
Sign Language Interpreter Glove

Group 24

Christopher Delgado Emmanuel Hernandez Jason Balog Ramon Santana Electrical Engineering Electrical Engineering Electrical Engineering Electrical Engineering

Thank You to our generous sponsors!!!

Motivation

- The Survey of Income and Program Participation (SIPP) – estimates that about 1,000,000 are functionally deaf in the United States.
 - The World Health Organization estimates that over 5% of the world's population 360 million people has disabling hearing loss (328 million adults and **32 million children**).

The original motivation to pursue this project comes from one of our team members who has experienced the difficulty of communicating with his speech-impaired sister.

Goals and Objectives

Our objective is to establish communication between a sign language speaker and a non-sign language speaker. Any letter the user signs will be displayed through a user interface where the non ASL-speaker can read the letter. We also want to implement a learning mode, where the user has the option to learn the American Sign Language letters.

Hardware

- Flex sensors
- Contact sensors
- Accelerometer
- Gyroscope
- MCU: ATMega328
- Bluetooth Low Energy

Software

Android Mobile Application

Specifications


Lightweight

Portable

Energy Efficient

Glove Weight	< 1.5 lb.
Lithium Ion Battery	3.7 V 2000mAh
Battery Life	13 hours

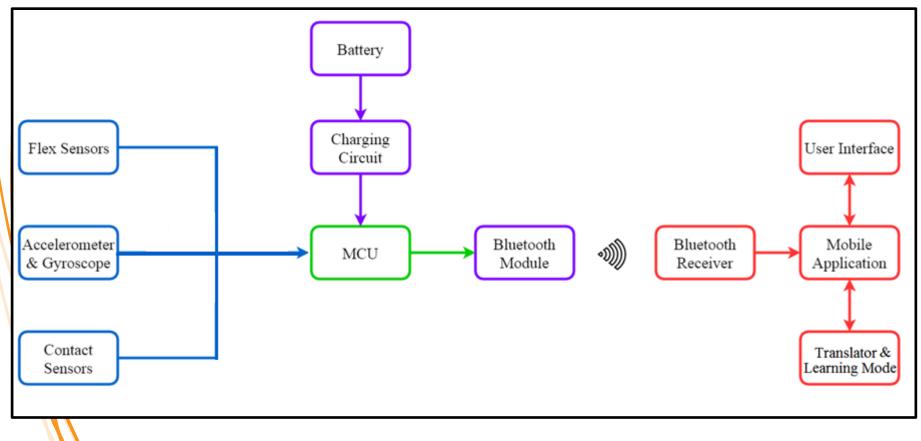
Specifications Table

Related Standards

IEEE Standards 802.15.1[™]-2005(Revision of IEEE Std 802.15.1-2002)

-Establishes a communication standard optimized to serve a variety of medical and non-medical applications.

Safety standards for Lithium-ion batteries (International Electrotechnical Commission (IEC) and International Organization for Standardization (ISO).


-IEC 62133-2: safety requirement for portable battery cells

- -IEC 62660: batteries for EV/HEV applications
- -IEC 61427: secondary cells and batteries for renewable energy storage

Google's Android developers have set up a multitude of standards and qualification on the different aspects of an android application.

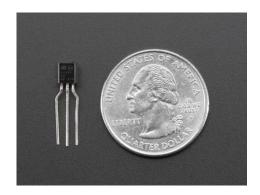
-UX-B1: App uses common user interface patterns and conventional use of icons

Block Diagram

Significant Hardware Decisions - Wireless Communication

WIFI	Bluetooth Low Energy	
Pros: - Security (WPA2) - Range 150-300 feet	Pros: - Range 20-120 feet - Consumes less power than Wi-Fi	Pros: - Consumes less power than Bluetooth Low Energy
Cons: - Needs Router - Consumes lots of Power - Not portable friendly	Cons: - No cons for SLIG ©	Cons: - Limited Range (about 0-4 inches)

Significant Hardware Decisions - Battery & Regulators

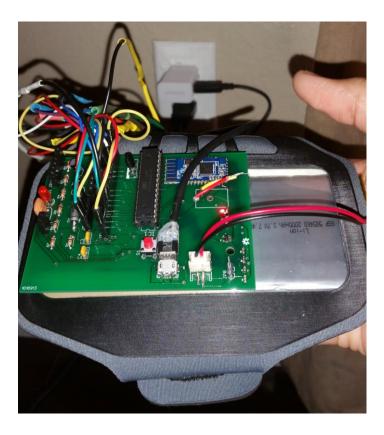

Polymer Lithium Ion Battery - 2000mAh

- 3.7V at 2000mAh
- Built-in protection against over voltage and over current
- Self-discharge rate <8% per month

Regulators - TI LP2985

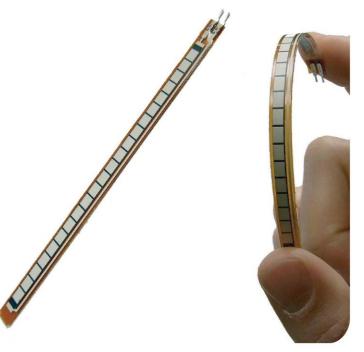
The purpose of voltage regulators is to keep a constant voltage level Dropout Voltage: 0.4 V Output Voltage: 3.3 V

Significant Hardware Decisions - Charging


Charger input:

Micro-USB

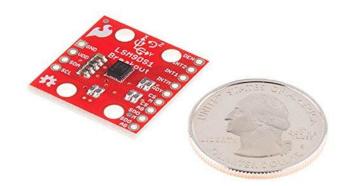
- Charge current 500mA
- Charger output:
 - Single-Cell batteries Only Lithium-Polymer or Lithium-Ion Only Max Voltage: 4.2 V


Top challenges were:

Learning how to solder small electronics

Significant Hardware Decisions - Flex Sensors

- Flex sensors will be the primary sensors employed in this projects.
- Flex sensors will be used to detect the degree to which each finger is bent on the hand performing the sign language gesture.
- Each letter will have a specific configuration based on expected outputs of the five flex sensors.



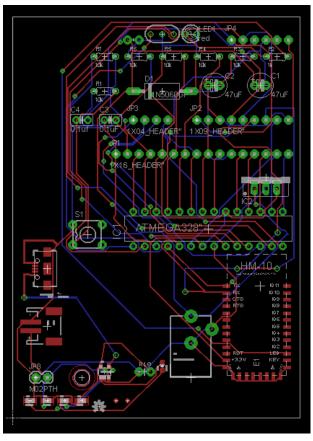
Significant Hardware Decisions - Flex Sensors

SpectraSymbol Long Flex Sensor	Images Two-Directional Bi- Flex Sensor	Tactilus Flex
Pros:	Pros:	Pros:
 widely available accurate output 	- built in pressure sensors	- claims high durability (>35 million cycles) - high quality leads
Cons:	Cons:	Cons:
- fragile leads	 irregular shape sold exclusively by manufacturer 	 increased cost sold exclusively by manufacturer

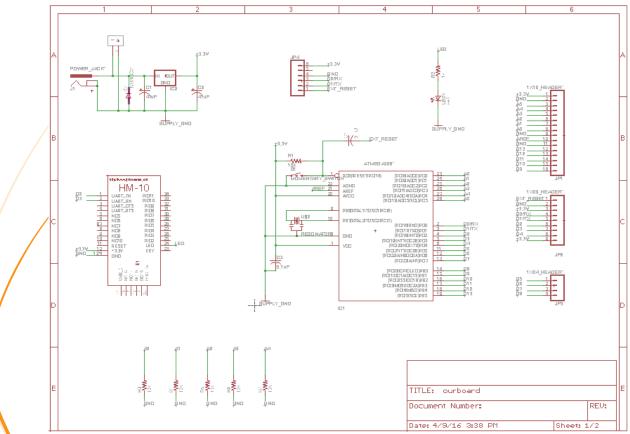
Significant Hardware Decisions – Gyroscope and Accelerometer

- Accelerometers and gyroscopes can be used to measure these type of parameters, which are crucial in identifying certain sign language letters.
- Examples include "j" and "z" or distinguishing between "g" and "q".
- The group is using the SparkFun 9 Degrees of Freedom IMU Breakout - LSM9DS1.

Significant Hardware Decisions - Contact Sensors


Contact sensors were crucial in telling apart the following pairs of sign language: **R**, **U**, and **V**, **S** and **T** and **M** and **N**.

- The contact sensors were made with strips of copper braids that were connected to the power supply through wire leads.
- The glove detects when two contact sensors come in contact creating a closed circuit.



Significant Hardware Decisions – PCB

- The PCB was designed using Eagle CAD software and fabricated by Bay Area Circuits and most parts were sourced from Digikey.com
- It was designed as two layer board measuring 2.5" by 3.5" and is meant to be worn on the forearm.
- Designing and building the PCB board was the biggest challenge with the hardware.
 - Top challenges were:
 - Learning Eagle CAD
 - Correctly Wiring Components
 - Ordering the write components

Significant Hardware Decisions – PCB

Significant Hardware Decisions – Microcontroller

The unit that is chosen will have to employ at least 6 analog input pins (with included ADC units), have digital i/o pins, and also be able to establish a line of serial communication.

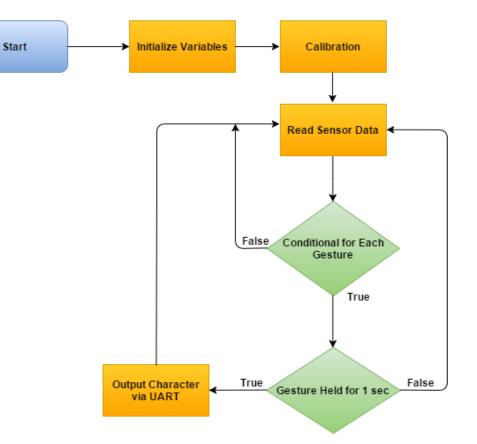

When considering the microcontroller unit, it is also important to note that the two units come with their own native programming environments.

Table 3.2: MSP430 vs. ATMega32 comparison

Feature	MSP430	ATMega32	
Analog Input Pins	8 12		
Digital Input Pins	8 20		
Random Access Memory	512 Bytes	2.5 Kilobytes	
Data Bus	16 bits	8 bits	
Speed	16 MHz	16 MHz	
Cost/Vendor	\$9.99 → mouser.com	\$24.95 → ebay.com	

Gesture Recognition Software

- The gesture recognition system will use thresholds to determine what hand gesture is being performed.
- The ranges of values that are included in every type of hand gesture determine the minimum and maximum limits to the conditional statements.

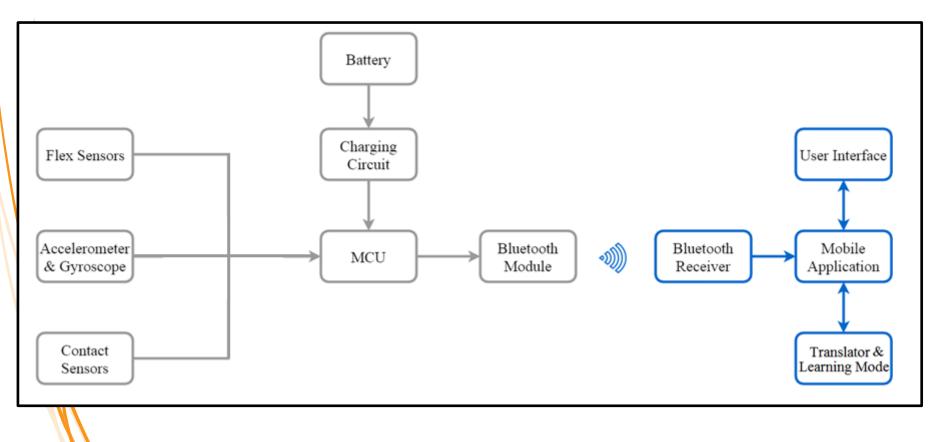
Calibration Process

- The calibration process occurs during the 'setup' process of the program, before the infinite loop begins
- Calibration will capture the minimum and maximum input values from each sensor, and apply the mapping function.
- Calibration is needed because analog flex sensors provide volatile data that needs to be normalized.

Gesture Recognition Software

Program scans sensors for data at one second intervals

- Arduino "map" function is used to apply calibration
- Normalized sensor values and motion data are used in conditional statements that determine gesture being performed



Gesture Recognition Set-Backs

- Contact sensors needed to have internal pull-up resistors enabled due to floating i/o pins
- Had to use SPI as opposed to I2C for the motion unit due to a lack of enough analog input pins
- Many distinct gestures unexpectedly produced similar flex sensor data and required methods of distinction

Software Components: Mobile Application

Mobile Application: Overview

- The mobile application is an important feature of this project that will serve as the user interface for the sign language glove.
- The mobile application is responsible for wirelessly displaying hand gestures performed by the glove onto a mobile phone screen as text.
- In order for the mobile application to be successful, the design of the app should consider the user, be simple and elegant, and meet all design requirements.

Potential Mobile Platforms

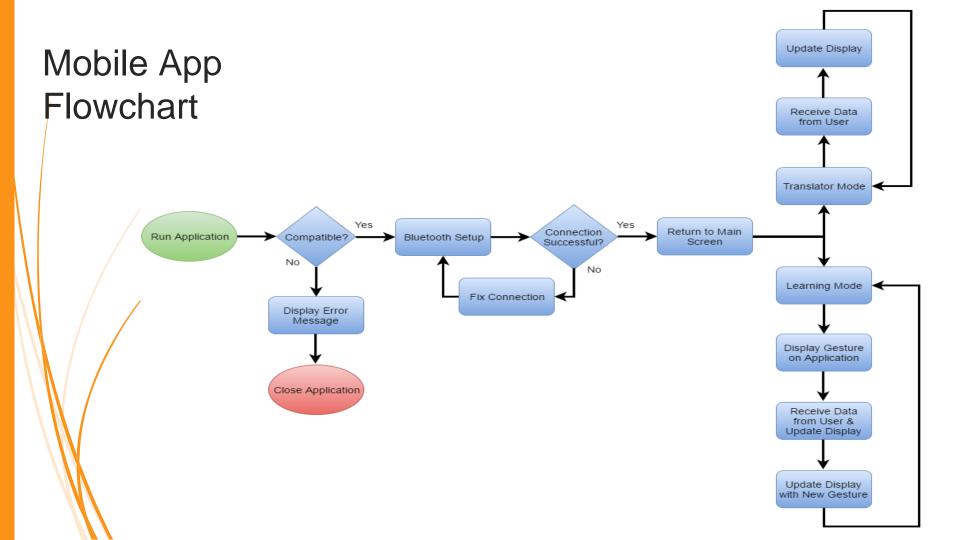
Android

- Programming language: Java
- IDE: Android Studio
 - Open source and cross-platform compatible
- BLE compatible
- Everyone in our group owns one!

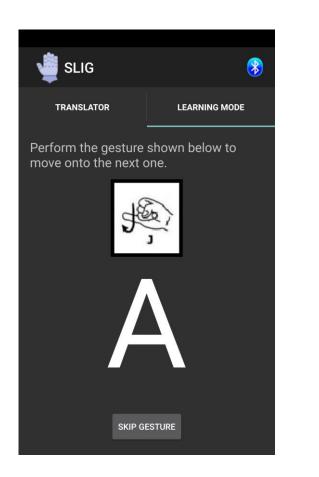
• ios

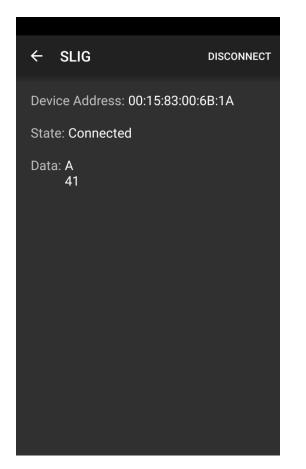
- Programming Languages: Swift or Objective-C
- IDE: Xcode
 - Only Mac OS compatible
- BLE compatible

/ Windows


- Programming Languages: C++, C#, and Visual Basic
- IDE: Visual Studio
- BLE compatible

Android


Minimum Requirements		
Device Type	Android	
Mobile Platform	Smartphone	
Bluetooth Version	Bluetooth Low Energy v4.0	
Platform Version	Android 4.3	
Codename	Jelly Bean-MR2	
Android API Level	18	


User Interface

User Interface

Budget And Financing

Sponsored by: Boeing and Leidos

BOEING

leidos

- Initial Budget Estimate: \$550
- Final Project Cost: \$825

Part Description	Price per Unit (\$)	Quantity	Cost (\$)
Flex sensors 4.5"	\$12.95	5 15	\$194.2
Flex sensors 2.2"	\$7.95	1	\$7.9
Development Board	\$20.87	3	\$62.6
ATmega328P	\$13.99	3	\$41.9
Bluetooth Module	\$11.29	4	\$45.1
Accelerometer & Gyroscope	\$29.55	5 2	\$59.1
Battery	\$22.20	1	\$22.2
РСВ	\$49.60	1	\$49.6
PCB Components	\$49.76	1	\$49.7
2nd PCB Components	\$52.99	1	\$52.9
3rd PCB Components	\$34.08	1	\$34.0
Glove and Wristband	\$20.22	2 2	\$40.4
Glove and Armband	\$45.00) 1	\$45.0
Soldering Materials et al	\$120.00) 1	\$120.0
Total cost			825.
Boeing & Leidos sponsorship			\$359.8
Difference			\$465.3

Questions ?

