design; plus, we can give back by 
adding our finished mobile app to the Android open source community. 
Therefore, with everything in consideration, we feel the best option for our mobile 
application platform will be Android. 
 
 
 
 

3.3.2 Control System 

While developing the best approach plan for the control software of the SLIG, the 
first step was formulating a plan and approach.  First, the group had to determine 
whether the group wanted to process the data on the glove using the 
microcontroller, or if the group wanted to send the raw data to a device with more 
computing power.  Before the group could answer this question, the group had to 
have a better idea as to which path the group wanted to take to interpret the 
hand-gesture data provided by the sensors.  First, the group looked into the 
sector of computer science called “machine learning”.  Machine learning uses 
highly specialized algorithms which “train” the system to “learn” from the data to 
avoid mistakes (see section “Machine Learning”).   
 
If the group decide to use machine learning in our project, the group would likely 
process the data externally (not on the microcontroller) due to the higher 
computing power.  Given that the SLIG will also be used with a stronger 
processor (Android phone for user interface), the group figured it would be 
possible to use this processor to interpret the hand gestures.  In that case, the 
group could potentially use the microcontroller unit to collect the raw data from 
the sensors, normalize the data, and bundle it up into “packets” that the group 
can send to the Android phone via Bluetooth.  Then, the group would be able to 
implement the machine learning algorithm on the phone to interpret which letter 
the raw data represents.   
 
Given the relative complexity of implementing a machine learning algorithm, and 
how that complexity gets a little bit more complex by the fact that our project is a 
wearable, with a small microprocessor, the group looked into other methods of 
deciphering the data provided by the sensors.  If the group went through with the 
machine learning, the group would likely use what is referred to as “supervised 
learning”.  This method relies heavily on repetition, as there is a long “training” 
period, in which the developer would have to perform every single unique hand 
gesture, multiple times.  This is almost like a “brute-force” method, in which the 
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processor would have a massive pool of data from different hand gestures in the 
past.  The processor would rely on this past data when making decisions.  This 
requires a lot of storage on the processor, and becomes more accurate as the 
pool of data gets larger (more and more iterations of the same gesture, at 
different times and performed by different people).   
 
The group figured that there had to be a better, more intuitive way to determine 
which gesture was being made by the user of the glove.  The group purchased 
some flex sensors and performed some simple experiments with them to 
determine how precise they would be.  What the group found was that the data 
coming from the sensors was not necessarily very precise, or even consistent.  
This was a bit surprising, but it also gave us some new ideas as to where to go 
with our software design approach. When the group say “inconsistent” the group 
mean that the output from the sensors is not always the same for a given amount 
of bend.  It was always within the same ballpark, but it would non-
deterministically vary  2kΩ-͎4kΩ.  However, the group also noticed that the 
change in impedance between the different ranges of bend on the sensors was 
so great that it is essentially impossible to mistake the position of the sensor.  For 
example, when the sensor is completely straight with no bend, the impedance 
measured across the sensor was about 20 kΩ.  When the sensor was bent about 
half way, the impedance was about 35 kΩ, and when the sensor was fully bent 
the impedance was about 50 kΩ. This became more apparent when the group 
hot-glued three sensors onto a glove and built a simple voltage divider circuit on 
a breadboard.  As the group wore the glove and measured the output at different 
levels of bend, the group discovered that the changes in output voltage were 
large enough to determine whether a finger was straight, halfway bent, or bent all 
the way.  This didn’t change for different people wearing the glove.  The output 
was consistently about 2V when the finger was straight, and it would go down to 
less than 1V whenever the finger was fully bent.   
  
This experimentation with the flex sensors lead us to realizing that the specific 
amount of bend in the fingers, down to the degree, was not that important to 
determine what gesture the user is trying to make.  If the group know the range 
of values that can be considered “fully bent”, “not bent”, etc. then the group can 
proceed to programming the MCU without having to implement a machine 
learning algorithm.  The group can write a function that takes in the input from 
each sensor as its parameters, and determines the levels of bend in each 
sensor.  At this moment, the group think that three different “levels” would be 
able to accurately depict which ASL hand gesture the user was trying to perform.   
This is because almost every letter in the alphabet (excluding special ones which 
will use an accelerometer and pressure sensors) either have a finger being 
completely unbent, slightly bent, or “curled”, and fully bent.  The output from the 
function would be an integer, for example “1”, “2”, or “3” which represent the 
different “positions” of the fingers.  If the group can successfully create this 
function to accurately output an integer for each “range” of bend, then the 
problem is simplified quite a bit.  At this point, the process of actually computing 
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what letter is being gestured by the user is a little bit easier to do because the 
inputs that the group would be working with are all discrete.  This would 
essentially eliminate the problem which lead us into looking at machine learning: 
different iterations of the same hand gesture producing a different output due to 
discrepancies in the exact value of the input.  Once the group have the data from 
the flex sensors as a discrete integer, the group can go through a series of 
conditional statements which to interpret the hand gestures.  These conditional 
statements will determine if the value from each finger is an exact combination of 
values that represents a certain letter (i.e.: Thumb = 1, Index= 3, Middle = 3, Ring 
= 3, Pinky = 2).   
 
Another potential issue that the group had to consider was the glove sending 
outputs to the user interface while the user was not trying to actively make a 
hand gesture.  This is an issue that can be mitigated by some way to put the 
microcontroller on “standby”.  This would be a mechanism that disables the 
functionality of the device while it is not intended to be used.  A potential solution 
to this can be a push button on the printed circuit board that disables the device.  
This push button can potentially be placed between the output of the MCU and 
the Bluetooth module.  Under these circumstances the MCU is always analyzing 
the data from the hand gestures and sending outputs to the user interface, but 
the button breaking the line between the output and Bluetooth unit would stop the 
Bluetooth module from constantly sending outputs while the glove is on this 
“standby” mode.  Alternatively, the push button could be placed on the printed 
circuit board in between the resistors for the voltage divider, and the input pins on 
the microcontroller.  This would be breaking the line that provides the input to the 
MCU.  Under these circumstances, the MCU would simply not be computing any 
values because the data from the user’s hand gestures would never be reaching 
the microcontroller. 
 
Potentially, software can provide another solution that can be used to prevent the 
glove from constantly putting out outputs when the glove is not intended to be 
used by the user.  Above, mentioned, a push button that would physically 
interrupt the circuit and in this way put the device on ‘standby’.  Perhaps there 
can be a hand gesture that is used to put the device in this ‘standby’ mode.  In 
this scenario, there would be no need to have actual hardware which ‘breaks’ the 
circuit.  This would be a bit challenging because the microcontroller is 
continuously running an infinite loop, and even if the group can come up with a 
gesture that puts the device into this ‘standby’ mode, it would be a bit of a 
challenge to hold this standby mode because the glove would be constantly 
reading any movements that may be being made by the user.  This can 
potentially be mitigated by making the ‘standby’ gesture a gesture that can be 
easily held.  In this case the user can make a hand gesture (for example, a fist), 
and hold this gesture until they are ready to use the glove again.   
 
The third, and perhaps least complicated of the three methods that the group can 
use to put the device in some sort of ‘standby’ mode can be to simply cut off the 
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power from the microcontroller.  Naturally, the MCU will be equipped with a 
button or switch to turn the power to it on or off.  The group would have to do 
some research and experimenting with this to determine in what ways cutting the 
power on and off on the microcontroller unit would affect the software.  Naturally, 
the MCU would have to start from the beginning, and go through its ‘initial setup’ 
before it goes into its infinite loop, every time that the device is brought back from 
the standby mode.   
 
Regardless of which method the group uses to put the glove on ‘standby’ mode 
while it is not intended to be used, the glove will have some type of indication that 
it is in this standby mode.  Perhaps an LED on the glove that changes state, 
depending on the state of the glove.  This LED can be connected to one of the 
digital output pins on the microcontroller, and can be commanded by a 
conditional statement in the main loop.  For this purpose, it would be beneficial to 
us if the group is able to implement the ‘standby’ mode on the glove using a 
software solution.  This would allow us to implement into the software a 
conditional statement that would activate the LED which indicated to the user that 
the glove in on ‘standby’ mode.   
 
If the group is not able to implement the ‘standby’ mode by using software, then 
the group would have to somehow use hardware to determine when the circuit is 
broken by the push button that the group would have, and to activate the 
indication light without the use of software and the microcontroller.   
 
This can maybe be achieved through the use of hardware integrated circuits like 
logic gates which can determine when a certain branch of a circuit is ‘hot’. If we 
were to go this route we can implement technologies such as Field 
Programmable Gate Arrays and use a programming solution such as Verilog in 
order to implement the task at hand, which is to activate the indication light 
without the use of hardware, but using hardware solutions such as logic gates.  
In this case the group would use a solution such as a Field Programmable Logic 
Array, which is essentially an integrated circuit on a chip that can be programmed 
on a computer and allows the developer to simulate any combination of physical 
logic gates to create a number of different circuits that would take a large number 
of physical gates to implement, and it would allow the developer to implement it 
all on the one FPGA board.  This is significant because the SLIG is a small 
device, and if the group had to find space to implement a number of physical 
logic gates, plus the printed circuit board, sensors, and other equipment, the 
glove would get quite crowded and not be as practical. The next page contains 
general schematics of what the hand gesture interpretation system of the SLIG 
will look like and how it will interact with the other parts of the project. 
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Figure 3.19: General Schematic of Gesture Interpretation 

 
 

  
 

Figure 3.20: Control System Schematic 

3.3.2.1 Machine Learning 

The process of beginning to design the control system for the SLIG lead us to 
research into the subfield of computer science called “Machine Learning”. 
Machine learning is a subfield of computer science which, in essence, deals with 
computers making their own decisions based on their current environment and 
past events. This area of computer science is used in the implementation of 
things like artificial intelligence and pattern recognition. To implement Machine 
Learning into a project, the developer must use what is known as a “Machine 
Learning Algorithm”. These algorithms are used to learn from past data in order 
to make accurate decisions in the future. Normally, when implementing machine 
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learning into a project, one uses one of the many established machine learning 
algorithms which can be adapted to the particular application at hand.   
 
Although all machine learning applications deal with trying to use past data to 
make decisions and predict future events, there are different types of machine 
learning algorithms. These algorithms are different in the way in which they 
“learn” the information. One main type of learning style that is used in machine 
learning is the “Decision Tree Learning”. This is actually a very expansive subject 
matter in and of itself. Besides machine learning, decision trees are used in many 
other areas, specifically in data-mining. This type of algorithm uses a style similar 
to a flowchart.  The system makes an output decision on certain inputs, based on 
a series of “yes or no” decisions. “This or that”. The system finally makes its way 
to the end of the tree and arrives at a decision.  
 
 
 
There are many more types of learning styles available for a machine learning 
application including “Reinforcement Learning” and “Association Learning”. 
However, if the group decides to go with a Machine Learning algorithm to 
decipher hand gestures coming in from the user of the SLIG, the group would 
likely use what is known as “Supervised Learning”. This is a method where the 
developers perform many different iterations of the same “input” and “teach” the 
system what to do in the case of said input. In the case of our sign language 
glove, the group would go through “training” where the group performs the same 
letter many times, at different times, and by different people. This gives the 
processor memory of many different forms of the same gesture, so that when a 
user makes a certain hand gesture, there is a big enough pool of data inside the 
microcontroller that it can make an accurate decision.   
 
After the “training” has been completed, the group would put the system through 
a “testing” phase.  This is a time in which the group performs many different hand 
gestures and has the microcontroller make a decision. Naturally, there would be 
many errors in the decisions made at this phase. This is sort of a phase to “fine-
tune” the system, after it has a big enough pool of data to make decisions. 
Eventually, after thousands of iterations of each gesture during the training 
phase, and thousands more during the testing phase, the errors made by the 
system should be at a minimum. Ideally, the best way to make sure that the 
system is flexible enough so that it can make the correct decision despite the 
differences in the hands of the users and their ranges of motion, is to have as 
many different people as possible involved in the training and testing phases. 
Doing this ensures that the microcontroller has a big enough sample size that it 
can make the correct decision nearly every time, regardless of who the user is.   
Though the group has done some extensive research in the area of machine 
learning, and the group is also researching other methods to decide whether 
something so powerful like machine learning will be necessary in the 
implementation of our sign-language interpretation glove.  Below is a simple 
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schematic that shows the basic working principle of implementing a machine 
learning algorithm into a system. 
 

  
 

Figure 3.21: Working Principle of Machine Learning Algorithm 

3.3.3 Programming Languages 

The programming languages used by the software components will be discussed 
in this section. We will look at the programming paradigm of each language, what 
they will be used for, and how it will affect our other decisions concerning the 
mobile application and microcontroller.  

3.3.3.1 Mobile Application Languages 

3.3.3.1.1 Java 

The main programming language used for Android development currently is 
Java, which is a very popular language created in 1995 by James Gosling and 
others at Sun Microsystems. Java was established to be used for creating 
internet applications and other software programs. It is an object-oriented 
programming (OOP) language just like Objective-C, C++, and C#, which means 
that it is based on the concept of “objects”. These objects are data structures that 
contain properties just like a real object does. For example, a dog has a breed, 
hair color, age, weight, and more which are all properties of that dog. OOPs also 
have methods which are essentially a procedure created in the code that can be 
called upon just like the properties of the objects. One of the most important 
features of object-oriented programming languages is that they are class-based, 
meaning that objects are instances of classes. A class is simply like a template or 
blueprint for creating objects that provides initial values for state variables like the 
properties and methods. Using classes, properties, and methods are essential to 
programming in an object-oriented language like Java and they can be very 
useful for certain applications.  
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Taking a more advanced look into object-oriented programming, there are other 
capabilities that these languages have to offer. One of the most commonly used 
features is inheritance, which is when an object or class is based on another 
object or class. Inheritance takes on the same implementation as the object or 
class that it is based from and changes something about it to make it unique but 
still have the same basic properties and methods as before. Inheritance in OOP 
is just like inheritance with people; a child inherits many of the same genes as 
their parents. The benefit of inheritance is to minimize the amount of repetitive 
code so it is easier to create new classes and reuse old ones without writing 
them again.  

3.3.3.1.2 Swift & Objective-C 

The two programming languages used for iOS mobile phone applications are 
Swift and Objective-C. Swift is the new language that Apple is pushing iOS 
developers to start using more because it is supposed to be much easier to work 
with than Objective-C; however, Objective-C is still available for those to prefer. 
With Swift, developers are still using a language that is based on the best 
features of C and Objective-C, but it removes the compatibility issues that come 
with them. It is a multi-paradigm programming language that was created not 
only for iPhone developers but for all Apple software like iOS, OS X, watchOS, 
and tvOS. Swift was Apple’s way of creating a new programming language that 
was simpler and easier to use than Objective-C and was described as 
“Objective-C without the C”. 
 
Since we don’t know anything about Objective-C, we will take a look into it so we 
can understand the differences from Swift. Objective-C used to be the primary 
programming language used for writing applications and software for iOS and OS 
X. Just like Swift was a spin-off of Objective-C, Objective-C is based off of the 
language C. The difference between Objective-C and C is that Objective-C is an 
object-oriented programming language that has many more capabilities and 
better runtime.  
 
Taking a look into the compatibility issues, we have to make sure that the 
programming languages used are compatible with the version of the operating 
systems and the hardware on the phones. The old software operating systems 
that Swift supports are iOS 7, iOS 8, and iOS 9. This is good news for us 
because Apple releases updates for their iPhones relatively frequently and users 
will most likely have upgraded from any phone that doesn’t support iOS 7 or 
higher. As far as the hardware goes, Swift will support iPhone 4, 4s, iPhone 5, 
5C, 5S, and iPhone 6, 6 Plus. Therefore, we have no issues with compatibility 
and we don’t have to worry about this aspect of using iOS as a potential mobile 
platform. 

3.3.3.1.3 C#, C++, and Visual Basic 
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The programming languages used by Windows Mobile development are C#, 
C++, and Visual Basic. When you begin developing on Windows mobile you 
have to consider which programming language will be best used for your 
application because all three have advantages and disadvantages. We will begin 
by looking at C++ because it is the native language for Windows Mobile. 
 
The term native language means that the language talks directly to the hardware; 
so in this case, C++ talks directly to the hardware on the Window’s phone. There 
are many benefits to using the native language of a device because it has more 
control of the hardware, the application size is smaller, and it is capable of better 
performance since there are no intermediate steps during execution. However, 
native languages are usually a lower-level language which means that it is more 
complicated to use and can cause issues during execution like a memory-leak 
that will cause the device to crash. Knowing these limitations, developers are 
able to create applications that run quickly and efficiently for improving the 
performance of apps such as fast-action games. 
 
When a developer is creating an application that does not require high-
performance, there are other programming languages available like C# and 
Visual Basic (VB). These languages are both managed development languages, 
meaning that they have built-in services that handle memory-management and 
garbage collection. These services come at a cost of performance, but using an 
unmanaged language like C++ requires more attention to memory management 
and security. A couple other features available to developers using C# and VB 
are the libraries and developer tools. Both of these languages support the .NET 
Compact Framework – a library of common classes that simplify many tasks that 
a developer may encounter. There are also developer tools for the visual 
interface designer that allows developers to drag and drop buttons, text boxes, 
and more. For more advanced interface design, there is another window that has 
the auto-generated code from the drag and drop interface and all of the 
properties that can be modified as needed. 

3.3.3.1.4 XML & XMAL 

The programming languages used for the entire graphical user interface (GUI) 
design are XML and XMAL. XMAL is just Microsoft’s version of XML used for 
Windows phone development only. These markup languages are designed for 
formatting documents, web pages, and more just like the language HTML is used 
for most web pages. These languages don’t really do anything, meaning that 
they just carry information wrapped in tags and require some software application 
to send, receive, store, or display it.  Below is an example of XML source code 
that displays a note to Mike, from Jones, stored as XML. As you can see, the 
XML code is just formatting the information inside of the note by using tags that 
interpret the content of the page. The IDE Android Studio comes with its own 
XML graphical layout editor which will be used to design the interface of the 
mobile application. This editor comes with drag and drop capabilities and allows 
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you to preview your design as you create the layout. Also, if there needs to be 
more advanced editing of the layout there is a text editor interface in addition to 
the drag and drop interface that looks like the XML source code. 

3.3.3.2 Control System Languages 

The control system part of the software for the SLIG can be implemented using a 
number of different languages. The group has considered several languages, 
including Java, C++, C#, Python, etc. One thing that came up several times while 
conducting our research was that though it is possible to implement an object-
oriented language on a microcontroller system, it is not the most practical and is 
often decided against.   
 
The control system in our project will be consisting of several functions (seen in 
sections above) which the group will write. However, there does not seem to be a 
need to create multiple classes, and have a hierarchy of files containing all of the 
parts of the program. For this reason, the group has shied away from employing 
an object-oriented language for the control system portion of our project. Given 
the requirements of the control system, the group believe that using a language 
such as “C”, will provide us with enough resources to decipher what hand 
gesture is being performed by the user. C allows us to structure the program the 
way that the group want, in the way that the group can have an infinite loop 
contained in our main routine, write and call functions as the group need, and 
contain the entire program for the control system easily in one file.   
 
Since the control system that the group is writing is going to be implemented on a 
microcontroller unit, it will be close to the hardware and believe that using a 
language such as C would be the best option.  The program could also be written 
using assembly language, but it would be quite the challenge to keep track of 
stacks and individual registers, so C seems to be the best option for the control 
system. 
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4. Constraints 

There will be many constraints that will keep the group from implementing this 
project as efficiently as hoped for.  For one, there is an obvious time constraint.  
The project must be built within the time frame of two semesters.  This means 
that there is not enough time to perform really extensive research that could yield 
a much more efficient and desirable result.  Also, the time constraint prevents the 
group from being able to really test with several different solutions to make the 
glove the best that it can possibly be.  Ideally, with more time, the group would be 
able to build several prototypes.  In each prototype, something new can be 
improved on from the previous iteration.  After several prototypes, the final result 
should be something that is completely free of errors and provides the user with 
a bug-free experience that has been tested many times over and is ensured to 
be functioning at the best level possible.  With the time that is given, there will 
inevitably be several setbacks, and there will only be time to build one, maybe 
two prototypes.  At which point the group will have to go with what is built by 
then, and live with the limitations.   
 
There will also be some health constraints to the project.  This is a product that 
will ideally be operated by persons with some form of speech impediment which 
keeps them from performing efficient oral communication.  This product will be 
very helpful to said individuals.  However, it must be ensured that the user can 
safely use the product without potential to affect their health in a negative way.  
For one, the materials that may be used for the actual glove itself can cause an 
allergic reaction on some users.  This makes the selection of the material used 
on the glove very important (discussed in the “Glove” section). It is also important 
to note that the glove is going to be worn on people’s bodies.  This is a glove that 
has live electronic parts functioning on it and it can be very possible for a user to 
experience a shock if the electronic components are not properly placed in an 
area where it will be unlikely for the user to inadvertently touch them and hurt 
themselves. For these reasons, the health of the end user of the Sign Language 
Interpreter Glove needs to be taken into consideration when finalizing the design. 
 
Manufacturability is also a very real constraint that will be faced when 
implementing the SLIG.  This is a fairly complex product, and to build it as sleek 
and efficient as would be liked, some rather specialized materials will be needed.  
For example, in an ideal world, the glove would look like any other glove that 
somebody would wear.  Nothing about it would indicate that it is in fact an 
electronic device with electrical parts inside of it.  This would require some handy 
textile skills and tools.  For example, we would be able to sleekly sew over all of 
the sensors.  To hide the printed circuit board, battery, and all other electronic 
components, the glove would have to have some sort of hidden compartment, 
perhaps around the sleeve, or somewhere where it would be difficult to see and 
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also where it would be safe for the user to wear the glove and not have to worry 
about damaging the glove or potentially hurting themselves by the way of an 
electrical shock encountered by touching an electronic component.   
 
An alternative would be to use two gloves.  An inner glove, which has all of the 
electronic components mounted on top of it, and an outer glove which goes over 
the inner glove, and over all of the electronic components such as to “hide” the 
electronics.  This, however, is fairly inefficient.  The user would experience the 
“sag” between the gloves.  Also, as the outer glove moves and glides over the 
inner glove, there is a real potential for electronic components to get damaged by 
being rubbed against the outer glove constantly.   
 
There are ethical constraints involved in implementing the SLIG as well.  This 
project and its design are fully original from the group.  However, the idea of a 
glove that translated sign language into text has been done several times.  In 
fact, a UCF group implemented the same idea several semesters back.  
Following the ethics of engineering, it is imperative that the group makes clear 
that although the idea for this project has been done in the past, the Sign 
Language Interpreter Glove has been fully designed by the group.  There is also 
the issue of permission to use certain images.  The group has emailed all 
appropriate entities to ask permission for the use of certain images, as needed.  
At the end of this document, the appendices will have more information regarding 
permissions and will include all emails sent.  
 
Economic constraints also have to be taken in to account in the implementation 
of the Sign Language Interpreter Glove.  The group must be sure that every step 
taken and every part purchased is correct.  If things have to be purchased twice, 
or if a wrong part is purchased, or any other setback that causes the group to 
have to spend more money than anticipated would be a big blow.  For this 
reason it is important for the group to be very meticulous and determine that 
each part that is ordered is in fact the part that is actually needed for the project. 
It will also be beneficial to try to purchase certain parts together and from the 
same vendor, so as to save some money when it comes to shipping and 
handling.   
 
Ultimately, every part should be researched by every possible vendor that offers 
it, and should be purchased from the most economically viable option possible.  
This may mean that some parts will need to be ordered from overseas and will 
take quite some time to arrive. This ties in with the time constraint mentioned 
above.  The parts will have to be ordered in a timely fashion (ideally before the 
end of the Senior Design I semester) because sometimes parts ordered from 
overseas vendors can take up to a month to arrive. In case of a setback, the 
group will try to refer to domestic vendors which can have the parts delivered 
within a short period of time.  However, this may affect the economic constraint, 
as it will cost more. 
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5. Standards 

5.1 Bluetooth 

IEEE Std 802.15.1™-2005(Revision of IEEE Std 802.15.1-2002): This standard 
discusses Wireless Body Area Networks (WBAN) which have become an 
important technology in providing real-time health monitoring of a patient and 
diagnosing many life threatening diseases. IEEE 802 has established a Task 
Group called IEEE 802.15.6 for the standardization of WBAN.  The purpose of 
the group is to establish a communication standard optimized for low-power in-
body/on-body nodes to serve a variety of medical and non-medical applications. 
Bluetooth technology falls right in this field of communications and so the team 
should heed any pertinent recommendation in this standard.  

5.2 Android Applications 

Google's Android developers have set up a multitude of standards and 
qualification on the different aspects of an android application. These aspects 
include visual design, user interaction, functionality, performance, stability and 
interaction with Google Play. Each standard has a four character ID and details 
specific instructions on how a finalized application should look or function. These 
standards as a whole are an excellent rubric by which the group's application 
should be measured. The details on "Standard Design" UX-B1 are shown below 
as an example. 
 

 
 

Table 5.1 Standard Design Android App 
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Portions of this page are reproduced from work created and shared by the 
Android Open Source Project and used according to terms described in the 
Creative Commons 2.5 Attribution License. 

5.3 Lithium-Ion Batteries 

The group decided on using a polymer li-ion battery to power the SLIG. Thus, 
available standards on the safety of Lithium-Ion batteries would be very relevant 
to the project as it continues from the design stage to the construction stage. The 
team may use these standards as guidelines for the proper management of the 
SLIG's battery. Separate international standards organizations   have   generated   
the   following   safety   standards   for   Lithium-ion   batteries (International 
Electrotechnical Commission (IEC) and International Organization for 
Standardization (ISO). The most relevant standards are listed below. 
  

 IEC 62133-2: safety requirement for portable battery cells 

 IEC 62660: batteries for EV/HEV applications 

 IEC 61427: secondary cells and batteries for renewable energy storage 

http://code.google.com/policies.html
http://code.google.com/policies.html
http://creativecommons.org/licenses/by/2.5/
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6. Design 

6.1 Hardware Design 

6.1.1 Flex Sensors 

6.1.1.1 Selection 

For this project the team decided to choose the spectrasymbol flex sensor of 4.5-
inch length supplied by SparkFun electronics. This model was chosen for its wide 
availability from multiple vendors and its strong reputation as a reliable part. It 
should be the ideal length to fully cover the SLIG glove and allow a full range of 
flexing motions for the user. The only possible fault with this model was the 
problematic base connection that was reported to break easily if not handled with 
care. Below is a picture of the flex sensor showing its size relative to a person's 
hand. 

 

 
Figure 6.1: Flex Sensor 

 
Reprinted with permission from SparkFun Electronics.  

6.1.1.2 Integration and Schematics 

This project called for the use of five separate flex sensors, one for each finger of 
the glove. They ran from the tip of the fingers to just past the knuckle and they 
were secured with cyanoacrylate adhesive. Each sensor was connected to two 
leads; one for power and one four output. As the sensors are bent, their varying 
resistance will yield different output voltages across the secondary resistors, 
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which can be measured and interpreted to determine the configuration of the 
user's hand.   
 
The flex sensors were integrated onto the PCB as efficiently as possible. Each 
flex sensor was integrated into a voltage divider circuit consisting of a lead to the 
power supply and a 10kohm resistor from which the output was read. Below is a 
screenshot from the PCB schematic illustrating the voltage divider circuits. 

 
 

Figure 6.2: Flex Sensor Circuits 
 

6.1.2 Accelerometer and Gyroscope 

6.1.2.1 Selection 

For this project the team ended up choosing the 9 Degrees of Freedom IMU 
Breakout - LSM9DS1 supplied by SparkFun electronics for its lower price. This is 
a simple breakout board that provides two important functions in one; that of an 
accelerometer and that of a gyroscope. This board provides an extra three 
degrees of motions with an integrated magnetometer however this data was not 
needed for the SLIG. The board had a digital interface and supported both I2C 
and SPI ensuring it would communicate effectively with the glove’s Atmega32 
MCU. The board is shown below. 
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Figure 6.3: Relative size of Combo Board 

 

Reprinted with permission from SparkFun Electronics. 
 
The two components for this IMU breakout board each offer impressive 
specifications as briefly mentioned in the sections before. Each sensor in the 
LSM9DS1 supports a wide spectrum of ranges: the accelerometer’s scale can be 
set to ± 2, 4, 8, or 16 g and the gyroscope supports ± 245, 500, and 2000 °/s. 

6.1.2.2 Integration and Schematics 

Due to the nature of this breakout board, integrating it to the main circuit board 
was not difficult. It was attached using Velcro adhesives to the top center of the 
glove in order to capture the full range of motion from the user’s hand. Below is a 
schematic detailing the breakdown of the board.  
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Figure 6.4: Schematic for Combo Board 
 

Reprinted with permission from SparkFun Electronics. 
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6.1.3 Contact Sensor 

6.1.3.1 Selection and Integration 

Although the team initially considered using commercial pressure sensors to 
determine whether contact is being made between any two fingers, it ultimately 
decided to construct its own contact sensors. These were made using strips of 
copper braids that were carefully placed along the most important points of 
contact which were between the middle finger, index finger, ring finger and thumb 
of any one hand. The thumb contact sensor was connected to power through a 
single lead while every other contact sensor had one lead for output. The 
concept behind these sensors were that as two sensors come in contact they 
form a closed circuit that the MCU interprets as a high voltage output. As long as 
the contact sensors were not making contact, the output will remain completely 
zero. Below is a visual representation of the sensor the team designed. 

 
Figure 6.5: Contact Sensor 

6.1.4 Glove 

6.1.4.1 Selection 

The team has decided to go with the UA Strikeskin Tour glove as the base glove 
for the SLIG. The primary motive behind this decision was the team's stringent 
budget. Nonetheless, this is still a quality glove that is mostly made out of leather 
(so there are virtually no concerns with allergies) and boasts a high level of 
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flexibility and movement control, which is crucial to the proper functioning of the 
SLIG.  

6.1.4.2 Integration 

The glove will be the base to which the sensors, the PCB and all other 
electronics will be attached. This will be accomplished using a combination of 
adhesives, ties, sowing and possibly other methods.  
 

6.1.5 Printed Circuit Board 

6.1.5.1 Design  

The PCB for this project will integrate all the major components of the glove 
including the different set of sensors employed in the glove, the MCU, the 
Bluetooth module, the power supply and the charging circuit. From the beginning, 
the group agreed that a basic two layer board that measures roughly 3in by 4in 
would be the best option for the SLIG. A four layer board that would have 
dedicated two of the middle layers to just power and ground was briefly 
discussed but it was decided that our board’s complexity didn’t require this extra 
feature that could easily double the price of the board.  It was also decided that 
the majority of the components for the board would be through hole mounted. 
More group members had experience with soldering through-hole parts than 
surface mount technologies and felt the former would leave less room for error.  
  
The group used the Eagle CAD software to design the schematic for the glove's 
printed circuit board. The same program was used to design the layout of the 
board and generate the Gerber files and bill of materials. Eagle CAD was chosen 
since it’s a very popular program with a plethora of support materials and 
additional libraries (discussed further below) that could facilitate the board design 
process. 
 
In order to design the PCB board, additional libraries with specific parts were 
downloaded into the Eagle CAD software. The most critical one was the ATmega 
MCU library which helped manage the multiple pins. After the schematic was 
developed, the group used the autowire feature of the Eagle program to initiate 
the layout of the PCB board. From that point the last remaining connections were 
routed manually using multiple vias from the top and bottom layers. Below are 
the schematic and layout for the board in Eagle. 
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Fig. 6.7 PCB Schematics in Eagle 

 



 

   76 
 

 
 

Fig. 6.8 PCB Layout in Eagle 
 

6.1.5.2 Assembly and Testing  

  Once the board was fully designed, the group ordered a set of four boards from 
Bay Area Circuits. This company had a reliable reputation for accurate and timely 
PCB board production. To source all the parts for the board, the group made use 
of Eagle CAD’s design link feature which matches each component used in the 
schematic to the closest matching part in the Newark database. This was used 
mostly as reference and the group still had to manually search for many parts 
that weren’t assigned a correct match. The actual orders were made through 
Mouser.com and Digikey as these proved to have a much wider selection of 
parts. 
  The PCB board was assembled using the equipment at the TI Innovation lab in 
UCF’s Engineering II building. When it came to testing the board, the sensors 
were fixed on the glove and connected through a set of cables and headers that 
would match those on the board. From there the board was tested to ensure it 
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was designed and assembled properly and that the glove had all functionalities. 
Below is the final PCB board. 

6.1.6 MCU 

6.1.6.1 Selection and Integration 

Although the team originally planned on using the MSP430 as the glove’s MCU, 
its opinion changed as it was apparent that the higher number of pins of the 
ATmega328 would be crucial for an optimal design. Furthermore, upon finding 
the ATmega328 at a reduced price from the Digikey website the team had very 
few reasons left to use the MSP430. The only remaining reason was the team’s 
previous experience with the MSP430 however the performance advantages of 
the ATmega at this point in far outweighed that.   
 
Integration with the glove was rather straightforward. The footprint for the 
ATmega was designed onto the glove’s PCB and adding a socket piece made it 
possible to remove and place the MCU from the PCB. The additions of headers 
made the connections to the MCU’s pin easier and virtually foolproof.  

6.1.7 Hand Gesture Recognition 

6.1.7.1 Interpreting Flex Sensor Data 

Regardless of which method the group chooses to use to decipher the hand 
gestures performed by the user, the group will first need to interpret the data 
coming into the microcontroller from the flex sensors. The way in which the flex 
sensors work is, they are essentially variable resistors which change their 
resistance in proportion to the amount of bend present on the flex sensor. In 
order for the microcontroller to sense resistance from the sensors, it would need 
to have some intricate things going on such as a constant current source and 
then perform some calculations to determine what the resistance is across the 
sensor. To mitigate this, the group simply hooks up a voltage divider circuit to the 
sensors. To do this the group places the sensor in series with a fixed resistor, 
and put a constant voltage across the two resistors. Depending on how much the 
sensor is bent (and, as a result the resistance across it), the ratio of the total 
voltage that will be across the sensor will change.  In this regard, the group can 
simply say that the voltage across one of the resistors is our “output”. Note, that 
even though the sensor is a variable resistor, the ‘output’ of the sensor that the 
group sends into the microcontroller is a voltage amount.   
 
Once the group has the output of the sensors as a voltage, this voltage will go 
into one of the pins on the microcontroller. The group would have to either 
choose a microcontroller that comes equipped with analog-to-digital converters 
or the group would have an external analog-to-digital converter elsewhere on the 
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printed circuit board. This is because the microcontroller is a digital processor, 
and it can only interpret digital data. The voltage coming out of the sensors is an 
analog signal, so the group would need to convert that signal into a digital signal. 
   
However, before the group can implement the design for the sensor circuit, the 
group would need to decide what the optimal voltage level is to hook up to the 
voltage dividers. One thing to take into consideration when deciding what the 
optimal voltage level is the voltage available from our power source (lithium-ion 
battery). At this point the group is still undecided on whether or not the group will 
need to have regulation at different voltage levels. The group would also need to 
take into consideration the optimal voltage level that the microcontroller can read 
and interpret. Also, another important factor in interpreting the sensor data is 
choosing the correct resistor value for the voltage divider.  The flex sensors that 
the group are using have a resistance that fluctuates somewhere between about 

 and . This means that the group would have to optimize the voltage 
level hooked up to the two resistors (the sensor and the fixed resistor), and also 
wisely choose the resistor that is fixed.   
 
The group has performed some elementary experimentation with flex sensors 
and resistors on a breadboard. Our results show that if the group use about 5V 
as our source for the voltage divider and use  for the fixed resistor, the 
group get a nice range of values in our output. When the group say a ‘nice’ range 
of values, the group mean that the output voltage from the voltage divider is 
small enough to be able to go into the microcontroller, but also large enough so 
that there is a large, discernable difference between the voltage levels when the 
sensor is completely straight, about half-way bent, and fully bent. For example, 
with a 5V source and a 10  resistor, the output from the voltage divider circuit 
is about 3.5V, which is right in the wheelhouse of ‘preferred’ voltage levels of 
most microcontroller units. The values mentioned above may change as the 
group proceed with the building and prototyping of our project, but at the moment 
it seems as if these are the optimal values for best performance from the flex 
sensor circuit. After these things have been established, the microcontroller will 
be receiving the data from the flex sensor as a voltage level, and then the group 
can proceed with the software solution that the group decides is best for our 
project.  Below is a schematic of the function that will go through and determine 
which hand gesture is currently being performed. 
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Figure 6.9: Hand Gesture Recognition Function 
 

6.1.7.2 Determining Ideal Voltage Level 

Another big, important factor in designing the system with the flex sensors is 
determining the ideal conditions for the voltage divider that the group is building 
for each finger.  As mentioned previously, the flex sensor is a variable resistor, so 
two things are constant in the circuit:  the total voltage level, and the resistance of 
the resistor which combines with the sensor to create the voltage divider.  It is 
important to choose the correct values for these components, because if not, it 
will be difficult for the microcontroller to make correct decisions if the group are 
not providing it with an ideal representation of what is going on at the sensor 
level.  
 
The first thing to consider here is that the output voltage will be sent into the 
microcontroller unit. So, the voltage divider has to be designed in a way so that 
when the flex sensors are fully straight, (the output voltage will be at its 
maximum), the voltage is low enough as to not damage or be out of the range 
that the microcontroller can handle. But, it also cannot be too low, because when 
the fingers begin to bend, the output voltage will begin to drop and the group 
want it so that when the fingers are fully bent (the output voltage is at its 
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minimum) the voltage is still high enough so that the microcontroller can 
accurately read it and make a decision on it. For most microcontroller units, an 
ideal voltage level for its input and output pins are at about 3.5 volts. The group 
wants to choose levels that do not exceed this amount of 3.5 volts, but also large 
enough to be somewhere near that range when the output voltage is at its 
maximum value (fully straight). 
 
Clearly, these values will have to be tweaked along the way the group actually 
have the system built and the group see what results the group are getting. But, 
from our calculations and early experimentation, a total voltage into the voltage 
divider of about 5 volts seems to be ideal. With this voltage level, the group can 
pair it will a resistor of about . This will create results that send a good 
output out to the microcontroller. When the fingers are fully straight, the output 
voltage will be about 2.5 volts, and while the fingers are fully bent, the output 
voltage will be at about 1.67 volts. This creates a clearly identifiable change in 
the output from when the hand is fully straight and when it is fully bent. This also 
ensures that the output voltage is always within a safe range that will not harm 
the microcontroller. Below is a schematic that shows how the flex sensor will be 
connected to the voltage divider. 

 
 

Figure 6.10: Sensor Voltage Divider Circuit 

6.1.7.3 Calibration 

Everybody has hands of different shapes and sizes. Some people have larger 
fingers, and others have shorter ones. Also, different people have a different 
range of bend in their fingers. This would create some degree of difficulty when it 
comes to determining what hand gesture a user is trying to make. Each hand 
gesture will be a set, universal instruction, while the users are inputting slightly 
different inputs due to the differences in their hands and bending motions. To 
mitigate this, the group can come up with a way to calibrate the system prior to 
first use every time that it is powered on. In this way, the group can ensure that 
the system knows how this particular person’s hands move and it can tell what 
gesture the person is trying to make, based on the characteristics of their hand. 
  
The calibration process will be completed by a function dedicated to calibrating 
the glove. The first big piece of information that the group want to retrieve from 
the user, is what their range of motion is. To do this, the group will have the user 



 

   81 
 

put on the glove, and power it on. At this point, the control system software will, 
as almost every other microcontroller unit does, have a set of ‘preliminary’ 
instructions that take place before the main, infinite loop is initiated. In this step is 
where the group will include the function for calibration. The group will have the 
user bend each finger all the way, almost as if making a fist. The function will 
take this information and record it in certain variables that the group will use 
when determining which hand gestures are being performed. One variable that 
the group would need to record is the maximum amount of bend in each one of 
this particular user’s fingers. This would inform the system how far this particular 
user can bend their fingers. Had the group not done this, the system wouldn’t be 
able to tell when one user is trying to perform a certain gesture which required a 
certain finger to be fully bent, while another user may perform a hand gesture 
that has the same amount of bend on that finger (from the flex sensor’s 
perspective) while that is not ‘fully bent’ for that user because of the 
characteristics of his hand. Now that the system has a reference as to what the 
current user considers his ‘maximum bend’, it can make decisions accordingly 
when it comes to deciding what hand gesture that user is making. Similarly, 
another key piece of information that the calibration process would get from the 
user is the current user’s minimum bend amount.  
 
Some people have some degree of bend on their fingers even when they are not 
actually ‘bending’ them. This can cause errors if the system does not have an 
accurate representation as to what the current user’s ‘fully straight’ hand position 
is, in terms of degrees of bend felt by the flex sensors. Having the calibration 
process measure the minimum amount of bend found in that user’s hand when 
they just relax their hand with no particular intention of bending make the 
program assume that when this amount of bend is present on the fingers, for the 
purposes of the control system the hand is ‘fully straight’. 
 
Once the calibration process acquires all of this data from the user, it now has to 
‘normalize’ it, in a sense, so that the main program (infinite loop) knows what to 
do with the live data that it will be receiving later. To do this, the group will write a 
function that does something similar to the ‘mapping’ that the group will also be 
using to decipher the actual hand gestures. As mentioned earlier in the “Control 
System Research” section, the typical amount of resistance found on the flex 
sensors as a result of an average person wearing the glove and bending their 
fingers ranges from about  to . As you know, these ranges of 
resistances will produce a specific range of output voltages from the voltage 
divider (depending on the total voltage chosen and the constant resistors).  
 
The group will ‘map’ this data collected from the initial calibration process to the 
‘reference’ level, which the group will choose based on experimentation when the 
group choose our voltage level for the voltage divider and the constant resistor. 
The calibration function is essential because this will provide the gesture 
interpretation function with normalized information that the function can use to 
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make more informed decisions. Below is a simple schematic displaying the 
working principle of the calibration function. 
 
The calibration process will begin when the microcontroller is first initialized. This 
will occur before the infinite loop begins its course.  To re-calibrate the glove, the 
user will have to re-start the microcontroller by pushing the reset button on the 
PCB or turning power off and on to the microcontroller.  This will allow the 
microcontroller to begin all of its processes again, and in this way re-initiate the 
calibration process for a new user. 

 

 
 

Figure 6.11: Calibration Function 

6.1.7.4 Non-Standard Hand Gesture Recognition 

One big issue faced when designing the control system for the SLIG is that there 
are a number of letters in the American Sign Language alphabet that are not able 
to be captured fully by the flex sensors. This is because they are either very 
similar to another letter, and the flex sensors will not be able to determine which 
of the two letters are being performed, or because the actual letter requires some 
specific motion that is not necessarily just a certain bend in the fingers. To 
mitigate these issues, the group will need to equip the glove with other hardware 
and implement this hardware into our software. 
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One main piece of hardware that can help us with many things is the 
accelerometer. As described in another section, the accelerometer essentially 
measures the hand’s position with respect to Earth’s axis. This device can give 
us an (x, y, z) representation of the orientation of the hand. With this information 
the group can determine whether the hand is being tilted in a certain direction.  
For example, the letter “J” will be the biggest component of our project that will 
make use of the accelerometer. This letter literally requires the user to draw out a 
“J” in the air with their pinky.  
 
In these cases, there is not much that can be captured by the flex sensors. So, 
the accelerometer can measure the change in position of the orientation of the 
hand and determine when the user is making that “J” motion with their pinky. 
From a software perspective the group would be able to measure when the 
change in orientation coincides with that of the “J” motion. To do this the group 
would have to experiment with the accelerometer once the group have it on our 
glove, and see what kinds of fluctuations happen when that specific hand motion 
is made. This change in orientation would be combined with the combination of 
bend on the flex sensors to accurately make a decision on what hand gesture is 
being made. The output from the accelerometer that would go into the 
microcontroller is a voltage that is proportional to the change in orientation of the 
accelerometer (see the “Piezoelectric Accelerometer” section above). 
 
Another difference that the group will have to deal with is the fact that the letters 
“U, V, and R” are very similar.  Looking at it from the perspective of the amount of 
bend experienced by the flex sensors, these three letters are almost 
indistinguishable.  The glove would have to be further equipped with a little more 
additional hardware to distinguish between these three very similar gestures.  
The letters “U and V” are almost identical: they both have the index and middle 
fingers fully straight, while the thumb, pinky, and ring fingers are fully bent down.  
The only thing that distinguishes these two letters in American Sign Language is 
that the letter “U” has the index and middle fingers separated (like making a “two” 
or “peace” sign).  
  
The letter “V” on the other hand, is essentially the same gesture, but with the two 
fingers touching each other.  It can clearly be seen that the amount of bend 
present on the fingers as a result of these two similar hand gestures is identical.  
The only way for us to be able to distinguish the two is to insert some type of 
hardware that can determine if the two fingers are separated or not. The simplest 
way of determining this would be to simply apply some metal contacts on the 
side of the fingers.  These contacts would touch each other whenever the letter 
“V” was being performed, and through our software solutions the group can 
identify the gesture as a “V”.  From the software perspective, the group can 
simply add a condition in the conditional statement in the main loop that 
determines if the letter being performed is a “V”, or an “R” and the statement 
would check to see if the two contacts are touching (they would complete a 
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closed circuit, of which one end would be provided as an input to the 
microcontroller). 
 
Another potential solution for this problem of determining between the “U” and 
the “V” would be to use a pressure sensor. Essentially the group would be getting 
the same information from the glove (are the two fingers separated or not) 
without them having to be in flush, solid contact.  The contacts would work fine, 
but only under the condition that the two fingers are in perfect contact with each 
other.  This can be accommodated by the user, who would make sure to 
consciously try to bring the fingers together fairly strongly.  However, a pressure 
sensor would eliminate the need for the two fingers to be actually touching. The 
output of the pressure sensor would tell us the position of the two fingers relative 
to each other.  
 
This dilemma between the “U” and the “V” also extends to the letter “R”. The “R” 
also consists of having the index and middle fingers being fully straight, while the 
rest of the fingers are fully bent down.  In the case of the “R”, the index and 
middle fingers are also touching, as in the letter “V”.  However, this time instead 
of the two fingers being touching side-by-side like in the “V”, the index finger 
goes in front of the middle finger.  This provides us with a very similar dilemma 
that was described above.  The group can also use contacts to determine if the 
fingers are this position.  But, again, the fingers would have to be in that exact, 
precise position in order for the system to identify that the user is trying to 
perform an “R”.  In addition, the differences between the shapes and sizes of the 
hands of different people would provide a challenge as to choosing the ideal 
location on the glove to place the contacts.  This can also potentially be made up 
for by using the pressure sensors instead of going with the contacts.  Either way, 
the group need to accurately make sure that the group can depict whether the 
user is trying to perform a “U”, a “V”, or an “R”, while getting the same exact 
readings from the flex sensors. 

6.1.7.5 Networking With User Interface 

The control system and user interface parts of the software for the SLIG will be 
designed and produced independently from each other.  The control system has 
the job of reading in the sensor data from the flex sensors, accelerometer, and 
pressure sensors/contacts. The user interface has the job of reading whatever 
information is being sent to it from the control system, and displaying this 
information on the screen of the user’s device (Android phone) in a way that is 
both visually appealing and easy to operate.  There needs to be a bridge to get 
the information from the control system to the user interface, and this bridge 
needs to be robust so that changes in one system or the other does not 
negatively affect the other system. To communicate between the control system 
and the user interface, the group will be using Bluetooth communications. The 
information will leave the control system as an output from the microcontroller 
unit.  
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The microcontroller will send the information out to the Bluetooth module through 
the use of one of its UART pins (which will be described in further detail below). 
This information will go through the Bluetooth module and through the ether into 
the device where the user interface will be running.  At the receiving end (the 
user interface), the device will need to be paired with the Bluetooth module on 
the glove, and establish a strong connection.  Through the strong Bluetooth 
connection, the group would send the data to the user interface from the control 
system. This data would be sent through the use of hexadecimal characters to 
depict the letter being represented by the hand gesture.  The user interface will 
be designed so that it can receive the data that is being sent to it from the control 
system through the Bluetooth module.  

6.1.7.6 UART (Universal Asynchronous 
Receiver/Transmitter) 

Once the microcontroller has made a decision on what letter the user was trying 
to perform with a given hand gesture, that data will be transmitted out through a 
Bluetooth module (see “Networking with User Interface” section above).  
However, this information will need to be sent through some type of receiving 
and transmitting system, such as RS-232 (serial). This is typically done using 
some hardware like a Universal Asynchronous Receiver/Transmitter (UART).  
This device is typically embedded in the microcontroller unit and is used to send 
and receive serial data to and from external sources. The UART takes a large 
chunk of data (such as a byte or word) and sends (or receives) it one bit at a 
time, at a speed dependent on the clock speed of the microcontroller. In our case 
the group would be sending data out using the UART.  
 
As the group has experienced in the course “Embedded Systems”, the group will 
have to write a function that initialized the UART for our microcontroller, and the 
group will be using the UART pins as the output that send out the data that is 
being sent out by the microcontroller to the Bluetooth module. The UART uses a 
series of shift registers and other internal components to properly time the data 
and be able to accurately send (or receive) the data. In the process of choosing a 
microcontroller unit, the group would have to ensure that the group chooses one 
that employs the use of a UART or another type of transmitting and receiving 
hardware. From the research that the group have done, it seems as if the familiar 
MSP-430 is actually a microcontroller that can potentially serve the purpose of 
our project.  
This microcontroller has a UART embedded in it, has the analog inputs that the 
group would need, and seems to have plenty computing power to perform the 
work that the group need from the microcontroller.  Another microcontroller that 
can potentially also be a fit for out project is one from the ATMEGA series.  
These microcontroller units are typically used in many Arduino applications and 
can also be a good fit for our project. There are many advantages and some 
disadvantages to both, but ultimately the MSP-430 seems like it might be the 
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best fit because the group are more familiar with it, it is readily available, it comes 
with its own programming environment, and it is the more powerful of the two.    
 
 
 
 

6.1.8 Power Source 

6.1.8.1 Battery 

The group decided on using a polymer li-ion battery to power the SLIG. The 
reason for using this type of battery is because polymer li-ion batteries are one of 
the thinnest batteries available in the market. Polymer cells are much thinner 
than prismatic cells which means they are much lighter. At the same time, 
polymer li-ion batteries are able to store more energy than nickel-based batteries. 
Polymer li-ion batteries also retain their charge for longer.  
 
The group decided to purchase the 3.7 volts polymer lithium ion battery – 2000 
mAh from SparkFun. The batteries have a 5 start rating and are said to be super 
slim, which is why the battery are so light weight. The battery includes a build in 
protection circuit for minimum voltage, over voltage and over current. Rated at 
2C continuous discharged, this polymer lithium ion battery has what it takes to 
power the Sign Language Interpreter Glove. 
 
The battery model is a 585460 with cell dimension of 5.8 by 54 by 60 mm^3. 
The following are cautions that need to be taken when charging or discharging 
the battery.  
 

 The battery charging current must be 1C5A or lower.  
 The battery charging voltage should be 4.25 V or lower.  
 When discharging the battery, the discharging current should be 2C5A or 

lower.   
 The discharging voltages has to be 2.75 V or greater.  

 
Below are some of the battery specifications: 
 

Item Specifications Remarks 

Nominal Capacity 2000 mAh 0.2 A discharge 

Charge Current 
Standard 0.2 C5A 

Max 1 C5A 
Working temp. 0° to 40° C 

Charge cut-off Voltage 4.2±0.03 V N/A 

Standard Discharge Current 0.2 C5A Working temp. -20° to 60° C 

Max Discharge Current 2.0 C5A Working temp. 0° to 60° C 
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Discharge cut-off Voltage 2.75 V N/A 

Cell Voltage 3.7 – 3.9 V When  leaves factory 

Weight Approximate: 37g N/A 

Storage humidity 65±20% RH N/A 

 

Table 6.1: Polymer lithium ion battery specification 

6.1.9 Bluetooth Module 

The group decided to go with the HM-10 4.0 Bluetooth low energy module from 
the JNHuaMao Technology Company. The reason the group decided to go with 
the HM-10 it’s because it uses the TI chip CC2541. The HM-10 is affordable and 
reliable based on customer’s reviews. In this section the group will discuss some 
of the parameters and the specifications of the HM-10 BLE module. Below are 
some of the important parameters provided by the HM-10 datasheet. 
 

 Working frequency: 2.4GHz ISM band 
 RF Power: -23dbm, -6dbm, 0dbm, 6dbm, can modify through AT 

command AT+POWE. 
 Power: +3.3VDC 50mA 
 Size: HM- 10 26.9mm x 13mm x 2.2 mm; HM-11 18*13.5*2.2mm 

 
Below is the HM-10 schematic also provided by the datasheet. 
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Figure 6.12: HM-10 Schematic 
 

Reprinted from the HM-10 datasheet.
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6.1.9.1 Bluetooth Generic Access Profile  

Generic Access Profile, also known as GAP, is what makes a Bluetooth device 
visible to other devices. Basically the Generic Access Profile controls the 
connection and advertising in Bluetooth Low Energy. GAP is also responsible for 
deciding how the devices will interact with each other. Just like the Generic 
Attribute Profile, the two main roles in GAP are the central devices and the 
peripheral devices.  
 
Scan response payload and advertising data payload are the two ways that the 
Generic Access Profile can send advertising. Both the scan response payload 
and the advertising data payload are similar with the exception that the 
advertising data payload is obligatory. The reason why the advertising data 
payload is mandatory is because it should always be transmitting so that the 
central device is able to recognize the peripheral device. The scan response 
payload is optional and is used by the device designers to be able to fit more 
information in the advertising payload. Basically a string for the name of a device 
would go in the scan response payload. Unlike the Generic Attribute Profile, in 
the Generic Access Profile a peripheral device is able to connect to more than 
one central device. Broadcasting in Bluetooth Low Energy is when a peripheral 
device sends data to other central devices within range. Because the data sent 
and received can only be seen by two connected devices, this type of 
configuration can only be possible by using the advertising packet. Below is a 
Bluetooth profile from Adafruit. 
 
 

 
 

Figure 6.13: Bluetooth Advertising Profile 
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Reprinted from adafruit.com 

 

6.1.9.2 Bluetooth Generic Attribute Profile  

As previously implied, Bluetooth paring requires at least to devices. One device 
will be transmitting the data while the other device will be receiving the data. In 
order to understand how and why the devices need to play a different role in 
Bluetooth communication, this section will talk about the Generic Attribute Profile 
also known as GATT. The Generic Attribute Profile explains how Bluetooth Low 
Energy or Bluetooth Smart devices are able to send data back and forth.  
 
Generic Attribute Profile explains that there is a central device and a peripheral 
device. Examples of central devices could be a phone, computer, or a tablet. An 
example of a peripheral device could be a Bluetooth speaker or Bluetooth 
headphones. In other words, a central device has more processing power and 
memory and the peripheral device are low power and resource constrained 
devices. In GATT the difference between a central device and a peripheral 
device is that a central device can be connected to multiple peripherals devices, 
while peripheral devices can only be connected to one central device. Once a 
central device and a peripheral device are successfully paired, the 
communication between these devices can take place in either direction. A 
Bluetooth “mailbox” system is needed when data needs to be exchanged 
between two peripheral devices, this means that all the data needs to pass 
through the central device.  
 
The Generic Attribute Profile also explains who the peripheral device is known as 
the “GATT Server” while the central device is known as the “GATT Client”. The 
GATT Client sends requests to the GATT Server and the GATT Server looks up 
data and sends back a response. In other words, the GATT Client is the master 
device while the GATT server is the slave device.     
 
Usually the central device is the one that initiates the request to connect to the 
peripheral device. To avoid causing interference with other devices, the central 
device will limit its radio transmission when scanning for connection with a 
peripheral device. Another important feature used to limit the radio transmission 
of a central device is using short intervals to accomplish a faster detection and 
connection. The tradeoff of using short intervals is a much greater power 
consumption.  
 
Slave latency is sometimes limited in order to lower the power consumption on 
the GATT Server. The slave latency is what defines how many times the GATT 
server can ignore a consecutive connection. Ignoring a consecutive connection 
means that the peripheral device is not sending data back to the central device, 
so it can stay in sleep mode for a longer period of time. 
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6.1.9.3 Allowing a Bluetooth Connection  

In order for the Sign Language Interpreter Glove and the external device to 
communicate, permission must be granted by both devices. Requesting a 
connection, transferring data or even accepting a connection requires 
permission.  
 
When the Sign Language Interpreter Glove is turned on, an established device is 
needed to connect.  The microcontroller is responsible for sending the Bluetooth 
transceiver the command for it to find an android device to pair up with. The 
peripheral device, which is the Sign Language Interpreter Glove will send out a 
signal known as “advertisement”. This advertising signal is needed so that the 
central device, in our case the android phone, knows that the Sign Language 
Interpreter Glove would like to establish a wireless connection. Once a 
connection has been made, the peripheral devices sends another signal to the 
central device letting it know about the successful connection. The Sign 
Language Interpreter Glove will implement a single device configuration. Single 
device configuration consumes less power than the network processor 
configuration. Single device configuration is the most common and is easier to 
use. The Sign Language Interpreter Glove should be smart enough to stop 
scanning once it has been pair up with a device. When scanning for an external 
device, the Sign Language Interpreter Glove should have a time limit to avoid the 
battery to drain. Also, if the Sign Language Interpreter Glove does not have any 
data to send, it should skip the number of connection acknowledgements and go 
into sleep mode. This feature will help extend the battery life of the SLIG design. 
The diagram below by Mr. Meng shows BLE connection procedure. 
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Figure 6.14: Bluetooth Low Energy connection procedure 
Reprinted with permission from the author Mr. Meng. 

6.1.10 TI LP2985 Regulator 

The group decided to use regulators from the TI LP2985 family. These regulators 
are not only affordable, but also provide excellent performance for all types of 
applications. The LP2985 regulators are available in many different variations, 
ranging from 1.8V – 10V. The LP2985 comes in two different version. Version A 
offers an amazing output tolerance of just 1% and the standard version provides 
1.5% output tolerance. Nevertheless, both versions deliver 150-mA of continuous 
load current. 
 
The LP2985 regulators feature ultra-low dropout, ranging from 280 mV at a full 
load of 150 mA and 7 mV at 1 mA. The LP2985 can accept a maximum input 
voltage of 16 V. The LP2985 offers low IQ, 850 μA at a full load of 150 mA. The 
shutdown current is 0.01 μA and thanks to a 10-nF bypass capacitor it provides a 
low noise of just 30 μVRMS. The LP2985 includes overcurrent and over-
temperature protection. LP2985 regulators also feature high peak current 
capabilities.  Overall the LP2985 regulators will provide great voltage regulation 
for the Sign Language Interpreter Glove.  
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Figure 6.15: LP2985 Functional Block Diagram 

 
Reprinted with permission from Texas Instruments 
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6.2 Software Design 

6.2.1 Control Systems 

6.2.1.1 On-Board vs External Processing 

One of the biggest decisions that need to be made in regard to the control 
system of the SLIG is whether the group will process the data using the 
microcontroller unit on the glove or if the group will send the data to an external 
processor with more computing power to process the data. This depends highly 
on which approach the group are going to take to interpret the sensor data. If the 
group choose to go with “Machine Learning” (see “Machine Learning” section), it 
is highly likely that the group would decide to send the data out to be interpreted 
by another computer. This is because efficiently implementing a machine 
learning algorithm requires quite a bit of computing power and especially 
memory. The group can recall from the “Machine Learning” section that a 
machine learning algorithm essentially stores a large amount of previous 
iterations of each ‘input’ and uses all of that information to make a decision and 
produce an output. During the training process, thousands of iterations of each 
hand gesture would be performed, and then the control system would be 
expected to very rapidly interpret the input, “scan” through all of the data stored 
during the training and testing process, and make a decision on the output. This 
would be quite a challenging task for a small microcontroller unit.   
 
If the group decides to send the data to an external computing device, the group 
would still be making great use of the microcontroller unit. The MCU can be used 
to receive the data coming in from the sensors, and interpret what the values are. 
The group can then use the microcontroller to essentially organize that data into 
‘packets’ that would be sent out to the external device. Each packet would 
contain the data received from one gesture. In our case the group can use 
Bluetooth or a hard-wired connection to send this data. For the external 
computer, the group can undoubtedly use a desktop computer. However, the 
group would try to use an Android device. In that case, the group would 
essentially use the same application that the group are using for the user 
interface (See “User Interface” section) and “piggyback” some back-end 
programming onto that application. At that point the group can implement the 
machine learning algorithm on the android device and interpret the hand 
gestures, and display it on the same application.   
 
Perhaps a more straightforward way to interpret the data being received from the 
sensors would be to perform all of the programming on-board of the glove. If the 
group were to go this way, the group would probably shy away from the machine 
learning algorithm, and explore some other options to interpret the data. This 
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would require significantly less memory and computing power because in this 
situation, the group would likely have a static set of instruction which run 
indefinitely on a loop and can interpret the data.   
The group believe that it would be preferable if the group can do all of our 
processing on the actual glove. If the group can help it, this is our preference. 
Firstly, in this way, the group can have our two software components (control 
system and user interface) working independently of each other. This would 
mean that if the control system is working, the group know that the data that the 
user interface is receiving is correct. Conversely, if the user interface is having 
problems displaying the correct character, then debugging can be a little bit 
simpler.  
 
The group would be able to debug the two systems independently and find the 
error. However, if the group were to use the Android device to perform the 
computing of the data, it would be ‘blended’ together with the user interface 
program. In this scenario, if the group were to have an issue with the system, it 
would be a bit more complicated to debug. Also, processing the data on the 
glove provides us with the opportunity to have a stand-alone glove which can 
process data from the user itself. This is the ideal situation because anybody who 
owns the glove and would like to use another medium to view the letter can do 
so. 

6.2.1.2 Functions 

The control system for the SLIG will employ a few functions, which the group will 
write ourselves. This function will be used to ‘map’ the range of values retrieved 
from the user in the calibration phase.  As described in the “Calibration” section 
above, the calibration process will involve the user closing and opening their 
hand, as to provide the system with information about how much bend will be 
present on that person’s hand. The function will be provided with parameters for 
the minimum and maximum amount of bend that was measured from the user 
during the calibration process.  The function will then take this data and it will 
“normalize” it through the use of some arithmetic, to make it represent the 
‘standard’ maximum and minimum values.  These standard values will have to be 
determined by us as the group go along with the implementation of the project, 
once the group see what are typical values that the group get from the sensors 
and how the system behaves when the group try to implement the hand-gesture 
recognition (without calibration).  Once the group have an idea of how the system 
works without the use of calibration, the group can see the amount of error that 
the group experience due to the differences in the users’ hands and the group 
can pick a range of values that can mitigate this error. 
 
Another function that would have to be written by us would be the ‘mapping’ 
function that takes in the minimum and maximum values (after being normalized 
by the calibration process) and breaks up that range of values into a certain 
amount of “levels”. In our preliminary planning, the group believe that about 4 
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different ‘levels’ of bend can be appropriate and enough to determine what 
position each finger is currently placed on. For example, after going through the 
calibration function and through this mapping function, a gesture performed by 
the user will produce an output such as “1, 2, 3, or 4”.  
 
Even through the range in voltages being read from the sensors varies greatly 
within each one of these ‘levels’, each of the four levels are distinguishable 
enough so that the system can easily tell if the finger is fully straight, slightly 
curved, halfway bent, or fully bent. This is all that is necessary for the 
determination of what hand gesture the user is trying to perform.  If this can be 
accomplished successfully and accurately, then actually having the infinite loop 
make decisions on what hand gesture is being performed by the user becomes 
exponentially less difficult. At this point the infinite loop can be populated with a 
series of conditional statements that inquire about the state of each sensor, only 
using 1 of 4 possible outputs from the sensor. If the group did a good job of 
providing an accurate depiction of each position of bend as an integer between 1 
and 4, then this part should go by fairly smoothly. 

6.2.2 Mobile Application 

A successful mobile application is essential to the project because it is the final 
piece of the puzzle that displays the output of the glove to the user. Learning how 
to create a mobile application is very complex and there are many things that a 
beginning developer will learn along the way such as how to approach the design 
from the start. Therefore, it is a good idea to create a preliminary mobile 
application before diving into the actual mobile app used for the project because 
of the steep learning curve that will cause errors and redesign in the long run. 
However, the preliminary mobile application is for learning purposes only and will 
not be discussed in this paper.  
 
Now that the group has come to a consensus on using Android as the mobile 
platform, the design of the mobile application needs to be completed. The best 
approach for designing the mobile application will be to keep it simple and focus 
on the main objective, which is displaying the letters translated by the sign 
language glove. The first step will be to go through the process of what we want 
our mobile application to do and how the sign language glove uses it. Below is a 
flowchart that shows the mobile application’s processes and expected behavior. 
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Figure 6.16: Mobile Application Flowchart 
 

When the user is performing sign language gestures with the Sign Language 
Interpreter Glove (SLIG), the flex sensors and accelerometer are sending data to 
the microcontroller. This data is then translated into a hex equivalent value for 
the letter of the alphabet and sent wirelessly over Bluetooth to the mobile phone 
which will decipher the hex values and convert it to the corresponding letter of 
the alphabet to be displayed it in real time onto the screen as text. In this 
process, the mobile application is responsible for receiving data via Bluetooth, 
converting the data being send into text, and displaying the text onto the screen 
and constantly updating the value. The main design features of the mobile 
application are the graphical user interface, Bluetooth communication, and the 
translating & learning mode features which will all be discussed in detail in the 
following sections. 

6.2.2.1 Bluetooth Communication 

The research, design, and connection of the hardware for the Bluetooth module 
have already been discussed in other sections but the design of how the mobile 
application software will interact with the Bluetooth module needs to be covered. 
Establishing Bluetooth communication between the glove and the mobile 
application requires using the programming language Java in Android Studio, but 
this will be explained in more detail later. The first requirement for our mobile 
application to communicate with the Bluetooth module is to ensure that they are 
both compatible. After this has been established, the Bluetooth module on the 
glove must connect with the mobile device and maintain a stable connection so 
that the mobile application is ready to be used. Making a connection with the 
Bluetooth adapter on the glove requires calling methods in Java that use the 
Generic Attribute Profile (GATT) – explained in section 6.2.7.2 Bluetooth Generic 
Attribute Profile. Once the mobile device has made a connection with the glove, 
the mobile application is still not allowed to use this connection for sending or 
receiving information; the application must be given permission to use the 
Bluetooth connection within the source code to ensure security. The next couple 
sections will explain which devices are compatible with the Bluetooth module 
selected and how to give permission to the mobile application so that it can use 
this Bluetooth connection for its purpose. 

6.2.2.1.1 Mobile Phone Compatibility 

The Bluetooth module selected for the Sign Language Interpreter Glove (SLIG) 
will be using Bluetooth Low Energy (BLE), which was adopted into the main 
Bluetooth Standard in 2010 along with the adoption of the Bluetooth Core 
Specification Version 4.0. In order for the mobile phone to be compatible with 
BLE the version of Android on the device must be Android 4.3 or newer; 
Bluetooth Low Energy is not backwards compatible unfortunately. Most phones 
on the market today are compatible with BLE but there could be other software 
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compatibility issues if the Android API level used for the application is newer than 
the API used by the device. The API level determines which versions of Android 
that an application is compatible with and can be used as a tradeoff between 
having more features or more compatible devices. The list of requirements for 
Android mobile phones to use Bluetooth Low Energy is shown below in Table 
6.2. 
 

 

Minimum Requirements 

Device Type Android 

Mobile Platform Smartphone 

Bluetooth Version Bluetooth Low Energy v4.0 

Platform Version Android 4.3 

Codename Jelly Bean-MR2 

Android API Level 18 

 
Table 6.2: Minimum Software Requirements for Bluetooth Low Energy 

6.2.2.1.2 Finding BLE Devices 

When the glove is ready to be paired with the mobile phone via Bluetooth, both 
the Bluetooth adapter and the mobile phone have to begin searching for each 
other. This section will be discussing how the mobile application will search for 
the Bluetooth Low Energy devices and pair with them. Using a method in Java 
called startLeScan(), the mobile application will scan for a peripheral device – the 
sign language glove – and return any devices using the supported GATT 
services. After the application has recognized the glove as a compatible BLE 
device, it needs to connect the mobile device to the GATT server hosted by the 
BLE device. This connection can be made by using the Java method 
connectGatt() that handles connecting the BLE device as soon as it becomes 
available. The connectGatt() method also passes back an object that contains 
information about the connection status and other GATT client operations that 
can be used to perform more GATT client operations. When the Android 
application has successfully connected to the glove it can begin to receive data 
wirelessly using the Bluetooth adapter.  

6.3.2.1.3 Bluetooth Permissions 

Android mobile applications do not automatically have permission to use 
Bluetooth features; the developer must declare the Bluetooth permission 
BLUETOOTH in the application manifest file. The mobile application needs this 
permission in order to use Bluetooth communication for actions such as 



 

   101 
 

requesting a connection, accepting a connection, and transferring data. There is 
another Bluetooth permission used for initiating device discovery, pairing 
devices, and managing Bluetooth settings called BLUETOOTH_ADMIN. An 
example of how both of these permissions would be declared in the application 
manifest file is shown on the top of the next page. 
 

<uses-permission android:name="android.permission.BLUETOOTH"/> 
<uses-permission android:name="android.permission.BLUETOOTH_ADMIN"/> 

6.2.2.1.4 Enabling Bluetooth Features 

Once the mobile application has enabled the Bluetooth permissions, the 
application must perform a compatibility check for Bluetooth Low Energy (BLE). 
This can be done by adding the following code into your application manifest file, 
the same place that the Bluetooth permissions were added: 
 

<uses-feature android:name="android.hardware.bluetooth_le" 
android:required="true"/> 

The application must also verify that BLE is enabled on the device if it is 
supported. There is a class called “BluetoothAdapter” that can ask the user for 
permission to enable BLE and it won’t leave the application. There are two steps 
required in this process, getting the “BluetoothAdapter” and enabling Bluetooth. 
Getting the “BluetoothAdapter” means that there needs to be a call made in the 
application that finds the adapter by using other Bluetooth specific classes. An 
object is made when the Bluetooth adapter is found, which is an instance of the 
class “BluetoothAdapter”, and can now be used to perform any Bluetooth actions. 
But first, the application needs to confirm that the Bluetooth is enabled by calling 
the method “isEnabled()”, which is provided in the Android SDK.  

6.2.2.2 Graphical User Interface 

The graphical user interface (GUI) is a type of interface for applications and 
programs that uses visual features to control the application/program instead of 
text-based instructions. The main purpose of a GUI is to offer users an interactive 
and user-friendly navigation system for an application that gives the user control 
of the available features. Some examples of a GUI are Windows and Mac OS for 
computers which both have a visual interface with icons, buttons, and much more 
that are used to navigate and perform tasks. The main design considerations 
when it comes to the graphical user interface are the menu layout schemes, 
appearance, and the usability of the application. The menu layout will be one of 
the first impressions of the application where user will have a choice to receive 
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gesture inputs from the Sign Language Interpreter Glove for either translating 
mode or learning mode as well as manage the Bluetooth connection, so it is 
important to make the menus easy to use and look good. 
 
When it comes to designing the appearance of the GUI, it is critical to make the 
application proportionally fit the screen size of the phone or else everything else 
will appear distorted. For example, an application UI that was designed for a 
mobile phone would not fit onto a tablet screen without being fit for a bigger 
screen size and vice versa. Having to adapt the screen size to every Android 
mobile device on the market would be a hassle because each cell phone carrier 
has their own line of smart phones and each smart phone has multiple 
generations of models with varying screen sizes and resolutions. Thankfully, 
Android provides APIs that support multiple screen sizes and will simplify this 
process by splitting the range of screen sizes and densities into four groups: 
small, normal, large, and extra-large. The range of these screen sizes are not 
exact, but to get a better idea of what they look like view Figure 6.21a which 
displays an approximate range of screen sizes that these four groups are used 
for.  
 
These groups are based on the screen size of the device, measured as the 
screen’s diagonal, and the screen density, the number of pixels within a given 
physical area (measured in dpi, or dots per inch). However, when defining a UI 
layout, there is another unit that is used instead of the size and screen density 
called a density-independent pixel (dp or dip). A “dp” is a physical unit of 
measurement that represents a virtual pixel unit used for expressing UI layout 
dimensions or positioning independent of the screen density. The main purpose 
of a “dp” is to allow the mobile application software to work in pixels as a unit of 
measurement and then convert from a virtual pixel to a physical pixel using 
different scaling factors based on the device’s screen density. There are six 
generalized screen densities shown below in Figure 6.21 ranging from low (120 
dpi) to extra-extra-extra-high (640 dpi), but the standard measurement for many 
calculations is 160 dpi corresponding to a medium density screen.  
 

 
Figure 6.17: Illustration of how AndroidTM roughly maps actual sizes and 

densities to generalized sizes and densities (figures are not exact). 
 

Reprinted with licensing permission from Creative Commons Attribution 2.5 



 

   103 
 

 
 
 
The calculations required to render the UI layout for each device is executed by 
the system in the background, so there is no need to manually calculate the 
resolution. Using these four predefined layout sizes, the mobile application 
should be able to automatically detect the screen size of the device and select 
the appropriate UI resolution. For most cases, Android will resize the application 
UI to fit the device screen fittingly but there are a couple other measures that 
should be taken to guarantee a proper screen configuration. The first measure is 
to explicitly declare the screen sizes that your application supports in the 
manifest file – a file required by Android applications that contains essential 
information needed by the device in order to run – which guarantees that only 
devices with supported screen sizes may download the application. For more 
specific UI layouts, configuration qualifiers can be used to adjust the size of the 
screen and the elements within it as well as other features such as changing the 
language and direction of the layout. The four screen size groups discussed 
earlier (small, normal, large, and extra-large) are actually one set of configuration 
qualifiers but there are many more that can be used to provide alternative 
resources for the application. One of these qualifiers that will not be used in this 
application is the landscape orientation, which is an alternative view of the 
application layout when the screen is held horizontally. The reason landscape 
orientation is not useful for this application is because the main functionality is to 
translate gestures into letters and having a landscape orientation will just add 
more complexity to the UI layout without any added benefits. Using these 
configuration qualifiers for alternative layouts is a nice addition to many 
applications, but the scope of the project does not require many of these features 
and therefore will only use the qualifiers that are necessary. 

6.2.2.3 Menu Layout, Interface, and Usability 

The mobile application’s graphical user interface (GUI) design requires more 
than just configuring the UI layout to each device; the developer must also design 
the menu layout which involves creating a menu and the navigation through the 
application. Creating the menu can be done using Android Studio’s built-in GUI 
workspace for drag and drop features and the programming language XML for 
more customizable interface design (found in section 3.3.3 Programming 
Languages). All of the available features of the app are accessed through the 
menu and can have an infinite number of unique designs thanks to the 
customization options provided by Android Studio. This section will go through 
the different menu layout styles and which one will fit the needs of the mobile 
application best. 
 
The menu layout gives an application a certain look and feeling depending on the 
different shapes, colors, text, and positioning that are used. When creating a 
mobile application you don’t want the interface to look like a scaled down 
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website; instead, there needs to be a more mobile theme behind the design. 
There are a few of the features that websites and mobile apps share such as 
buttons, drop-down menus, scrolling, and more that need to be changed for 
mobile use. One example is that on websites it is common to use drop-down 
menus to access layers of information, but on mobile applications users generally 
don’t want a drop-down menu at all because of the limited screen size and 
difficulty accessing multi-leveled menus on a phone. The best approach for this 
situation is to keep the menus simple and only have one or two levels of 
information. There are many other examples like this one but first it is more 
important to talk about the different tools available to Android developers for 
creating a menu layout. 
 
Since menus are common in many mobile applications, Android provides a list of 
menu APIs to use for actions and other functions to maintain a familiar and 
comfortable user experience. This means that there are a few different menu 
layout options available to developers depending on how he/she wants to design 
the application.  The three main types of menus available through Android are an 
options menu, context menu, and popup menu (or submenus) which have 
different usage and workflow. An options menu is a very common type of menu 
which is displayed when a user selects the menu button on his/her phone. This is 
generally where users can access global items like the settings, search bar, help, 
and other additional information. An example of an options menu is shown below 
in Figure 6.22a when the user presses the menu button on an Android phone, 
which displays the different options available to users viewing an email using 
Gmail. The second type is the context menu which displays a floating menu with 
various options when a user long-clicks an element. The reason this type of 
menu is called a context menu is because the floating menu that appears is 
related to the context of the element and selecting an option will affect the 
content or context frame. In Figure 6.22b, a context menu is shown using the 
Android text messaging application and long-clicking on the selected word that is 
being typed which allows the user to edit the message. The last type of menu is a 
popup menu that provides a list of extended options from an element but do not 
actually change the context of the item selected. An example of a popup menu is 
the menu displayed when trying to manage a message shown in the thread of 
and Android messaging application as shown below in Figure 6.22c.  
 
After going over the different menu types available in Android Studio, it is time to 
design the menu layout of the SLIG’s mobile application. As the interface is being 
constructed, the developer always wants to look at the layout from the user’s 
point of view so that the application is user-friendly. The audience base using the 
SLIG will be mostly be new people who are testing the glove for the first time, 
and thus creating a user-friendly environment for new users requires making the 
application intuitive to learn. This process of designing an application interface 
based on the ease of navigating through the menus and accessing the features 
defines the usability of the mobile application and is a big part of the interface 
design process.  
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As mentioned earlier, one of the most important aspects of usability for mobile 
platforms is implementing mobile-friendly features such as simple drop-down 
menus, buttons, etc. that will complement the user interface and take advantage 
of the mobile phone’s capabilities. Hence, one of the simplest ways to design the 
application is to have the real-time gesture translator open first and serve as the 
‘home’ screen since this is the main purpose of the app. Once the application is 
open, there needs to be a general menu where the user can switch between the 
different features like the translator, learning mode, and Bluetooth features. As 
shown below in Figure 6.22, there are a few different methods for accessing 
menus depending on how the developer wants their application to look and feel. 
Out of the three choices, the ‘options menu’ appears to be the best choice for 
creating a general menu since this type of menu is designed to access global 
features. The next step is deciding how to access this general menu which can 
be implemented in many different ways.  
 

 

   

(a) Options Menu   (b) Context Menu  (c) Popup Menu 

Figure 6.18: Different Types of Menus on Android Version 4.4.4 
 
As a developer, opening a menu is a simple task and many applications use the 
same method for completing this task because they want users to be familiar with 
their menu navigation before they even use it. Seeing that the SLIG’s mobile 
application will open to the gesture translator screen first, the main menu will 
have to be accessed from this screen somehow and needs to be obvious to the 
user. This must be done using some kind of interaction between the user and the 
mobile application like touching a button, swiping, voice commands, etc. The 
simplest and most common methods among mobile applications for opening a 
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menu are pressing a button or swiping to open a new screen/menu. Using one of 
these options is advantageous simply because most people using these 
applications already own a mobile phone and they are very familiar with the 
functionality of buttons and swiping already.  
 
 
 
 
Generally, buttons and swiping can be used for the same purpose but they each 
have their own pros and cons. Buttons are good for developers and users 
because they are quick, intuitive, and visual means of navigation that lets the 
user know that tapping the button will do something related to what is displayed 
on the icon (text and symbols). The bad parts about buttons are that having too 
many can clutter the screen and a misplaced tap can open an unwanted feature 
during use and cause an issue. The good news is that swiping features don’t 
have these problems and can be used in replacement or in addition to a button. 
Swiping is a natural movement for users that allows developers to open features 
by swiping in any direction, however the four basic directions (up, down, left, and 
right) are the most popular. Some of the biggest benefits of swiping are that it 
doesn’t take up as much screen space as a button and it can’t be accidentally 
opened as easily as a button. The bad parts are that swiping can cause users to 
accidentally use other features such as scrolling or tapping a button instead of 
swiping. Also, if there is no visual indication that swiping is an available feature 
many users will overlook that feature without realizing it exists. However, if the 
visual icon of a button is combined with a swiping motion this will eliminate one of 
the issues with swiping and make it a better choice. Using this information, a 
visualization of what the application should look like is shown on the next page in 
Figure 6.23 where the menu button is at the bottom and can be swiped upwards 
to open the menu. As you can see, the menu button is easy to access, does not 
take up much screen space, and will not accidentally open which makes swiping 
the best option for the mobile application’s menu. Also, the user can zoom in or 
out to fit the letter to their screen manually and view the changes in the 
background without closing the menu which is another big plus for usability. 
 
There are other design requirements needed to completely design the menu and 
user interface, but the most important design features have already been 
discussed. The rest of these features are negligible in terms of functionality for 
this project but will be briefly mentioned so there are no misunderstandings about 
the design of the interface for the application. The most obvious design factor 
that was left out is making sure that the application is readable. Readability is an 
important factor in mobile design but as long as the developer uses appropriate 
font sizes/styles, colors, and contrast for the interface there should be no issues. 
Also, developers must keep in mind how much screen space their features 
require so that the application functions as intended. For example, in Figure 6.23, 
the letter displayed must be large enough for the user to read but not too large 
where it will overlap the list of gestures in translating mode. Also, in learning 
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mode, the gesture displayed by the user must leave enough space to allow for 
the image of the ASL letter to be readable too. 
 
 
 
 
 
 
 

 
(a) Translator Mode                                          (b) Learning Mode 

 
Figure 6.19: SLIG App Menu Layout Interface 

 

6.2.2.4 Translator Mode 

The main purpose of the application is to translate the sign performed by the user 
of the Sign Language Interpreter Glove (SLIG), so creating the interface for the 
translating feature is a very important part of the mobile application. When the 
user opens up the application, putting the interface for the most important 
features is in the group’s best interest. Although, if the phone has not been 
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connected to the Bluetooth yet, this process will still need to be done but that 
does not take away from the first impression of the translator feature being the 
main screen because now the user will know how to navigate backwards through 
the application.  
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There are two main components to the translator mode that need to be 
implemented which are displaying the current gesture and keeping track of the 
previous gestures performed. The reason the translator mode needs to have 
both of these features is because in order to successfully communicate with 
someone, the user needs to be able to see the current gesture being performed 
by the glove user as well as read the previous letters being displayed in the case 
that the glove user is spelling out words. As you can see in Figure 6.24 below, 
the big letter ‘Z’ is being displayed at the bottom half of the screen to distinguish 
itself from the list of previous letters show in the top half of the screen. The 
different sizes of the text for the current gesture and the gesture list allow a long 
list of letters to be accumulated on the top as well as an easily readable gesture 
on the bottom. There is also a “Clear Screen” button at the bottom of the screen 
that will erase the gesture list for different purposes such as a new user or after a 
while of communicating and there is a large list of letters displayed. 
 

 
 

Figure 6.20: Translator Mode Menu Layout 
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6.2.2.5 Learning Mode 

The learning mode feature of the mobile application is a very important feature 
that allows the user to learn American Sign Language (ASL) if they need practice 
signing. In addition to the functionality of learning mode, a menu layout will need 
to be created for this feature because it is the second most important aspect of 
the mobile application after the translator. In the Menu Layout section (6.2.2.3), a 
general menu for the translator screen was created which will be the main theme 
of the application. Therefore, a second menu must be created for learning mode 
which has the same theme as the main menu. There are a couple different 
options for creating this second interface such as creating a separate interface 
for learning mode or using the same screen as translator mode but implementing 
a tab that can be easily accessed from without changing context. If a separate 
interface was created for learning mode that would require loading a new activity 
in the application which requires processing time and may not be as simple as to 
use as the other option (using tabs). Therefore, the best option that allows this 
new interface to take advantage of the translator mode interface will be to create 
a tab for both modes. The tabs allows the user to simply swipe or press a button 
to switch from one mode to the other and since these features are both very 
important to the application, using tabs makes the main interface user friendly. 
Also, the interface for the learning mode needs to be simple just like the 
translator mode, so only necessary features will be added to keep the user 
focused on the task at hand. A sample of the user interface for the learning mode 
feature is shown in Figure 6.25, on the next page. 
 
After discussing the accessibility of learning mode, the functionality of this feature 
contains a unique ability to display an image of a sign language gesture and asks 
the user to perform it in order to move onto a different gesture. If the user 
correctly performs the sign, a new image of a gesture will appear and the user 
may keep matching these signs until he/she is done practicing. Also, there is a 
“Skip Gesture” button at the bottom of the screen that allows the user to skip 
whatever gesture is displayed on the screen if they are having trouble performing 
it. The main idea behind the learning mode feature is to teach people the 
American Sign Language alphabet. Adding this feature to the mobile application 
gives the Sign Language Interpreter Glove a second purpose in conjunction with 
the communication aspect in translator mode.  
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Figure 6.21: Learning Mode Menu Layout 

6.2.2.6 Bluetooth Connection Interface 

After creating the menu layout for the main features of the application, the 
Bluetooth menu layout needs to be created so that the user is able to connect 
wirelessly to the Sign Language Interpreter Glove with ease. Taking a look at 
Figure 6.25 in the previous section, there is a Bluetooth button in the top right 
corner of the screen which will take the user of the application to the Bluetooth 
device scanning screen as shown below in Figure 6.26 (a). From the device 
scanning screen, the user has the ability to search for Bluetooth devices in range 
and attempt to connect to the device selected from the list. Once the user selects 
a device, the application will bring the user to a second screen, shown in Figure 
6.26 below, which will allow them to attempt to connect/disconnect to the device. 
After successfully pairing the mobile device with the glove, the user is able to 
navigate back to the main screen of the application using the back arrows in the 
top left menu bar of both screens. Also, the Bluetooth connection screen displays 
additional information about the device such as the device address, connection 
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state, and advanced data such as the letter and hex values received by the 
mobile application. 

 

 
          
     (a) Bluetooth Device Scan Screen        (b) Bluetooth Connection Screen 

 
Figure 6.22: Bluetooth Connection Menu Layout 
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6.3 Bill of Materials 

Below is a listing of the key components that were used in creating the SLIG. The 
team chose to omit consumable such as resistors, wiring and the like for the sake 
of simplicity.  

 

Item Description Vendor Part Number Quantity 
Unit 

Price 

1 4.5" flex sensor SparkFun SEN-08606 15 

 

$12.95 

 

2 

6 Degrees of Freedom 

IMU Digital Combo 

Board 

SparkFun SEN-10121 2 

 

$39.95 

 

3 
UA Strikeskin Tour 

glove 

Dicks 

Sporting 

Goods 

1275442 1 $24.99 

4 

3.7 Volts Polymer 

Lithium Ion Battery – 

2000 mAh 

 

SparkFun 

 

PRT-08483 

 

1 

$12.95 

 

5 

TI LP2985 Regulators 

 

Digikey 

 

595-LP2985-

33DBVR 

 

5 

 

$0.55 

 

6 

HM-10 4.0 BLE 

Module 

 

Amazon 

 

B00C2FIHKQ 

 

4 

 

$11.29 

 

7 

ATmega328P 

 

Digikey 

 

ATMEGA328-

PU-ND 
1 

$9.99 

 

8 PCB 
Bay Area 

Circuits 
N/A 1 $49.60 

9 
Soldering Materials et 

al 
Various N/A 1 $120.00 

10 
Google Play Developer 

fee 
Google Play N/A 1 $25.00 

 
Table 6.4: Bill of Materials 
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7. Construction 

7.1 Testing and Evaluation Plan 

7.1.1 Hardware Testing 

Most of the hardware can be tested independently and multiple times throughout 
the different stages of the project. This team will plan to test these hardware 
components at least once before integrating all the parts together. After some 
sort of functional prototype has been constructed, all the hardware can be 
(re)tested through similar examinations that will most likely result in a trial, error 
and adjustments process.  
 

Pre-Prototype: 
 
Flex Sensors – The flex sensors could very well be the most straightforward of 
all the hardware components to test. All that is required is to assemble the 
voltage divider circuit mentioned previously and apply some sort of power or 
voltage supply. A multimeter must be connected to this circuit (with a parallel 
connection to the flex sensor) so that the voltage across the flex sensor can be 
measured. Then as the sensor is slowly flexed from its un-bent form to its 
maximum angle, the measured voltage should be monitored to verify that it is 
varying accordingly. More precisely, the voltage measured should be decreasing 
steadily. 
 
Contact Sensors – The contact sensors can be checked in a similar manner. 
The key difference would be is that instead of bending the sensor, contact must 
be made between two contact sensors. Assuming proper contact has been 
made, the voltage read at the end of the second sensor (the one that isn’t the 
thumb sensor) should equal the voltage supplied to the thumb sensor.  
 

Post-Prototype: 
 
Flex Sensors – Once a prototype has been assembled the output from the 
sensors will be left to the MCU to interpret. However, the idea will continue to be 
the same. The voltages signals sent to the MCU will need to be decreasing as 
the sensor is flexed. Once the mobile application interface has been established, 
the more logic manner of testing would be to form different letters that solely 
depend on flexing each finger and see whether the correct letter is displayed 
through the application. If there are ever any inconsistencies either the way the 
voltage variation are being interpreted needs to be the adjusted or the wiring 
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connecting the flex sensors need to be adjusted. This process should be 
repeated until the right letter is read.  
 
 
9 Degrees of Freedom IMU – There are two components to this combo board 
and the two will require slightly different test approaches. The accelerometer's 
most important function will be to identify the orientation or tilt to the user's hand. 
This is important distinguish between pairs of letters and even to ensure single 
letters are being formed with the proper tilt since this is characteristic of those 
letters just as much as the shape of the hand. So a letter such as "Q" can be 
used to check the accelerometer since this letter requires that the user's hand be 
pointed downwards. If both the physical connections and the programming are 
set up correctly, the glove should only read the letter "Q" when then the hand is 
tilted downwards. If the user forms the right shape with his hand abd flexes the 
right fingers but down not tilt his or her hand in the right direction, the glove 
should not interpret the letter "Q" at that moment.  
 
The accelerometer portion of the combo board is tuned to identify the two letters 
that are distinguished by their motion. Thus, in order to check whether this 
portion is functioning properly, one of those letters such as "J" should be tested 
along with the letter "I" which is nearly identical to "J" in all other respects except 
that is lacks the swinging motion. If the glove recognized the letter to be "J" after 
every repetition of the experiment then no further corrections need to be made. 
Otherwise, some adjustments will have to be made and the testing will have to 
be repeated.  
 
Contact Sensors – The central idea will remain the same as this final major 
component of the hardware is tested. The contact sensors will be used to 
distinguish between certain pair of letters that differ by which, if any, of the 
fingers are touching one another thereby creating some sort of force as the 
fingers are held together. One such pair could be "U" and "V". Both letters should 
be tested and the glove should be able to tell them apart on different trials.  

7.1.2 Software Testing 

7.1.2.1 Control System Test Plan 

The control system will have to be tested after it is implemented.  This requires 
making sure that the input from the user’s hand gestures matches the output that 
is viewed at the user interface, whether it be the Android application, and the on-
board LCD display if the group decides to go ahead with the on-board display.  
To do this, there will need to be a method to meticulously test every possible 
hand gesture to make sure that can be performed by the user produces the 
desired outcome on the user end.   
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To efficiently test the control system and truly make sure that the control system 
is actually designed to make correct decisions based on certain outputs, the 
system will need to be pushed to its limits.  This means that the group will need 
to provide the system with controversial inputs where the system may be likely to 
make a mistake.  For example, as mentioned in an above section, certain letters 
like U, V, and R are very similar to each other.  During the testing of the control 
system, the group will make hand gestures that are clearly a certain letter, but 
performed in ways that may be close to one of the other similar letters while 
trying to induce an error.  This will put to test the implementation of the pressure 
sensors or contact sensors.  Also, the software that interprets the data provided 
by these sensors will likely have to be tweaked because it is highly likely that the 
control system will produce some level of error when processing these very 
similar letters.  Performing this for a number of times will find the errors that were 
made when initially writing the code for the control system and will allow the 
group to take any necessary mitigations to correct the errors that were found 
while performing these tests. 
 
Similar to the U, V, and R, the letter J will also be a controversial letter that will 
need to be tested very carefully.  It is highly likely to produce an error because 
this letter not only depends on the position of the fingers, but also on the motion 
of the hand.  The hand gesture interpretation function will use the data collected 
from the accelerometer in order to determine when the hand was moved in a 
certain direction which corresponds with the motion required to make a J, and 
also that the data from the flex sensors concur that the fingers are actually 
positioned in the position that corresponds with the J.   
 
As seen, it is evident that this letter is multiple degrees more complicated than 
the rest of the letters.  This letter will require some ample testing and there will 
inevitably be issues.  The group suspects that it will be necessary to perform this 
letter in a certain way every time so as to remove some of the uncertainty that 
comes with the letter J.   
 
All of the testing described above will be checked by monitoring on the computer 
screen within the development environment (likely a HyperTerminal window).  
However, it is also necessary to check that the data is able to make it out to the 
Bluetooth module correctly as well.  The testing of the Bluetooth module will be 
handled in that section, but the group needs to make sure that the output from 
the control system that is being sent out to the Bluetooth module is actually the 
correct data that is being seen on the HyperTerminal window when the control 
system is being tested on the computer screen. 

7.1.2.2 Mobile Application 

The mobile application is a big portion of the project that operates to display the 
gestures translated by the rest of the sign language glove. In order to test the 
mobile application, it is necessary to identify the inputs and outputs of the 
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application because these will determine the overall functionality. Since these 
parameters cannot be tested until a working prototype of the glove is built, testing 
the mobile application will require using simulated gestures from the computer. 
Also, it is standard programming procedure while building any software 
application to test the program during the development process and make sure 
each component works separately. On a good note, Android Studio, along with 
most IDEs, provides tools to help developers fix the errors in their code so this 
type of testing will come with the process of building the application. 

7.2 Facilities and Equipment 

There will be a number of facilities the team has used and plans on using in order 
to create a final working prototype.  
 
The first of these was the eli2 Idea Lab located in the UCF Engineering II 
building. Known for its unique design; a glass enclosed space with sails flying 
above, LED lighting, eccentric chairs and stools and large projection screen to 
display concepts that will invite creativity, this lab was modeled after creativity 
spaces at GOOGLE and Pixar. It was here that the team first brainstormed ideas 
about what it wanted to attempt for Senior Design and the innovative 
environment helped the team refine their ideas until they came to a consensus of 
what it was they wished to do. That consensus was to attempt a redesign of the 
Sign Language Interpreter Glove. 
 
Second, the team plans to use the Senior Design Lab extensively for further 
research, development and possibly testing of the final prototype. This laboratory 
which is located in Engineering I building of UCF is a facility that provides 24/7 
access to a workspace with instrumentation, equipment and software for 
students specifically enrolled in Senior Design.  It has a wide range of equipment 
that includes things such as an oscilloscope, function generator, multimeter and 
different software such as Multisim that will most likely prove invaluable in 
troubleshooting and refining our project.  
 
Moreover, another possible laboratory that might prove itself useful is the Texas 
Instruments Innovation Lab. This was designed to allow students to bring their 
ideas to this space, strategically located next to the Idea Lab, to quickly build 
prototypes with 3D printers, laser cutters, TI components and equipment and 
other high-tech machines. Materials such as plastic, foam and metal are also 
available. These types of resources will come especially in handy as the team 
begins constructing the prototype. 
 
Aside from the equipment said to be available in the different facilities above, this 
project will most likely require use of other tools. A soldering iron will be needed 
to bring different electronic components together at one point or another. 
Although it may seem trivial, a computer with the correct software will 



 

118 
 

nonetheless be crucial when it comes to programming the MCU and building the 
user-interface application for the android system.  
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7.3 Suppliers 

In order to create the SLIG the team will need various parts supplied by different 
vendors. As far as the different sensors are concerned, the team's preferred 
supplier will be SparkFun Electronics. SparkFun Electronics is an electronics 
retailer in Niwot, Colorado, United States. It manufactures and sells 
microcontroller development boards and breakout boards. All products designed 
and produced by SparkFun are released as open-source hardware.  
 
For the glove, the team has chosen a model made by Under Armour because of 
it solid reputation and sturdy, high quality products. This way no more than glove 
will be needed throughout the entire prototype creation process. The team 
purchased the glove from Dick’s sporting goods in order to reduce costs and 
have a chance to inspect the glove in person before buying it. 
 
One such third-party website could definitely be Amazon.com. The team was 
already chosen to order both a charger and a Bluetooth module from the retail 
giant. There is no doubt that Amazon will be a speedy, reliable supplier with a 
myriad of other parts to offer for future need.  
 
Mouser Electronics and Digikey Electronics are both global leading authorized 
distributor of semiconductors and electronic components for more than 500 
industry leading suppliers. Their vast inventory of products include 
semiconductors, interconnects, passives, and electromechanical components. 
They have even won awards for their reputable performance in global customer 
service. The team has decided to order the SLIG's ATmega328 and voltage 
regulators from Digikey after seeing their competitive prices. 
 
Bay Area Circuits was selected for the printed circuit board construction. They 
are known to specialize in small quantity PBC manufacturing and have one of the 
fastest lead times available. The team selected them especially for their 
competitive pricing is achieved as it turns out by combining several clients' 
designs on one manufacturing panel and sharing the tooling costs between them.  
They cater to both large-scale and small-scale customers; never sacrificing 
reliability or quality for their speedy delivery.   
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8. Project Operation 

8.1 Translator Mode 

The SLIG will most likely be made as a right handed glove given that most users 
will have a dominant right hand. The glove will need to be placed over the user's 
hand and secured using the straps around the wrist. From this point, the user can 
begin to form any sign language letter from the 26 letters of the English alphabet 
he or she chooses. The user must make sure to form the signs as accurate as 
possible paying close attention to how much he or she is bending each finger, 
the overall direction his or her hand is pointing and to complete each additional 
motion that may be part of the letter.   
 
As the user performs each letter carefully and with sufficient time in between 
distinct letters, someone will have to access the mobile application to verify the 
correct letters are being displayed on the screen. The mobile application will 
most likely have a very simple interface and will automatically synchronize itself 
with the SLIG once it has been initialized. Each letter the user wearing the SLIG 
signs should appear on the screen and remain there until the next letter is 
signed. For the user's benefit, the team recommends he or she attempt every 
single letter at least once to make sure they are making the correct sign. When 
done with his or her exercises, all the user needs to do is power off the glove and 
remove it from his or her hand.  

8.2 Learning Mode 

The SLIG mobile application also implements a learning mode. In the learning 
mode, the operation of the glove remains the same however the purpose behind 
the application changes to helping the user master signing the ASL letters 
correctly. The application will randomly display one of the twenty six letters on 
the screen and the user must try to adjust their hand to match that sign as closely 
as possible. If the user signs is close enough that the glove can recognize it, the 
app will move on to the next letter. This mode is perfect for beginners who need 
a way to test their signing. Lastly, the learning mode includes a “skip gesture” 
feature so the user can manually move on to the next letter in case the glove is 
not well calibrated or they simply cannot perform the sign at hand.
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9. Administrative Content 

9.1 Project Budget 

The proposed budget for the SLIG took into consideration all of the parts required 
to make the product as well as extra/replacement parts along the way. The prices 
listed were estimates from online research and will be updated in the future once 
the final product is built.  

 
 

Part Description Price ($) Quantity Cost ($) 

Power source $10 1 $10 

Microcontroller $50 1 $50 

Flex sensors $10 10 $100 

Accelerometer $30 1 $50 

Glove $20 1 $20 

PCB $150 1 $200 

Bluetooth adaptor $10 1 $10 

Feedback LEDs $1 10 $10 

Miscellaneous parts $100 ? $100 

Total Cost 
  

$550 

 
Table 9.1: Initial Project Budget 
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The team received funding from Boeing and Leidos; a total of $360. In the end, 
the team spent a significant amount more for the glove than was originally 
planned. The final budget is listed below.  
 

 
 

Table 9.2: Final Project Budget 
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9.2 Milestones 

The project milestones show a tentative schedule for the entire Senior Design 
course that breaks the project down into a list of tasks to be completed. Each 
team member is responsible for their own tasks as well as participating in team 
tasks so that by the end of the timeline everything will be completed as planned. 
 

Number Task Start End 
Duration 

(weeks) 
Responsible 

Senior Design I 
    

1 Brainstorming 9/1/2015 9/8/2015 1 The Team 

2 
Project Selection & 

Role Assignments 
9/8/2015 9/15/2015 1 The Team 

 
Project Report 

    

3 
     Initial Document - 

Divide & Conquer 
9/8/2015 9/15/2015 1 The Team 

4      First Draft 9/15/2015 11/3/2015 7 The Team 

5      Final Document 11/3/2015 12/8/2015 5 The Team 

 
Research & 

Documentation     

6      Bluetooth 9/15/2015 10/5/2015 3 Ramon 

7      Flex Sensors 9/15/2015 10/5/2015 3 Chris 

8      Accelerometers  9/15/2015 10/5/2015 3 Chris 

9      Software 9/15/2015 10/5/2015 3 Jason 

10      Power Source 9/15/2015 10/5/2015 3 Jason 

11      Microcontroller 9/15/2015 10/5/2015 3 Emanuel 

 
Design 

    
12      Bluetooth 10/6/2015 11/3/2015 4 Ramon 

13      Flex Sensors 10/6/2015 11/3/2015 4 Chris 

14      Accelerometers  10/6/2015 11/3/2015 4 Chris 

15      Software 10/6/2015 11/3/2015 4 Jason 

16      Power Source 10/6/2015 11/3/2015 4 Jason 

17      Microcontroller 10/6/2015 11/3/2015 4 Emanuel 

18 Order & Test Parts 11/3/2015 12/8/2015 5 The Team 

Senior Design II 
    

19 Build Prototype 1/11/2016 3/1/2016 7 The Team 

20 Testing & Redesign 3/1/2016 3/29/2016 4 The Team 

21 Finalize Prototype 3/29/2016 4/15/2016 2 The Team 

22 
Committee 

Presentation 
4/20/2016 4/20/2016 - The Team 

23 
Senior Design 

Showcase 
4/22/2016 4/22/2016 - The Team 

24 
Final 

Documentation 
05/2/2016 5/02/2016 2 The Team 

Table 9.3: Milestones for Senior Design I & II 
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9.3 Division of Labor 

Group 24 is composed of four electrical engineering students from the University 
of Central Florida. Every member of Group 24 had his responsibilities and roles 
throughout the design phase that will carry into the following school semester as 
the team begins creating and optimizing a prototype. In general, Emmanuel 
Hernandez was in charge of the control unit, both from a hardware perspective 
and from the software perspective. Christopher Delgado was in charge of the 
different sensors, which are the primary means of data collection, while Ramon 
Santana divided his efforts between the power supply system and the Bluetooth 
communication. Lastly, Jason Balog is creating and handling the android 
application that will be the output interface for the project.  Each member is listed 
below followed by specifics on his responsibilities and by his contributions to the 
group dynamics.  
 
Emmanuel Hernandez – Emmanuel has taken up one of the main roles in 
designing SLIG. He is in charge of the physical aspects and the programming for 
the SLIG's control unit. This includes but is not limited to selecting a proper MCU, 
working out all the analog-to-digital conversions, making the leading decisions 
regarding the PCB and writing and developing all the necessary code and 
algorithms to interpret the data the glove collects. When it comes to the PCB, he 
will be deciding which software program to use to design the PCB board and 
whom the team will use to create the board. Essentially, Emmanuel has played 
the main role in helping the team define how they would design the sign 
language glove acting as the lead engineer for this project. Moreover, he has 
participated in every document for this project thus far.  
 
Christopher Delgado – Christopher was in charge of researching and selecting 
the best model for the three different types of sensors the glove will require. As 
mentioned before, these are the flex sensors, the accelerometer and gyroscope, 
which are typically sold as part of a single unit and the sort of contact sensor. He 
was also responsible for determining how these sensors will work and to 
integrate them to the main circuit board. Moreover, he has participated in writing 
every document for this project thus far.  
 
Ramon Santana – Ramon has two separate features of the project to research 
and design. First, he was in charge of the power system for the entire glove. This 
included researching what type of battery technology would best power the glove 
as well as developing voltage regulation circuits to ensure each component of the 
glove will receive the proper supply voltage. Secondly, Ramon was in charge of 
the researching how to add Bluetooth capabilities to the glove to allow it to 
communicate to any android cell phone device, which has the user interface 
application. Aside from his technical responsibilities Ramon took it upon himself 
to keep the team in order and on track. He played the biggest role in coordinating 
team meeting and recommending due dates for different parts of the project in a 
sense taking up the role of group supervisor.  
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Jason Balog – Jason's roles are on the software side of the project where he 
has to design the android application that will allow the team to use any android-
based smart phone as an output interface for the glove. He began by researching 
different mobile platforms before deciding on Android, then, he looked into which 
programming language would be most suitable to develop the application and 
lastly planned out how to develop the application. His efforts were crucial to the 
team, which lacked a computer-engineering student who typically take up the 
software tasks in most other senior design projects. Moreover, he has 
participated in writing every document for this project thus far.  

9.4 Personnel 

Ramon Santana – Electrical Engineering 
Ramon Santana is a first generation, electrical engineer student at the University 
of Central Florida. He has maintained leadership presence on campus in 
numerous ways. Santana was a Teaching Assistant for two engineering classes. 
Currently, Santana is a Peer Mentor and Peer Tutor for engineering students at 
the office of Prime STEM at UCF. Santana is the Mentoring Program Coordinator 
for the Society of Hispanic and Professional Engineers at UCF. Santana is also a 
brother of Lambda Theta Phi Latin Fraternity Incorporated. During the summer of 
2015, Santana did an internship at Florida Power & Light (FPL) as a Protection 
and Control Engineer. His responsibilities at that time were to make sure that all 
the equipment inside transmission and distribution substations were working and 
functioning properly; by performing maintenance on feeder breakers, calibrating 
relays, completing trip by lockouts and much more. His hands on experience will 
be a significant contribution to the implementation of the Sign Language 
Interpreter Glove. Santana will be responsible for the wireless communication of 
the SLIG and also for providing the right amount of power to all the components 
in the design.  
 
Christopher Delgado – Electrical Engineering 
Christopher Delgado is a first generation electrical engineering undergraduate 
student at the University of Central Florida. He has been a student there since 
2011 and has been part of the Burnett Honors College since the beginning. Since 
the summer semester of 2015, he has been working as a System Performance 
intern for Verizon Wireless and has gained valuable experience in networking. 
Prior to his internship with Verizon, Christopher worked as a tutor for the SDES 
TRIO Center in UCF where he helped other students improve their performance 
in their physics, calculus and elementary engineering courses. His years at UCF 
have given him the background knowledge and learning skills to contribute to the 
success of Group 24 and the creation of the SLIG. Christopher has been 
assigned the task of researching, selecting and designing for the different 
sensors the SLIG will require. His successful completion of both Electronics I and 
II and their accompanying laboratories have prepared Christopher to deal with 
the hardware components to the SLIG. 
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Emmanuel Hernandez – Electrical Engineering 
Emmanuel Hernandez is an electrical engineering undergraduate student.  He 
has been at the University of Central Florida since 2011, where has developed 
the skills necessary to participate in this project.  He has been a mathematics 
tutor at the UCF Mathematics Assistance & Learning Lab (MALL) since 2012, 
and has completed 3 semesters of internships with two different companies.  
During the first internship at The Walt Disney Company, Emmanuel was given 
the opportunity to work with programmable logic controllers (PLC).  In this time 
he gained his first experiences with control systems, although it doesn’t have 
much to do with microcontrollers.  About a year later, he was given the 
opportunity to participate in an internship at Florida Power & Light Company, 
where he was given the opportunity to work with microprocessor relays and get 
more of an experience with control logic, and this time a little more in-depth in the 
microprocessor side of control systems.  This being said, Emmanuel was 
responsible for the control system aspect of the Sign Language Interpreter 
Glove.  He designed the control system, and performed the research necessary 
to formulate the best plan of action when it came to having the SLIG determine 
which hand gesture is being performed by the user.  He feels like his previous 
experience in the industry, specifically with control systems made it so that he 
had a little bit more of an intuition at the time of analyzing the best course of 
action for the SLIG control system.  In the building and implementation part of the 
project, he will be responsible for programming the microcontroller to make 
decisions on what hand gestures are currently being performed. 
 
Jason Balog  – Electrical Engineering 
Jason Balog is an undergraduate majoring in Electrical Engineering and minoring 
in Mathematics at the University of Central Florida.  He has focused on learning 
about power systems and computer simulation in his technical elective courses 
which has prepared him to take on the software application portion of the project. 
There are two main software components to the project – the mobile application 
and gesture recognition – which need two different people to work on since each 
component is not related to the other. The mobile application will be more 
software intensive than the gesture recognition feature and will require a good 
background in computer programming. Since all four of the team members are 
majoring in Electrical Engineering, nobody on the team is well equipped with the 
required programming skills to write an Android application using the languages 
Java and XML. However, Jason has taken multiple elective courses that required 
programming in Matlab and other software along with some programming 
experience on his own which gives him the best opportunity to successfully 
complete the mobile application. Also, he has expressed personal interest in 
learning how to write a mobile application and all of the hurdles that come with 
this unfamiliar territory for most Electrical Engineers so that he can expand his 
skillset.
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10. Conclusion 

In conclusion, the Sign Language Interpreter glove is a lightweight, thin glove that 
can be worn by individuals who have a speech impediment which translates sign 
language hand gestures into text.  This text will be displayed on a mobile 
application that will run on an Android smartphone device.  The device will make 
the use of flex sensors, which are variable resistors that change their resistance 
in proportion to the amount of bend that is currently present on the sensors.  This 
allows the control system of the glove to determine how much bend is present on 
each finger.  Other hardware that will be used to determine what hand gesture is 
currently being performed by the user is an accelerometer.  The accelerometer 
will determine the X, Y, Z position of the hand at all times, which is important in 
determining when certain hand gestures are being made that require a specific 
movement of the hand in addition to simply bending the fingers in certain ways.   
 
In addition to the flex sensors and accelerometer, the group employed the use of 
contact sensors that determine when two fingers are close together or not.  This 
is necessary because there are certain letters that have very similar amount of 
bend on each finger, and the only way to determine between them is the actual 
position of the fingers relative to each other.  By using contact sensors, the 
control system of the SLIG can determine which of these very similar hand 
gestures is currently being performed. 
  
The control system of the SLIG will consist of an ATmega328p microcontroller 
unit.  This unit already comes equipped with the necessary analog to digital 
conversion hardware that is needed to convert the analog signals that is coming 
from the sensors into a digital signal that can be analyzed and processed by the 
microcontroller unit.  The ATmega328p will go through its program which is 
designed to determine which of the many possible hand gestures is currently 
being performed, and it will constantly be sending the output out to the user 
interface.   
 
The user interface will be an Android application that will receive the data that is 
being transmitted from the microcontroller and it will display it on the screen for 
the receiver of the message from the user to read.  This mobile application will be 
capable of wirelessly receiving the information that is being sent out from the 
microcontroller unit.  The mobile application will be written using the Java 
language and it will be capable of interfacing with the microcontroller unit 
mounted on the glove via the use of wireless communication. 
 
The wireless communication that will be used to transmit the data between the 
microcontroller unit on the glove and the user interface will be the Bluetooth 
communication technology.  Bluetooth essentially uses low power radio waves to 
wirelessly transmit data between electronic devices.  There will be a Bluetooth 
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module mounted on the glove which will receive the output messages from the 
microcontroller unit.  This module will transmit the message through the air, and it 
will be received at the user interface device.  The Android smartphones come 
Bluetooth enabled, so all that will be necessary is to pair the device with the 
Bluetooth module mounted on the glove, and communication will be established. 
 
All of the aforementioned electronic components will mounted on a printed circuit 
board.  Because of the small size of the SLIG, a circuit board no larger than one 
square foot is desired.  This will require the group to employ the use of a printed 
circuit board with multiple layers.  The Bluetooth module, microcontroller unit, DC 
to DC converters (or voltage regulators), pull-down resistors, charging circuit, as 
well as all of the other electronic components that go into the SLIG will be 
mounted on the printed circuit board.  The printed circuit board will ideally be 
placed on the palm of the glove, and it will be in a location that will allow the user 
of the glove to seamlessly move their hand around without having to worry about 
possibly damaging the electronic components or injuring themselves by the way 
of an electrical shock.   
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Appendix A: Copyright Permission  

Permission to use Figures from SparkFun Electronics  

Re: Fw: Permission to use picture from website  

SparkFun Customer Service <cservice@sparkfun.com>  

Mon 12/7/2015 12:30 PM  

To: christopher.delgado <christopher.delgado@knights.ucf.edu>;  

Type your response ABOVE THIS LINE to reply  

 
christopher.delgado 
Subject: Permission to use picture from website  

 
DEC 07, 2015  |  10:29AM MST  
Nick M replied: 

Hello Christopher- 

As long as the pictures you do end up using, whether from the site or the datasheet, are properly 

credited, we have absolutely no problem with you using them! 

Please let me know if there is anything further I can do to help. 

Nick Miranda  

SparkFun Electronics  

Distributor and Customer Service  

303-945-2984 x 607 

 
DEC 07, 2015  |  09:33PM MST  
christopher.delgado replied: 

Hello, 

 

My name is Christopher Delgado. I am an electrical engineering student at the University of Central 

Florida. Currently, I am working on a Senior Design project and I would like permission from you to 

use the circuit schematics from the following data sheets 

http://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/2010-10-26-DataSheet-FSR400-Layout2.pdf 

and https://www.sparkfun.com/datasheets/Sensors/Pressure/fsrguide.pdf 

.<https://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/FLEXSENSORREVA1.pdf> These 

schematics will not be modified or published; only used as reference material for my project report. 

 

 

Thank you in advance for your time. Your permission will be greatly appreciated. 

 

 

Christopher Delgado 

University of Central Florida 

Electrical Engineering Student 
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DEC 07, 2015  |  08:29PM MST  
christopher.delgado replied: 

Hello, 

 

My name is Christopher Delgado. I am an electrical engineering student at the University of Central 

Florida. Currently, I am working on a Senior Design project and I would like permission from you to 

use the circuit schematics from the following data sheet 

http://cdn.sparkfun.com/datasheets/Sensors/IMU/IMU_Digital_Combo_Board%20_-

_6_Degrees_of_Freedom_-_ITG3200_-

_ADXL345.pdf.<https://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/FLEXSENSORREVA1.pdf

> These schematics will not be modified or published; only used as reference material for my project 

report. 

 

 

Thank you in advance for your time. Your permission will be greatly appreciated. 

 

 

Christopher Delgado 

University of Central Florida 

Electrical Engineering Student 

 

 

 
DEC 07, 2015  |  07:36PM MST  
Original message 

christopher.delgado wrote: 

Hello, 

 

My name is Christopher Delgado. I am an electrical engineering student at the University of Central 

Florida. Currently, I am working on a Senior Design project and I would like permission from you to 

use the circuit schematics from the following data sheet 

https://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/FLEXSENSORREVA1.pdf.<https://cdn.spark

fun.com/datasheets/Sensors/ForceFlex/FLEXSENSORREVA1.pdf> These schematics will not be 

modified or published; only used as reference material for my project report. 

 

 

Thank you in advance for your time. Your permission will be greatly appreciated. 

 

 

Christopher Delgado 

University of Central Florida 

Electrical Engineering Student 

 
This message was sent to christopher.delgado@knights.ucf.edu in reference to Case #: 93507.  

  

[[a789b3773ee0bba577465454d51395a41bc6d8ec-587827608]] 
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Permission to use Figures from Sensor Products INC. 
RE: Senior Design Permission  

Vadim Shalyt <vshalyt@sensorprod.com>  

Tue 12/1/2015 3:39 PM  

To: christopher.delgado <christopher.delgado@knights.ucf.edu>;  

Yes you can.  Did you actually need to order any film Chris? 

---------------------------------------------------------- 
Vadim Shalyt 
Sr. Application Specialist 
Sensor Products Inc. USA 
300 Madison Ave. 
Madison, NJ 07940 
1.973.428.8985 (phone) 
1.973.495.9800 (cell) 
vadim@sensorprod.com 

Please contact me DIRECTLY for BEST Prices, Delivery, Service & Expert Advice. 

The finest compliment I can ever receive from doing business is a referral from my clients. 

From: christopher.delgado [mailto:christopher.delgado@knights.ucf.edu]  

Sent: Tuesday, December 01, 2015 3:02 PM 
To: Vadim Shalyt 

Subject: Re: Senior Design Permission 

There is a research section to our paper where we have to discuss different technologies/ models available 

even ones we might not end up using. Having the specs table would make it easy to compare and contrast 

with other parts.  

 

Sent from my iPhone 

On Nov 30, 2015, at 6:39 PM, Vadim Shalyt <vshalyt@sensorprod.com> wrote: 

Thank you Chris, but I am not understanding how you can use specs without the product.  Can 
you elaborate? 

 ---------------------------------------------------------- 
Vadim Shalyt 
Sr. Application Specialist 
Sensor Products Inc. USA 
300 Madison Ave. 
Madison, NJ 07940 
1.973.428.8985 (phone) 
1.973.495.9800 (cell) 
vadim@sensorprod.com 

mailto:vadim@sensorprod.com
mailto:vshalyt@sensorprod.com
mailto:vadim@sensorprod.com
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Please contact me DIRECTLY for BEST Prices, Delivery, Service & Expert Advice. 

The finest compliment I can ever receive from doing business is a referral from my clients. 

From: christopher.delgado [mailto:christopher.delgado@knights.ucf.edu]  
Sent: Monday, November 30, 2015 5:22 PM 

To: Vadim Shalyt 
Subject: Re: Senior Design Permission 

Vadim, 

I found your website through Google. 

Thanks, 

Chris 

 

Sent from my iPhone 

 

On Nov 30, 2015, at 5:19 PM, Vadim Shalyt <vshalyt@sensorprod.com> wrote: 

Chris, 

 May I ask how you heard of our products? 

 ---------------------------------------------------------- 
Vadim Shalyt 
Sr. Application Specialist 
Sensor Products Inc. USA 
300 Madison Ave. 
Madison, NJ 07940 
1.973.428.8985 (phone) 
1.973.495.9800 (cell) 
vadim@sensorprod.com 

Please contact me DIRECTLY for BEST Prices, Delivery, Service & Expert Advice. 

The finest compliment I can ever receive from doing business is a referral from my clients. 

 From: Info [mailto:info@sensorprod.com]  

Sent: Monday, November 30, 2015 4:22 PM 

To: 'Vadim Shalyt' 
Subject: FW: Senior Design Permission 

 See below 

 

From: christopher.delgado [mailto:christopher.delgado@knights.ucf.edu]  
Sent: Saturday, November 28, 2015 10:36 AM 

mailto:christopher.delgado@knights.ucf.edu
mailto:vshalyt@sensorprod.com
mailto:vadim@sensorprod.com
mailto:info@sensorprod.com
mailto:christopher.delgado@knights.ucf.edu


 

133 
 

To: sales@sensorprod.com 

Subject: Senior Design Permission 

 Hello,  

I am an electrical engineer student at the University of Central Florida. I would like to use the attached 
specifications table in my senior design paper. Do I have permission to use this figure? 

 Thank you, 

Christopher Delgado 

 

 
 

mailto:sales@sensorprod.com
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