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Abstract  —  Vic Vector is intended to re-create the classic 
arcade game Tempest using a modern design. It preserves the 
original functionality and quality of the game using a Field 
Programmable Gate Array (FPGA) and updated analog 
circuitry. The digital components such as the microcontroller 
and vector-graphics processor are modeled using Verilog 
HDL and programmed to the FPGA. The digital output from 
the FPGA is processed using analog components to produce 
vector-based voltage changes. These changes represent XY 
coordinates used to generate vector graphics, a common 
characteristic of many arcade games created in the 1980s. 
Rather than using a traditional display, the analog voltages 
are fed into a galvanometer laser which then draws the game 
images to be displayed on any surface.  

Index Terms  —  FPGA, Verilog, Vector Graphics, Game 
Emulation, Galvanometer Laser. 

 

I. INTRODUCTION 

Vic Vector is a game emulation project which preserves 

the classic arcade game Tempest by Atari© using modern 

technology. Using the original schematics and 

specifications for Tempest as a foundation, the digital and 

analog components are re-created with Verilog HDL and 

an updated hardware design. The primary objective was to 

maintain the game characteristics, qualities, and flaws 

while implementing a more efficient, effective, and robust 

design. The project combines a Xilinx Spartan 3E 500K 

FPGA – a moderately small-scale chip – with a 

prototyping board containing the analog components such 

as the Digital-to-Analog Converters (DAC) and analog op-

amp integrators. The FPGA contains all of the Verilog 

HDL modules which model the digital components of the 

game. These include the 6502 Microprocessor, Atari© 

Math Box, Vector Generator, and game memory. The 

analog circuitry processes the digital output from the 

FPGA to generate voltages changes in X-Y coordinates. 

The Laser Galvanometer Scanner CW20 receives these 

voltage levels and the game images are produced. The 

project uses a game controller similar to the original. It is a 

spinner wheel controller that yields a data and clock input, 

which dictate a player’s position in-game.  

II. SYSTEM OVERVIEW 

The project is comprised of three main components: 

input circuitry, Verilog modules, and output circuitry. A 

high-level block diagram of the design components and 

interfacing is shown in Fig. 1. 

A. Input Circuitry 

The inputs include a spinner wheel controller and four 

push buttons. The spinner wheel controller allows the user 

to navigate through the sixteen different positions on any 

given level of the game. The rotational direction is binary 

in nature and is determined using the data and clock lines. 

Once this signal has been processed, it is read into the 

FPGA. The push buttons are active-high and are tied to 

game controls such as “Fire” and “Zap.” These signals are 

sent to the same input module as the spinner wheel 

controller. 

B. Verilog Modules 

The FPGA is programmed with several Verilog modules 

as shown in Fig. 1. The Pokey Control module receives 

input from the push buttons and spinner wheel controller. 

This information is relayed to the 6502 Microprocessor 

module. Both the Pokey and 6502 modules are open-

source VHDL files. The 6502 module accesses the Math 

Box, Vector Generator, and Memory components via a 

pre-defined memory map and address decoder. It is 

responsible for executing the game ROM instructions. 

This includes controlling Math Box operations and writing 

instructions to the Vector Generator.  The Math Box 

consists of a set of ROMs and ALUs which perform the 

mathematical operations necessary to generate the vector 

graphics. This component is a unique feature of Atari© 

games. Using pre-defined memory, it generates the 

appropriate mathematical data for the game. The 6502 

uses this data to write instructions to the Vector Generator. 

The Vector Generator is the vector-graphics driver for the 

system. It is essentially a simple microprocessor 

containing a small set of microinstructions. These 

instructions, generated by the 6502 microprocessor, dictate 

the vector drawing, scaling, and timing parameters for the 

digital output of the FPGA. Additionally, the Vector 



 

Generator has a small ROM which contains frequently 

used drawings and shapes, such as letters and numbers.  

C. Output Circuitry 

The output circuitry consists of three DACs, several op-

amps, and two integrators. Two DACs handle the 2’s 

complement X and Y digital output from the FPGA. The 

third DAC is responsible for scaling. Based on a pre-

determined digital scaling value, the output of the scaling 

DAC controls the value of the reference voltage for the X 

and Y DACs. Once the digital values have been converted 

to their respective analog voltages, they are tied to an X 

and Y integrator. The integrator keeps track of the 

previous X-Y positions and integrates the new value 

representing a change in said positions. A digitally 

controlled switch is installed across the capacitor to 

occasionally clear the voltage stored and reset the position 

to the middle of the display. The output of the integrators 

is fed into the laser galvanometer scanner which produces 

a laser display based on the changing X-Y values. 

III. 6502 MICROPROCESSOR 

The 6502 Microprocessor controlled all of the 

operations for Tempest.  It was developed in 1975 for 

MOS Technology and was most notably used in Apple I 

and Apple II computers [1].  The 6502 is an 8-bit 

microprocessor that supports 56 instructions.  There are 

nine different addressing modes that are supported, such as 

immediate, absolute, and relative.  The 6502 has three 

main buses:  Bi-Directional Data bus, Address-High bus, 

and Address-Low bus.  In addition to these three busses, 

the 6502 also supports the following six registers:   

Fig. 1. High-level block diagram of the input circuitry, Verilog modules, and output circuitry. 



(1) A – 8-bit accumulator register 

(2) X and Y – 8-bit index registers 

(3) SR – 8-bit process status register 

(4) SP – 8-bit stack pointer 

(5) PC – 16-bit program counter split into two 8-bit 

register (PCL and PCH) 

A. Clock Signals 

The 6502 operates using a dual-phase clocking system 

with clock signals Φ1 and Φ2.  The Φ1 and Φ2 clock signals 

are generated in such a way that they are the inverses of 

each other.  This allows one cycle for internal instruction 

execution and a complimentary signal used to access 

external components such as memory.  When the Φ1 clock 

signal is high, data is latched into the appropriate locations 

within the 6502.  When the Φ2 clock signal is high, the 

internal components carry out their respective functions. 

Fig. 2 illustrates the timing waveforms for the dual-phase 

system. 

Fig. 2. Timing waveforms for the 6502 dual-phase clocks.

  

B. VHDL Source Code and Adaptation 

The source code for the 6502 that is being utilized for 

this project was initially written in VHDL by Daniel 

Wallner and published for use on OpenCores.org. [2] This 

code was written in such a way that it would be compatible 

for the 6502, 65C02, and 65C816 chips.  Wallner’s code 

has been used in similar emulator project for the Asteroids 

by Atari©. The VHDL code has three sub-modules.  The 

first module is T65_MCode.vhd, which handles decoding 

the address to perform the operation of the 56 instructions 

with respect to the desired addressing mode.  The next 

module is T65_ALU.vhd, which performs all arithmetic 

and logical operations. It is also capable of executing 

Binary-Coded Decimal operations.  The final module, 

T65.vhd, handles checking the enable and clock signals to 

verify that the system is really ready for operation, while 

also handling the execution of interrupt signals.  

The 6502 VHDL code only executes op-codes when the 

enable and clock signal are both logic-high.  In order to 

attain an effective 1.5MHz execution cycle necessary for 

Tempest specifications, the clock signal is given a 6MHz 

pulse. The enable signal will run for two clock cycles 

before going low, which results in the effective dual-phase 

clocking system at 1.5MHz.  This timing waveform is 

shown in Fig. 3. 

Fig. 3. Timing waveforms of the clock and enable signals. 

C. Memory Map 

The 6502 operates using a memory mapped Input-

Output (I/O) scheme. Tempest had a variety of I/O devices 

mapped to pre-determined address locations.  For 

example, if the 6502 needs to access RAM, it will use 

address locations 16’h0000-16’h07FF.  If the 6502 

accesses a memory location within this range of memory 

addresses, the result would be activating the RAM so that 

data may be read or stored. This memory map determines 

the control and access signals for the other modules such 

as the Math Box and Vector Generator as well. 

D. Address Decoder and Access Procedures 

The address decoder for the 6502 is instantiated as a 

separate module that will utilize a series of case statements 

to enable a set of control lines for accessing various I/O 

devices.  Based on the values of these control lines, data 

will then be latched to and from the 6502 between the 

Math Box, Vector Generator, ROM, and RAM.  These 

four components receive the 6502 output address, directly 

passed to their respective modules for their own internal 

operations. 

IV. MATH BOX 

  The Math Box handles all computations needed within 

the game.  These operations include tracking the game's 

high-scores and performing the trigonometric calculations 

needed to rotate some of the game's graphics as they move 



throughout the screen.  The 6502 interfaces the Math Box 

as a memory-mapped I/O device.  Various addresses 

correspond to different Math Box operations.  For 

example, writing to addresses 6080-609F corresponds to 

“Math Box Start,” which will start the Math Box clock and 

begin performing the specified subroutine.  The Math Box 

is given instructions from the 6502 via the External 

Address Bus (EAB).  The top four bits of this bus are sent 

to the address decoder, which activates the high-score 

module, the POKEY module or the Math Box, depending 

on the desired operation.  This address decoder consists 

mostly of 2-to-4 decoders and some basic combinational 

logic. 

A. Basic Functionality Overview 

In the Math Box, the bottom five bits from the EAB are 

fed to ROM A1 which contains the first operation to be 

performed.  Since ROM A1 allows five bits for 

addressing, there are 32 instructions that are supported by 

the Math Box.  This address is essentially a sub-routine 

call, as all Math Box functions must begin with one of 

these 32 functions.  This initial address selects an 8-bit 

ROM address which is then forwarded to a program 

counter.  This program counter is controlled by the PCEN 

signal and a Math Box clock signal, both of which are 

controlled by the EAB and the clock signal from the 6502.  

When the Math Box is not active, the Math Box clock and 

PCEN are set to logical-low, thus disabling the counter.  

When the counter is active, the address from ROM A1 is 

forwarded to six 1 KB ROMs.  All six ROMs have 256 

memory addresses and output a 4-bit signal.  Two of the 

ROMs (ROMS K and L) forward their signals back to a 

flip-flop and are then fed to the program counter.  Another 

ROM sets control bits such as the overflow flag or the 

Math Box STOP signal.  A summary of this data flow is 

shown in Fig. 4. 

Due to the fact that FPGAs provide limited space for on-

chip memory, some small changes were made to the 

original Math Box schematic in order to reduce the 

amount of memory that our project would require.  For 

example, the A1 ROM is coded as a case statement with 

32 different scenarios.  This reduced the amount of 

required ROM by 256 bits.   

All of the coding and simulation for the Math Box was 

done using Xilinx© ISE Project Navigator CAD Software.  

While this software was critical to our project, it did cause 

some issues.  Most notably, Xilinx does not allow 

instantiated FPGA memory in logical simulation.  To 

bypass this problem, we created long case statements 

which contained the contents of the ROMs used. A special 

extension called Coregen was required to instantiate the 

ROMs for our FPGA. 

B. AM2901 ALU Module 

The Math Box ROMs K and L combine signals with 

three of the other ROMs, selecting the function of the four 

AM2901 Bit-slice ALUs.  The AM2901 supports 

thousands of mathematical operations. These ALUs can 

handle 8-bit word lengths as operands because they are 

configured in parallel. Various control lines allow for a 

parallel configuration.  These lines include the carry-out 

bit and the carry-in bit.  The input data and output data 

reside on the External Data Bus (EDB).  The original 

game schematics call for this bus to be an 8-bit bi-

directional data bus.  However, our implementation 

employs two separate buses for proper 6502 interfacing.  

Incoming data is written to EDB-in by the 6502 and sent 

to the various other modules.  The output of these modules 

is written to EDB-out.  The 6502 will then latch data from 

the EDB-out to the EDB-in as needed. Permissions were 

attained in order to use pre-existing open-source VHDL 

code for the AM2901. [3]  

 

Fig. 4. High-level block diagram of the Math Box. 



C. High-Score Memory 

Tempest includes a basic high-score memory.  This 

memory contains 32 memory addresses, which translates 

to a maximum of 32 high-scores.  The High-Score 

Memory module is activated by the EAB and the data is 

read in through the EDB-in.  When the scores need to be 

displayed, data is written to the EDB-out. 

D. POKEY Module 

The Atari© POKEY chip serves as the main interface 

between the user and the game, as well as generating audio 

output.  Similar to the Math Box and High-Score modules, 

the POKEY module is activated by the EAB.  The 

POKEY module contains two VHDL POKEY chip 

emulators. This is open-source and has been used in 

similar Atari© emulation projects. [4] One module detects 

when the player input buttons (“Zap” and “Fire”) have 

been pressed.  The other module processes input from the 

spinner wheel controller.  The original game supported 

two sets of buttons, two spinner wheel controllers and the 

option to flip the image across the horizontal axis.  The 

image flip was created to support a “Cocktail” style layout, 

in which opposing players sat facing each other.  Only a 

single-player option is implemented in the design, which 

means the two-player capabilities were omitted. The 

POKEY modules read in signals provided by the spinner 

wheel controller and buttons.  If the POKEYs are activated 

by the EAB, their data is written to the EDB-out bus. 

V. VECTOR GENERATOR 

The Vector Generator controls the game’s digital vector 

graphics output. The original Atari© Tempest Vector 

Generator was a very simple microprocessor built 

primarily from discrete TTL chips. The Verilog module 

written for this component combines a direct 

implementation of some of the original logic chips with a 

more efficient use of hardware. Many of the old TTL parts 

used were not used to their full capacity, e.g. a D flip-flop 

which contained a clear signal that was never used. 

Therefore, the original hardware could be optimized to 

only include the necessary functions for a given operation. 

A. Microinstructions 

The Vector Generator has the following 

microinstructions: 

(1) VCTR – vector with a position range of ± 1024 

(2) SVEC – short vector with a position range of ±16 

(3) CNTR – centers the vector beam to position (0,0) 

(4) HALT – halts all Vector Generator operations 

(5) SCALE – changes binary and linear scaling parameters 

(6) JMP – jumps to a given address 

(7) JSR – stores current address and executes sub-routine  

(8) RTS – returns from sub-routine 

 

The VCTR and SVEC handle all the digital X-Y 

coordinate changes. The time it takes to draw the current 

vector is 2.73ms for a normal vector, and 21.6μs for a 

short vector. These timings are generated based on an 

internal counter which varies depending on the instruction 

being executed. The timing may also be altered given a 

binary scaling parameter. If the vector should be scaled by 

a factor of 2, the SCALE instruction may alter the binary 

scale register. This register controls the counter timing. 

For a larger binary scale, the timing will be decreased, 

producing a shorter vector without changing the X-Y 

digital output. Using this method, an image may start small 

and grow given an interval time. This was a common 

technique for Tempest, as game enemies started small and 

would progressively enlarge as they approached the 

player’s ship. 

The CNTR instruction allows the vector-drawing beam 

to be re-positioned to the center of the screen. The purpose 

of this instruction is clear the integrators’ capacitors, as 

over a period of time, the noise and error in the analog 

system will be accumulated. Thus, CNTR controls the 

digital switches in parallel with the integrators’ capacitors. 

HALT will clear these capacitors, but additionally 

prevents the Vector Generator from further operation until 

a subsequent start signal has been sent.  

The Vector Generator employs a 4-word stack and 12-

bit Program Counter (PC) which allows for the 

implementation of the JMP, JSR, and RTS instructions. 

These addressing instructions are used extensively by 

Vector Generator ROM in order to access frequently 

drawn shapes and characters.  

B. Vector Generator ROM and RAM 

The Vector Generator ROM contains preset sub-routines 

which were developed to make drawing frequently needed 

shapes more efficient. For example, the first twenty-six 

sub-routines in this memory are the instructions to draw 

the letters of the alphabet. Other sub-routines include the 

Atari© trademark symbol, the Tempest ship, and game 

level designs. The ROM was available as an open-source 

file and used in previous emulations of Tempest. The 

Vector Generator RAM stores the operating instructions of 

the module. At the start of operation, the Vector Generator 

executes from RAM, which will contain calls for ROM 

sub-routines as well as various instructions for scaling and 

centering.  



The original Vector Generator used eight 10-bit address 

RAMs to achieve an effective 4096 KB of space. This was 

due to the limitation of only a 4-bit read width of the RAM 

component used at the time. Rather than implementing this 

inefficient design, the RAM module used in the project’s 

Vector Generator combines all of the space into a single 

RAM component. This allows for a much cleaner access 

of data within memory.  

 

C. 6502 Interfacing 

The Vector Generator and the 6502 Microprocessor are 

able to communicate. All of the instructions written to 

Vector Generator RAM will come from the 6502. 

According to original design, the 6502 may only write to 

the Vector Generator during one half-cycle of a 1.5 MHz 

time period. This was due to the way the original game 

worked using the dual-phase clocking of the 6502 

Microprocessor. Since the open-source 6502 VHDL does 

not use a dual-phase system, some adaptation was 

necessary in order to achieve the same functionality as the 

original game. When the 6502 wants to access the Vector 

Generator, a control VMEM will activate. This signal is 

fed back to the 6502, causing the 6502 to execute the 

break sub-routine. This will effectively postpone the 6502 

from executing its next actual instruction for five cycles. 

During this time interval, the enable clock for the 6502 

module will become low, literally freezing its operation 

until is once again high. Since this enable clock is tied to a 

1.5 MHz clock, it is also synced with the valid access 

interval of the Vector Generator. Therefore, the 6502 may 

write to the Vector Generator since VMEM is active and 

the enable clock is low. Normal operation will resume on 

the next positive edge of the enable clock for both 

modules.  

D. Digital Output 

The Vector Generator outputs the following information 

from the FPGA to the analog prototyping board: 

(1) 10-bit 2’s complement change in X coordinate 

(2) 10-bit 2’s complement change in Y coordinate 

(3) 8-bit linear scaling register 

(4) VCTR 

(5) CENTER 

 

The X and Y coordinate changes are sent to 12-bit 

DACs which are configured to represent values from 

±1024. The 8-bit linear scale is processed by a DAC which 

controls the amount of reference voltage given to the X 

and Y DACs. VCTR is used to enable drawing time 

intervals. It is affected by the length of the vector as well 

as binary scaling. It toggles the linear scaling DAC, which 

consequently toggles the reference voltage for the X and Y 

DACs. CENTER controls the digital switch across the 

integrators’ capacitors. When it is active, it closes a line in 

parallel with each capacitor, draining the voltage stored 

and effectively centering the beam to (0,0). 

 

VI. ANALOG COMPONENTS 

The analog components for the project are made up of 

input and output circuitry.  The input components are 

comprised of a spinner wheel controller and four arcade-

style push buttons.  The output components consist of 

three Digital-to-Analog Converters (DACs), two integrator 

op-amps, and several amplifying op-amps.  

A. Input Circuitry 

   The first part of the input is the spinner wheel controller. 

This controller allows the player to navigate through the 

game interface. The controller chosen is the Turbo Twist 2 

from GroovyGameGear.com. [5] This particular controller 

uses an interface board that is powered by ± 5 VDC 

supplied by the FPGA board. It outputs a data and clock 

line which oscillates between 0 and 4 VDC.  The FPGA 

input voltage is 3.3 VDC, so a 12 kΩ pull-down resistor 

performs a voltage division to drop the voltage to a 

useable level.  The direction of motion is determined by 

the timing of the data and clock lines.  For instance, if the 

if the controller knob is spun in the counter-clockwise 

direction, the data line is logic-high when clock is logic-

high. The frequency of the data and clock lines varies 

between approximately 200 and 1000 Hz, based on the 

rate at which the spinner is rotated.  At maximum 

frequency, the player’s game position changes every 1 ms, 

which is too fast given that the game only has sixteen 

positions on any level. In order to actuate some delay of 

the input, a digital 11-bit counter is employed. The counter 

will increase every positive edge of the clock, but the 

position will not change until a certain bit of the counter 

has toggled.  The lower 7 bits must be filled to increment 

the player’s position by one.  After implementing this 

method, the player changes position at maximum 

frequency every 0.128 s.   

   Four push buttons represent the following player input 

signals: Fire, Zap, Coin-In, and Start. Each button is 

connected to 3.3 VDC supplied by the FPGA.  The buttons 

operate by using a three-terminal micro-switch. Once a 

button is pressed, the normally-open contact is closed 

which ties logical-high voltage to the FPGA. 



B. Output Circuitry 

   The output circuitry requires three multiplying DACS: 

one DAC for the scaling of the object to be drawn and the 

other two for plotting the X and Y coordinates.  There are 

several op-amps used throughout the circuit. The TL082 

op-amp is used for all cases due to its high speed and low 

current requirement. [6] It is biased with ±15 VDC. An 

ADG201AKN digital switch is needed for use with the 

integrator op-amps. The ADG201AKN has a high 

switching speed, low current requirement, and low leakage 

current. [7] It used ± 15 VDC. The DAC08 is used as the 

scaling DAC in this design as it there are 8-bits of digital 

scaling input and has a low current requirement. [8] The 

DAC08 is powered with ±15 VDC. Based on the digital 

inputs from the FPGA, the scaling reference voltage can 

be incremented from 0 to 10 VDC determined by the 8-bit 

digital scaling input.  When the scaling is increased, the 

amount of current that leaves the IO pin of the DAC08 

increases.  This current is sent through an op-amp with 

gain of 10 and is used as the reference voltage for the X-Y 

coordinate DACs.   

   The XY coordinate DACs are the LTC7541A. It has a 

low current requirement and a 12-bit digital input. [9] This 

DAC is powered by +15 VDC and takes 11 digital signals 

(LSB is grounded) from the FPGA output.  The 11 digital 

inputs allow the LTC chip to output a digital swing from 

±1024 positions which equate to ± 10 VDC.  The output of 

the LTC7541A feeds into an integrator op-amp as shown 

in Fig. 5.  

Fig. 5.  Simplified Multiplying DAC and Integrator Op-Amp. 

The circuits for the X and Y analog processing are 

identical. The integrator op-amp tracks the previous 

voltage compared to the voltage coming in and draws a 

straight-lined vector from its previous position to the new 

position specified. The new position is specified from the 

output of the LTC DAC.  The integration timing chosen 

for the integrator is important because it determines the 

speed at which the lines are drawn.  This timing is 

controlled by the RC value of the integrator. For this 

design, the RC value is set by (1).  

2.73 ms ≈ 27.3kΩ ∙ 0.1 µF                     (1) 

This timing is based on the original timing parameters of 

the Tempest vector generator.  The capacitor bridging 

from the –VIN and VOUT pins of the integrator op-amp will 

store previous voltage values and periodically needs to be 

discharged. This is due to the gradual accumulation of 

noise and error which will lead to instability of vector 

images. This design uses the ADG201AKN digital switch 

which is controlled by the FPGA in order to discharge the 

capacitor.  The output of the integrator op-amp is sent to 

an inverting op-amp to counteract the natural inversion of 

the integrator. The output of the inverting op-amp is the 

final X and Y voltage. It swings between ±10 VDC. 

Plotting these voltages versus each other will produce a 

vector-graphics image. 

C. Power System 

   All silicon chips used in this design are biased with ± 15 

VDC, with the exception of the LTC7541A. It only 

requires +15 VDC and ground.  The ±15 VDC is supplied 

by a voltage regulator. The regulator used for this design is 

the IA0515D.  It requires +5 VDC as power and generates 

a ± 15 VDC output.  The regulator uses 1 W of power and 

outputs ±33 mA of current to the positive and negative 

voltage terminals, respectively. [10] The entire analog 

circuit draws approximately 26 mA of current.  All of the 

silicon chips have a 0.1 µF decoupling capacitor tied to 

ground on their power terminals.  Decoupling capacitors 

are necessary for maintaining signal stability. 

D. PCB Design 

   All parts in the PCB design are through-hole 

components in order to simplify the testing process.  A 

standard 4-layer, 5in. by 5in. PCB is large enough to 

create the entire circuit.   The spinner wheel controller 

data/clock lines and four buttons have their inputs 

hardwired to the PCB.  The FPGA board is mounted on 

top of the PCB via through-hole headers. 

27.3 kΩ 0.1 µF 



VII. CONCLUSION 

Vic Vector is a game emulator that preserves the 

original hardware characteristics of the classic arcade 

game Tempest by Atari©. The digital hardware is modeled 

in Verilog HDL and programmed using an FPGA. The 

6502 Microprocessor interfaces with the other modules 

and runs the game ROM. It is responsible for retrieving 

data from the Math Box and writing drawing instructions 

to the Vector Generator. The Vector Generator outputs 

digital vector data to the analog circuitry. The analog 

hardware has been updated and adapted to interface the 

FPGA and a laser galvanometer scanner used to display 

the game’s vector graphics.  
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University of Central Florida with a BS in 

Electrical Engineering. Tony plans to 

continue his education, pursuing a PhD in 

Electrical Engineering and studying under 

Dr. Thomas Wu at the University of 

Central Florida. He intends to focus on 

research in Modern Electric Machinery. 

 

Drew Hanson is graduating from the 

University of Central Florida with a BS in 

Computer Engineering.  He is currently a 

participant in the UCF/Lockheed Martin 

College Work Experience Program.  Upon 

graduation, he intends to pursue full-time 

employment in the defense industry or 

another systems engineering field. 

 

Robert Higginbotham is graduating from 

the University of Central Florida with a BS 

in Computer Engineering and Minors in 

Mathematics and Computer Science.  

Upon graduation, Robert intends to begin 

full-time employment in systems 

engineering, while also pursing his MBA.

 

 

 

 

 


