G12 PedalVision

Ayesha Arif (EE)
Brian Boga (EE)
Kevin Leone (CPE)
Jose Ramirez (EE)

Motivation / Objectives

- 1. Alternative to full digital unit
- 2. Alternative for expensive single analog effect
- 3. Remove user creative limitation due to digital effect programmability
- 4. Practice or performances will be more interesting and engaging with LED matrix feedback display
- 5. More portable and less expensive

Project Overview

Requirement Specifications

- Analog effects
 - Input impedance of at least 500K
 - Output impedance of no more than 10K
 - Bypass full frequency response from 20 Hz-20 KHz
 - Knobs to adjust volume, drive, and tone
 - Controls to toggle effect on and off
- Digital effects
 - DSP chip/microcontroller
 - LCD User interface
 - Knobs for adjusting digital values
 - Control to toggle effect on and off

- LED display
 - Microcontroller for LED matrix operations
 - Multiple modes of operation
- Size, Weight, Cost
 - No more than 30 lbs
 - No larger than 15 cm³
 - \$300 limit for audio
 - \$200 limit for LED system

Analog Effects Signal Chain

- Order Matters
- Why?

Input Buffer/ External Effects Interface

- Unity gain buffer implemented using op amp
- Simple implementation
- Low part count
- Why not Emitter Follower Transistor buffer?

Op amp selection

• Why OPA164x?

Op Amp Model	Input Impedance	Output Impedance @1k	Gain Bandwidth Product	Input Voltage Noise @ 1KHz	Total Harmonic Distortion	Price
TL07xx	10^12 Ω	Not in data sheet	3 MHz	18 nV/√Hz	0.003%	Not considered
OPA827	10^13 Ω	20 Ω	22 MHz	4 nV/√Hz	0.00004%	\$10.13
OPA164x	10^13 Ω	10 Ω	11 MHz	5.1 nV/√Hz	0.00005%	\$2.88

Analog Effects

Compression

- LM13700
- Amplify softer signal
- "Compress" larger signal
- Add sustain

Compression

Compression Output

Analog Effects

Distortion and Overdrive

- Both use diodes to create clipping
- Symmetric vs Asymmetric clipping
- Why two amplification stages?

Distortion

- Distortion at any volume level
- Hard clipping
- Adds some compression

Simplified Distortion Outputs

High Gain Low Gain

Actual Distortion Circuit Output

Analog Effects

Overdrive

- More distortion as volume level increase
- Soft Clipping
- Can be used as a volume boost after other distortion effects

Simplified Overdrive Outputs

High Gain Low Gain

Actual Overdrive Circuit Output

Analog Effects

Tone Stack

- Tone adjustment
- Versatile with only two controls

	Bass Control Position	Treble Control Position
Highpass	0	10
Lowpass	10	0
Mid boost	0	0
Mid Scoop	10	10
Flat band	5	5

Complete Tone Stack

Flat Band

Mid Boost

Mid Scoop

Highpass

Lowpass

Digital Effects - Design Approach

Digital Effects - Single Board

Schematic

Board

Digital Effects - Input and Output Filters

Schematic

- Anti-aliasing filter
- Reconstruction Filter
- Power Regulation
- Potentiometer Input

Component Selection

Filters

Op Amp	Advantage	Mouting Type	Cost
TL074	Low Noise,	Through Hole	\$0.62
	Enough Channels	Surface Mount	\$0.82
TL084 Readily Available, Enough Channels		Through Hole	\$0.00
	Enough Channels	Surface Mount	\$0.52

Power Regulation

Regulator	Advantage	Mounting Type	Cost
MC79M05BDTRKG	Small footprint	Surface Mount	\$0.64
LM7085	Readily Available	Through Hole	\$0.00

• Resistors/Capacitors/Diodes: Surface mount & Through Hole

Board

Digital Effects - DSP

Digital Effects - DSP/MCU Chip

TMS320C6720

Pros

- High Speed/Quality
- Faster and more accurate calculations

Cons

- High Cost Dev Board
- Harder to code
- Little documentation for guitar effects
- Requires JTAG programmability

STM32F405ZGT6 (Hoxton Owl Based)

Pros

- Lots of documentation (HW & SW)
- o Cheaper Dev board
- Open source
- ARM based DSP libraries
- USB programmability
- Owl Firmware

Cons

Slower/lower quality

Digital Effects - Hoxton OWL Digital

- Open source
 - Software
 - Hardware
 - Filter PCB design based on OWL
- Firmware available for modifications
- Helpful community
- Users will not be limited to the effects we create.
 - Online effect library and compiler
 - Plug and Play

Digital Effects - Components

- STM32F405ZGT6 ARM Cortex M4 32bit
 - Output of 168 Mhz
 - Floating Point unit
 - On chip memory
 - Flash 512 MB
 - SRAM 192 kB
 - 15 Communication interfaces
 - Serial wire debug interface
 - Low power operation
 - Compatible with all ARM tools (including dsp

Digital Effects - Components

SD Ram - IS61WV51216BLL-10TLI

- Used to hold program memory
- Also used for storing samples for effects
- 8 MB
- 10 nS access time
- 100 MHz

ADC/DAC - WM8731

- ADC: Converts input signal from analog effects to digital values
- DAC: Converts digital values back to an analog signal
- Up to 24 bit Delta-Sigma
- Supported 8kHz to 96kHz
 - Used 48kHz

Digital Design Approach - Interface

- Very simple user interface
 - Anyone can easily use
 - Natural to Users
 - Footswitch to turn digital on or off
- Potentiometers for parameter changes
- I2C connection to LCD display

Digital Effects - Interface Components

Atmega328p

- O Up to 20 MHz
- Drive the LCD display
- Display loaded effect and value
- Used with Arduino Uno

- 20x4 characters
- I2C module for communication

Digital Design Approach - Echo

- Used to create a copy of the input and delay it slightly
 - Depth continues to decrease the impact of the copy the longer it continues
- Controls
 - Delay
 - Feedback
 - Level

Echo Block Diagram

Digital Design Approach - Flanger

Input

Used to create a unique sweeping spacelike sound.

- y: Output Signal
- o x: Input Signal
- o d: depth
- on: sample time step
- M: Length of delay line

Controls

- Delay
- Depth
- Level

FeedForward Comb filter

Digital Design Approach - Reverb

- Used to give the output sound the as if it was recorded in a large room
 - Achieved by overlaying multiple delays with comb filters, then passing through allpass filters.

Controls

- Room Size
- Damp
- Level

Natural Reverb

LED Matrix Feedback Display (LED MFD)

- General goals
 - Read the frequency of an input analog signal
 - Display frequency as a color
 - Introduce another way to enjoy the music you are playing

MCU

	Flash	EEPROM	RAM	Genral Purpose i/o	16-bit PWM	ADC Channels	Cost
ATMEGA328	32KB	1KB	2KB	23	6	8	\$1.38
ATMEGA2560	256KB	4KB	8KB	86	12	16	\$12.35
ATMEGA2561	256KB	4KB	8KB	54	6	8	\$12.07

TLC5955: LED constant current driver

- 48-channel constant current output
- 281 trillion unique colors available
- 128 step current control per output
 - o 2mA-31mA
- Fault flags
- GSCLK of 33MHz
- SCLK speed of 25MHz
- Ability to be daisy-chained

ADC121s101: Analog to Digital Converter

- 12-bit ADC resolution
- Sampling rate of 1 MSPS
- Communicates serially
- SMD

Kingsbright RGB LED

Photo	Part Number / Description	Wavelength / Color	Luminous Intensity			Viewing
Photo Part No	rait Number / Description		Min.	Тур.	Unit	Angle
	AAA3528BGRS/129/C3 3.5X2.8MM RGB SMD LED	470nm 525nm 621nm	200 1000 120	330 1600 220	mcd @20mA	120°

- 20 mA of current draw
- SMD
- Small in size
- Large viewing angle
- Cost: \$0.38 a unit

MIC1555: Clock

- Clock speeds of up to 5 MHz
- Outputs a square wave with a 50% duty cycle
- SMD

Design of LED MFD

Design of LED MFD

- 1. ATMEGA 2560 makes request for voltage from ADC
- 2. ATMEGA 2560 interprets data using frequency Algorithm
- 3. ATMEGA 2560 outputs 769-bits serially to TLC 5955 to output color
- MIC 1555 drives TLC 5955 GSCLK which is used to create the various colors available to the TLC 5955

Color Theory

- There will be 12 unique colors reserved for each of the 12 major notes recognized
- These frequencies are centered around the popular Western A4 = 440Hz
 principal

Frequency Capture Algorithm

- 1. ADC value is requested twice in succession and stored in A and then B
- 2. Values are checked to ensure that the slope is positive
- 3. Flag is checked to ensure that a reset cycle has occurred: reset = TRUE
- 4. A is checked to capture the time at which it crosses a threshold that is determined by the user, at which time the reset flag is set to False
- 5. System looks for a reset of the cycle to occur and then runs previous four steps
- 6. Both time stamps that are stored are used to calculate the period of the wave and thus frequency can be determined

Display Modes

- Two display modes are currently available
- More modes can be added post production

Display Modes: Tune

- The note being played will be displayed at a unique position along with it's uniquely mapped color
- Can be used during normal playing or during a "tuning" session
- Allows the user to visualize a "run" through the notes

Display Modes: All Flash

- All of the LEDs will display the same output color that is dependent on the input frequency at the same time.
- This mode is less reactive than the tune mode applying a check for stability before outputting a display.

Design approach

- 1st idea: All inclusive PCB
- 2nd idea: Separate power PCB from analog and digital
- 3rd and Final idea: 3 separate PCB's

How to split the power?

Power Distribution

Step Down (Buck) Switching Regulators

- **LM22674** was chosen for the 5 V supply
- Input Voltage Range : 4.5 V 42 V
- 5 V fixed output
- Up to 500 mA
- Switching frequency of 500 kHz
- Current limiting for overloads
- **LMR14203** was chosen for the 9 V supply
- Input Voltage Range : 4.5 V 42 V
- Up to 300 mA
- Switching frequency of 1.25 MHz

Board Layout

Current Build Budget

LED MFD Breakdown			
Part	Qty	Price	
ADC121S101	1	\$6.15	
ATmega2560	1	\$12.07	
TLC5955	4	\$24.08	
RGB LED	64	\$24.32	
РСВ	1	\$52	
Total		\$118.62	

Audio Unit Breakdown				
Part	Qty	Price		
OPA1641	4	\$11.52		
OPA1642	1	\$4.20		
LM13700	1	\$1.36		
R, C, & Diodes		≅\$10		
3PDT	4	\$14.36		
PCM3060	3	\$18.45		
STM32F405ZGT6	1	\$12.29		
IS61WV51216BLL-10TLI	1	\$14.64		
WM8731	1	\$4.50		
RRLCD204WB	1	\$10.99		
РСВ	2	\$4		
Total		\$104.31		

Responsibilities

	Primary	Secondary
Analog Effects	Jose	Ayesha
Digital Effects	Kevin	Jose
LED System	Brian	Kevin
Power Supply	Ayesha	Brian

