
Vic Vector: FPGA Game

Emulator Based on Tempest

by Atari©

Robert Baker, Tony Camarano, Drew Hanson,

Robert Higginbotham

School of Electrical Engineering and Computer

Science, University of Central Florida, Orlando,

Florida, 32816-2450

Abstract — Vic Vector is intended to re-create the classic
arcade game Tempest using a modern design. It preserves the
original functionality and quality of the game using a Field
Programmable Gate Array (FPGA) and updated analog
circuitry. The digital components such as the microcontroller
and vector-graphics processor are modeled using Verilog
HDL and programmed to the FPGA. The digital output from
the FPGA is processed using analog components to produce
vector-based voltage changes. These changes represent XY
coordinates used to generate vector graphics, a common
characteristic of many arcade games created in the 1980s.
Rather than using a traditional display, the analog voltages
are fed into a galvanometer laser which then draws the game
images to be displayed on any surface.

Index Terms — FPGA, Verilog, Vector Graphics, Game
Emulation, Galvanometer Laser.

I. INTRODUCTION

Vic Vector is a game emulation project which preserves

the classic arcade game Tempest by Atari© using modern

technology. Using the original schematics and

specifications for Tempest as a foundation, the digital and

analog components are re-created with Verilog HDL and

an updated hardware design. The primary objective was to

maintain the game characteristics, qualities, and flaws

while implementing a more efficient, effective, and robust

design. The project combines a Xilinx Spartan 3E 500K

FPGA – a moderately small-scale chip – with a

prototyping board containing the analog components such

as the Digital-to-Analog Converters (DAC) and analog op-

amp integrators. The FPGA contains all of the Verilog

HDL modules which model the digital components of the

game. These include the 6502 Microprocessor, Atari©

Math Box, Vector Generator, and game memory. The

analog circuitry processes the digital output from the

FPGA to generate voltages changes in X-Y coordinates.

The Laser Galvanometer Scanner CW20 receives these

voltage levels and the game images are produced. The

project uses a game controller similar to the original. It is a

spinner wheel controller that yields a data and clock input,

which dictate a player’s position in-game.

II. SYSTEM OVERVIEW

The project is comprised of three main components:

input circuitry, Verilog modules, and output circuitry. A

high-level block diagram of the design components and

interfacing is shown in Fig. 1.

A. Input Circuitry

The inputs include a spinner wheel controller and four

push buttons. The spinner wheel controller allows the user

to navigate through the sixteen different positions on any

given level of the game. The rotational direction is binary

in nature and is determined using the data and clock lines.

Once this signal has been processed, it is read into the

FPGA. The push buttons are active-high and are tied to

game controls such as “Fire” and “Zap.” These signals are

sent to the same input module as the spinner wheel

controller.

B. Verilog Modules

The FPGA is programmed with several Verilog modules

as shown in Fig. 1. The Pokey Control module receives

input from the push buttons and spinner wheel controller.

This information is relayed to the 6502 Microprocessor

module. Both the Pokey and 6502 modules are open-

source VHDL files. The 6502 module accesses the Math

Box, Vector Generator, and Memory components via a

pre-defined memory map and address decoder. It is

responsible for executing the game ROM instructions.

This includes controlling Math Box operations and writing

instructions to the Vector Generator. The Math Box

consists of a set of ROMs and ALUs which perform the

mathematical operations necessary to generate the vector

graphics. This component is a unique feature of Atari©

games. Using pre-defined memory, it generates the

appropriate mathematical data for the game. The 6502

uses this data to write instructions to the Vector Generator.

The Vector Generator is the vector-graphics driver for the

system. It is essentially a simple microprocessor

containing a small set of microinstructions. These

instructions, generated by the 6502 microprocessor, dictate

the vector drawing, scaling, and timing parameters for the

digital output of the FPGA. Additionally, the Vector

Generator has a small ROM which contains frequently

used drawings and shapes, such as letters and numbers.

C. Output Circuitry

The output circuitry consists of three DACs, several op-

amps, and two integrators. Two DACs handle the 2’s

complement X and Y digital output from the FPGA. The

third DAC is responsible for scaling. Based on a pre-

determined digital scaling value, the output of the scaling

DAC controls the value of the reference voltage for the X

and Y DACs. Once the digital values have been converted

to their respective analog voltages, they are tied to an X

and Y integrator. The integrator keeps track of the

previous X-Y positions and integrates the new value

representing a change in said positions. A digitally

controlled switch is installed across the capacitor to

occasionally clear the voltage stored and reset the position

to the middle of the display. The output of the integrators

is fed into the laser galvanometer scanner which produces

a laser display based on the changing X-Y values.

III. 6502 MICROPROCESSOR

The 6502 Microprocessor controlled all of the

operations for Tempest. It was developed in 1975 for

MOS Technology and was most notably used in Apple I

and Apple II computers [1]. The 6502 is an 8-bit

microprocessor that supports 56 instructions. There are

nine different addressing modes that are supported, such as

immediate, absolute, and relative. The 6502 has three

main buses: Bi-Directional Data bus, Address-High bus,

and Address-Low bus. In addition to these three busses,

the 6502 also supports the following six registers:

Fig. 1. High-level block diagram of the input circuitry, Verilog modules, and output circuitry.

(1) A – 8-bit accumulator register

(2) X and Y – 8-bit index registers

(3) SR – 8-bit process status register

(4) SP – 8-bit stack pointer

(5) PC – 16-bit program counter split into two 8-bit

register (PCL and PCH)

A. Clock Signals

The 6502 operates using a dual-phase clocking system

with clock signals Φ1 and Φ2. The Φ1 and Φ2 clock signals

are generated in such a way that they are the inverses of

each other. This allows one cycle for internal instruction

execution and a complimentary signal used to access

external components such as memory. When the Φ1 clock

signal is high, data is latched into the appropriate locations

within the 6502. When the Φ2 clock signal is high, the

internal components carry out their respective functions.

Fig. 2 illustrates the timing waveforms for the dual-phase

system.

Fig. 2. Timing waveforms for the 6502 dual-phase clocks.

B. VHDL Source Code and Adaptation

The source code for the 6502 that is being utilized for

this project was initially written in VHDL by Daniel

Wallner and published for use on OpenCores.org. [2] This

code was written in such a way that it would be compatible

for the 6502, 65C02, and 65C816 chips. Wallner’s code

has been used in similar emulator project for the Asteroids

by Atari©. The VHDL code has three sub-modules. The

first module is T65_MCode.vhd, which handles decoding

the address to perform the operation of the 56 instructions

with respect to the desired addressing mode. The next

module is T65_ALU.vhd, which performs all arithmetic

and logical operations. It is also capable of executing

Binary-Coded Decimal operations. The final module,

T65.vhd, handles checking the enable and clock signals to

verify that the system is really ready for operation, while

also handling the execution of interrupt signals.

The 6502 VHDL code only executes op-codes when the

enable and clock signal are both logic-high. In order to

attain an effective 1.5MHz execution cycle necessary for

Tempest specifications, the clock signal is given a 6MHz

pulse. The enable signal will run for two clock cycles

before going low, which results in the effective dual-phase

clocking system at 1.5MHz. This timing waveform is

shown in Fig. 3.

Fig. 3. Timing waveforms of the clock and enable signals.

C. Memory Map

The 6502 operates using a memory mapped Input-

Output (I/O) scheme. Tempest had a variety of I/O devices

mapped to pre-determined address locations. For

example, if the 6502 needs to access RAM, it will use

address locations 16’h0000-16’h07FF. If the 6502

accesses a memory location within this range of memory

addresses, the result would be activating the RAM so that

data may be read or stored. This memory map determines

the control and access signals for the other modules such

as the Math Box and Vector Generator as well.

D. Address Decoder and Access Procedures

The address decoder for the 6502 is instantiated as a

separate module that will utilize a series of case statements

to enable a set of control lines for accessing various I/O

devices. Based on the values of these control lines, data

will then be latched to and from the 6502 between the

Math Box, Vector Generator, ROM, and RAM. These

four components receive the 6502 output address, directly

passed to their respective modules for their own internal

operations.

IV. MATH BOX

 The Math Box handles all computations needed within

the game. These operations include tracking the game's

high-scores and performing the trigonometric calculations

needed to rotate some of the game's graphics as they move

throughout the screen. The 6502 interfaces the Math Box

as a memory-mapped I/O device. Various addresses

correspond to different Math Box operations. For

example, writing to addresses 6080-609F corresponds to

“Math Box Start,” which will start the Math Box clock and

begin performing the specified subroutine. The Math Box

is given instructions from the 6502 via the External

Address Bus (EAB). The top four bits of this bus are sent

to the address decoder, which activates the high-score

module, the POKEY module or the Math Box, depending

on the desired operation. This address decoder consists

mostly of 2-to-4 decoders and some basic combinational

logic.

A. Basic Functionality Overview

In the Math Box, the bottom five bits from the EAB are

fed to ROM A1 which contains the first operation to be

performed. Since ROM A1 allows five bits for

addressing, there are 32 instructions that are supported by

the Math Box. This address is essentially a sub-routine

call, as all Math Box functions must begin with one of

these 32 functions. This initial address selects an 8-bit

ROM address which is then forwarded to a program

counter. This program counter is controlled by the PCEN

signal and a Math Box clock signal, both of which are

controlled by the EAB and the clock signal from the 6502.

When the Math Box is not active, the Math Box clock and

PCEN are set to logical-low, thus disabling the counter.

When the counter is active, the address from ROM A1 is

forwarded to six 1 KB ROMs. All six ROMs have 256

memory addresses and output a 4-bit signal. Two of the

ROMs (ROMS K and L) forward their signals back to a

flip-flop and are then fed to the program counter. Another

ROM sets control bits such as the overflow flag or the

Math Box STOP signal. A summary of this data flow is

shown in Fig. 4.

Due to the fact that FPGAs provide limited space for on-

chip memory, some small changes were made to the

original Math Box schematic in order to reduce the

amount of memory that our project would require. For

example, the A1 ROM is coded as a case statement with

32 different scenarios. This reduced the amount of

required ROM by 256 bits.

All of the coding and simulation for the Math Box was

done using Xilinx© ISE Project Navigator CAD Software.

While this software was critical to our project, it did cause

some issues. Most notably, Xilinx does not allow

instantiated FPGA memory in logical simulation. To

bypass this problem, we created long case statements

which contained the contents of the ROMs used. A special

extension called Coregen was required to instantiate the

ROMs for our FPGA.

B. AM2901 ALU Module

The Math Box ROMs K and L combine signals with

three of the other ROMs, selecting the function of the four

AM2901 Bit-slice ALUs. The AM2901 supports

thousands of mathematical operations. These ALUs can

handle 8-bit word lengths as operands because they are

configured in parallel. Various control lines allow for a

parallel configuration. These lines include the carry-out

bit and the carry-in bit. The input data and output data

reside on the External Data Bus (EDB). The original

game schematics call for this bus to be an 8-bit bi-

directional data bus. However, our implementation

employs two separate buses for proper 6502 interfacing.

Incoming data is written to EDB-in by the 6502 and sent

to the various other modules. The output of these modules

is written to EDB-out. The 6502 will then latch data from

the EDB-out to the EDB-in as needed. Permissions were

attained in order to use pre-existing open-source VHDL

code for the AM2901. [3]

Fig. 4. High-level block diagram of the Math Box.

C. High-Score Memory

Tempest includes a basic high-score memory. This

memory contains 32 memory addresses, which translates

to a maximum of 32 high-scores. The High-Score

Memory module is activated by the EAB and the data is

read in through the EDB-in. When the scores need to be

displayed, data is written to the EDB-out.

D. POKEY Module

The Atari© POKEY chip serves as the main interface

between the user and the game, as well as generating audio

output. Similar to the Math Box and High-Score modules,

the POKEY module is activated by the EAB. The

POKEY module contains two VHDL POKEY chip

emulators. This is open-source and has been used in

similar Atari© emulation projects. [4] One module detects

when the player input buttons (“Zap” and “Fire”) have

been pressed. The other module processes input from the

spinner wheel controller. The original game supported

two sets of buttons, two spinner wheel controllers and the

option to flip the image across the horizontal axis. The

image flip was created to support a “Cocktail” style layout,

in which opposing players sat facing each other. Only a

single-player option is implemented in the design, which

means the two-player capabilities were omitted. The

POKEY modules read in signals provided by the spinner

wheel controller and buttons. If the POKEYs are activated

by the EAB, their data is written to the EDB-out bus.

V. VECTOR GENERATOR

The Vector Generator controls the game’s digital vector

graphics output. The original Atari© Tempest Vector

Generator was a very simple microprocessor built

primarily from discrete TTL chips. The Verilog module

written for this component combines a direct

implementation of some of the original logic chips with a

more efficient use of hardware. Many of the old TTL parts

used were not used to their full capacity, e.g. a D flip-flop

which contained a clear signal that was never used.

Therefore, the original hardware could be optimized to

only include the necessary functions for a given operation.

A. Microinstructions

The Vector Generator has the following

microinstructions:

(1) VCTR – vector with a position range of ± 1024

(2) SVEC – short vector with a position range of ±16

(3) CNTR – centers the vector beam to position (0,0)

(4) HALT – halts all Vector Generator operations

(5) SCALE – changes binary and linear scaling parameters

(6) JMP – jumps to a given address

(7) JSR – stores current address and executes sub-routine

(8) RTS – returns from sub-routine

The VCTR and SVEC handle all the digital X-Y

coordinate changes. The time it takes to draw the current

vector is 2.73ms for a normal vector, and 21.6μs for a

short vector. These timings are generated based on an

internal counter which varies depending on the instruction

being executed. The timing may also be altered given a

binary scaling parameter. If the vector should be scaled by

a factor of 2, the SCALE instruction may alter the binary

scale register. This register controls the counter timing.

For a larger binary scale, the timing will be decreased,

producing a shorter vector without changing the X-Y

digital output. Using this method, an image may start small

and grow given an interval time. This was a common

technique for Tempest, as game enemies started small and

would progressively enlarge as they approached the

player’s ship.

The CNTR instruction allows the vector-drawing beam

to be re-positioned to the center of the screen. The purpose

of this instruction is clear the integrators’ capacitors, as

over a period of time, the noise and error in the analog

system will be accumulated. Thus, CNTR controls the

digital switches in parallel with the integrators’ capacitors.

HALT will clear these capacitors, but additionally

prevents the Vector Generator from further operation until

a subsequent start signal has been sent.

The Vector Generator employs a 4-word stack and 12-

bit Program Counter (PC) which allows for the

implementation of the JMP, JSR, and RTS instructions.

These addressing instructions are used extensively by

Vector Generator ROM in order to access frequently

drawn shapes and characters.

B. Vector Generator ROM and RAM

The Vector Generator ROM contains preset sub-routines

which were developed to make drawing frequently needed

shapes more efficient. For example, the first twenty-six

sub-routines in this memory are the instructions to draw

the letters of the alphabet. Other sub-routines include the

Atari© trademark symbol, the Tempest ship, and game

level designs. The ROM was available as an open-source

file and used in previous emulations of Tempest. The

Vector Generator RAM stores the operating instructions of

the module. At the start of operation, the Vector Generator

executes from RAM, which will contain calls for ROM

sub-routines as well as various instructions for scaling and

centering.

The original Vector Generator used eight 10-bit address

RAMs to achieve an effective 4096 KB of space. This was

due to the limitation of only a 4-bit read width of the RAM

component used at the time. Rather than implementing this

inefficient design, the RAM module used in the project’s

Vector Generator combines all of the space into a single

RAM component. This allows for a much cleaner access

of data within memory.

C. 6502 Interfacing

The Vector Generator and the 6502 Microprocessor are

able to communicate. All of the instructions written to

Vector Generator RAM will come from the 6502.

According to original design, the 6502 may only write to

the Vector Generator during one half-cycle of a 1.5 MHz

time period. This was due to the way the original game

worked using the dual-phase clocking of the 6502

Microprocessor. Since the open-source 6502 VHDL does

not use a dual-phase system, some adaptation was

necessary in order to achieve the same functionality as the

original game. When the 6502 wants to access the Vector

Generator, a control VMEM will activate. This signal is

fed back to the 6502, causing the 6502 to execute the

break sub-routine. This will effectively postpone the 6502

from executing its next actual instruction for five cycles.

During this time interval, the enable clock for the 6502

module will become low, literally freezing its operation

until is once again high. Since this enable clock is tied to a

1.5 MHz clock, it is also synced with the valid access

interval of the Vector Generator. Therefore, the 6502 may

write to the Vector Generator since VMEM is active and

the enable clock is low. Normal operation will resume on

the next positive edge of the enable clock for both

modules.

D. Digital Output

The Vector Generator outputs the following information

from the FPGA to the analog prototyping board:

(1) 10-bit 2’s complement change in X coordinate

(2) 10-bit 2’s complement change in Y coordinate

(3) 8-bit linear scaling register

(4) VCTR

(5) CENTER

The X and Y coordinate changes are sent to 12-bit

DACs which are configured to represent values from

±1024. The 8-bit linear scale is processed by a DAC which

controls the amount of reference voltage given to the X

and Y DACs. VCTR is used to enable drawing time

intervals. It is affected by the length of the vector as well

as binary scaling. It toggles the linear scaling DAC, which

consequently toggles the reference voltage for the X and Y

DACs. CENTER controls the digital switch across the

integrators’ capacitors. When it is active, it closes a line in

parallel with each capacitor, draining the voltage stored

and effectively centering the beam to (0,0).

VI. ANALOG COMPONENTS

The analog components for the project are made up of

input and output circuitry. The input components are

comprised of a spinner wheel controller and four arcade-

style push buttons. The output components consist of

three Digital-to-Analog Converters (DACs), two integrator

op-amps, and several amplifying op-amps.

A. Input Circuitry

 The first part of the input is the spinner wheel controller.

This controller allows the player to navigate through the

game interface. The controller chosen is the Turbo Twist 2

from GroovyGameGear.com. [5] This particular controller

uses an interface board that is powered by ± 5 VDC

supplied by the FPGA board. It outputs a data and clock

line which oscillates between 0 and 4 VDC. The FPGA

input voltage is 3.3 VDC, so a 12 kΩ pull-down resistor

performs a voltage division to drop the voltage to a

useable level. The direction of motion is determined by

the timing of the data and clock lines. For instance, if the

if the controller knob is spun in the counter-clockwise

direction, the data line is logic-high when clock is logic-

high. The frequency of the data and clock lines varies

between approximately 200 and 1000 Hz, based on the

rate at which the spinner is rotated. At maximum

frequency, the player’s game position changes every 1 ms,

which is too fast given that the game only has sixteen

positions on any level. In order to actuate some delay of

the input, a digital 11-bit counter is employed. The counter

will increase every positive edge of the clock, but the

position will not change until a certain bit of the counter

has toggled. The lower 7 bits must be filled to increment

the player’s position by one. After implementing this

method, the player changes position at maximum

frequency every 0.128 s.

 Four push buttons represent the following player input

signals: Fire, Zap, Coin-In, and Start. Each button is

connected to 3.3 VDC supplied by the FPGA. The buttons

operate by using a three-terminal micro-switch. Once a

button is pressed, the normally-open contact is closed

which ties logical-high voltage to the FPGA.

B. Output Circuitry

 The output circuitry requires three multiplying DACS:

one DAC for the scaling of the object to be drawn and the

other two for plotting the X and Y coordinates. There are

several op-amps used throughout the circuit. The TL082

op-amp is used for all cases due to its high speed and low

current requirement. [6] It is biased with ±15 VDC. An

ADG201AKN digital switch is needed for use with the

integrator op-amps. The ADG201AKN has a high

switching speed, low current requirement, and low leakage

current. [7] It used ± 15 VDC. The DAC08 is used as the

scaling DAC in this design as it there are 8-bits of digital

scaling input and has a low current requirement. [8] The

DAC08 is powered with ±15 VDC. Based on the digital

inputs from the FPGA, the scaling reference voltage can

be incremented from 0 to 10 VDC determined by the 8-bit

digital scaling input. When the scaling is increased, the

amount of current that leaves the IO pin of the DAC08

increases. This current is sent through an op-amp with

gain of 10 and is used as the reference voltage for the X-Y

coordinate DACs.

 The XY coordinate DACs are the LTC7541A. It has a

low current requirement and a 12-bit digital input. [9] This

DAC is powered by +15 VDC and takes 11 digital signals

(LSB is grounded) from the FPGA output. The 11 digital

inputs allow the LTC chip to output a digital swing from

±1024 positions which equate to ± 10 VDC. The output of

the LTC7541A feeds into an integrator op-amp as shown

in Fig. 5.

Fig. 5. Simplified Multiplying DAC and Integrator Op-Amp.

The circuits for the X and Y analog processing are

identical. The integrator op-amp tracks the previous

voltage compared to the voltage coming in and draws a

straight-lined vector from its previous position to the new

position specified. The new position is specified from the

output of the LTC DAC. The integration timing chosen

for the integrator is important because it determines the

speed at which the lines are drawn. This timing is

controlled by the RC value of the integrator. For this

design, the RC value is set by (1).

2.73 ms ≈ 27.3kΩ ∙ 0.1 µF (1)

This timing is based on the original timing parameters of

the Tempest vector generator. The capacitor bridging

from the –VIN and VOUT pins of the integrator op-amp will

store previous voltage values and periodically needs to be

discharged. This is due to the gradual accumulation of

noise and error which will lead to instability of vector

images. This design uses the ADG201AKN digital switch

which is controlled by the FPGA in order to discharge the

capacitor. The output of the integrator op-amp is sent to

an inverting op-amp to counteract the natural inversion of

the integrator. The output of the inverting op-amp is the

final X and Y voltage. It swings between ±10 VDC.

Plotting these voltages versus each other will produce a

vector-graphics image.

C. Power System

 All silicon chips used in this design are biased with ± 15

VDC, with the exception of the LTC7541A. It only

requires +15 VDC and ground. The ±15 VDC is supplied

by a voltage regulator. The regulator used for this design is

the IA0515D. It requires +5 VDC as power and generates

a ± 15 VDC output. The regulator uses 1 W of power and

outputs ±33 mA of current to the positive and negative

voltage terminals, respectively. [10] The entire analog

circuit draws approximately 26 mA of current. All of the

silicon chips have a 0.1 µF decoupling capacitor tied to

ground on their power terminals. Decoupling capacitors

are necessary for maintaining signal stability.

D. PCB Design

 All parts in the PCB design are through-hole

components in order to simplify the testing process. A

standard 4-layer, 5in. by 5in. PCB is large enough to

create the entire circuit. The spinner wheel controller

data/clock lines and four buttons have their inputs

hardwired to the PCB. The FPGA board is mounted on

top of the PCB via through-hole headers.

27.3 kΩ 0.1 µF

VII. CONCLUSION

Vic Vector is a game emulator that preserves the

original hardware characteristics of the classic arcade

game Tempest by Atari©. The digital hardware is modeled

in Verilog HDL and programmed using an FPGA. The

6502 Microprocessor interfaces with the other modules

and runs the game ROM. It is responsible for retrieving

data from the Math Box and writing drawing instructions

to the Vector Generator. The Vector Generator outputs

digital vector data to the analog circuitry. The analog

hardware has been updated and adapted to interface the

FPGA and a laser galvanometer scanner used to display

the game’s vector graphics.

ACKNOWLEDGEMENT

Our group wishes to recognize and thank Dr. Samuel

Richie, Dr. Thomas Wu, Dr. Mingjie Lin, and Mr. Don

Harper for their assistance and support throughout our

project.

REFERENCES

[1] "6502 Technology." 6502 Technology. Web. 19 July 2011.

<http://www.6502.buss.hk/6502>.

[2] "T65 CPU :: Overview :: OpenCores." Home :: OpenCores.

Web. 19 July 2011. <http://opencores.org/project,t65>.

[3] "FPGA ARCADE - Asteroids Main Page." FPGA ARCADE

- Main Page. MikeJ, 2003. Web. 22 July 2011.

<http://www.fpgaarcade.com/ast_main.htm>.

[4] Nasr, Amr. "Microprocessor AM2901 4 Bit

Microprocessor Slice." VHDL and Verilog Designer. 22

Dec. 2010. Web. 22 July 2011.

<http://vhdldesign.blogspot.com/>.

[5] TurboTwist 2™ Arcade Spinner Control Product

Information." GroovyGameGear.com. Web. 20 Apr. 2011.

<http://groovygamegear.com/webstore/index.php?main_pag

e=product_info&%20products_id=268&zenid=c2619c1529

e3cb46c86264b212b42257>.

[6] “Wide Band Dual JFET Input Operational Amplifier”

National.com. Web. 21 July 2011

<http://www.national.com/mpf/TL/TL082.html#Overview>

 [7] “ADG201A: 60 Ohm, Quad SPST Switch” Analog.com.

Web. 21 July 2011. <http://www.analog.com/en/other-

products/militaryaerospace/adg201a/products/product.htm>

 [8] “DAC08: 8-Bit, High Speed, Multiplying D/A Converter”

Analog.com. Web. 21 July 2011.

<http://www.analog.com/en/digital-to-analog-

converters/da-converters/dac08/products/product.html>

 [9] “Linear Technology Improved Industry Standard CMOS

12-Bit Multiplying DAC.” Linear.com. Web. 21 July 2011.

<http://www.linear.com/product/ltc7541a>

[10] “IA Series” Xppower.com. Web. 21 July 2011

<http://www.xppower.com/orderPriceList2.php?seriesid=10

0085&groupid=100059&catuid=2&lang=EN>

GROUP MEMBERS

Robert Baker is graduating from the

University of Central Florida with a BS in

Electrical Engineering. Upon graduation,

he intends to pursue a career in electrical

utility protection. In the future, he wishes

to become a licensed Professional

Engineer.

Tony Camarano is graduating from the

University of Central Florida with a BS in

Electrical Engineering. Tony plans to

continue his education, pursuing a PhD in

Electrical Engineering and studying under

Dr. Thomas Wu at the University of

Central Florida. He intends to focus on

research in Modern Electric Machinery.

Drew Hanson is graduating from the

University of Central Florida with a BS in

Computer Engineering. He is currently a

participant in the UCF/Lockheed Martin

College Work Experience Program. Upon

graduation, he intends to pursue full-time

employment in the defense industry or

another systems engineering field.

Robert Higginbotham is graduating from

the University of Central Florida with a BS

in Computer Engineering and Minors in

Mathematics and Computer Science.

Upon graduation, Robert intends to begin

full-time employment in systems

engineering, while also pursing his MBA.

