G12 PedalVision

Ayesha Arif (EE)
Brian Boga (EE)
Kevin Leone (CPE)
Jose Ramirez (EE)

Motivation / Objectives

1. Alternative to full digital unit
2. Alternative for expensive single analog effect
3. Remove user creative limitation due to digital effect programmability
4. Practice or performances will be more interesting and engaging with LED matrix feedback display
5. More portable and less expensive

Project Overview

Requirement Specifications

- Analog effects
- Input impedance of at least 500K
- Output impedance of no more than 10K
- Bypass full frequency response from $20 \mathrm{~Hz}-20$ KHz
- Knobs to adjust volume, drive, and tone
- Controls to toggle effect on and off
- Digital effects
- DSP chip/microcontroller
- LCD User interface
- Knobs for adjusting digital values
- Control to toggle effect on and off
- LED display
- Microcontroller for LED matrix operations
- Multiple modes of operation
- Size, Weight, Cost
- No more than 30 lbs
- No larger than 15 cm^3
- \$300 limit for audio
- \$200 limit for LED system

Analog Effects Signal Chain

- Order Matters
- Why?

Input Buffer/ External Effects Interface

- Unity gain buffer implemented using op amp
- Simple implementation
- Low part count
- Why not Emitter Follower Transistor buffer?

Op amp selection

- Why OPA164x?
\(\left.$$
\begin{array}{|l|l|l|l|l|l|l|}\hline \begin{array}{l}\text { Op Amp } \\
\text { Model }\end{array} & \begin{array}{l}\text { Input } \\
\text { Impedance }\end{array} & \begin{array}{l}\text { Output } \\
\text { Impedance } \\
\text { @1k }\end{array} & \begin{array}{l}\text { Gain } \\
\text { Bandwidth } \\
\text { Product }\end{array} & \begin{array}{l}\text { Input } \\
\text { Voltage } \\
\text { Noise @ } \\
\mathbf{1 K H z}\end{array} & \begin{array}{l}\text { Total } \\
\text { Harmonic } \\
\text { Distortion }\end{array} & \text { Price } \\
\hline \text { TLO7xx } & 10^{\wedge 12 \Omega} & \begin{array}{l}\text { Not in data } \\
\text { sheet }\end{array}
$$ \& 3 \mathrm{MHz} \& 18 \mathrm{nV} / \sqrt{ } \mathrm{Hz} \& 0.003 \% \& Not

considered\end{array}\right]\)| OPA827 | $10^{\wedge 13 ~} \Omega$ | 20Ω | 22 MHz |
| :--- | :--- | :--- | :--- |
| OPA164x | $10^{\wedge 13 ~} \Omega$ | 10Ω | 11 MHz |

Analog Effects

Compression

- LM13700
- Amplify softer signal
- "Compress" larger signal
- Add sustain

Compression

Compression Output

Analog Effects

Distortion and Overdrive

- Both use diodes to create clipping
- Symmetric vs Asymmetric clipping
- Why two amplification stages?

Distortion

- Distortion at any volume level
- Hard clipping
- Adds some compression

Simplified Distortion Outputs

High Gain

Actual Distortion Circuit Output

Analog Effects

Overdrive

- More distortion as volume level increase
- Soft Clipping
- Can be used as a volume boost after other distortion effects

Simplified Overdrive Outputs

Actual Overdrive Circuit Output

Analog Effects

Tone Stack

- Tone adjustment
- Versatile with only two controls

	Bass Control Position	Treble Control Position
Highpass	0	10
Lowpass	10	0
Mid boost	0	0
Mid Scoop	10	10
Flat band	5	5

Complete Tone Stack

Tone Stack Simulation Frequency Sweep

Flat Band

Tone Stack Simulation Frequency Sweep

- Mid Boost

Tone Stack Simulation Frequency Sweep

- Mid Scoop

Tone Stack Simulation Frequency Sweep

- Highpass

Tone Stack Simulation Frequency Sweep

- Lowpass

Digital Effects - Design Approach

Digital Effects - Single Board

Schematic

Board

Digital Effects - Input and Output Filters

Schematic

- Anti-aliasing filter
- Reconstruction Filter
- Power Regulation
- Potentiometer Input

input dicital code

Component Selection

- Filters

Op Amp	Advantage	Mouting Type	Cost
TL074	Low Noise, Enough Channels	Through Hole	$\$ 0.62$
	Surface Mount	$\$ 0.82$	
TL084	Readily Available, Enough Channels	Through Hole	$\$ 0.00$
	Surface Mount	$\$ 0.52$	

- Power Regulation

Regulator	Advantage	Mounting Type	Cost
MC79M05BDTRKG	Small footprint	Surface Mount	$\$ 0.64$
LM7085	Readily Available	Through Hole	$\$ 0.00$

- Resistors/Capacitors/Diodes: Surface mount \& Through Hole

Board

Digital Effects - DSP

Digital Effects - DSP/MCU Chip

TMS320C6720

- Pros
- High Speed/Quality
- Faster and more accurate calculations
- Cons
- High Cost Dev Board
- Harder to code
- Little documentation for guitar effects
- Requires JTAG programmability

STM32F405ZGT6 (Hoxton Owl Based)

- Pros
- Lots of documentation (HW \& SW)
- Cheaper Dev board
- Open source
- ARM based DSP libraries
- USB programmability
- Owl Firmware
- Cons
- Slower/lower quality

Digital Effects - Hoxton OWL Digital

- Open source
- Software
- Hardware
- Filter PCB design based on OWL
- Firmware available for modifications
- Helpful community
- Users will not be limited to the effects we create.
- Online effect library and compiler
- Plug and Play

Digital Effects－Components

－STM32F405ZGT6 ARM Cortex M4 32bit
－Up to 168 Mhz
－Floating Point unit
－On chip memory
－Flash 512 MB
－SRAM 192 kB
－ 15 Communication interfaces
－Serial wire debug interface
－Low power operation
－Compatible with all ARM tools（including dsp libraries）

life．augmented

$108 \mathrm{~V}_{\mathrm{DD}}$
107 107
$106 \mathrm{~V}_{\mathrm{SS}}$
105 $105 \mathrm{~V}^{2} \mathrm{CAP}-2$
105 PA 13 104 PA 12 ${ }_{103}^{104}$ EPA 12 103 EPA 11
102 EPA 10 ${ }_{101}$ EPA PA9 100 PPA9 100 PA 8
99
98

98 PC 9 98 PPC8 ${ }_{9}^{97}$ PPC7 | 96 |
| :--- |
| 95 |
| 95 |
| $\mathrm{~V}_{\mathrm{DD}}$ | ${ }_{94}^{95} \mathrm{JV}_{\mathrm{sS}}$ $94 \mathrm{EV}_{\mathrm{SS}}$

93
92 PG 8 93 民PG8
92 民PG7
91 EPG6 91 EPG6 90 PGG5

89 \begin{tabular}{l}
89

88

88

\hline 8

87

86

86

\hline 8 PG 2

\hline 15
\end{tabular} ${ }^{86}$ EPD15 85 PD14 ${ }_{84} \mathrm{EV}_{\mathrm{DD}}$ $84 \mathrm{EV}_{\mathrm{DD}}$

83
$\mathrm{EV}_{\mathrm{ss}}$
83 日V V_{SS}
82
81
82 ƏPD13
80
80
80 戶PD11
79 日PD10
79 قPD10
78 戶PD9
77 日PD8
76 صPB15
75 日PB14
74 日PB13 ${ }_{73}$ 日PB12

Digital Effects - Components

- SD Ram - IS61WV51216BLL-10TLI
- Used to hold program memory
- Also used for storing samples for effects
- 8 MB
- 10 nS access time
- 100 MHz
- ADC/DAC - WM8731
- ADC: Converts input signal from analog effects to digital values
- DAC: Converts digital values back to an analog signal
- Up to 24 bit Delta-Sigma
- Supported 8 kHz to 96 kHz

■ Used 48 kHz

Digital Design Approach - Interface

- Very simple user interface
- Anyone can easily use
- Natural to Users
- Footswitch to turn digital on or off
- Potentiometers for parameter changes

Digital Effects - Interface Components

- Atmega328p
- Up to 20 MHz
- Drive the LCD display
- Display loaded effect and value
- Used with Arduino Uno
- LCD Display
- 20x4 characters
- I2C module for communication

Digital Design Approach - Echo

- Used to create a copy of the input and delay it slightly
- Depth continues to decrease the impact of the copy the longer it continues
- Controls
- Delay
- Feedback
- Level

Digital Design Approach - Flanger

- Used to create a unique sweeping spacelike sound.
- Function: $\mathrm{y}(\mathrm{n})=\mathrm{x}(\mathrm{n})+\mathrm{d}^{*} \mathrm{x}(\mathrm{n}-\mathrm{M}(\mathrm{x}))$
- y: Output Signal
- x: Input Signal
- d: depth
- n : sample time step
- M: Length of delay line
- Controls
- Delay
- Depth
- Level

FeedForward Comb filter

Digital Design Approach - Reverb

- Used to give the output sound the as if it was recorded in a large room
- Achieved by overlaying multiple delays with comb filters, then passing through allpass filters.
- Controls
- Room Size
- Damp
- Level

Schroeder Reverb Block Diagram

LED Matrix Feedback Display (LED MFD)

- General goals
- Read the frequency of an input analog signal
- Display frequency as a color
- Introduce another way to enjoy the music you are playing

MCU

	Flash	EEPROM	RAM	Genral Purpose i/o	16-bit PWM	ADC Channels	Cost
ATMEGA328	32 KB	1 KB	2 KB	23	6	8	$\$ 1.38$
ATMEGA2560	256 KB	4 KB	8 KB	86	12	16	$\$ 12.35$
ATMEGA2561	256 KB	4 KB	8 KB	54	6	8	$\$ 12.07$

TLC5955: LED constant current driver

- 48-channel constant current output
- 281 trillion unique colors available
- 128 step current control per output
- 2mA-31mA
- Fault flags
- GSCLK of 33 MHz
- SCLK speed of 25 MHz
- Ability to be daisy-chained

ADC121s101: Analog to Digital Converter

- 12-bit ADC resolution
- Sampling rate of 1 MSPS
- Communicates serially
- SMD

Kingsbright RGB LED

Photo	Part Number / Description	Wavelength / Color	Luminous Intensity			Viewing Angle
			Min.	Typ.	Unit	
	AAA3528BGRS/129/C3 3.5X2.8MM RGB SMD LED	$\begin{aligned} & 470 \mathrm{~nm} \\ & 525 \mathrm{~nm} \\ & 621 \mathrm{~nm} \end{aligned}$	$\begin{gathered} 200 \\ 1000 \\ 120 \end{gathered}$	$\begin{gathered} 330 \\ 1600 \\ 220 \end{gathered}$	mcd @ 20 mA	120°

- 20 mA of current draw
- SMD
- Small in size
- Large viewing angle
- Cost: \$0.38 a unit

MIC1555: Clock

- Clock speeds of up to 5 MHz
- Outputs a square wave with a 50\% duty cycle
- SMD

Design of LED MFD

Design of LED MFD

1. ATMEGA 2560 makes request for voltage from ADC
2. ATMEGA 2560 interprets data using frequency Algorithm
3. ATMEGA 2560 outputs 769 -bits serially to TLC 5955 to output color
4. MIC 1555 drives TLC 5955 GSCLK which is used to create the various colors available to the TLC 5955

Color Theory

- There will be 12 unique colors reserved for each of the 12 major notes recognized
- These frequencies are centered around the popular Western $\mathrm{A} 4=440 \mathrm{~Hz}$ principal

Frequency Capture Algorithm

1. $A D C$ value is requested twice in succession and stored in A and then B
2. Values are checked to ensure that the slope is positive
3. Flag is checked to ensure that a reset cycle has occurred: reset = TRUE
4. A is checked to capture the time at which it crosses a threshold that is determined by the user, at which time the reset flag is set to False
5. System looks for a reset of the cycle to occur and then runs previous four steps
6. Both time stamps that are stored are used to calculate the period of the wave and thus frequency can be determined

Display Modes

- Two display modes are currently available
- More modes can be added post production

Display Modes: Tune

- The note being played will be displayed at a unique position along with it's uniquely mapped color
- Can be used during normal playing or during a "tuning" session
- Allows the user to visualize a "run" through the notes

Display Modes: All Flash

- All of the LEDs will display the same output color that is dependent on the input frequency at the same time.
- This mode is less reactive than the tune mode applying a check for stability before outputting a display.

Design approach

- 1st idea: All inclusive PCB
- 2nd idea: Separate power PCB from analog and digital
- 3rd and Final idea: 3 separate PCB’s

How to split the power?

Power Distribution

Step Down (Buck) Switching Regulators

- LM22674 was chosen for the 5 V supply
- Input Voltage Range : 4.5 V-42 V
- 5 V fixed output
- Up to 500 mA
- Switching frequency of 500 kHz
- Current limiting for overloads
- LMR14203 was chosen for the 9 V supply
- Input Voltage Range : 4.5 V-42 V
- Up to 300 mA
- Switching frequency of 1.25 MHz

Board Layout

Audio Unit Breakdown		
Part	Qty	Price
OPA1641	4	$\$ 11.52$
OPA1642	1	$\$ 4.20$
LM13700	1	$\$ 1.36$
R, C, \& Diodes	4	$\cong \$ 10$
3PDT	3	$\$ 14.36$
PCM3060	1	$\$ 18.45$
STM32F405ZGT6	1	$\$ 12.29$
IS61WV51216BLL-10TLI	1	$\$ 14.64$
WM8731	1	$\$ 4.50$
RRLCD204WB	2	$\$ 10.99$
Total		$\$ 4$

Responsibilities

	Primary	Secondary
Analog Effects	Jose	Ayesha
Digital Effects	Kevin	Jose
LED System	Brian	Kevin
Power Supply	Ayesha	Brian

Questions?

