[image: image1.png]

Dynamic Animation Cube

Senior Design II Project Documentation

Group 1

Joseph Clark

Arnold Li

Michael Alberts

Isaiah Walker

Table of Contents:

1.0 Executive Summary..4

2.0 Project Description..5

 2.1 Project Motivations and Goals..5

 2.2 Objectives...7

 2.3 Project Requirements and Specifications...9

3.0 Research Related to Projects and Products..13

 3.1 Existing Similar Projects and Products...13

 3.1.1 Boston University Senior Design Project..13

 3.1.2 Existing Products and Homebrew Projects..15

 3.1.3
 Instructables 8x8x8 LED Cube...21

3.1.3.1
Getting Started...21

3.1.3.2
Building the Cube..26

3.1.3.3
Building the Controller..30

3.1.3.4
Software...32

 3.1.4 HNTE RGB LED Cube...34

3.1.4.1 Building the Cube..35

3.1.4.2 The Controller..37

3.1.4.3 Animations and Software..37

 3.2 Component Research..39

 3.2.1 LED Drivers...39

3.2.1.1 TLC59711...39

3.2.1.2 TLC5947 (Texas Instruments)..41

3.2.1.3 TLC5941 (Texas Instruments)..42

3.2.1.4 LT3754 (Linear Technology)...43

 3.2.2
 LED Driver Decision and Analysis..44

 3.2.3 Embedded Processors..45

3.2.3.1 Stellaris LM3S8962..45

 3.2.4 Embedded Processor Decision...47

 3.2.5 Latches...47

 3.2.6 Latch Decision...49

 3.2.7 Demultiplexers...50

3.2.7.1 CD74HC4514...50

 3.2.8 Demultiplexer Decision...51

 3.2.9 RS232..51

3.2.9.1 Baud Rates..51

3.2.9.2 Crystal Oscillator..52

 3.2.10 Atmel ATmega16 Microcontroller..53

 3.2.11 LED...54

 3.3 Strategic Components...56

 3.3.1 Wiring method of the LEDs...56

3.3.1.1 Charlieplexing..56

3.3.1.2 De-Multiplexing...59

3.3.1.3 LED Drivers...62

 3.4 Architecture and Related Diagrams..64

 3.4.1 Hardware Architecture..65

 3.4.2 Software Architecture...66

3.4.2.1 Software...67

3.4.2.2 GUI/Editor...67

4.0 Project Hardware and Software Design Detail...69

 4.1 Initial Design Architecture and Related Diagrams...69

 4.2 Master Control Unit..69

 4.3 LED Controllers..70

 4.4 LED Lattice Architecture..73

 4.5 Software Design..74

4.5.1 System Requirements..76
4.5.2 Functional Requirements..77

 4.6 Printed Circuit Board Requirements...78

 4.6.1 Trace Thickness...79

 4.6.2 Number of Layers of Printed Circuit Board..79

 4.6.3 Size of Printed Circuit Board..80 5.0 Design Summary of Hardware and Software...81

5.1 Simulation..81

5.1.1 Xilinx..81

5.2 High Level Design...82

5.3 Animations...85

5.4 Cube Construction...86

5.4.1 The Rig..87

5.4.2 The Panel..87

5.4.3 The Cube...88

5.5 Test Plan...89

5.5.1 Objective for Main Design..89

5.5.2 Testing Environment...89

5.5.3 Stopping Criteria...90

5.5.4 Description of Individual Test Cases..91

6.0 Project Prototype Construction and Coding...93

 6.1 Selection of the LED Cube Kit...93

 6.1.1 Overall Objective for Prototype Activity..93

 6.1.2 Prototype High Level Design..93

 6.1.3 Testing Environment...94

 6.1.4 Stopping Criteria...94

 6.1.5 Description of Individual Prototype Test Cases...95

 6.2 Construction of the LED Cube Kit...97

 6.3 Software for the Rainbowduino..102

 6.3.1 Original Software for Rainbowduino..102

 6.3.2 Modified Software for Rainbowduino..103

 6.4 Moving Towards Group Implemented Software..104

 6.4.1 Replacing the Rainbowduino...105

 6.5 What the Group Learned...105

 6.5.1 Construction...105

 6.5.2 Testing..106

 6.5.3 Programming..112

 6.6 Homemade 4x4x4 Prototype LED Cube...113

 6.6.1 Component List and Cost...113

 6.6.2 Summary of Design Detail...114

 6.6.3 Advanced Implementation...115

9.0 Administrative Content...116

 9.1 Milestones...116

 9.2 Budget and Finances...117

 9.3 Group Members Bios..119

 9.3.1 Joseph Clark...119

 9.3.2 Michael Alberts..120

 9.3.3 Isaiah Walker...121

 9.3.4 Arnold Li..122

 9.4 Division of Labor..123

10.0 onclusion...124

11.0 References..126

Appendix..127

 Appendix A Copyright Permission...127

1.0 Executive Summary:

Within the confines of this paper, the Senior Design Group 1 from the University of Central Florida intend to set down a set a goal for the design, construction, and testing of a 3 dimensional LED cube that was used to display a set of dynamic images in a fashion that simulated animation. Group 1 was made up of four members, two of the members are students of Electrical Engineering and two are students of Computer Engineering. The group laid down an initial objective which describes the project and set the physical parameters that the cube inhabits. The group will continue by describing some of the technologies that they have researched in order to facilitate the completion of this project, as well as the materials that was used in its construction. Before the project can be fully described it was necessary for one to understand how the group came to select this particular design project.

The fundamental objective of this project was to design a dynamic animation cube capable of displaying 3-dimensional images in such a rapid manner that the images appear to be animated. The cube was inspired by a previously completed project at another University which influenced this group to design and implement a bigger and better design. The design will not provide any practical use but was intended to be displayed as a piece of artwork. When completed, the cube will allow for the display of alpha numeric characters as well as pre-designed images and animations without the need for external input. With the history of the project described, it falls to the group to provide a brief description of the physical characteristics of the cube.

The design is approximately 3 feet long, 3 feet wide and 4 feet tall and can be easily adjusted if needed. The LEDs was arranged in a lattice structure with dimensions of 16 * 16 * 16. This system required us to procure a significant amount of LEDs totaling up to a minimum of 4,096 LEDs, providing that all LEDs work and none are damaged in the build process. Below, the structure of LEDs was a solid base encased in acrylic sheets that housed the control unit. The LEDs was supported by a system of LED acrylic dowels that both provided the structural support for the LEDs as well as to provide a level line in order to define the structure. The LEDs was encased in clear acrylic sheets that both protect the delicate LED lattice and allow for viewing by the outside.

The implementation of this design had led to a lot of research and many ways that the project could have been completed. First, it was necessary to figure out a system that would allow us to control 4,096 individual LEDs; in particular this led us to one interesting technique of multiplexing. However, it quickly became apparent that this would not be practical for the amount of LEDs that this project dictates.

With the limitations provided by the number of LEDs the group would be using, it would be necessary to find a different way of aligning the LEDs this led us to a system called Charlieplexing. The idea of how the group would align it turned to finding its LED controllers only to find that the controller that the group was eventually selected would not require the more intricate technique of Charlieplexing. With its LED drivers selected, it was time to select the control modules that would implement all of the animations chosen by the team.

The design was the next action to accomplish. For its system, the group would eventually settle on an axial control system. The group designed the system initially so that there would be a Master Control Unit (MCU) that would retrieve from memory the static images that would be flashed by the LEDs in order to provide an illusion of movement. The MCU will take the images from memory and break them into assignments for LED controllers. As can be inferred from their name, the controller was each in control of a different set of LEDs on the cube. The controllers will then plug into the LED lattice array.

The group had to complete a significant amount of research in order to complete this project. The project conformed to a certain amount of set parameters. It will fit into a size factor of approximately 3 * 3 * 4 feet (L * W * H). It contained over 4,000 individual RGB led diodes and displayed a minimum of 100 unique animations.

2.0 Project Description

The establishment of a project of this size required a clear cut description in order for the group to work toward a unified goal. During the process of researching this project, the group established a set of parameters that would be followed in order to produce a project that was desirable to the all of the members. Also contained within the project description, the group must establish a set of objectives that are to be accomplished in the progress of completing the Dynamic Animation Cube. Finally, the group must understand the specifications of how and in what conditions the cube operate.

2.1 Project Motivation and Goal:

The idea of producing a Dynamic Animation Cube was not the original intention of this group. Originally the group was formed under the pretense of designing an implement that would record the writing strokes of a non-proprietary writing implement and display its traced path on a board to be displayed to a classroom environment. However, after a short initial research period it was determined that this project would not be feasible to be completed in a competent and timely manner. With this complication in mind, the group began the process of locating a new senior design project. After the initial research period, one of the members brought to the group’s attention a senior design project previously completed at Boston University. All members were very pleased with the idea of completing a Dynamic Animation Cube. The first decision the group had to make was the determination of the final size of the completed cube. By doing some research into the number of LEDs desired to be used based on market price and the pitch of the LEDs, a size was settled on. Another feature of this project that encouraged members to move forward was the possibility of sponsorship by the University of Central Florida.

After selecting a project and coming up with a few ideas, the group decided to approach their adviser to determine its viability. A short discussion was held with the adviser and upon completion; the idea was suggested that the group seek sponsorship from the university under the category of art. In the State of Florida, it was state law that any new building must have a percentage of its budget allocated toward art. The group would eventually find funding in the sum of $800 from the Electrical and Computer Engineering (ECE) department.

The funding of the project, however, was not the key reason for this project gaining favor within the group. Within the Harris Engineering Building, there was a piece of art known as the lipstick enigma. Next to the lipstick enigma hangs a small plaque listing the name of the piece of art a small description of what it is, and the artist’s name. The members of the group hope that this was the same case with the Dynamic Animation Cube. The group finds the idea of having its members’ names posted within the school for future students to see as a very enticing one, and one of the main reasons for the continuation of this project.

The success or failure of this project was based on the group’s ability to stay within the group defined parameters and completed in a timely manner. On the physical side, the cube should have approximate dimensions of 3.5 X 3.5 X 4 feet (LWH). The LEDs was arranged in a primitive cubic crystalline form with a pixel pitch of approximately 40 centimeters. The LEDs was suspended on a network of transparent acrylic dowels and the entire LED array was encased in a cube of quarter inch transparent acrylic sheets. The cube rest upon a base that both support the cube and house the microcontrollers used to drive the cube. The base was approximately 6 inches tall and was encased in tinted acrylic sheets. The cube contain a minimum of 100 unique animations. These animations include 26 animations for each of the 26 Latin characters and 10 Roman numeric characters. Further animations was selected and added to the project on an as desired basis.

An important feature to consider when designing an animation project must be the frame rate. As the group increased the frame rate it would increase the continuity from frame to frame thereby creating smoother the animation. In order for the illusion to have continuity, it was necessary to have greater than 12 “Frames per Second” in order to create a smooth looking animation. The group aims for an average “Frame Rate” between 24 and 30 “Frames per Second”. Finally, it was important to consider the time frame at which the project was completed. An initial prototype was completed by the end of the week of March 14th, 2012. While the final project of this group was due the week of August, 3rd 2012, it was the hope of this group that hope to have the project completed by late June early July 2012.

2.2 Objectives:

The senior design projects of this magnitude inherently contained a number of goals and objectives to be met. Among those objectives was the structural object, including factors such as the LED layout and microcontroller implementation. Contained within the project was learning goals desired for the group. The group selected a project to learn a vast array of new topics, to build upon, and enhance its already earned education. Finally, there are the monetary and time allotments. The group hoped to complete this project under the university allocated budget and in a timely manner by completing the project in a fashion that substantially predated the class defined submission date. With all of these goals in mind, the group hopes this was a successful and worthwhile endeavor.
When completing a project of this scale, it was important to recognize the physical necessities in order to complete the project and clearly define all parameters that must be completed by the participating group. The most important objectives for the group to recognize would have to be its visual parameters, as this project was intended to be a visual art and as such it was important that it be clearly defined. The group had previously established a requirement that the cube reside within the dimensions of 3.5 * 3.5 * 4(LWH) feet. The cube should have a professional look, with all LEDs appearing to be in an orderly fashion. This was obtained by mounting the LEDs to an array of acrylic dowels in order to support and align them. In order to better achieve the professional look, the LEDs was encased in clear acrylic sheets to protect and enhance the aesthetic of the cube. Also all Microcontrollers, PCBs, and assorted components was encased in an opaque acrylic box to prevent end users from seeing the inner workings.

Included in the physical aspects of the device must be the components that the user not see, but still provide the useful features. The Microcontrollers was mounted to a single PCB that encase all of the processing components and the loose assortment of parts necessary to power and control the LEDs. While the physical components are an important part of the completion of the project, the gains that the group earn personally must also be considered. This project requires many different skills and technologies to complete, there may be are skills that some or all of the group members may have little to no experience with.

First, the project require that students become very familiar with the function and control of LEDs. The LEDs that the group had elected to use was RGB LEDs, requiring the group to learn how control not only the on and off state of the LED, but also the color emission. Throughout the project, the group will also become more familiar with the use and implementation of Microcontrollers and LED drivers. This will require the group to use its already acquired programming skills and enhance them in order to provide the graphic functionality, which they hope to demonstrate. On top of this, the project will necessitate the design and production of a new PCB. This will require the group to learn the skills necessary to generate a PCB design and have it etched by a commercial board house. The learning objectives are only one component of the many objectives that must be considered by the group. The final set of objectives to be considered by the group was the monetary and temporal aspects of the project.

Any project that was completed will contain some cost to be exacted upon its creator(s). These costs can include a multitude of different expenditures. The two main expenditures that are to be considered by this group are the monetary and temporal. In regard to the group’s monetary situation, it had obtained funding from the University of Central Florida department of Electrical Engineering and Computer Science. The group had been allotted $800 dollars in order to purchase the items required to produce the cube. Within the budget for the cube, the group also plans to purchase a prototype so it can become accustomed to building and operating a cube on a smaller scale. With the prototype and the materials purchased the group hopes to keeps its’ budget under $800.00 but was prepared to spend up to $1,000.00 if it was deemed necessary. The next cost to be budgeted was the time allotment for completion of the project.

Based upon the experience with in the group and from outside sources, the group had budgeted up to 200 man hours for soldering and construction, and 300 hundred man hours for testing to get the project functioning within acceptable parameters. The project was due in late July, 2012 but the group had expressed a desire to complete the project by late June, 2012 to early July, 2012.

The completion of the Dynamic Animation Cube will require the fulfillment of a number of predetermined objectives by the team. The team was required to construct the cube to match predetermined physical specifications. These specifications include dimensions as well as quality of appearance. The group will also be required to learn a certain set of new skills in order to complete the project. The group will learn new skills such as PCB design and microcontroller implementation in order to facilitate the completion of the Dynamic Animation Cube. Finally, the group was expected to meet certain standards in regards to both monetary allocations to time allotment. The group had set down a set of goals to spend approximately $800 and 500 hundred man hours to complete the Dynamic Animation cube project.

2.3 Project Requirements and Specifications

When discussing the concept of which requirements to set down in the project in order to complete, it was readily apparent that they will fall in line with those guidelines set broadly by the objectives discussed previously. However, the project requirements also spell out more directly the methods with which the objectives was obtained.

· Cube size:

3.5 x 3.5 x 4 Ft. (L x W x H)

· Visible sides:

5 sides

· LED type:

RGB

· Pixel resolution:

16 x 16 x 16 = 4096

· Case construction:

Transparent acrylic

· Communication:

USB/ SD card controller

· Working temperature:

50-104 F

· Working Humidity:

10-80%

· Working Voltage:

AC 110V-230V

· Number of animations:

100

First and foremost are the physical constraints that the cube inhabits. The final dimensions of the cube was settled upon to be 3 x 3 x 4 feet (L x W x H). This number was not an arbitrarily selected number, but was determined by the number of LEDs used in the cube. Along with the number of LEDs, the length between subsequent LEDs or “Pitch” would factor into the final size of the cube. All of these parameters would determine the length and width dimensions of the cube; however one more component would have an influence on the height of the cube. Underneath the cube it was necessary to create a housing to hold the components what would control the LED selection and driving. This base that was constructed adds an extra maximum 8 inches to the height of the cube. The base would also influence another design aspect of the Dynamic Animation Cube.

One of the design decisions the group had to make would be the housing of the Microcontrollers and LED drivers. The group agreed that in order to enhance aesthetic appeal of the cube, it would prefer to use an opaque base thereby obscuring the controlling features. This design decision, however, would affect the number of visible surfaces of the cube, thus obscuring the bottom of the cube making it unviewable. Another factor to be taken into account was that although animations can be viewed from the top, because of the nature of the animation this will not be the optimal viewing angle. With the inherent design of the cube, it was necessary for the group to designate a “front”, which was the optimal viewing angle for the cube but it was viewable from 5 unique angles. While the viewable angles of the cube are important, what was probably one of the most important features of the group’s Dynamic Animation Cube would be its colors.

From the initial concept of the cube it had always been the intention of the group to use LEDs capable of emitting more than one set of colors. With this in mind the group elected to use Red, Green, Blue LEDs. The decision to use LEDs with multiple color capabilities was a more difficult to design, but would allow for more vibrant and diverse animations. The selection of Red, Green, Blue LEDs, however, provide its own set of challenges. First, it will extend the complexity of the soldering and coding for the Dynamic Animation Cube. The coding was an issue of particular interest because it was not only the complexity of the code that was amplified by the selection of Red, Green, Blue LEDs but also increase the size of the code to be implemented, raising concern for memory issues. However, the complexity of the individual LEDs will not be the most hindering aspect of the design, but rather the sheer number of LEDs to be implemented.

During the process of researching the project, the group found many examples of cubes that looked interesting. However, it was one cube in particular that really set forth the desire to complete the Dynamic Animation Cube. The cube was a large cube, with a 16 x 16 x 16 resolution. This led the group to decide to make a 16 x 16 x 16 Dynamic Animation Cube. With the resolution, the group calculated the number of LEDs necessary to construct the cube. With the math completed, the group established that it would require a minimum of 4,096 LEDs. This was quoted as the bare minimum number of LEDs necessary to complete the project, as more than likely when purchasing this number of LEDs some was defective prior to purchase and some was damaged in the construction process. The damaging of LEDs in the construction process was an expected hazard, however post construction the group hopes to protect its’ project.

With the projects internals completed, the group will need to find a way to not only protect the delicate array of LEDs from outside influences, but also to allow the system to look professional and commercial. To do this, the group had decided to use commercially available acrylic products. First, the group hopes to use small acrylic dowels to support the LEDs and to ensure that the LEDs are in alignment with respect to one another. With the “skeleton” of the Dynamic Animation Cube completed it was necessary to encase it in a “skin”. To do this the group will purchase thin sheets of translucent material that allow light to be visible from outside, but not allow for touching of the inner system. Also, it was necessary to build a system to protect the operating components not seen by the end user. To do this, the group decided again to use acrylic sheets, however this time the group elected to use sheets filled with a color dye in order to prevent the end user from observing the interior components. With the inner components selected, it was necessary to select some of the components themselves.

As discussed in the section on the red, green, blue LEDs, one of the issues with this project was memory capacity. In order to alleviate some of the group’s concerns with memory space, they will expand the flash memory present on the Microcontroller with the use of Secure Digital Card. The group expanded the availability by using a Secure Digital Micro Card. The benefit of the Secure Digital Card was that they are cheap, ubiquitous, and most Microprocessors will work with them right out of the box. With the memory allocated it falls to the group to meet the necessary power requirements for not only the Microcontroller but the 4,096 LEDs. When considering the production of any product the operating conditions the product will inhabit.

The first ambient setting to be considered was the ambient temperature. In order to determine what temperature the Dynamic Animation Cube will operate in, it was imperative to determine the main operating location of the device. The group had already established that they intend to display the cube in an unknown location within the University. This location provides a certain set of characteristics to be expected. These locations are all temperature controlled, meaning that the device was subjected to a typical ambient temperature in the middle to high seventies. The group had decided to set working temperatures from 50 degrees Fahrenheit to 104 degrees Fahrenheit, leaving it well within the expected operating temperatures. While temperature was the first ambient condition to be considered, it was not the only one.

The working humidity can also affect the way many electronic devices behave. However, as established before the cube was expected to be operated in an air conditioned interior environment. This will lead to a lower average humidity for the ambient environment. With that in mind, the group decided to set the top end working humidity to up to 80%. This should not be a difficult goal to reach as most electronics are capable of operating with these relatively low levels of humidity. While the ambient conditions of the Dynamic Animation Cube are important, these factors are all for not if the cube does not have the power to operate.

The Dynamic Animation Cube was designed to be displayed in most settings. It was with this in mind that the group will implement a design which can run off a single standard 120 Volt socket. The group will implement this design by using a power source similar to those used by many laptops. The benefits of using a laptop power supply include its small scale. The power supply was also capable of meeting the groups’ higher current requirements to activate the 4,096 LEDs. 4,096 was an extremely large amount of LEDs to consider, but they do not make up the entirety of the cube; the animations are the part of the cube that will truly impress the end user.

The animations of the cube are the most impressive aspect of the cube, even more impressive than the large scale of the project. The number of animations was important because they will represent the variability of the Dynamic Animation Cube. The group had currently established a goal of reaching one hundred unique animations. The number was a completely arbitrary number chosen by the group because it seemed like a large enough number to present a varied pool to draw from. Some have raised the concern that one hundred animations was a large and possibly overreaching goal to achieve. However, the group plans on adding all alphanumeric characters and was considering them as unique animations. As was known there are 26 different letters and 10 unique numbers. This leads to 36 of the 100 animations leaving the group to come up with 64 new animations.

All of these specifications are what make up the project in its entirety. The cube have to meet a very strict set of specifications in order to operate as expected. The cube itself have to fit into a certain physical constraints of 3.5 x 3.5 x 4 Ft. (L x W x H). The cube must have 5 visible sides, Red Green Blue LEDs, a pixel resolution of 16 x 16 x 16, and a case constructed of transparent acrylic. The Dynamic Animation Cube also store its animations in a micro SD card, have a working temperature between 50 and 104 Fahrenheit, a working humidity between 10 and 80%, operate on a standard 110 volt AC socket and have 100 unique animations. This was a long list of specifications that was quite a goal to be accomplished but when completed it, the end result was an impressive site.

3.0 Research Related to Projects and Products:

The research for this project was exhaustive. While the group had found by showing others the potential of the project, there are no delusions that it was a unique idea. During the initial research stage, the group found not only a previously completed cube from another University, but also many cube kits to be completed by an end users, homebrew projects, and even production models intended for professional display. Even though this was not an original project, the group still had high hopes to complete an impressive senior design project.

3.1 Existing Similar Projects and Products:

There are many existing LED cubes on the market as well as a few that was completed as senior design projects for different universities. They ranged from simple 3x3x3 cubes, all the way up to large cubes that could fill inside an entire room. There was also a variance in the LEDs used some using tri-color, while others simply using a single colored LED. While the single color LED cubes were impressive, nothing compared to the tri-color cubes, which were definitely aimed to impress. It would be wise of the group to examine these and learn from both the successes and failures of the pre-existing projects.
3.1.1 Boston University Senior Design Project:

During the research process to decide a new project, the group stumbled upon an ECE senior design team at Boston University who constructed a similar LED cube demonstrated on Figure 3.1, which they dubbed “Hyperion 3D”. This cube consisted of 512 (8 * 8 * 8) LEDs, and had dimensions 20” * 20” * 20” (Length * Width * Height). The Hyperion 3D also had 16 degrees of brightness control to add contrasts, as well as updated at 30 frames per second. They programmed the images via a host computer using a universal serial bus port. It also appeared that the cube was constructed in “sheets” of 8 * 8 LEDs, which was a technique that the group was hoping to replicate.

[image: image2.png]

Figure 3.1: Boston University’s 8x8x8 LED cube. Printed with Permission from Boston University Senior Design Team [1]

Something impressive that Boston University Senior Design Team did was to create two GUIs that allowed the user to access the cube easily. The first GUI was used to program the Hyperion, allowing the user to change the color/brightness of each individual LED and see the updated values in real time. It was laid out so that each individual 8 * 8 “slice” could be accessed one at a time and a simple drop down menu contained the allowed values that could be programmed. The second GUI allowed for easy transfer of images onto the Hyperions' internal flash or used to set the cube onto one of two modes of operation; static or stream. Static was simply uploading info to the cube via USB and on-board flash and continuous was constant updating of data from the host computer. If static was chosen, then up to 100 images were able to be stored directly on the Hyperion.

The way images were transferred onto the cube was also impressive. Data was sent in packets, with each packet holding 64 bytes. The microprocessor polled for data every 4 milliseconds, allowing for a 16 KB/s upload time; more than fast enough to retrieve all the packets of data in time for refreshing the cube. The code used to programming was C for the Hyperion and C# for the GUI. The group either use C# of Java for the group’s GUI, and C for the programming of the cube due to the small overhead and minimal size of the code as compared to C++ and Java.

The construction of the cube was also discussed. The group was quoted as saying that the soldering took roughly 30 hours to complete. Seeing that the Dynamic Animation Cube had four times as many LEDs, the group was expecting between 110 and 130 hours of work for the soldering alone. They used 24 gauge wiring, which was small enough that it was easily concealable and didn't appear to take away from the animation of the cube. They also used a polycarbonate frame, which seemed sturdy enough, but was visually unappealing. Another aspect the group was hoping to implement was what the Boston University group did in terms of powering the cube. They used a simple wall socket for power, which was straightforward and conducive to many environments.

While the Hyperion 3D performed impressively, the Dynamic Animation Cube that the group will construct will have many improvements. First, the group’s cube will have 4 times as many LEDs as the Hyperion 3D. Therefore, not only will the Dynamic Animation Cube be inevitably larger, but it will have a higher density of RGB LEDs that will result in a higher definition picture and provide a colorful animation.

Also, the Hyperion was not a very attractive looking LED cube. It sat atop a plastic transparent container which housed all of the necessary components. While this allowed for easy access and the ability to see the inner workings, it gave the appearance of being cheap and poorly thought out. The Dynamic Animation Cube will also sit atop its components, but the encasing that the group will use was much more clandestine, allowing the viewer to be awed by only the cube and not the inner workings. The supports that were used also obscured the view of the LEDs slightly. They were thick and distracting, taking some of the mysticism away from the light display. The group intends to use much thinner acrylic rods for the frame and have the LEDs span closer to the edges of frame, unlike the Hyperion where they ended abruptly about an inch or two from the edge.

3.1.2 Existing Products and Homebrew Projects:

During the research portion of the project, the group located a number of cubes both in the form of consumer products and homebrew projects created by enthusiasts. Each of the different sources provided us with different ideas that have greatly influenced the group's final design. The production models tended to be sleek and well-built and influenced how the group’s own cube would eventually be constructed, as far as materials and sizing. The homebrew projects greatly influenced the ways that the group would construct its cube based on the incredibly well written and in-depth information and tutorials provided. Both the production and the homebrew models have greatly impacted the group’s final product; however the one that most greatly influenced the final product structure would have to be the production models.

During the course of the group’s research, the group discovered many websites that display different types of LED cubes; however none influenced its design more than the cubes at http://qubeled.com. This site allows one to purchase a cube fully constructed, programmed, and ready to go. It was it inspired the group to see the size and the variety of 3D LED displays that they had. Qubeled had one ranging in size from a 5 * 5 * 5 model all the way up to the 16 * 16 * 16 model, with prices ranging from $230.00 to $6,950.00. Figure 3.2 displays the 16 x 16 x 16 LED cube

Purchasable at their website.

[image: image3.png]

Figure 3.2: 16x16x16 LED cube by Qubeled.

Printed with Permission from Qubeled [2]
One of the ideas adapted from their design was the use of a layer of acrylic panel to shield the led from outside influences. This will protect the LEDs from foreign objects bumping into and damaging the LEDs and provide a professional look. Also borrowed from their design was the use of a solid object to both supports the LEDs and skeletal structure on which to suspend the LEDs in a linearly ordered fashion.

In between the world of true homebrew and production models, the group also found an intermediary. During the search for homebrew products, the group found many places that would sell “kits” containing all of the necessary pieces to construct one's own cube at home. The interesting thing about these websites was that the group could actually select a kit and build one in order to test the skills that would be needed to construct the cube. The group quickly narrowed the selection down to 4 kits.

The first kit was from the web site www.seedstudios.com. The cube that came from seed studios was a smaller cube at 4 x 4 x 4, displayed on Figure 3.3. The cube came with a number of benefits. It came with a structure on which to mount the LEDs thereby providing a leveled skeleton to construct the cube. On top of that, it came with the LEDs, PCBs, and the through-hole parts that would be necessary to construct the cube. The cube design was also capable of working with the Rainbowduino platform, which would allow the group a simple straightforward way to begin the process of testing and controlling the cube. On the website, they provide simple instructions on soldering positions and software libraries to help facilitate the hardware and software applications. However, the Rainbowduino was not included in the package so it would be necessary to purchase one separately. The completely constructed cube can be seen below.
[image: image4.jpg]

Figure 3.3 Seedstudio 4x4x4 RGB Cube. Pending permission from Seedstudios [3]

The price of the cube was set at a price of $54.90, but an additional $24.90 would be required to purchase the Rainbowduino needed to power the cube, bringing the total to $79.80 plus shipping and handling.

Another prototype cube considered by the group was one available from www.picprojects.com. The pic projects website was a well written website that the group used quite a bit for reference and happened to sell a small LED cube kit. The kit, featured in Figure 3.4, came with a PCB board, through-hole parts, and a driver necessary for illuminating the LEDs, but did not contain the LEDs or the 5 Volt power supply so they would need to be purchased separately. The kit provided a number of benefits to purchasing it. First it came with proprietary software that came with 28 unique animations. It also contains an in depth tutorial on constructing the cube that was full of tips on troubleshooting and pictures of the construction process. Finally, it was the largest of the cubes selected by the group at 5 * 5 * 5. An advantage of choosing the larger cube was it would be closer the group's final project and thereby reduce the learning gap between the prototype and the final project. An image of the cube kit not constructed can be seen below.

[image: image5.png]

Figure 3.4: Parts to construct a LED cube without the LEDs. Printed with Permission from Picprojects [4]

The price of the kit was $35.76. The group would also be required to purchase a power supply and 125 LEDs. RGB LEDs could be purchased in packages of 50 pieces at a price of $8.92. Since they came in packages of 50, 3 packages would have to be purchased totaling $26.76. A 5 Volt DC power supply could be purchased for $7 from amazon. The total purchase of the LED cube kit, the LEDs, and the power supply the total purchase would be $69.52.

Another cube the group considered purchasing was the cube provided by www.hypnocube.com. Hypnocube provided many different prebuilt cubes at varying prices, all of professional appearance. Amongst the varied cube that they sell, they do also sell 1 cube kit. The cube kit contained the LEDs, through-hole parts, power supply, PCB, wires, microcontrollers, and a pre-built acrylic box designed to help protect the constructed cube.

Of all of the cubes considered the Hypnocube, pictured in Figure 3.5, was the most professional looking of all of the kits. The acrylic outer box provides an aesthetic that the group hopes to replicate in the final project. It also comes preprogrammed with 51 animations, making it by far the most animations of any of the preprogrammed cubes. However, of all of the kits the group looked at it, this was by far the most expensive. It also came with its own microcontroller, preprogrammed with its own software animations. This would not allow the group to experiment with animating the cube itself, eliminating a great portion of the learning experience that the group hopes to gain by

building a prototype.

[image: image6.jpg]

Figure 3.5: Encased 4x4x4 RGB cube.

Printed with Permission from Hypnocube [5]

The price of the cube kit was $150.00 making this by far the most expensive of all the kits considered for prototyping.

The final cube considered by the group for purchase was the cube provided by www.nutsandvolts.com. The Nuts and Volts website was actually a magazine for electronics hobbyists; because of this they were able to provide a simple kit with a mass of pictures. The kit was a 4 * 4 * 4 kit that included all of the parts necessary to construct the cube. It did, however, only come in with a single color LED and drivers only capable of handling single color LEDs. The group thought that this would not provide an accurate prototype of the finished model and therefore would not be as beneficial as some of the other cubes. A picture of the nuts and volts kit

can be seen in Figure 3.6.

[image: image7.jpg]Constuction Manual
42 pages.

3D LED Cube Matrix

RILRRRIR A NRLE

Figure 3.6: Materials to create a LED cube.

Pending permission from NutsVolts [6]

The final price of the cube would end up being $59.95 with no extra purchasable parts required. This made the nuts and volts the cheapest of the cubes the group had to select from.

In the end, there were many valid cubes that could be purchased that would all work suitably for the purposes of prototyping of the Dynamic Animation Cube. However, of all of the cubes one seemed to most accurately fit the criteria that group had set down for their prototype. The group selected the Seedstudios LED cube. The cube came at a reasonable price. Also, its addition of specialty PCB boards used to suspend the LEDs would allow for quick construction of the cube and allow the group to begin testing software and prepare for up scaling to the 16 * 16 * 16 Dynamic Animation Cube.

3.1.3 Instructables 8x8x8 LED Cube

The group also came across a site titled www.instructables.com. This site provides step-by-step instructions so that one can build their own 8x8x8 3D LED cube on their own from scratch. It was estimated by the creator that it took about 4-5 days for full installation of the hardware of the cube and another 4-5 days for the programming alone. A few of the necessary skills recommended was knowledge of electronics, soldering skills, how to use a multimeter, and basic C programming. While this design does not represent the exact path the group will take in constructing their cube, it provided great insight into the anatomy of LED cubes and gave a solid representation of how an advanced model was built.

3.1.3.1 Getting Started

A LED cube relies on persistence of vision. What this means was that the cube uses multiplexing to give the illusion of 3D by stacking 2D images on top of each other. In the case of drawing a cube, which would be lighting up all the edges of the cube, the group would not light them all up at the same time, but rather light up each individual layer, then turn it off and light up the next layer. The group could continue doing this at a rate so fast that it was undetectable by the human eye, thus giving the illusion of the 3 dimensional images, when in reality it was just many 2 dimensional images being displayed at a very rapid rate.
Using the above setup, the author only needed 64 IO ports for the anodes and 8 IO ports to control each layer, instead of 512 individual input/output ports to control each individual LED. The benefit of multiplexing and only 72 IO ports was that one would not have to worry about 512 individual wires being connected and concealed.

An LED cube can be thought of as a device constructed in columns and layers. The positive cathode legs of every LED in each of the eight layers are soldered together, and all the anode legs in each of the 64 columns are soldered together as well. Each of the 64 columns (in our case it was 256) are connected to the controller board by a wire, and each of the 8 layers (again, in our case it was 16) are also connected to the board by wires. This allows that each column can be controlled individually. Each layer was connected to a transistor which allows the user to turn the cube on and off by controlling the flow of the current. In essence, the LEDs that are to be turned on are determined in terms of which column they are in, and transistors determined which layer was going to be turned on and at what time.

In order to drive a single LED in a cube, two sets of IO ports are needed; one to source the LED anode columns and one to sink the cathode layers. For the anode side of the cube x^2 LED (64 in this case) IO ports were used. They also used 8 IO ports to drive the cathodes. It was also discovered that for a small LED cube, say 27 or 64 LEDs, it would be acceptable to connect the cathode layers directly to a microcontroller IO pin. However, for a larger cube the current going through this pin was too high to be connected directly to an IO pin. For their 8x8x8 LED cube with only 10 mA per LED, 0.64 Ampere must be switched. Table 3.1 below provided by the author were used to determine cube size and current requirement:

[image: image8.jpg]x2) [) 2rx)
Cubesize | Anodes | Cathodes Total
2 4 2 6
3 9 3 12
4 16 1 20
5 25 5 30
6 36 6 42
i 49 7 56
8 64 8 72
9 81 9 £
10 100 10 110
1 121 11 132
12 144 12 156
13 169 13 182
14 196 14 210
15 225 15 240
16 256 16 212

[image: image9.jpg][Cube size _|Leds per layer| Total mA at X mA per LED
[10mA [20mA

2 4 40| 80|
3] | 90| 180]
4 16] 160] 320
5| 25| 250] 500]
G| 36| 360] 720|
7] 49| 490) 980
E| 64] 640) 1.260]
| 81 810] 1.620]
10] 100] 1.000] 2.000]
11 121 1.210] 2.420]
12] 144] 1.440] 2,880]
13] 169 1.690] 3,380]
14] 196 1,960] 3,920
15| 225 2.250] 4,500]
16] 256] 2,560] 5,120]

Table 3.1 Left: Displays the amount of anode and cathodes relative to the cube size.

Right: Displays the amount of LEDs per layer and the current applied.

Printed with Permission from Instructables [7]
Another important concept that was learned was that the group must take into consideration the amount of current that the transistor the group chose to use can handle. With all the information online about 4x4x4 and 8x8x8 cubes, it would be easy to forget to make all the necessary calculations before purchasing the parts that drive our cube. According to this source, a microcontroller that could provide all the IO ports to control each individual LED on a cube of this magnitude would not be feasible, so a multiplexer to control the entire cube must be used. The multiplexer that this source used was a 74HC574, 8 bit latch. Of course, the latch the group use need to be one that holds 16 bits instead of 8, or the group may need to include more latches to meet the full IO requirements.

The 74HC574 had the following pins, and below the IO pins the array can be seen in Figure 3.7:

· 8 inputs (D0-7)

· 8 outputs (Q0-7)

· 1 "latch" pin (CP)

· 1 output enable pin (OE)

 [image: image10.png]TGN
TGN
TSN
TGN

Outputs 0-31

K z |°% z
9 <8 5
z g 3% 5 F

Data D07 OF Addr select 02

Figure 3.7: Schematic for 8 of the 64HC574 latches arranged to hold the states of the LEDs. Printed with Permission from Instructables [7]

In Figure 3.7, a 74HC138 3-to-8 decoder was connected to the clocks of 8 of the 74HC574 latches. The job of the latch was to provide hysteresis for this cube. The latch holds 8 bits of information which are represented on the output pins. To make an array of latches that can remember the states of 64 LEDs, 8 of these latches were used. The inputs of all of the latches were connected together in an 8 bit bus. To handle the on and off states of the LEDs, the data was simply loaded onto the input lines, set the latch high thus loading the data onto the output lines, set the latch low and then load the next state of the cube, then repeat until the animation was complete.
Next, instead of using 8 lines to control each of the latches, a 74HC138, which was a 3 to 8 decoder, was used. This way, they could minimize the number of lines and eliminate confusion. The author also went over another solution to transfer data to the cube, this one involving a serial-in parallel-out shift register, which gave them 64 output lines demonstrated in Figure 3.8.

[image: image11.png]Outputs 32-63

LT A BT
88888683 |z 88888683 |z 38388585 |z 858888683 |z
i s e = zfs x5
glee B[geo TEE e FEE g FER

7 17 A5 A%

'’ s %
Outputs 091

| \
= 58888685 |z 5lz 588886853 |z
e oo 5 gee FER Jew 3 E[
= g & 9] T 3 3

A . A O s

- s e
D07 Gk

vee

Figure 3.8: Schematic for 8 of the 74HC138 decoders arranged to act as shift registers. Printed with Permission from Instructables [7]

The 74HC164, 8-bit shift register was used. This method involved using a positive edge clock cycle to shift the data into 8 of the registers, which the state of the data input line shifted into Q0. Next, the data input was connected to each of the 8 bits on the microcontroller, and also had all of the clocks connected to another input/output port, thus resulting in 9 I/O lines total. This way differs most from the first implementation primarily because initially each byte had its own buffer all to itself. In the serial-in parallel-out method, each byte was divided between 8 of the shift registers. It was admitted that this would have probably been a more efficient way of handling the task, but apparently the parts that were available were limited, thus reminding members that the group should get all of the parts on order as to not rely on un-available hardware.

Next, this source wrote about the importance of a suitable power supply. Diodes are very efficient, but 4096 LEDs on at the same time could cause a problem. In order to calculate the power supply that was needed, the group simply connected a LED and a resistor the group intends to use to a 5 volt power supply, measure the current that this gives us, and multiply that number by the total number of LEDs the group intends to use. Also, add a few milliamps for the other components that are going to be used. It was discovered that on eBay one could purchase power supplies for as low as $15, which would work nicely with the established budget. Another option that the group could explore was the fabrication of a power supply. The author details that PC power supplies are convenient because have regulated voltage with high ampere ratings, which was what the group needed for the cube. If cost becomes a problem, or if the group finds there to be extra time available, this might be an option to consider.

Another aspect that was of the utmost importance to this group’s project was which LEDs to choose. There are several points that the author covers on which LED was the most suitable for the job. First, the LED must be visible from all sides, which was achievable if the group uses a diffused LED. There are several reasons why clear LEDs would not be a smart choice, including the fact that most of the light was directed upward, as well as the LEDs illuminated the ones directly above them as well as themselves. Clear LEDs would not completely ruin the cube however, and the creator of this cube even used clear ones to construct the cube, which looks very professional.

Next, the author recommended 3mm LEDs. The reason for this being that the LEDs are going to be close together, but the group wants enough room in between LEDs to see into the other levels, which would be blocked if larger LEDs were used. Also, it goes without saying that “you get what you pay for”. LEDs are easy to obtain through eBay and wholesalers, but the more one pays the better quality that was received and there was less of a chance that they will malfunction. Finally, since the cube relies on multiplexing and persistence of vision, each layer was on for one-eighth of the time the image was being processed. In essence, each LED must be bright enough to compensate for the 1/8 duty cycle.

For choosing the resistors, the variables that were considered were the LEDs available, the 74HC574 that drove the LEDs, and finally the transistors used to switch the layers on and off. First, LEDs usually have two ratings associated with them: burst and continuous loads. The author chose to look at the burst rating, since he was running the LEDs with a 1/8 duty cycle as mentioned in the previous step. Next, the maximum amount of current that the driver could handle was considered. They found that the maximum rating was around 50mA, so that gave 50/8(output pins) mA of current, so roughly 6.25mA. Finally, it would have to be taken into account the load that the transistors would have to hold. The transistors have to switch on and off x^2(x a single dimension of the cube) times the amount of a single LED.

Next, this source made the choice to use the legs of the LEDs to support the cube, since they disliked the “scaffolding” that was used for other LED cubes. First, the legs of the LEDs were bent to create a 90 degree angle. The leg was then measured to be 26mm long, so the LED spacing was chosen to be 25 mm, thus allowing for a 1 mm overlap to work with. This allowed for maximum visibility, making it easy to see into the furthest layer on the inside. The group is using acrylic rods to support the cube, because it was 16x16x16, and the group did not want to rely on the strength of the LED legs to support the design.

The author then goes on to explain how they worked on a small scale model with dimensions 4x4x4 before jumping straight to the 8x8x8 cube so that they could get a feel for the project that they had ahead of them. This was exactly what the group plans to do, and this was explained in great detail in section 7.0.

3.1.3.2 Building the Cube

To make a symmetrical, eye-pleasing LED cube, the LED must be the same distance apart, with each layer being of equal size. This was achieved by making a soldering template crafted from a piece of wood. First, a drill bit that made a hole into the wood the size of the LED was used to do just that. Next, a ruler and an angle were used to draw an 8x8 grid, using the LED spacing of 25 mm which was previously found. Then, once the proper spacing had been determined, the holes were drilled. Finally, a spot was marked off where they would insert a metal brace wire, as to add support for the cube.

Now that the base was made, it was time to start soldering. The author seems to know that people are going to buy cheap LEDs, and warns that they must take precautions when soldering. First, they must clean the soldering iron often, because oxidation will occur. This allowed easier transfer of heat to the target area. Next, speed was important. If the iron was in contact with the LED for too long, then it will inevitably break. Another aspect that was important was cooling down after mistakes. If they happen to make a mistake, they should not try again immediately because the LED will already be hot. Instead, move on and fix the mistake when the LED cools down.

Next, the group must consider the kind of solder to use. A thin solder was recommended because it gives more control, and allows for more eye-appealing joints free from blobs of solder. A 0.5 mm gauge solder was recommended, but the group will most likely experiment with different gauges and see what works best for this cube.

Finally, it would be smart idea to go about testing each LED before and after it was soldered to ensure it was working correctly. This seems tedious, but most likely a necessary step. The main reason the author mentions this was because their LED was a single, giant cube that will make getting a burnt out LED from the furthest point in the middle a nearly impossible task. The group plan to do it in removable layers, which means it was easier to get to the places that are out of reach on a solid cube. It was then detailed how to test the LED, hooking them up to a 5 volt power supply and using a multimeter to measure the current through the LED. As senior electrical engineering students, this should hopefully be an easy task.

For the author’s actual construction of the cube, 64 LEDs were inserted into the template previously constructed. The legs were bent so that the anode was straight in the air, and the cathode was at a 90 degree angle facing the next LED beside it, making sure to allow for the 1 mm overlap. Since the group members are right handed, they take the sources advice and start soldering at the column to the far most left. After all the LEDs in a single row were soldered in this fashion, what was left was 8 columns of LEDs, only connected by a single wire at the top row of the template. After soldering all 8 of the columns, braces were then added to the bottom and middle of the structure for the purpose of adding support. Below was Figure 3.9 from the guide which the group then highlighted the soldered rows and columns for easier view:

[image: image12.jpg]

Figure 3.9: Template with Highlighted Rows and Columns Soldered. Printed with Permission from Instructables [7]

The testing of the post-soldered LEDs does not seem quite as troublesome, and will probably be a good idea to implement after every layer that the group completes. First, they grounded the cathode legs of the LEDs at the upper corner of the layer. They then connected a wire to a 5 volt power supply, and then to a resistor. All that was left to do now was tap the wire against the anode leg and see if the LED lit up. In Figure 3.10 it can be seen how the LEDs were tested:

[image: image13.jpg]

Figure 3.10: Testing one LED after soldering a layer. Printed with Permission from Instructables [7]

Although the group will have a layer of 256 LEDs, this will eliminate later error handling and LED replacement. The author then gives 3 reasons why the LED might not light up:

1. Soldering isn’t conducting current

2. Broken LED due to overheating

3. Did not make a connection between the test wire and the LED
 somehow.

After soldering the individual LEDs, it was time to simply straighten the legs of the LEDs so that they were rotated upward at 90 degrees and would allow for a better looking cube. After all 8 layers were complete, what was left to do was to solder the layers together. The anode legs of the LED were bent so that they touched the anode legs of the LED below them.

Then, the layers are to be soldered together. The first thing the author did was to use a 9 volt battery, which was approximately 25 mm, to stabilize and hold the layers in place while they were being soldered. The group most likely be using “sheets” or “slices” of LED layers, so hopefully this was as easy as inserting the layer into a proper location on the base, as opposed to soldering the entire contraption together.

Next, the edges of the layers were soldered together, and then moved onto each inner layer, moving the battery as they went along. After the first layer, the battery was removed because the cube was stable enough to support itself and be soldered in place.

Finally, it was stressed once again that testing the layers was of utmost importance, because the soldering could have damaged on LED, or the wires might have not been soldered together correctly. The same process as before was used to test all of the LEDs. The testing of the LEDs seems more and more unappealing as the project moves on, but again, the group was using sheets to construct the cube so testing was kept to a minimum because there was less room for error.

Next, they created a base from the template that was used to solder the LEDs. The group plans on going in a more professional direction and creating a custom base. First, 8 holes were drilled into their base, as to allow for the ground to be connected to each layer. Through each hole, a ground wire was inserted, and soldered to each successive layer.
Circled in the Figure 3.11 are where each of the ground wires were connected to the cube:

[image: image14.jpg]

Figure 3.11: Grounded Cube Layers Highlighted. Printed with Permission from Instructables [7]

Next, they had to attach all 72 wires to the underside of the cube. To make this easier, they used ribbon cable so that they did not have to deal with the confusion of 72 wires going in every direction. For the ground layer, a single 8-wire ribbon cable was used. The 64 anodes were connected by using four 16-wire ribbon cables. At the controller side of the ribbon cable, a 0.1 inch female header was attached that was able to be plugged into a single row printed circuit board header pin. Below in Figure 3.12, it can be seen how useful the ribbon cable became when dealing with many wires:

[image: image15.jpg]

Figure 3.12: The bottom of the LED cube. Printed with Permission Instructables [7]

3.1.3.3 Building the Controller

The author decided to go with 2 separate boards to attach all of the components. It would have been too difficult to try and fit all the components onto one board, and two boards with ribbon cable used to attach all the components together seemed to be the best idea according to this source.

An external crystal with 14.7456MHz was used to drive the clock. This frequency was chosen because an RS232 was being used so that they could run the LED cube from a computer. Since no error correcting algorithms were being used, the author felt like this was a smart choice as to avoid any missed signals. To prove that this frequency was a smart choice and serial communication would be error free, it was divided by all of the popular RS232 baud rates, and the result was a whole number every time:

· (14.7456x10^6 Hz) / 9600 baud = 1536.0

· (14.7456x10^6 Hz) / 19200 baud = 768.0

· (14.7456x10^6 Hz) / 38400 baud = 384.0

· (14.7456x10^6 Hz) / 115200 baud = 128.0

Now that the cube was complete, they set out upon the task of creating a circuit that would control the entire thing. They chose to start with the power supply, or the “easy” part according to the author. The power supply consisted of a terminal where the ground and Vcc wires were connected, along with filtering capacitors, a switch, and an LED to indicate that the power was on. Initially, an LM7805 step down voltage regulator was used to power the cube; however this did not work for the following reason. A 12 volt wall wart was used, which in reality produced about 14 volts. The LM7805 uses resistance to step down the voltage, and gives out the excess in the form of heat. Even with a heat sink, 9 volts proved to be far too hot to handle, and the current supplied was just inadequate. Instead, an external 5 volt power supply was used.

The author had to account for voltage drop across the entire circuit caused by the switching states of the LEDs. For their cube, the LEDs were going to be pulling around 500mA several hundred times per second to account for the persistence of vision, so the voltage drop would be inevitable. By using capacitors, they were able to create a “buffer” between the circuit and the power supply, allowing for the power supply to compensate for the increased load. According to this source, it was common practice for a large capacitor to be placed at the input pin of the LM7805, and a smaller one to be placed at the output pin. Following this, a 1000uF was placed at the input, followed by a 100uF at the output. The next step was soldering the main components of the multiplexer array. They sought to minimize the wiring, so the option was to place the connectors as close the ICs as possible so no wires were used and they were only connected together on the PCB by solder. They achieved this and managed to get all of the resistors, 74HC574s, and connector’s snuggly on the board with room to spare.
For every 74HC574, a 0.1uF capacitor was used to reduce the noise of the circuit. This was done because when the current on the output pins was switched on and off, this can cause a voltage drop that would interfere with the latch. This was said to be unlikely, but it was better to not take a chance and eliminate this from causing any errors so debugging can proceed smoothly. Then, wires were added to connect the 74HC574’s together. 9 wires were used per latch, 8 for the data, and 1 for the output enable. A 16 pin connector was also added, so that latch board could be connected to the microcontroller board. A 74HC138 was then added. This was responsible for toggling the clock on the latch. The author referred to this as an “address selector” because it selected which of the 8 bytes in the latch array they wished to write data to.

Next, they worked on the board containing the Atmel AVR ATmega32, or in their words, the “brains” of the cube. It was an 8-bit microcontroller with 32KB of memory and 2KB of RAM. It contains 32 general purpose input output (GPIO) pins, with 2 used for serial communication, 3 for in-circuit serial-programming, and 27 to drive the cube and all other components. The ATmega32 had 4 ports in total, with each port equaling 8 GPIO pins. Port A and port B were used to drive the data bus of the latch array and layer select of the transistor array because port C and D contained some of the pins used for other operations.

Then, the author went on to work on the transistor array. This array was responsible for switching the ground for each layer of the cube on and off. What they used was a PN2222A NPN general purpose amplifier, which was rated at 1000mA current. For each layer 2 of these transistors were used in parallel with the collectors connected together at the ground, the emitters connected together and then to ground, and each base connected to its own resistor. This source goes on to state that there was probably a better MOSFET to use, but this was all that was available.

Buttons and status LEDs, for debugging, were then added to the cube. The first button added was to allow the user to choose to start the cube in autonomous mode. The second button was there to allow for the user to start the cube in RS232 mode so that it could be run from a computer. Finally, a reset button was added, as well as a status LED to indicate that the cube was on or off. The RS232 was the next component to be worked on. A PC can do floating point calculations, which are much faster than what the AVR can do alone. The AVR had a built in universal synchronous and asynchronous serial receiver and transmitter (USART) that was used for communication using the RS232. To allow transfer between the RS232 and the AVR, a MAX232 was used because it sets up voltage that the RS232 can handle.

Finally, the two boards that were made were connected by two cables, a ribbon cable for the data and address bus, and a 2 wire cable for the ground and voltage supply. The cube was then connected to the board by four 16 wire ribbon cables, which were split into 8, with each set of 8 connected to one of the 74HC574s. Now, the fuse bytes must be set on the ATmega32. The fuse bits control such information such as using an external clock source as opposed to the JTAG. Using the software avrdude and USBtinyISP, the author was able to program the fuse bytes accordingly. And at last, the cube was built and the next step was testing out the cube via test code. The test code basically checked if all the LEDs were working properly and that they were wired correctly by lighting up each LED using different patters such a plane-by-plane, row-by-row, etc. To fully program the cube, EEPROM as well as the firmware must be programmed.

3.1.3.4 Software

The software for the cube was written in C, and compiled using with an open source compiler, avr-gcc. The main reason the Atmel AVR microcontroller was used was because its compiler was free, unlike many other micro-controllers. This source stated that the software, in their mind, was going to be the easy part. However, since they were only using a single color LED and having such low resolution proved troublesome in making more appealing animations. Our cube featured 3 colors, and have a much higher resolution, so hopefully the group can build some impressing animations.

The two main components of the software are the cube interrupt routine, and code for making the animations. These two sections communicate via a pixel array, or a voxel array for short. The array contains a single bit for each LED in the cube. The voxel array that was used was: volatile unsigned char cube [8] [8]. This array was 8 Bytes x 8 Bytes, supplying an array that was 8x8x8 voxels. The interrupt routine thus reads information from the cube array, updating the animations accordingly at fast intervals. The first thing the ATmega calls in its main function was the ioinit function. This sets up everything that had to do with input and output, such as the ports, timers, interrupts, and serial communications. The function of the atmega can be seen in table 3.3.

[image: image16.jpg]Flow chart explaing ioinit function from instructables website

Initializing the ports, etc

First the data direction
of the |0 pins are set.

Then sll outputs are set
to zero to avoid LED
blinking before the
interupt has started.

The pins that are
connected to buttons are
set to enable internal pull

up resistors. This pulls them

Up £o VCC which makes
them go to logic 0 when
pressed

The timer for the
interupt is configured to
trip 1047.72 times per
second.

Finally the serial
communications is set up

Table 3.3: Flow chart of the Input/Output initializing function from Instructables.

The interrupt routine was a crucial bit of code for the LED cube. What happens whenever the interrupt routine runs was that the present state was cleared, the data was loaded into the next latch array, and the new layer was switched on? Also, whenever an interrupt routine runs, the Atmegas counters reset to zero, so it can begin again until stopped. What the author did to achieve this result was use Timer2 (of the three timers available) with a prescaler of 128 and a counter limit value of 10.
From what the group gathers this means was that the counter was incremented by 1 every 128th clock cycle, and when it reaches 10, it was reset back to zero. Essentially, the interrupt routine gets called 10472.7 times per second, and with a complete image requiring 8 refreshes (one per each row of the cube) the refresh rate was 10472.7/8 = 1300FPS. According to this source, it seems like a rather high refresh rate, but through testing with an oscilloscope they found that it only took up about 21% of the CPU time, this allowing the other 79% to make animations which was determined to be more than enough.

What this source did to make the code more efficient was to create a library of low level functions. There were three main reasons why they decided to do this:

1. Memory Footprint

They first decided to use a 3 dimensional array to represent each of the LEDs in the cube:

Unsigned char cube[x][y][z];

However, they only needed 1 bit to represent the on/off state, so the other 7 bits that represent each LED would be wasted. This gave the Figure 512*(7/8) = 448 wasted bytes of memory. Since memory in microcontrollers was limited, this was a sub-par solution. Instead, they went with a 2 dimensional buffer:

Unsigned char cube[z][y];

In which the x-axis was represented in each of the bytes in the array. Since, according to this source, this was very confusing, this led to the second reason to use low level functions.

2. Code Readability

A voxel with the coordinate <4,3,5> would require the code:

cube[5][3] |= (0x01 << 4);

So, instead of using this notation, the author made a function in draw.c that accepted the x, y, and z coordinates and converted them into the 2 dimensional coordinates. They also included many functions that draw lines, fill boxes, and fill planes which lead to the next reason for the functions.

3. Reusable Code and Code Size

Many animations rely on the same functions, so rewriting these large chunks of code would waste vital memory. With many of these functions already written, animations are easy to create and save a great amount of space.

Another idea that this source had was how to run the pre-programmed effects stored on the microcontrollers memory. This was important because once our project was done and donated, it would be un-ideal to have someone constantly have to change the animation. There were two ways to accomplish this; a linear path for the animations, or a random path.
Yet another idea the group might benefit by was the use of a case statement to easily choose the effects. As seen above, the loops send an integer to the launch_effect function. This integer corresponds to specific animations which were chosen by the case statement.
3.1.4 HNTE RGB LED Cube

In the later stages of the design process, the group received a site that constructed an 8x8x8 RGB cube. This was very similar to the Instructables website, but the How Not to Engineer (HNTE) includes the same LEDs as the Seedstudio kit and introduces the idea of constructing the cube into panels. Before Nick Shulze, the cube’s designer, constructed the RGB 8x8x8 cube, he already made a 4x4x4 RGB cube that was layered. The image on the left reveals constructing a cube that involves many wires pointing up. It was easy to apply the layered concept with a small scaled cube, but a large scale cube would have difficulty soldering the LEDs in the middle as well as holding the layer up all the time. The image on the right demonstrates the 8x8x8 panel construction with the green square and the 4x4x4 layer construction with the red square.

The group hopes to add his methodology on panel over layer construction when building our cube. This opens up multiple options on how to construct the cube and consider the time it takes when soldering many LEDs. What was similar in both designs was the use of a rig or base to construct the layers or panels together. Like the Instructables, a general amount of knowledge and skills on electronics and software are recommended. It involves “a lot about animating in color, software modulation for fading and C++ in general” (Shulze). The group plan to construct our 16x16x16 with as much ease as possible since his panel approach was around 20 hours of soldering with 60-80 on software. It can be seen in Figures 3.13 and 3.14 the ways that the author tried to construct his cubes.

[image: image17.png]

[image: image18.png]

Figure 3.13 Left: 4x4x4 Cube with layers.

 Figure 3.14 Right: 8x8x8 Cube with Panels and the 4x4x4 Cube

with layers on the bottom right.

Printed with Permission from HNTE [8]
3.1.4.1 Building the Cube

Before soldering all the LEDs into a panel, Shulze constructed a wooden base with 7 columns and had all the LEDs bend a certain way, demonstrated by Figure 3.15. The 3 RGB cathode wires are pointed downwards as the grounded anode wire was bent with a sideways bent. After that, a wooden model was created to serve as base for the soldering and holding the LEDs. This base was composed of 8 columns with 50 mm apart from each column.

Then, each column had blue-tack on each column to hold the LEDs in place during the soldering process. The LEDs are lined up at the edge of the board on the flat side. All the RGB wires are bent again and soldered to each LED with respect to their color thus forming a column. Taking consideration that the project had twice the columns, the group slimmed down the distance between each wooden column. After Shulze creates his 8 columns, he turns the columns over and lines the top LED up with the edge of the board. The columns have their anode wires soldered together to form a single panel. The process was done eight more times for the 8 panels of the cube, and can be seen in Figures 3.15 and 3.16.

[image: image19.png]

[image: image20.png]

Figure 3.15: RGB cathode wires bent 90 degree and the ground anode wire bent 90 degrees to the side. The 8 panels hanging from the wooden columns.

Printed with Permission from HNTE [8]
With the 8 panels, the wooden base gets reconstructed with the columns used to hang the panels shown in Figure 3.15 Right. The interesting part of the hanging panels versus the layers approach was that when soldering layers together, the layers needs to hold up during the soldering process. With the hanging approach, the wooden columns hold the top of the LEDs making the soldering procedure will have minimal mistakes.

The LEDs Shulze used are exactly like the LEDs the Seedstudio kit includes. The group plan to test out a prototype of Seedstuidios' kit to familiarize ourselves when handling the soldering and construction process. The cube had a magnitude of 256 LEDs per panel. This took a considerable amount of the group’s time when constructing the cube.

The group hopes to reduce as much time for the testing of the cube and focus on the LED driver board and microcontroller after it was completed. The group believes the programming and animation portion of the cube also took a great deal of time.

3.1.4.2 The Controller

The controller involved with this project consists of two parts, an RGB LED driver board, and a chipKit UNO which was in charge of controlling the drivers. The driver was made up of 12 STP16 chips arranged in groups of 4 and 8 transistors. The transistors were arranged this way so that each group can drive an individual cathode of the LEDs, thus making it possible to have a single group drive a single color. This impressed the group very much, and seemed like it made the circuit as well as the programming much easier. Shulze picked the STP16 chips rather than the other driver because he felt like they were complicated to program and difficult to handle, and he also had prior experience with the chips with the 4x4x4 cube so he decided to stick with what worked in the past.

These chips are cascaded with four red, four green, and four blue STP chips in each LED. “The cascade works by pushing the data to the next byte register each time data was loaded into the first register, this means that the first byte loaded end up in the last byte register” (Shulze). Therefore he can clock the RGB data at the same time. He had the transistors and the output enable are controlled by the digital IO, this will help switch off the drivers when data was loaded and speeds up the refresh rate. A timing diagram displayed in a single output enable, there are 64 clock pulses that includes 64 red bits, green bits, and blue bits. At the end of the 64 clock pulses was the latch enable and the start of another set of data.

The driver board was connected to the chipKit UNO microcontroller board. The board’s applications include multiplexing and bit angle modulation to fade the colors as well as generate animations. The layout starts with the computer generating the data. The data was then sent to the chipKit controller. The controller receives the data and clocks that data onto the LED driver board layer by layer. One layer was then powered with the transistors and the STP16 chips.

3.1.4.3 Animations and Software

The software used to animate the cube was greatly influenced by C++. All of his code did not use any of the Arduino software libraries but was made by scratch, and did not take advantage of the pulse width modulation of the LED drivers. This led to many hours of coding, but the author felt it was the best route to take in programming his cube.

To modulate and multiplex the animations, an Interrupt Service Routine was coded. The bit angle modulation was used to “generate a decent range of [colors] for my effects... to fade each diode in each LED” (Shulze). Each layer had 256 interrupts. Within those interrupts for every 2^nth interrupt, the brightness bit was loaded into the LED. The interrupt continues until the next 2^nth interrupt to load the next brightness bit into the LED. Bit angle modulation (BAM) was an alternative to the pulse width modulation (PWM). Just like how the cube can be constructed in layers or panels, the modulation of sending the bit to the LEDs.

In terms of which modulation was better, most likely BAM since PWM requires more processing power. The interrupt service routine also handles the multiplexing portion of the cube. A layer was lit up one at a time, or multiplexed, and in each layer it was modulated with BAM. As the layers a multiplexed faster and faster, it demonstrates the illusion of an animation.

In table 3.4, the flow chart demonstrates how the interrupt service routine first applies an animation. Each time an animation completes the microcontroller proceeds to the next animation or uses an onboard animation. The next function uses the BAM. Data was loaded and sent to the cube. From there it proceeds to the LED driver and animates the cube. The bit counter was incremented and ends with the checking the bit count to the bit length. When the bit count was higher than the bit length, it increments the bit position and the length of the next delay. It ends with the interrupt flag resetting.

To generate colors into his animations, he used a color array to extract clear and solid effects. He demonstrated with a color wheel that shows a circle with a blue panel at the 7 o’clock corner transitioning counter clockwise towards the 3 o’clock corner. As it was transitioning from one corner to the other, the blue was gradually changing to red. From the red corner, it transitions to the 11 o’clock corner. The red also changes colors towards green. After the green corner, it returns back to the blue corner. If the color wheel was closer to the center, the effect wouldn’t be solid and what appears to be “washed out”. With the help of the sine function, he takes advantage of the phase to set the max bit color for RGB outputs. For example, blue = max Bit Color x sin(0) produces a blue = 0 value and if blue = max Bit Color x sin(π/2) gives blue = max Bit Color. To take advantage of the array, the sample code below retrieves a color from the wheel.

[image: image21.jpg]Flow chart explaing how the colourWheel is used to pick colors from the how ot
to engineer website,

Function takesin an 8 bit Since pos can be outside
number [pos] that of the colourwheel array
represerts a position on shrink pos until it is within
the color wheel the bounds of colorwheel's

array

Initialize color value to Take the value from the

be returned [val] colourwheel array at the

(et it to 0) index of pos and place it

inval and return it

Table 3.4: Flow chart of the color wheel from HNTE.
These set of code will help the group have better understanding when dealing with the RGB aspect of the cube. Most of the cubes the group had dealt with were monochrome or have RGB but with little information on why it displays the RGB output. The idea of a color wheel gives us a large boundary of colors to work with instead of the standard red, blue, and green animations. The group can achieve brilliant and solid colors with the help of the wheel. The finish product of Shulze’s cube was praised and appreciated by many commenters. It was a good example before the group begins to build their cube and gives another option to create the cube.

3.2 Component Research

After getting an idea exactly how a LED cube worked, it was time to plan on designing our own and choose the proper components to get the job done. The group had many different variants of some parts to choose from, but they tried to stay with the Texas Instruments parts so that they are eligible to enter into their design competition.
It was discovered that there were many parts that were suited to complete the project, so careful consideration was taken in the selection of the components. No testing could be done to decide which elements in a certain category were the fit for the job, so research of the components and reading of the data sheets from the host websites had to be done in order to select the parts that were being chosen.

3.2.1 Selecting LED Drivers

Due to the large number of LEDs and the group was using LED drivers. The LED driver helped handle the small technical parts of lighting an LED such as the brightness and status of the LEDs as well as perform dot correction. The dot correction helps keep the brightness of all the LEDs uniform. LED drivers may also have the ability to sense when an LED was no lit properly or if an LED had gone out. Using these features made it easier to be able to debug the connections and ensure the LEDs receive proper voltage.

There are certain criteria necessary to drive the LEDs: brightness controller, large amount of output pins, and low budget. As well as controlling the brightness and color of the LEDs, the drivers allowed us to fully control the LEDs in our cube. Most methods used only allow us to light up a single color per layer at a time, but with the drivers the group can control each of the 256 LEDs per layer allowing for much more impressive graphics. Below was an in depth analysis of the LED drivers our group was considering on choosing for our LED cube:

3.2.1.1 TLC59711

Product Description: The TLC59711 was a constant current sink driver. It contains twelve channels, with eat output channel possessing an adjustable current with 16-bit pulse width modulation grayscale steps. There was also a global brightness control function that allows direct control of each color group. The gray scale and brightness control are controlled with a two wire signal interface.
Features:

· 12 Output Channels

· Current Control

· Grayscale Control 16-bit with Enhanced Spectrum PWM

· Brightness Control: 7-bit for each color

· Constant-Current Accuracy

· Unlimited Device Cascading

Analysis of Features: One of the features of this device was the 12 output channels. This would allow control for 12 separate LEDs via a serial interface. To control the cube, the group needed to drive 768 separate LED cathodes. This would mean in essence that they needed 64 of this device in order to control each individual cathode and fully control the colors of the cube. One idea the group had was to use separate arrays to control the individual LEDs of the cube in order to avoid confusion in both programming and the layout of the printed circuit board. With 68 of these devices it would be difficult to make equal arrays, and more than one of the devices was needed to control multiple colors. Another concern about having 64 of these devices was not only the size of the printed circuit board, but the cost. It would be a total cost of $114.95, with each individual 59711 being $1.79.
To control the maximum output current value it was necessary to place a resistor at the output terminal of the drivers. Because different color LEDs require different voltages to turn on, this allow the group to take full control over every LED in the cube by placing one of the three resistors that was used after the terminal that controls the LED in questions.

Grayscale pulse width modulation control was a very attractive feature of this device. Since the LEDs was switched on and off many times per second, pulse width modulation allow control for the duty cycle making individual LEDs appear brighter or dimmer. This allows the group to fully control the colors of the animations of the cube.

Constant current accuracy was another benefit to this device. Without this feature, the cube would not be reliable and would malfunction during animations. A more alarming consequence of unreliable current was that fact that more than the recommended amount of current could be supplied to a LED, or even multiple ones and cause severe burnouts. This would result in a loss of time due to error checking and LED replacement.

Unlimited device cascading was one of the most important features the group was looking for in their LED drivers. Above, the idea of controlling the colors via an array was presented. This cascading of the drivers allow the group to transmit the state of the LEDs serially to each array of drivers with as few control lines as possible. This design feature was discussed in great detail in section 3.3.1.3.

3.2.1.2 TLC5947 (Texas Instruments)

Product Description: The TLC5947 was a constant current sink LED driver. Each of the 24 channels was individually adjustable, being controlled by 4096 pulse-width modulated steps. Pulse width modulation control was repeated automatically with the programmed grayscale data. There was also a thermal shutdown function causes the driver to halt function when too high of a temperature was reached. The drivers then restart when the temperature returns to normal conditions and function continues.
Features:

· 24 Output Channels

· 12-Bit Pulse Width Modulation Grayscale Control

· Current Accuracy

· 2 separate Transfer Rates depending on orientation

· Thermal Shutdown

· Noise Reduction

Analysis of Features: The TLC5947 possesses 24 output channels; twice as much as the 59711. The additional output channels makes this device more desirable than the preceding one, and the 768 cathode lines are divided nicely by the 24 outputs, resulting in 32 of the 5974 being needed. This number was far more convenient when compared to the 64 of the 59711’s that were needed to be used in the above implementation as far as the design detail and the printed circuit board used.
However, if the group wanted to use three separate arrays for the colors an issue would be that the 24 outputs do not divide soundly into the 256 separate cathodes for each color. Also, this device had many more features than the 59711, thus meaning that the cost increase per unit. The overall cost would be $112.96, with each driver being $3.53. Essentially, though the group needed only half the units, the cost of a single unit of the 5947 was almost twice as much.
Like the TLC59711, this device features pulse width modulation, current accuracy, current control using resistors, and device cascading. However, this device was detailed more from the Texas Instruments website in terms of the transfer rate as standalone device as well as in cascade. For standalone, operation the device run at 30 MHz, but for cascade, which was what the orientation was, the frequency of operation was 15 MHz This bit of information was very beneficial when considering the final design of our project, and it so happens that 15 MHz was a sufficient frequency for the LED cube communication.

Thermal shutdown was a great feature of this device. If an error would happen to occur, this feature prevent any damage done to the microcontroller, as well as the LEDs and other components that happen to be directly attached to the driver. While the current accuracy ensures no malfunction due to the current, there are many other unforeseeable errors that could occur. An aspect of the thermal shutdown that would be needed to investigate was the fact that the driver restarts automatically when proper temperature conditions are met. The group was unsure as to whether the animations would just continue at a random section, or if it would stall the microprocessor and would proceed where it left off.

The final feature that interests the group was the noise reduction. This was upheld by a 4-channel grouped delay that prevents inrush current as described in the Texas Instruments device features. This feature prevent any unwanted bits of data being written to layer in question, which was beneficial if any high resolution animations are needed to be displayed.
3.2.1.3 TLC5941 (Texas Instruments)

Product Description: The TLC5941, like the 59711 and the 5947, was a constant-current sink LED driver. Each of the channels had a 4096 step grayscale pulse width modulation control like the 5947, but unlike the 5947 this device also had a 64-step constant-current sink, or in other words dot correction. The TLC5941 features two error information circuits as well.
Features:

· 16-bit Channels
· 6-bit Dot correction

· Controlled In-Rush Current

· Two Separate Error Information Circuits

· 12-Bit Pulse Width Modulation Grayscale Control

· Current Accuracy

Analysis of Features: The feature that drew the group to this device was the fact that it contained 16 channels to drive the LEDs, as well as the fact that this device can be operated in a cascaded orientation like the previous two drivers. This number was of importance because it fit the cubes dimensions, so this left the group a wide variety of ways to position the devices and control the LEDs. The orientations of the outputs of the drivers are discussed in great detail in section 3.3.1.3.
Aside from the pulse width modulation, this specific driver had the feature of dot correction. The dot correction ensures that all of the diodes will operated at the same level of brightness. So, for example, if the cube had a single layer of all red colored LEDs turned on at once all 256 diodes was the same level of intensity. This feature isn’t necessary for the overall functionality, but it result in a more professional and impressive cube.

The TLC5941 also comes equipped with two separate error information circuits. The LED open detection (LOD) lets the group know if a broken or disconnected LED was at an output terminal. This was a very useful feature seeing that the group will have 4096 LEDs in the cube, so any insight into possible errors was excellent. The thermal error flag (TEF) indicates a condition in which the temperature becomes too high. While this last flag was not as impressive as the thermal shutdown feature of the TLC5947, it provided the same exact function if the group uses the microcontroller to perform the same task by checking the status of the flag.

3.2.1.4 LT3754 (Linear Technology)

Product Description: The LT3754 was LED driver which was capable of driving up to 45 volts. Each of the 16 channels follows a programmable current to allow anywhere between 10 to 50mA of LED current per string. The LT3754 also features pulse width modulation like all three of the previous drivers.
Features:

· 16 Channel

· Parallel Channels for Higher LED Current

· Programmable LED Current Derating vs. Temperature

· Output Adapts to LED turn on voltage

· Fault Flag for Protection for Open LED Strings

· Short protection for LED Pin to Vout

Analysis of Features: Like the TLC5941, this driver had the optimum amount of channels that the group felt made constructing the cube in the most efficient manner. One huge factor in the choice of this driver was that the cost per unit was $6.07, making the required 48 total needed come to the price of $247.68. This was a rather high price for the drivers alone, but given all the advanced features of this driver the reason behind the pricing was easily seen.
This driver also protects the other components that it was attached to rather efficiently. It had protection in the case of shorting the LED pin and the supply voltage, a fault flag for any open LEDs, and a programmable maximum voltage at which the driver allows. Overall, this driver was high efficiency and used to provide a stable environment for the LEDs by controlling all aspects of the system.
The LT3754 can also be synchronized to an external clock, as well as operating on an internal programmable frequency ranging from 100 kHz to 1MHz. This was very useful in the case that the group chooses to use a computer to communicate with the cube. An RS-232 was used, as well as a 14.7456 crystal to act as a clock for the system. With the two devices operating on the same frequency, the chance of error goes down drastically.

Another impressive feature of this driver was that the output voltage adapts to match the turn on voltage of the diode it was driving. This not only ensures a long life for the diode, but also makes the driver operate at extremely efficient levels, never wasting any power when it isn’t necessary. Below in table 3.6 was a brief highlight of the LED drivers.
	Part Number
	Features

	TLC59711(Texas Instruments)

	12 Channels
16-bit Grayscale Control

7-bit Global Brightness Control for Colors

	TLC5947 (Texas Instruments)
	24 Channels

12-bit Grayscale Control

Thermal Shutdown

	TLC5941 (Texas Instruments)

	16 Channels
12-bit Grayscale Control

Error Detection

	LT3754 (Linear Technology)
	3000:1 True Color PWM

Table 3.6: LED drivers and features.

3.2.2
LED Driver Decision and Analysis

For the project the group was using three TLC5941s from Texas Instruments to drive the LEDs. The TLC5941 had 16 output pins and a serial interface. It had the 12-bit grayscale PWM to control the brightness of the LEDs, and also had dot correction which was very desirable. This LED driver also had circuits that can detect for an open circuit which the group can use for debugging. The group chose this LED driver mainly for its 16 output pins since they are attempting to light such a large number of LEDs, and this number happens to fit perfectly into the plan to use arrays of the drivers to control each color individually.

Using an array of these devices arranged in a cascade pattern they tried to not only light the 4096 LEDs, but take full control over the possible spectrum of colors that are possible to display. Other methods of lighting the LEDs also proved to be efficient, but using this driver to control the statuses of the LEDs was the most professional choice. This driver was also the most affordable unit from the ones the group was considering.

The group did not choose the TLC59711 mainly because it did not have as many channels as they would have liked. It does have more precise PWM than the TLC5941, but that amount of precision would be wasted on the project because no noticeable effect would have taken place over the 5941. This unit also lacked built in open LED detection which would have made error checking and debugging a more painstaking process. It does, however, have thermal shutdown which would have been a welcomed addition to the circuit layout.

Even though the TLC5947 had 24 channels, it was not chosen since it would be more cost effective to use 48 of the 5941’s as compared to the 32 of this unit. This driver also lacked the open LED detection ability, but had the thermal shutdown built in like the 59711. The group felt that it would not be that necessary to have in project as they would try to be precise in their calculations and careful when designing their circuit.

The LT3754, while very similar to the TLC5941 in terms of output channels, was far too expensive. The high level of circuit protection and the customizability made this device seem perfect, and the features that it had were incredible and made all of the Texas Instrument drivers seem weak in comparison, but overall the device was overkill. Its applications included computer and TV monitor backgrounds, which require a high level of precision to maintain. The groups cube was run with the TLC5941, which was more than enough to ensure a solid design and long lasting performance.
3.2.3 Embedded Processors

The embedded processor that was used was of utmost importance. It was essentially the brains of the cube, performing the operations needed to display animations and controlling individual aspects of the cube. It was vital that the group chooses a processor that was powerful enough to get the job of integrating all the components done, and if budget permits procure one that was overpowered to ensure no design issue that could happen to arise would be due to the processor being ill-equipped to handle the situation.

3.2.3.1 Stellaris LM3S8962 (Texas Instruments)

Product description: The LM3S8962 contains the ARM Cortex-M3 controller core. It was capable of operating at up to 50 MHz, and also contains 256 KB of flash memory. There are many libraries that the group can utilize in the process of programming the controller because this was such a popular processor. This microcontroller had many features as detailed below:
Features:

· 32-bit ARM Cortex-M3 50-MHz processor core

· 256 KB flash and 64 KB SRAM

· 42 GPIOs

· Bit-Banding

· UART

· Synchronous serial interface (SSI)

· Pulse width modulation

Analysis of Features: The 32-bit ARM Cortex-M3 processor core was a powerful one that had many benefits. An important aspect of all LED cubes was the interrupts. The interrupts are the essential part to the concept of multiplexing which had been discussed in great detail. This processor had a component called the “Integrated Nested Vectored Interrupt Controller” which provides excellent handling of interrupts. The benefit of the interrupts in the LM3S8962 was that they are relatively quick, only consuming 12 clock cycles. This was an important feature considering the design of the cube using serial communication to communicate with the drivers. This communication takes up a large amount of clock cycles, so any ability to save any cycles was greatly appreciated. These interrupts can be controlled by either events such as the latch enabling on the LED drivers, or the built in 16-bit system clock.
Another feature of the Cortex-M3 would be the ability to operate reliably up to 50 MHz The groups cube not operate anywhere near this high frequency because the LED drivers and RS-232 that are being controlled by a 14.7456 MHz crystal would have a problem running at that high of frequency. It was a benefit to have the ability to control the frequency in case unforeseeable future events allow the group to have operation into this range.

The memory of the microcontroller was also of great importance. The LM3S8962 had 256 KB of flash available, which should hopefully be a sufficient amount to store the states of all of the LEDs. It was unsure at this time whether the available flash was enough, and it not be clear until the group crafts a small prototype to gather information on how much memory was consumed and how it translates to a larger implementation. This aspect was covered in more detail.

The amount of GPIOs that this microcontroller possesses was more than ideal. 42 GPIOs was enough to not only control the cube using the implementation the group was planning on using, but also leaves a sufficient amount left over for improved design features, or just in case an aspect does not go according to plan and more need to be utilized. Aside from the amount of GPIOs, there was also a feature to control the GPIO interrupts, and the ability to fast toggle between separate IO’s every 2 clock cycles. Again, any amount of cycles that can be saved was very beneficial because these operations are being performed a sufficient amount of times every second.

To utilize memory, this microprocessor uses a method known as bit-banding. With bit-banding, a complete word from memory can be mapped onto a single bit. This feature oddly resembles the concept of pointers in programming languages, seeing that address translation when reading and writing take place. The benefit of bit-banding was that the C code written in which the animations was programmed in was translated into the assembly code for the M3 in the most efficient manner. The impressive part was that the microprocessor does this automatically, so no effort was needed on the programmers end to make sure that this feature was in effect.

The universal asynchronous transmitter/receiver (UART) was an important device when considering communicating to the cube via a computer. The UART communicates with the RS-232 with the transmitting (TX) and receiving (RX) lines, and does this in a serial manner. The LM3S8962 comes equipped with two separate UARTs, though the group was rather certain only one was needed.

The synchronous serial interface (SSI) was another convenient feature of the microcontroller in question. This device was perfect for sending bits of information serially to the LED drivers, and it had a programmable bit rate so no matter what LED driver the group uses serially communication precede flawlessly. It was also possible that the SSI may be more useful than first thought. The frame size of the bits that can be sent can verify between 4 and 16 bits. If 16 bits can be send at once to 16 different arrays of LED drivers, and then the LED driver array would be 16 sets of 3 drivers as opposed to 3 sets of 16 drivers. Therefore, with the new method, it would require 48 clock cycles to transmit the states of the LEDs serially as opposed to 256. The configuration can be modeled anywhere in between these values, taking advantage of the extra GPIOs as mentioned above. This was a very important feature to investigate because it could mean the difference between a flawless image and a flickering one.
3.2.4 Embedded Processor Decision

The most important part of the cube was the embedded processor. This device acts as the brains of the cube itself, and the right choice in processor could mean the difference between cube running animations at 14 frames per second or a cube running animations at 30 frames per second. Since the device being constructed requires the illumination of 4096 LEDs, a microprocessor that was efficient in calculations and able to maintain the states of the diodes was a necessity.

Since only a certain number of LEDs can be on simultaneously it had to have the time to cycle through various sets of LEDs to create the illusion that more than just one set was lit at once. For the project a Stellaris LM3S8962 was used. This device had a powerful Cortex M3 8000 processor core which was capable of controlling the cube. Its 32-bit processor and 3 stage pipeline architecture that had the ability to run up to 50 MHz makes it an ideal choice for the project.

The M3 processor does not have floating point math built directly into its architecture, which could become an issue if the group tries to do animations that require high level math functions or involve floating point manipulation. Luckily, Texas Instruments had a software library for the processor that allows it to do efficient floating point math without using round about fixed point methods. The group’s biggest concern was whether the microcontroller have enough flash memory to contain all the statuses of the LEDs while still being able to process the calculations.

The other processor the group considered for this project was the MSP430. It however lacks the kind of power the group would need to carry out this project, as well as necessary GPIOs. The group considered it at first due to its low cost but quickly ruled it out since it probably would not be able to achieve the design detail that was going to be implemented.
3.2.5 D-Latches

An alternative method to using the LED drivers was to use a decoder in conjunction with an array of D-latches to program the data to the cube. It was explained in detail below each set of components the importance of said component, and how it plays a role in the data selection process.

3.2.5.1 SN54AHC373 Octal D-Latch

Product description

The SN54AHC373 are octal D-type latches. They operate as normal latches, having latch-enable, D input, output Q pins that allow for loading of data to be done whenever the latch enable was set high. The device also had an output enable pin that can be used to set the latch into two different states; normal logic where Q was high or low as governed by the inputs D, or high impedance state where the data was not loaded and the bus lines are not driven.

Features:

· Tri-state outputs

· Output Enable does not affect internal state of latch

· 25 mA continuous output current

Analysis of Features: The fact that this latch had tri state outputs was a benefit to the project. The high impedance state ensures that no data was written to any part of the cube that the controller does not intend to, thus eliminating any flickering or LEDs that are not supposed to be illuminated. The method for controlling this feature was rather simple as well, only requiring a single control line that governs the state of the method of operation.
The feature that the output enable pin does not affect the internal conditions of the latch was also a major factor. The status of the output remains the same, but the output pins read high impedance when output enable was low. As soon as the output enable becomes high that data was available to be read without writing back to the input lines. This was beneficial because there does not need to be any overhead or error checking when sending the bits to the cube.

 The 25mA output current was a required condition of the latch. Most of the LEDs run on 20mA of current, so the latch the group considers had to have at least a 20mA rating. Having an extra 5mA was a nice feature that ensures that at least 20mA was delivered to the LEDs.

3.2.5.2 SN54LVTH16373 16 bit D-Latch

Product description: The SN54LVTH16373 devices are 16-bit D-type latches with 3-state outputs. These devices are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers. These devices can be used as two 8-bit latches or one 16-bit latch. The operation of this latch follows closely with that of the 8-bit latch as mentioned previously.
Features:

· Can act as two separate 8-bit latches

· Distributed Vcc/Ground Pins Minimize Switching Noise

Analysis of Features: This latch was a definite upgrade over the SN54AHC373. The 16-bit input was a major factor in the operation of the cube, because it matches the dimensions. With 16-bits, data can be loaded to the latch and sent to the cube in an organized fashion, either row by row or in quadrants. Another benefit of this latch was that it can operate as two separate 8-bit latches, thus saving room on the printed circuit board and allowing the circuit diagrams to be more easily understood. While there are benefits to having two separate 8 bit latches, the benefits of a compact 16-bit latch outweigh them.
The distributed Vcc and ground pins are a great feature of this device. Their purpose was to minimize circuit noise when switching at high speeds. Since the cube was switching numerous times per second, this was a huge benefit because the reduced noise means less flickering of the LEDs and the elimination of dim illumination.

3.2.6 D-Latch Decision

The D-latch was another important device that plays a key role in the operation of the LED cube. Its job was to hold the next state if the cube until it was time for this held “frame” to be displayed. After the single frame was displayed it was then loaded with the next image, and this process continues. The final decision was to go with a 16 bit D-latch, simply because it fit the anatomy of our cube.
The cube from our Instructables source was 8x8x8, and the author used a series of 8 bit D-latches. This ended up working perfectly because each latch corresponded to a separate row of cathodes, making the process of programming run smoothly. The group needed to use 3X16 of this type of latch to hold the states of all of our LEDs. The reason 48 was needed instead of 16 was because the group have tri-color LEDs, which had 3 anodes instead of one.
Our other option was to expand upon the Instructables cube and use only 8 bit latches. This proved economically irresponsible because 96 of the latches would be needed. Also, upon investigation, the 16 bit latch the group was considering can function as two separate 8 bit latches. Thus, they need to buy only 48 of this particular latch and if our group changes our mind on the architecture it was easy to recycle and conserve parts.
The latches, along with the multiplexer in the following section, play a large part in the simplicity of the LED cube. The group could just ignore these components, and hardwire each column of the cube, but then the group would need 768 control lines for the columns, as well as another 16 lines for the ground layers. Finding a micro-controller with this specification would be impossible, and using an array of simple micro-controllers would be downright confusing.

3.2.7 Demultiplexers

Now that the microcontroller and the LED driver have been selected it was time to decide on which demultiplexer the group would be using. The de-multiplexer had to have enough outputs to control the statuses of the latches, all the while making sure to cut down on the number of GPIOs that were going to be used to select which latch received input.

3.2.7.1 CD74HC4514

Product description: The CD74HC4514 was a 4-to-16 line decoder. The output was governed by setting the enable pin low, whereas a high on the enable pin prevents any selection of the input. De-multiplexing was achieved by using the enable as the data input and the 4 select inputs as addresses. When latch enable was set high the output follows the inputs from the controller GPIOs, and when latch enable was low the output depends not on the inputs and instead remains at the state it was in before the latch enable was toggled.

Features:

· Multifunction Capability

· 4-to-16 Decoding

· Balanced Propagation Delay and Transition Times

· Significant Power Reduction

· High Noise Immunity

Analysis of Features:

This device had the ability to act as a decoder or a multiplexer. This function was a desirable quality to the device because the more uses for a single part, the more likely it come into use when constructing the control system for the cube. While the design does not use a multiplexer at the moment, the necessity could arise in the future and this part would perform the desired action.

The 4-to-16 decoding of this device was what made it highly desirable. Again, the 16 outputs match our design specifications, and a collection of these decoders make it possible to control the states of the D-latches rather efficiently. The exact method of which this device was arranged was left for section 3.3.1.2.

The balanced propagation delay was a beneficial feature of this device. There are many different forms of communication going on between the microcontroller and the cube, so reliable bit transfer speeds was important as to avoid error bits or a latch not receiving all the necessary data that it requires. The transition times fall in with the timing because if the data was being transferred slowly from D to Q, but Q was being read before the transfer takes place, there would be a miscommunication between the devices.
The power reduction in this device as compared to low-power Schottky transistor-transistor logic IC’s was reduced greatly. The cube was lighting 4096, powering the microcontroller and various other functions so a reduction in power to any part of the design was greatly welcomed.
High noise immunity was the final benefit to this device. Noise, as mentioned previously, could cause many problems. It could alter the data being written to the output Q, or perhaps distort the signal sent to the latch or output enable pins causing a false trigger that reads the wrong data, or does not read only data at all causing a section of the cube to be un-illuminated. While our microcontroller does a fine job at reducing noise, the circuit could experience any number or errors causing false signals to be received.

3.2.8 Demultiplexer Decision

The de-multiplexer used was based on which latch that the group chooses to use; 8 or 16 bit. Since the group was going with a 16 bit, it would be a wise choice to use a 4-to-16 bit MUX. Two of these 4-to-16 muxes can be used to create a single 12-to-48 MUX. The function of the MUX was to decide which of the 48 latches was triggered and at what time.
So, in essence, while the latches control which of the LEDs was turned on or off, the MUX was in control of when this happens. The main reason the group was using this MUX was to cut down on output lines. To control the CP pins of 48 latches, 48 output lines would be needed. Using our multiplexers, only 12 lines were needed now. This not only cuts down on the confusion of wiring up the cube, but also benefited in our search for a microcontroller because the group did not need to stress over a restriction on control lines.
3.2.9 RS-232

The RS-232 was responsible for communication between the PC and the LED cube. A major advantage of using a PC to control the cube was that a PC can perform floating point calculations and was capable of displaying far superior animation that that of the micro control unit. Our groups LED had the option of selecting between both the control unit with pre-programmed animations and the RS232 serial interface on startup.
The RS-232 was an asynchronous device, meaning that it was not controlled by a clock. This was a possible disadvantage because communication can begin and end at any given time, so the possibility of encountering errors was very high. The interface the group used, as well as the baud rate played a major role in communication because they not be using any error checking. After examining many other LED cubes, there does not seem to be any major or minor problems when dealing with the RS-232, so the group feels that the decision to ignore error checking was in our group's best interests.
3.2.9.1 Baud Rates

The baud rate was one of the most important choices the group needed to make regarding serial communication. The baud rate was measured in bits per second, so a baud rate that was too low result in a low refresh rate, making 3D images flicker and be unpleasing to the eye. However, if the baud rate was too high then there was an increased risk in encountering errors and miss-sent bits. The baud rate the group chose had to do with the clock frequency of the crystal oscillator they decide to use.
Though the RS-232 was an asynchronous device, the bits are sent between the cube and the PC at predefined clock cycles. Since the group was using a 14.7456 MHz crystal oscillator, they must examine some popular baud rates and see which ones fit our specifications. After research, some popular baud rates include 4800, 9600, 19200, and 38400. From section 3.1.3.3 the group saw that these baud rates worked well with the oscillator.
The group experimented with the different baud rates, but they have narrowed it down to 9600 or 19200. The 4800 was far too low, and anything above 38400 risks errors. The Instructables cube used 9600, but that cube was only an 8x8x8, and was not using the methods the group was using to drive the LEDs. As seen from section 4.5 the group was reading in the data to our TLC5941’s serially, and it required anywhere between 64 and 256 clock cycles for the reading alone. This leads them to believe that 9600 might be having a chance to be lower than required, so that was why the group was keeping their options open for the baud rate of 19200.
3.2.9.2 Crystal Oscillator

The crystal oscillator the group chose to use was an important part in communication with a computer via the RS-232. The crystal chosen was the HC-49U running at 14.7456 MHz This frequency was found to work perfectly with the RS-232 baud rates as described in sections 3.1.3 and 3.2.9.1. As mentioned above, serial communication was asynchronous in the RS-232, but occurs according to the clock cycles being controlled on ends of the devices that are in the process of communicating serially. By synchronizing the RS-232 and the computer, this crystal ensured that communication proceeded flawlessly.
The crystal works by vibrating at a resonant frequency to produce an electronic signal with a fairly accurate frequency. One aspect that the group needs to take into account was the temperature of the crystal. The frequency follows the equation:

f= f0 * [1 - 0.04ppm(T - T0)^2]
While the frequency does not vary too much, it could be off by enough to begin causing transmission errors between the two devices. However, under normal operating conditions, the crystals are found to exhibit very little phase noise. This was ideal as to avoid miss-triggering the devices.
A final factor to consider was the degradation over time due to heat and general stress of operation. This could become a problem in the course of a few years of the cubes life. However, the group plans on making the cube self-sufficient and not relying on using a computer to perform all of its animation. It was in the best interests to produce the animation and drive the cube using the microcontroller alone, so that they lifespan of the cube was enhanced without any need for upkeep.

3.2.10 Atmel ATmega16 Microcontroller

Although the group was not be using the ATmega16 to control our final design, it was a perfect match for a 4x4x4 test cube that was built to practice programming on. Below are the specifications for the ATmega16:
	Flash (Kbytes):
	16 Kbytes

	Pin Count:
	44

	Max. Operating Frequency:
	16 MHz

	CPU:
	8-bit AVR

	# of Touch Channels
	16

	Hardware QTouch Acquisition:
	No

	Max I/O Pins:
	32

	Ext Interrupts:
	3

	USB Transceiver:
	0

	Quadrature Decoder Channels:
	0

Table 3.6: ATmega16 Specifications

As seen from the above table, the flash memory was large enough to program a sufficient amount of small animations on that fit the 4x4x4 architecture. The I/O pins are also a good feature of this microcontroller. There are enough of them so that was the group decides to perhaps upscale to an 8x8x8 test cube, there not be an issue, especially if LED drivers are used.

Another great feature was the external interrupts that this controller has, these being the guiding force that switches the layers. As previously mentioned, this controller was scrapped and replaced by the LM3S8962 after the group gets used to programming and using the components listed in the design of the 4x4x4 LED cube, but there was no doubt that it serve its purpose well. When the group finally decides to switch over the Stellaris, many opportunities open up in terms of wiring and controlling. It can be seen in table 3.7 that the Stellaris was significantly more powerful than the Atmel.

	
	Stellaris LM3S8962
	Atmel Atmega16

	Flash Memory
	256 KB
	16 KB

	Max Operating Frequency
	50 MHz
	16 MHz

	CPU
	32-bit ARM
	8-bit AVR

	Max GPIOs
	42
	32

Table 3.7: Stellaris LM3S8962 specifications compared to Atmel ATmega16

The flash memory alone was enough for the Stellaris to outperform the Atmel. Combined with it 32 bit processor and 42 GPIOs, this chip was an obvious upgrade. By incorporating the LM3S8962 into the testing, it was possible to see if a single Stellaris was enough to provide stable conditions and animations for the cube, or if perhaps more need to be incorporated to provide separate functions such as a single chip for animation or a single chip for the driver control alone.
3.2.11 LED
The LED the group was using for this project was 5 mm 4 pin LEDs from “LEDs Super Bright”. The diodes come with many features that the group finds was beneficial to the project. The features they found helpful are:

· Common Cathode

· Red, Blue, and Green Color emission

· 5 mm diameter

· Water Clear lenses

· 20 mA forward current

· 100,000 Hours Life Rating

· 25-35 degree View Angle

· Luminous Intensity from 4000 to 5000 mcd

· 1g weight per LED
The common cathode on the LEDs made the wiring easier to implement. This means that all of the colors on the diode share a common cathode. This means they only need one ground for all the colors thus greatly simplifying the group’s wiring. This also means a cleaner solder since there only be one cathode wire to solder to ground. This also means if there was an issue with lighting a diode there only be one ground the group have to check instead of having to check three separate grounds. This means if a single color on a diode was messing up then the group only had to check the wires leading to the colors and not also the ground for the color in addition.

The fact that diodes can emit in three different colors was what was going to give the cube its dazzling effect. Most cube tends to have only one color diode to emit from. This cube have red, blue, and green to make many vibrant colors with. This add a bit of complexity to the code however. This was due to the fact that each diode must now be represented with 3 values instead of just one. This makes the memory requirements much higher than if only one color was used. This was challenge for them and make for engaging animations.

With the LEDs being 5 mm in diameter they take up very little space. This allow the group to make sure the cube take up the smallest amount of space possible. This help ease issues with transporting the cube. Though the group was using such small LEDs it still take up a decent amount of space and may have trouble fitting through doors. This can be adjusted by lowering the pitch however if the diodes are too close to each then the effects of the cube would be lessened. This would be due to the light being too close together making it appear like a light blob instead of a 3D image.

The water clear lens may be an issue however. This may make the LEDs too bright ruining the animations since this would cause the colors to run together, blurring the animation. The group was planning on attempting to frost the LEDs by hand to disperse the light some to enhance the effects of the animations. If the brightness was too much the group could always simply lower the amount of voltage applied to make the diodes emit less light. This was only a minor issue however and should not affect the final outcome of the project too much.

To get these LEDs to work they require 20mA of current. This means it would require about 82 amps to turn on all the LEDs at once. That situation should not occur too often however. The most that should be on at once would be a single layer which would only require about 5 amps. This makes very efficient use of current supplied to the cube. It also means the group may be able to supply current another layer if the group needs to light more layers of LEDs at once.

These particular LEDs have a 100,000 hour life rating. This means even if the LED was never powered off it would last about eleven and a half years. A diode doesn’t actually burnout at 100,000 hours however it was just the point when it loses 30% of its original luminosity. This means as long cube was only powered on for part of the day and not constantly animating something it should be good long while before any of the diodes need replacing. This means the cube require very little maintenance. In the case of a diode burning out prematurely it should not be that difficult to replace the diode if they are not spaced to compactly together.

Viewing angle on an LED affects how focused the light coming of diode is. A higher degree means the light was more spread out. These diodes have good viewing angle for our purposes. If the viewing angle was too small the light from the diodes would not spread out enough making the animations suffer in that they would only be visible from specific positions making the cube lose its effectiveness a display for 3D animations.

The luminosity rating on the LEDs was bright enough for our needs. A rating of 4000 mcd or mill candela means it was about 4 times as bright as a single candle. This brightness was good enough for the groups’ purpose. It gives enough light that it should be visible indoors with the lights on but turning the lights of should still enhance the viewing experience. The group can also increase the voltage to make it brighter if it becomes necessary. With over 4000 LEDs it may get a little bright in a dark room so dim lighting could make the experience better if many of the diodes are on at once.

The weight of each LED was about 1 g. This may seem like negligible weight but the cube does us 4096 diodes. This means that the diodes alone weigh about 4 Kg. This weight not include the all solder that was used to put them together so the group have to make sure that the base can support the weight of all the diodes. This was important as the group does not want the cube to collapse under its own weight. The group make sure to use sturdy material when fabricating the base of the cube to make sure it can support the weight of all the diodes.

3.3 Strategic Components

The strategy the group takes to designing this cube not only be about the overall implementation but also the time allotted to construct our cube. Some important issues are the wiring methods of the LEDs, the soldering of the layers and/or sheets, and the layout of our PCB. Without proper thought, any one of these issues can lead to design flaws, budgetary faults, and time constraints.
3.3.1 Wiring method of the LEDs

A critical design feature of every LED cube was the wiring methods of the LEDs. There are many factors to take into consideration including performance, cost, use of IO ports, and overall design. For example, one method might use less IO ports, but the ability to control the color of the LEDs in a given layer of the cube might be restricted to a single color instead of multiple colors at once. These design issues and solutions are discussed in the following sections in great detail.

3.3.1.1 Charlieplexing

Charlieplexing was discovered in 1995 by Charlie Allen at Maxim Integrated Products. It was used to drive a multiplexed display, and it features the tri-state logic of microcontrollers; 1, 0, or high impedance. The main purpose of Charlieplexing was to drive many LEDs by only using a few pins. According to this source, an accurate way to describe Charlieplexing would be “complementary drive” because the group was complementing an existing diode with one or more extra diodes, so that they can be powered by the same sources. In its most basic example, Figures 3.17 shows Charlieplexing can be used to drive 2 LEDs using 2 pins of a microcontroller.

[image: image22.jpg]0 P el
Pin A __— Pin A _—

|
5V | ov
|
) 8
Pz HZE’ | A
|
V. | 5v
Pin B — | Pin B

Figure 3.17 Left: Driving one LED. Right: Driving 2 LEDs.

Pending permission from Instructables [9]

If pin A was supplying 5 volts, and pin B was supplying 0 volts, then LED1 was turned on because there was a forward bias over the diode, and LED2 was turned off. Now, if the group had pin B supply 5 volts and pin A supply 0 volts, then LED2 was on and LED1 was off.

Where Charlieplexing really starts to become useful was when the number of pins was increased. For a small number of diodes, not many pins would be saved, and Charlieplexing would be a waste of time. The numbers of LEDs that can be driven follow the equation with table 3.8 listing the amount of LEDs per pins:

#LED = #Pins * (#Pins – 1)

	Pins
	1
	2
	3
	4
	5
	6
	7
	8
	9

	LEDs
	0
	2
	6
	12
	20
	30
	42
	56
	72

Table 3.8: Number of pins to LEDs.

Thus, the more pins available, the more useful Charlieplexing becomes. Take, for example in Figure 3.19, 3 pins and 6 LEDs can be driven, as set-up in the following fashion. Table 3.9 gives the on, off and don’t care values to turn on the LED.

[image: image23.png]Pin A

Figure 3.19 Left: Schematic of three pins control the six LEDs.

Table 3.9 Right: The table applies to Figure 3.19 schematic. Table of each LED that was capable of being driven through the specific pins.

Pending permission from Instructables [9]

By supplying the LEDs with either 5 volts, 0 volts, or making them high impedance, each of the LEDs can be individually driven. Making a pin high impedance was relatively easy; just simply declare it as an input port. When pin B was high impedance, and pin C was 5V, and pin A was 0V, LED6 was on. It appears that LED2 and LED 4 should be on as well, however, but due to the split of the voltages:

 V(LED) = V(LED2) + V(LED4)
V(LED4) = V(LED2)

V(LED6) = 2*V(LED2&4)

Therefore V(LED4) = V(LED2) = 0.5*V(LED6)
In summary, the turn on voltage would not be supplied to LED2 and LED4, so they would stay off while light emitting LED6 turned on. This was the same case when pin B was high impedance, pin C if 0V, and pin A was 5V.

There are, however, several downsides to Charlieplexing:

1. Turn on Voltages:
An example given by this source was the case of different color LEDs. Let’s take Figure 3.19 as an example. LED5 may need 3.5 volts to turn on, while LED1 and LED3 only require 1.9 volts. If pin A = 3.5V, pin C = 0V, and pin B = high impedance (Z), then the voltage across LED5 was sufficient enough to turn it on, but the voltage across LED1 and LED3 was 3.5/5 = 1.75. While this was still under the 1.9 volts required to turn them on, it was enough to perhaps cause them to emit an unwanted dim glow.

2. Dimming of LEDs:
Another potential problem could be the current draw from the microcontroller and the dimming of the LEDs. Since the LEDs was turning on and off many times per second, they might appear dim. A solution was to increase the current through the LEDs by decreasing the resistor size, but one would risk damaging the microcontroller.

3. LED Failure:
If a LED happens to break, the circuit will not work properly. The broken LED can do one of three things; an open circuit, a short circuit, or a leaking diode which allows current in both directions. Any of these could pose a huge problem for the entire circuit, and if the circuit was complex the error could become difficult to correct.

4. PCB Layout:
Finally, another potential problem comes from the PCB layout. The Charlieplexed circuit was much more complicated than using simple ports to drive the LEDs, so the layout had a potential to give someone wiring it problems.

3.3.1.2 De-Multiplexing

While Charlieplexing uses significantly less lines, nothing beats the tried and true method of multiplexing. The group decided to use multiplexing primarily because the error rate with large numbers of LEDs rises significantly with Charlieplexing, and wiring up a multiplexed circuit was a great deal easier with as many LEDs as the group was handling. In fact, it was not clear whether the group have enough time in the semester to completely construct a Charlieplexed circuit of this level and complexity even if they wanted to show off this method. Since multiplexing was such a known topic, it not be discussed in great detail, but rather how multiplexing was benefiting this project and the application it have.
If multiplexer were not going to be used and the group were just going to wire every component straight through, there would be a total of 768 anode lines + 16 cathode lines, leading to a total of 784 total wires. This was a very large amount, and not an easy number to work with. However with multiplexing, the group can connect 48 of the 16 bit D-latches together, all being controlled by three 4 to 16 de-multiplexers and a single 2-to-4 de-multiplexer connected together to form a single 11-to-48 de-multiplexer. This requires 16 control lines for the data (D0-D15) and 11 control lines(I0-I10) for the de-multiplexer. In Figure 3.21, four de-multiplexers are connected together to form a single 11-to-48 decoder.

[image: image24.png]NyLGY

e
= ns
] e
1 s
- e
— s
e
=k
2
oz HNI
= s 2
— s
— = w0 =
i (O A
— 15 w0 |+
— 0= 0 =
<ol
NyLGY
b
T
i e 667110V
o
= us en 9
e o o
e o
o Ei IEARA i
o5 M [
R R e KZz]
— s
o Bl s N
i R s Ny
— 5 w0 b= N
— 0= 0
[%]]
NFLSY
- s
o7
=
0 o
] us
= os
— e
] e
= =
T
— = s |
— =
— s w0 =
i (O s
— 5 w0 |+
e I

[e]]

8 910

67

012345

Figure 3.21: Schematic of 11-to-48 decoder using three 4-to-16 de-multiplexers and one 2-to-4 de-multiplexer.

From Figure 3.21, it can be seen that lines 6 and 7 control the 2-to-4 decoder, governing which of the latches gets selected by all three of our 4-to-16 decoders. Lines 0 to 2 was directly controlling the first decoder, lines 3 to 5 was controlling the second, and lines 8 to 10 was controlling the third. It was easier to view by examining the truth tables. Tables 3.10, 3.11, and 3.12 details which latch the decoder inputs were controlling:

[image: image25.png]Corresponding D-Latch
Latch 0
Latch 1
Latch2
Latch3
Latch4
Latch 5
Latch 6
Latch 7
Latch$
Latch9
Latch 10
Latch 11
Latch 12
Latch 13
Latch 14

Table 3.10: Control Lines 0-2 and their Functions

[image: image26.png]Corresponding D-Latch
Latch 16
Latch 17
Latch 18
Latch 19
Latch 20
Latch 21
Latch 22
Latch 23
Latch 24
Latch 25
Latch 26
Latch 27
Latch 28
Latch 29
Latch 30
Latch 31

Table 3.11: Control Lines 3-5 and their Functions

[image: image27.png]Corresponding D-Latch
Latch 32
Latch 33
Latch 34
Latch 35
Latch 36
Latch 37
Latch 38
Latch 39
Latch 40
Latch 41
Latch 42
Latch 43
Latch 44
Latch 45
Latch 46

Table 3.12: Control Lines 8-10 and their Functions

This benefits our project not only because it cuts down greatly on the amount of wiring needing to be done, but it also makes the programming for microcontrollers a great deal easier. It was harder to check for errors using the scheme the group planned on, but the benefit of reduced control lines as well as showing off our groups’ knowledge of engineering outweighs the simplicity of wiring each component directly.

While this method was not planned on being used, it was a viable option if the LED drivers do not work out, and provide for sufficient animation. The fact that so many GPIOs are saved makes this configuration beneficial, but also reduces the ability to fully control the spectrum of colors that was introduced in the method of using drivers to control the states of the diodes as described in the following section.

3.3.1.3 LED Drivers

The way that the data was written to the cube’s LEDs was a rather simple but effective solution. The TLC5941 was responsible for driving the LEDs by sinking the cathodes when the particular layer in question had a voltage applied to it. The TLC reads in data serially, so the state of the layer was read in one single bit at a time until the data for the entire layer was loaded, after which the layer shall be displayed.
There are many options on how to wire go about reading the data for the entire layer, but the one the group are going to first try implementing was 3 sets of 16 TLCs, with each set corresponding to a different color; red, green, or blue. So, essentially, the group send 768 bits to all of the TLC’s 3 bits at a time, thus taking 256 clock cycles to transmit the data for one layer. This method seems like it could require far too many clock cycles to get the wanted number of frames per second of over 30, but as mentioned there are many different orientations available to arrange the drivers, so if there are enough GPIOs that are unused the option of designing a more time efficient method was a definite possibility.

After all the bits for one layer are read in, the latch enable was set high and the LEDs on the corresponding layer are illuminated. This process was repeated 16 times with the data for each subsequent layer being read in the same way. Then, this pattern either be repeated to form a still image, or new data was read in the case of animations. As mentioned there are many configurations to be investigated, but as a start the group try the arrangement of 3 sets of 16 drivers which was the simplest configuration available. Below was Figure 3.22, a modified image from our “How Not to Engineer" source detailing the design that the group intends to fabricate:

[image: image28.png]Driver Layout

— — — SDIRED

sTP16 sTP16

sTP16 sTP16

SDIBLUE

i

oLk

sTP16 sTP16
o

Figure 3.22: Modified TLC Layout. Pending permission from HNTE [8]

Also, Figure 3.23 was a modified image of the timing diagram that was implemented. It can be seen that 256 clock cycles was needed in order to read in the data serially for the 256 LEDs in the given layer if this particular method of orienting the drivers was used:

[image: image29.png]oE

cLk

SDI_GREEN

SDI_BLUE

LE

Timing Diagram

Figure 3.23: Modified Timing Diagram. Pending permission from HNTE [8]

As seen from Figure 3.23, the states can be written 3 at a time with one bit going to red, one bit going to green, and one bit going to blue. This opens up a whole new set of animations that can be displayed by our cube in terms of the different combinations of colored diodes being lit at once. The other options only allowed for a single color per layer to be turned on at a single instance. That meant that was LED (0,0,0) was red, there was no way for LED (0,0,1) to be green, blue, or a combination of the three. Also, this opens up the opportunity for a large variety of colors. Since the 48 TLC’s drive each individual cathode, the group can have various colors per layer, and have animations similar to the color wheel as described in section 3.1.4. The group believed that this would be an outstanding feature to implement and required by them to provide a cube that significantly outperforms expectations.

The group can experiment with not only different combinations of red, green, and blue, but also the intensity of each color, thus providing a large array of visual hues. This was exciting because it allows us to not only program animations, but perhaps implement a random color scheme. This means that when being viewed, a person never see the same exact color animation twice. It was unsure as to whether 256 clock cycles was too many to provide a smooth image considering that the group still have to use multiplexing to display animations. These details cannot become concrete until a test cube was built and animations are seen on it. This give insight into the scalability of the code and the possible amount of memory that the animations require when applied to a larger design.
If it turns out that the massive amounts of clock cycles becomes a problem with the animation, it was relatively simple to alter the design and implement 6 rows of 8 TLCs with two rows controlling each of the three colors instead of one. This allow a transmission rate of 6 bits instead of 3. This cut the cycles down to 128, and only require adding 3 extra data lines to our micro control unit which not be a problem. The proposed solution was only one of the ways in which the timing can be cut in half, but this sacrifices more GPIOs, so careful consideration needs to be taken when selecting the configuration of the drivers and the amount of control lines needed.

3.4 Architecture and Related Diagrams

The architecture of the cube does not only include the wiring of the LEDs and the components used, but the abstract view of the code used to program animations to the cube, and the GUI for which the group control the cubes animation from a computer. The architecture was rather advanced, and compared to the smaller 4x4x4 and 8x8x8 LED cubes that have been witnessed by the group; the diagrams and specifications for a 16x16x16 cube are immense in form. Though they are much larger, the scalability of the cubes tends to be rather simple, so even though there are many more components, the general design and architecture remains somewhat unaltered.

3.4.1 Hardware Architecture

The architectural design of each cube focuses on having the exact same amount of LEDs for the length, width, and height. A few of the LED “cubes” investigated had the same amount of diodes for the length and width, but the high was significantly larger, created a column. There were even some designs that formed a spherical mass of LEDs, which was very impressive to view. While these devices were visually pleasing, the group feels that a cube with equal length, width, and height would be the best design choice in terms of building and of viewing. A layer of LEDs are soldered and aligned with relative to the width and the length. By soldering the layers on top of each other, or in horizontal sheets depending on the desired architecture, this creates a cube. The finished shell have to be supported by either acrylic rods or by strategically placed metal wire in order to prevent damage due to force exerted by the higher layers upon the lower ones.
What was of utmost importance when soldering the LEDs was to know which the cathode and anode leg are and that the LEDs are functional. This could become a problem when using diodes with 4 legs, but the common anode or common cathode was usually the longest leg of the LED. The LEDs, if they are common anode, are structured so that the anode wires are connecting each of them to one another. Likewise, common cathode LEDs must be soldered so that the cathodes are connected sequentially. There cannot be any mistakes in the architecture of the cube, else some areas may not work or light up due to various errors including short circuits and open terminals.

Depending on the size of the cube, the amount of time to solder each LED increase as the size of the cube increases. As the dimensions are relatively increasing with the same length, width, and height, the amount of LEDs exponentially increases and so the time to construct it or, to be more precise, the number of LEDs to solder increases by a factor of X^3. When considering scaling down the LED cube due to size constraints, it wasn't until the group considered making the cube 14x14x14 did they realize this fact. With dimensions equaling 14, this gave a total of 2744 LEDs to be soldered. A small scale down factor of 2 eliminated 1352 LEDs from the overall design, which was rather shocking when seen on paper.
The construction of the cube also describes the pixel quality of the animations. The tighter the LEDs are packed together, the greater the quality of the cube, but decreases the size and presentation. The larger the cube, the pixel quality decreases. This was also an issue that arose when deciding whether to scale down in terms of LEDs or to decrease the spacing between the LEDs. It was found that decreasing the spacing was not a desirable option because the vision into the cube would not allow the viewer to see all the diodes at once, thus causing an altered image when viewed from only a single position.

Scalability was never an issue for LED cubes. Generally, cubes range from 4x4x4 to 8x8x8. Most projects give the LEDs a reasonable amount of area so they are not too far apart or clustered very close to each other. This scalability was a benefit to the group because building a 4x4x4 and an 8x8x8 prototype give valuable insight into the construction of the cube at the earliest possible time. The most important part of the cube besides the direct architecture of the LEDs would be the controller. Without the proper controller, the communication between the code and the cube would produce nothing in effect because the circuit would be riddled with errors. LED cubes tend to have a general board that includes capacitors, resistors, a few LEDs, transistors, the microcontroller, and the PCB board which may come in as surface-mounted or through-hole. Before these controllers are put together, a schematic diagram was created for the purpose of where to place each object.

Schematic diagrams give a general idea of how each and every part communicates with each other. It can also prevent mistakes when soldering and connecting boards with each other. The Seedstudio rainbow LED cube kit includes a board and a microcontroller as well as the parts to put together on the board. For the 4x4x4 Seedstudio cube, the architecture of the controller was fairly small. For the 8x8x8 Instructables cube, it needed considerable amount of work and planning before soldering parts together. Constructing the LED cube was a simple but tedious task involving nothing but soldering and correct positioning, but constructing the circuit for the controller was a difficult and important job that needs to be taken slowly and constantly documented.

A completed cube can be displayed in the open or an encased in acrylic sheets. Many projects featured small cubes without a cover and within their residences. When presenting the project to the public, it was recommended to cover the cubes in a casing so the LEDs not be damaged from any outside forces. These cubes are very fragile and can be easily destroyed. The cube does not have to be encased, if not needed. For this project, the cube was encased for protection and demonstration. It was donated and displayed to UCF.

3.4.2 Software Architecture

The animations and images are demonstrated through different types of code programmed to the microcontroller, or through a GUI to set the color and timing of the LEDs from a host computer. Sample code and libraries are available online for various other LED cubes to get an idea of how to code animations and the operations of turning on the LEDs as well as specific coloring schemes for tri-color LEDs. The software was where the Dynamic Animation Cube shines and becomes more impressive. There are countless options and ideas for animations, and the group plans to implement a large amount of well-thought ones.

3.4.2.1 Software

Writing the animations in software would probably be the most efficient. Having large amounts of animations cycle over was easily accomplished with loops and if’s statements. There are different ways the software in written, for example, in C, C++, C#, Java, and libraries provided online. One type of technique to animate the cube was to use multiplexing to give the illusion of a 3D image by flashing each layer of the cube one after another at a fast rate.

An interrupt routine was necessary when multiplexing the cube to control when the layers should be switched on and off and how long each layer should be turned on for. When an interrupt runs, the cube clear the previous layer and load the next layer and light that set of LEDs. This process happen a multitude of times per second, and for a frame rate of at least 30 frames per second this interrupt occur 16 times for a single image, 30 times per second resulting in 480 calls to the interrupt routine every second. For this reason alone, it was important to develop efficient and compact code so that animation proceed smoothly.

The Instructables website included a sample raindrop effect that looked very impressive, even though it was a rather simple process for displaying the animation. This raindrop effect had a randomized loop that picked a pixel on the top layer and had it appear to “fall” down the entirety of the cube all the way to the bottom most layer. It was animations such as these that make the cube so versatile and able to impress with rather simple code. If animations are well thought out and efficiently written, then it was a high possibility of using a single microcontroller to not only control the LED drivers but also be used to produce the animations and hold the states of the LEDs. This was a highly desirable feature, because the other option was to use multiple controllers with a single overhead controller governing their functions. This means that there was much more complicated printed circuit board layouts and translation of control signals.

When coding with colored LEDs, the hexadecimal values corresponding to the color are needed to choose which color LED was supposed to be illuminated. Efficient code take advantage of this and provide easy to read functions that handle color choosing wisely. Seedstudio demonstrated the use of hexadecimal colors with 0x00FF00 as Green and 0x0000FF as blue. With the Rainbowduino library provided by Seedstudio, it was possible to simulate certain layers with a solid green and a solid blue, randomized colors for all LEDs, and provide a night lamp effect. Software and libraries are available anywhere given the time to look. It was not limited to the internet as new and different animations can be created with a series of loops and if statements.

3.4.2.2 GUI/Editor

A GUI or an editor to select specific LEDs and color may sound like an optimal, but rather a tedious approach with a great amount of animations. The editor functions as a way to pick specific LEDs on the cube and then the color. This counted for one frame of the animation. It takes many frames to equate to a decent animation. Animating a letter may take a great amount of frames compared to a couple lines of code. The editor would be better suited for small projects and to test the cube’s capabilities. The editor would be best to use to test the performance, voltages, current, and if the LEDs are in working condition. For example, the editor can light up all the LEDs to check for any burned out LEDs on the cube that may need replacing or check if each LED can display an RGB output.

An alternative to using a GUI to program each individual it was to have one that can be capable of selecting pre-programmed animations demonstrated in Figure 3.24. This allow the user to cycle back and forth through the various animations with the click of a button. Features could be easily added to the GUI, for example an option to slow down or speed up an individual animation so the process of multiplexing of the layers can be viewed. A color changing option would be a great feature to have, so that the user could change the color or intensity of the animation.
[image: image30.png]| MainWindow

File

Frame: 0 Layer
Frame: 0 Layer
Frame: 0 Layer
Frame: 0 Layer
Frame: 0 Layer
Frame: 0 Layer
Frame: 0 Layer
Frame: 0 Layer
Frame: 0 Layer
Frame: 0 Layer
Frame: 0 Layer
Frame: 0 Layer
Frame: 0 Layer
Frame: 0 Layer
Frame: 0 Layer
Frame: 0 Layer

Add Frame:

Remove Frame

Figure 3.24 Frame GUI

4.0 Project Hardware and Software Design Detail
Now that the group have all the parts selected and the general knowledge of LED cubes needed to construct the final project, it was time to investigate in detail how all the components work together to form the final implementation. An important concept was hardware and software code sign. This project had allowed our group great insight on just how these two works together to form a single, final implementation. They are not writing software and then building hardware around the code, nor are they blindly constructing a lattice of LEDs and hoping to find a way to code the LEDs to turn on. Along every step of the way the group had taken into consideration both aspects of the design and chosen parts that suit the needs that the hardware and software have brought into focus.

4.1 Initial Design Architecture and Related Diagrams

There are various ways to design the hardware of the LED cube. The most common way was to construct the LEDs in layers or sheets, and then put the pieces together. For our project it was decided that the easiest way to go about the construction was to solder the layers of LEDs, then erect them in vertical layers. The group believed that a 16x16 sheet of LEDs was far too difficult to put together in the method described in the Instructables tutorial as mentioned in section 3.1.3.
One of the most important pieces in the construction of the layers was the jig. A proper jig ensure that the spacing between each LED was uniform throughout the entire layer, thus ensuring a cube that was of top quality. One design that caught our eye was that of the jig described in section 3.1.4. This jig allows for easy soldering of LED, and the use of blue tack to hold the LEDs in place was a tactic that our group was adopting.
4.2 Master Control Unit

To control the LED cube, the group was using a Texas Instruments Stellaris LM3S8962. The group chose this particular microcontroller partly because it was introduced to them through a TI seminar, but more importantly because it fits all our requirements, plus some extra.

The group initially thought that they would need at least three of this micro control unit, with perhaps one extra to act as the brains behind the three. However, the LM8962 had 42 GPIOs, which was more than enough given our design to control the entire LED cube. This means that the group might only need a single MCU if the design persists. Below was a rough design specification of the GPIOs needed for out cube:

· 3 or 6 or 12 TLC serial data lines (explained in section 4.4)
· 1 TLC latch enable
· 1 TLC output enable
· 1 TLC anode control line
· 2 RS232 lines
· 3 In-Circuit Serial Programming lines
Total: 11, 14, or 20 control lines depending on the architecture of the LED drivers.

As seen above, the LM3S8962 have more than the required GPIOs. This allowed for possible alteration of the design for improved performance and simplification of operation. In the next section the possible configuration of the LED drivers was discussed in detail, where the control lines needed from the Stellaris was decided upon.

4.3 LED Controllers

To drive the LED the group was using the Texas Instruments TLC 5941. There are many different configurations to go about serially transmitting data to the TLC, and had the highest frame rate without sacrificing the amount of GPIOs that are needed. The following methods detail the different approaches of connecting the TLCs and the GPIOs that was needed for each method:

Method 1. 3 sets of 16 lined up in series:

This method requires the least amount of GPIO, but sacrifices time. It take 256 total clock cycles to read in the data, and one extra to enable the latch to transmit the state to the cube. This was by far the simplest and most straightforward implementation which allow for each group to control the different colored diodes. Below was a summary of the GPIOs needed:

· 3 TLC 5941 Serial Data Lines

· 1 TLC 5941 Serial Ground Control Line

· 1 TLC Latch Enable Bus

· 1 TLC Output Enable

Total = 6 GPIOs

[image: image31.png]Latch Enables

l

|
i
i e LA

Serial Inputs

i '
S

Iy
[) e

e
e

A |
[)

[) e

Figure 4.1: 3 Groups of 16 LED Drivers

Method 2. 6 sets of 8 lined up in series:
This arrangement was a nice middle-ground, requiring only 6 lines to control the TLCs, and taking 128 clock cycles to read in the data. This configuration uses two sets of drivers to control each color to be illuminated. Below was a summary of the GPIOs that are required:

· 6 TLC 5941 Serial Data Lines

· 1 TLC 5941 Serial Ground Control Line

· 1 TLC Latch Enable Bus

· 1 TLC Output Enable

Total = 9 GPIOs

[image: image32.png]Latch Enable(s) Serial Inputs

Figure 4.2: 6 Sets of 8 LED Drivers

Method 2. 12 sets of 4 lined up in series: This method was the quickest, but it required a large amount of GPIOs. This take only 64 clock cycles and give the quickest read time, but it might be unnecessarily fast for what the group requires. This method was the most desirable in terms of speed and performance, but if it was implemented then the group might have to incorporate more than one microcontroller to drive the cube, which would mean and altered printed circuit board and more overhead. Below was a summary of the GPIOs needed:

· 12 TLC 5941 Serial Data Lines

· 1 TLC 5941 Serial Ground Control Line

· 1 TLC Latch Enable Bus

· 1 TLC Output Enable

Total = 15 GPIOs

[image: image33.png]Latch
Enables

il
il
i
i

ik
ik
5k
ik

Ty
Ty
Ty
ik

7t
il
ik
Nl

il
B[
il
il

il
Tir
Tir
7t

ik
5k
5k
ik

ik
ikl
k!
ik

Figure 4.3: 12 Sets of 4 LED Drivers

The method the group depended on the software to display the animations, most importantly the interrupt service routine. The group wanted to have a refresh rate high enough so that the viewer believe they are seeing a 3D image, but not high enough as to where the increased speed was unnoticed and all the extra work was for nothing.
4.4 LED Lattice Architecture

A critical design feature was the lattice of LEDs. The entire control architecture depended on this section alone, so it was very important that our group sticks to the desired architecture that they initially pick. It was agreed upon that the LEDs have all of their cathodes in each row connected together, and all of the anodes in a given layer connected together as well. This means that the LEDs that the group order was common anode LEDs, meaning each LED have a single anode and three separate cathode legs for corresponding to each color. In Figure 4.1, it displays the view of the front of the cube and displays the wiring tactics that our group plans to use:

[image: image34.png]4 N m e = =
/\ 20 N\
14 -

‘ ‘__.__

‘Common Cathodes Per Column

19Ae1 194 s9poUY UoWWIO)

Figure 4.4: LED wiring architecture as viewed from the front side of the cube.

4.5 Software Design

The group was writing most of the code for the cube ourselves as there are not any libraries around for 3D LED cubes for the Stellaris microcontroller. The group attempted to make the code as efficient as possible so to achieve the high refresh rate needed to make use of the persistence of light effect. Figure 4.1 shows outline our code’s architecture.

[image: image35.jpg]«struct»Point

+x : short
+y : short
+2 : short

+set(in x : short, iny : short, in z : short) : void

«uses»

«struct»Color

+red : short
+blue : short
+green : short

Main

-cube : Cube

+setLayer(in layer : short) : void
+pulseSCLK() : void

+pulseXLAT() : void

+sendBits(in val : short, in dest : int) : void
+initTLC() : void

+sendTLCData() : void F-

+ISR() : void
+main() : void

«uses»

Cube

LED[16][16][16] : Color
-mode : short
-animation : short
-xOffset : short
-yOffset : short
-zOffset : short
-counterl : short
-counter2 : short
-counter3 : short
-tPointl : Point
-tPoint2 : Point
-tPoint3 : Point
-tColor : Color

+Cube()

+changBrightness(in b : int) : void

+fillCube(in color : Color) : void

+clearCube() : void

+drawLine(in axis : char, in p : Point, in color : Color) : void
+draw2DRect(in p1 : Point, in p2 : Point, in color : Color) : void
+draw3DRect(in p1 : Point, in p2 : Point, in color : Color) : void
+shiftScene(in x : int, iny :int, in z : int) : void

+setMode(in m : short) : void

+doWork() : void

+sinWave() : void

+rain() : void

+expandCube() : void

+allOn() : void

+setRandColor() : void

Table 4.1: UML Diagram of code Library

The main base of our code was the Cube class. This class handles holding the buffer for the LEDs as well as handling the ISR used to send the signals to the hardware. It uses the Point structure as a way of passing the X, Y, and Z parts of a point to it. This may change to a non-encapsulated version if it proves to be too inefficient though. This also holds a pointer to a sprite which the class that the group was using to hold a sprite. This was also where many of the basic functions are handled, such as drawing points and lines. The translate and rotate functions are applied to entire cube and can be used to add extra effects to the animations.

The Cube class also defines some port names for use with interfacing with the hardware. The various devices and their ports was defined in this file and used to send the signals to them. The Sprite class holds the frames of an animation that cannot be modeled easily using a math function. How this data was held in both the Cube class and Sprite class may change if can find a more efficient way of storing it. The 4D array holds the frames of animation. The first index was the frame number and the subsequent indices represent corresponding points in the 3D cube buffer. Each sprite have its own frame delay which was used by its handle function to denote when it should change to the next frame in its animation.

When a sprite was animating it continuously loop through all of its frames until another command was given. There was also a function for going to specific frames which probably mostly be used to debug the sprites. If there was time the group may make an application that can be used to make sprites. There was one drawback to the sprite class in that each frame was the size of the cube. This may cause some memory problems if the group was not careful.

To define an animation that can be modeled using math functions or logically the group simply write the function out and place it in the main loop to be handled. A class not be necessary for this as it most likely just involve simple for loops and if statements and making a class for that probably be overkill. To run the code the group had a Main file that held a single instance of a Cube. A Sprite can be attached to the cube while it was being initialized. Also during its initialization it set up the timer for its ISR. If it had a sprite attached it simply go through the frames of the sprite forever unless some other commands are inside the main loop. Inside the main loop was where animations that use logic can be placed to run. Whether through logic or a sprite the Cube’s LED array get filled with values to be sent to the actual LED cube. This was done by the ISR which trigger based on a timer. Every time the ISR was tripped it send the signals to the various LED drivers so that the LEDs get turned on. This must happen very rapidly as only a small set of the LEDs can be lit at once. This happen repeatedly going through the buffer constantly to make whatever was in the buffer appearing on the LEDs. As the buffer was changed by the code so the LEDs.

4.5.1 System Requirements

The dynamic animation cube as an entire system had a set of requirements it had to meet in order to run. These requirements vary from the specifications because they were not explicitly selected by the group but a rather a group of requirements determined by the physical hardware and software decisions that the group had already made. The group had determined that it needs to meet the following requirements in order to successfully complete the design.

· The program of each set of animations include flash memory of 256 bytes of memory or greater.

· A working Voltage of 110V-230V AC.

· Must be able to produce up to 82 Amps of current

· 50 MHz of processing speed

· The code generate colors and apply the colors on the animated effects

· The code was compatible with the Stellaris microcontroller based on the code the group writes and the software libraries provided from Texas Instruments.

When the group decided to use the Stellaris microprocessor one of the first limitations that they set upon themselves was the limited amount of flash memory build on the processor. The Stellaris comes with a built in flash memory size of 256 bytes. With the way the memory was designed on the Stellaris processor anything stored in the flash memory was easier for the processor to retrieve and therefore increase the speed at which the processor can manipulate the LEDs thereby increasing the frames per second. With this specification in mind the group needed to try to make each individual frame of animation fully described in the size requirement of 256 bytes so that each animation can be displayed at the proper time in a smooth and efficient manner.

When the group initially decided to produce the Dynamic Animation Cube they felt in order to make it as functional as possible it would need to run off of a standard socket rather than having battery backs or extreme power supply requirements. The best way to complete this task was to use a prebuilt power supply like commercially available on a desktop computer. This allowed the group to meet their high current demands while still keeping the project within normal electrical component bounds.

The most demanding limitation for the production of the Dynamic Animation Cube would be the total power draw of 4,096 LEDs. The diodes that the group had selected have typical current draw of 20 ma regardless of which of the three color states are being used. This means that the total current the group was going to require was around 82 Amps. The group had found what they believe to be a clever solution by using 2 separate desktop computer power supplies each to provide half of the required current to power both the LEDs and the rest of the operating components.

When the group decided to use the Stellaris microprocessor it also set the maximum clock limit that the system could function at to 50MHz. The group had decided to run the system at the allowable 50 MHz because it allowed them the easiest path to reach their goal of a minimum of 30 frames per second. This allowed for an approximately 83 thousand clock cycles per animation. This number was established by taking 50 MHz which was the temporal equivalent of .4 nanoseconds. Each clock cycle was .4 nanoseconds that equates to 2,500,000 clock cycles per second. If the group wishes to have 30 frames per second the number of clock cycles per second was divided by the 30 frames they wish to produce leaving the group with approximately 83 thousand clock cycles per animation.
One of the most important features that set the Dynamic Animation Cube apart from many of the homebrew projects across the internet was the cubes’ ability to display animations in a spectrum of colors versus the simplicity of many of the other monochromatic cubes on the internet. To do this though the group had to write a set of code capable of not only turning on and off individual LEDs but need to also select what color a diode that was turned on was to display. This required us to put a more complex code than most of the other cubes the group had seen produced.

4.5.2 Functional Requirements

When undertaking a construction project of this magnitude the constructing body should first and foremost lay down a clear cut goal of what was required to the construction of a device to be successful. In the case of the DAC the group set down the following functional requirements for the software of the cube:

· The code must be able to generate sample animations. These animations can range from lighting up certain areas of the cube, produce a rain effect, or generate letters or numbers.

· These animations also be capable of mixed color effects. The color effects was based off a color wheel. The color was influenced by the HNTE RGB Cube project.

· Efficient code in C and C++

· High refresh rate for persistence of vision

To meet the functional requirements the group wrote code to generate the various animations. The code should be memory efficient enough to function on the Stellaris built in flash memory. A library of letters was made to help in the displaying of letters in an efficient manner. Many of the animations have to be based in loop logic so that the memory not be able to hold the data for too many 3D images. To make the colors more vibrant the group use a color wheel data structure from a similar project to avoid colors that would be dull and unsatisfying. To achieve this efficient code the group was writing the code in C and C++ as they are very efficient languages. Most of the code was C as it had lower memory footprint. The code must also be optimized wherever possible to make sure it runs as fast as it can. With this efficient code the group hopes achieve the high refresh rate to make use of the persistence of vision to make sure the images on the cube do not flicker.

To make the sample animations the group used simple logic based animations. These type of animations not be saved as a series of frames in a 3D array but use loops to fill the buffer with information. They iteratively loop and based on simple logic send various things to the buffer. This technique can be used to create rain effects, sweeping motions, or even explosion effects. These type of animations would simply require a function and would not take up much space.

The colors that cube uses was based a concept learned from the HNTE site. Generating colors randomly may seem easy at first however there are a lot of colors that have a washed out feel when done this way. This because the colors have to be randomly generated by 3 numbers. These each refer to the amount of red, blue, or green light and this can easily lead to unbalanced ratios that lead to the washed out effect. So to limit the colors generated to be only the colors that are not washed out we use the color wheel approach from HNTE to generate an array of valid colors which was used to choose the random colors for the animations.

Writing the code mostly in C give the group the fast execution time it needs for the persistence of vision to work well. Using mostly C limit the type of data structures that can in the coding. This means the amount of classes in the code was very few. C++ was also more memory intensive meaning the group try avoid using it wherever possible. This could mean just writing everything in C to avoid hassles that could arise.

Utilizing the persistence of vision was very important in the implementation of this project. Getting the LEDs to flicker at a rate above what the human eye can perceive allow the cube to function without utilizing a lot of current at once. This puts very tight constraints on the code since it had to be very efficient to be able to run in a manner that allow it to send data to 256 lights emitting diodes in 16 different layers rapidly enough to not give the illusion all the LEDs are all on without them all actually being lit.

4.6 Printed Circuit Board Requirements:

For the printed circuit board there are many considerations that must be accounted for in order to ensure a successful project. One of the most important factors to consider are the thickness of the traces so the group was not current limited. The group also needed to consider the number of layers that was used because that affected the ease with which they can lay out the board. Finally, the group needed to consider the overall size of the board as it determines the size of the base.

4.6.1 Trace Thickness

The trace thickness was determined by a couple of limiting factors. First, the group needs to decide how much current was necessary to drive all of the LEDs. The current structure contain a system of 16 * 16 * 16 LEDs totaling up to 4,096 units. The current required to drive the LEDs that the group use was 20 mA. To calculate the maximum possible current draw it was necessary to assume that all diodes was lit at one time. If all LEDs are turned on at one time and they are all drawing 20mA of current then the group can assume that the total maximum current draw was 81.92 A rounded for this project to 82 A.

However, the group does not need to assume that any one trace was carrying all 82A at any given time as this current was divided between the 48 different LED drivers. If the maximum current of 82 A was divided down to the 48 LED drivers then that maximum current any one trace handle was 1.708 A rounded up to 1.8 A for this project. With the maximum current that any one trace have to carry the group needs to decide how much heat the traces create based on the current passing through them. This was an important number because if the heat rise was allowed to be too great the printed circuit board could fail prematurely.

For our particular printed circuit board the group expects the cube to be in a primarily in a ambient temperature of 21 degrees Celsius. With the ambient temperature in mind the group decided that a temperature rise of 10 degrees Celsius would not be a high enough temperature to cause premature failure of our printed circuit board and components. With the max current known it was time to determine the thickness of the traces required to fit these specifications. For the traces there was different sizes if the trace was to be on the exterior of the board and those that was housed on the interior of the board.

This difference was because there was a different inherent resistance for an interior trace and heat was not dissipated as easily on the interior of the board. For the exterior traces the group calculated that a thickness of at least half of a millimeter. An exterior trace of this size allow for the current of 1.8 A to travel through it with a temperature of 10 degrees Celsius with an inherent resistance of 0.019 ohms with a voltage drop of 0.0314 volts for a total power loss of 0.0615 watts. The interior traces need to be slightly thicker to accommodate the same amount of current.
The traces have to be at least 1.25 mm making it 150% larger than an exterior trace. This trace have the same temperature specs as an exterior trace with an impedance of 0.00792 ohm with a voltage drop of 0.0131 volts and a power drop of 0.0236 watts. The fact that there was less energy dissipated by the interior traces leave something for the group to consider when it comes to design the printed circuit board.

4.6.2 Number of Layers of Printed Circuit Board

There was only one real dichotomy when it comes to deciding how many layers of printed circuit board are cost versus ease of design. When routing the traces of the board the aspect that most affect the group was the sheer number of traces that was necessary to carry all of the power and signals to all of the components of the across the board. There was 48 drivers that have 20 pins attached to them leading to 560 traces going to the LED drivers. Along with the drivers there also be traces that need to run to the microcontroller and all of that was connected to the power supply. All of this leads to a large array of traces that need to be laid.

It fall to the group to decide how to set up the printed circuit board in not only the most efficient way but the cheapest way possible and that leads to the necessity of using the least amount of layers possible. While the price can vary depending on the size of the board to be printed along with how many holes was drilled and how many pieces was pre attached to the board. The group through a bit of research had come to the conclusion that generally a 4 layer board cost at least twice as much as the 2 layer board. The group had a goal of using a 3 layer board if possible to try and keep costs down, but was prepared to design a four layer board if it was required.

4.6.3 Size of Printed Circuit Board

The size of the board was another aspect that lead to great variability on the price of the printed circuit board was the overall dimensions of the board. The dimensions of the board just like the number of layers greatly influence the price of the board to be produced. The larger the printed circuit board the easier it was to rout all of the leads but just as increasing the number of layers it make the board significantly more expensive. The group does have a great amount of lead-way on the size of the printed circuit board it still had a set of physical dimensions it must meet. The printed circuit board must fit within the already predetermined dimensions of the base. As the group had already described in previous sections in the paper the cube was 3 feet by 3 feet. The group feels that this was a rather large size printed circuit board and believes that they was able to easily design a board that can fit within these dimensions.

5.0 Design Summary of Hardware and Software

The group had already set down what it intends to build and the components they intend to use to build the system and the components that was used to construct it. With the physical aspects of the cube described the group decided to simulate some of the components to get a better handle how they work in the real world. The group used Xilinx as it was a program they were already familiar with from previous courses in their academic careers. Also the group give a final overall description of the high level flow charts and describe some of the ways in which they build and test the final project.

5.1 Simulation

There are many different ways to go about the wiring of the LED cube, and it was decided that it would be a good decision to simulate some of the designs using the appropriate software. The Xilinx simulation below details an early design feature our group was planning to use which implemented the decoder and d-latch array.

5.1.1 Xilinx

To get a better understanding of how the decoding of the control signals for the D-latches which held the states of the LED cube worked, the group decided to model them using procedural Verilog. Since many classes at UCF require the use of this program, it was felt that it would be beneficial to develop the system using it. The group began by making a 2-to-4 decoder which accepts two inputs and gave four outputs. However, only 3 of the 4-to-16 decoders was used, so the group only consider the case where the output was 00, 01, or 10, ignoring the case of 11. The main purpose of this decoder was to act as an output enable for the three 4-to-16 decoders.
Next the D-latch was modeled. It accepts an input D0-D7, and outputs O0-O7. Every time data was ready to be written, the CP pin goes high. If the particular latch had its output enabled by one of the 4-to-16 decoders to be later modeled, then the data was written to O. If its output was not enabled, then the output retains its previously held value.

Next, the 4-to-16 decoder was modeled. This one was slightly more time intensive that the 2-to-4 decoder and it had to be designed with the idea of re-usability in mind; the group could not simply “hard-code” the addresses of each of the individual 48 latches into the decoder. Another factor was the output enable, or in the case of the code, the Imux variable. This variable was an input that was received from the 2-to-4 decoder and decided which decoder was active. For every input, one bit of the 16-bit output was set high. This single bit was responsible for the output enable of the latch was corresponds to.
Next, it was time to put all of the pieces together and model the control. First, the 2-to-4 decoder selected which one of the 4-to-16 decoders would be enabled. Next, one of the three decoders used the mux control lines which it was wired to select which of the latches it was responsible for setting high.
Finally, the data bus was sent to each of the 48 latches. A single bit from the mux_control bus was sent to each of the individual latches as well, determining which of the latches was to receive the incoming data. If the mux control was set to 1 for any particular latch, the output would be written with the incoming data; this was confirmed through a simulation. Figure 5.4 details the Main Control of the system:

[image: image36.png]Main Control

2to-4 Decoder Selects
The 4-to-16 Decoder
Control Signals

Decoder 1 Controls D-Latch
Selection 0-15

Decoder 2 Cortrols D-Latch
Selection 16-31

Decoder 3 Controls D-Latch
Selection 32-47

4

4

4

D-tatcho [=== D-Latch 15

D-Latch 16 EEEEE I ST

D-Latch 32

D-Latch 47

16 h\ ?/ 16 16

Array of 768 States of the LEDs

Figure 5.4: Main Control

The primary lesson that was learned during the fabrication of the control system was the sheer amount of wiring that need to be done. It was not until filling in the latches for the data in the Main Control that the amount of output wires and control lines might be prone to errors if our group was not careful, and that the group must proceed with caution when wiring and remember to test and document every step that the group take in the fabrication of the LED cube.

5.2 High Level Design

In Figure 5.5, the block diagram demonstrates the structure of the main design. In one of the operation modes the computer generate the animations and compile the code to be sent to the Stellaris microcontroller. In the second operating mode, the cube was run directly from the Stellaris microcontroller which controls the drivers and have the job of executing the code for the animation. The main significance of the design prioritize the construction of the cube as soon as possible to focus the implementation on the TLC5941 LED drivers and the Stellaris Microcontroller. When all the hardware and testing was officially completed the rest of the time spent on the main design was focused on the software compiling and testing to animate the cube. Figure 5.5 gives a general idea, from top to bottom of the cube’s mechanism.

[image: image37.png]TLC LED Driver

IS

Stellar
TLCLED Driver

Computer

Layer Select

Figure 5.5: Block diagram of the main design.

Computer:

The main source of the advanced animations was from the computer. The group had to produce their own code given that the projects available online mostly produced an 8x8x8 cube, and the main objective was to create unique and impressive animations without the help of outside sources. With our 16x16x16 scale cube, the group may spend many hours tackling the code, but overall there are so many LEDs to drive that many different animations are possible. The programming of the code consist of sending the bits of data of the animations from the computer to the Stellaris microcontroller one bit at a time using an RS-232 and a 14.7456 MHz crystal to generate the clock needed for serial communication between the two devices.

Stellaris:

The Stellaris microcontroller was configured to run in one of either 2 modes. The first mode was strictly to accept the states of the LEDs from the communication using serial communication. Once the Stellaris microcontroller receives the data from the computer, it clock in the data one layer at a time. This start the multiplexing part of the cube in which the data was sent to each layer with the preceding layer being turned off, thus giving the illusion of a 3 dimensional image. The data of that layer was sent to the TLC5941 LED driver which read in the 256 bits for each individual color serially and ground the LEDs accordingly.

The second operating mode consists of the Stellaris taking full advantage of the Cortex M3 processor it possesses to execute the code for the animation and store the states of the LEDs without use of the computer. It also control the LED drivers as in the first operating mode, so this means that the code have to be written to optimize memory and performance. This was the ideal operating mode because it allow the group to have the option of providing a standalone model that require no external processor to run the animations.

LED Driver:

A single LED driver receive the states of a portion of an individual layer and power up the corresponding LEDs on the board. When put into an array, these drivers hold the data necessary to drive an entire layer. As mentioned above, data was sent serially to an array of 48 of the drivers, with 3 layers corresponding to the three colors the group wishes to control. The orientation of the drivers was important in the control of color of the LEDs, and also the layout of the printed circuit board. Having the drivers set into arrays make wiring the cube a great deal easier and much more convenient to read the schematic.

Cube:

The cube had animation after receiving the statuses of the LEDs from the LED driver and having its layers provided voltage. As the Stellaris was sending the data of each layer at fast rate, the animations gives the illusion that all of the layers for a certain animation are being lit up simultaneously, even though it was only being done in layers. The cube was structured in series and parallel sheets. The panels of the LEDs are set parallel to each other and the layers are set parallel to each other. The group intends to have a great variety of animations ranging from displaying simple text messages, three dimensional static images, and even functions such as sine wave projections.

5.2.1 Design Issues

Due to the size and complexity of our groups LED cube, the group undoubtedly come across design issues along the way. While many of these was unforeseeable, the group can at least speculate and prepare for the issues which they come up with. Any design issues need to be met with a proper solution should they arise, and measures need to be taken to prevent any such failures.

Maintainability: The cube was encased in acrylic panels to prevent any variable damage outside. The LEDs small size, long lifetime, and low energy consumption prevent from any replacements in the long run. In terms of the software, it was possible to add additional animations and effects to the cube. The group can update or enhance the animations if there was any trouble. The software itself should not require maintenance once it was completed. A benefit to having 4096 LEDs was that if over the course of a few years if a few should happen turn burn out; this not be very noticeable
Testability: To get a better understanding of what was ahead, the group intends to build a test cube following our source from Instructables for their 4x4x4 LED cube. There was already a variety of source code available for this cube, and it was very straightforward. The group also work on adding to this source cube, implementing our Stellaris microcontroller, our TLC LED drivers, and also using tri-color LEDs instead of the single color ones that were used in the tutorial. The group felt this would be an ideal choice over the Seedstudios rainbow cube because the architecture more closely resembles the LED cube the group was building for our final project.
Performance: The performance was monitored during the testing. The group had to make sure that each set of LEDs are in working condition in optimal settings. After the cube was finished, the group intends to have solid animations with all the LEDs capable of RGB output.
Portability: After the cube was donated, the group does not intend to move the cube around. The group plans to enter the Texas Instrument competition with their cube. If the group had to travel with their main design, the acrylic case was enough to protect the cube from any damages. The portability of the cube was rough when compared to the prototypes and smaller scale cubes. Our cube was a much larger scale and would have to be handled with care during all phases of the design.
Safety: The cube was to be protected with an acrylic casing. This prevent damages to the LEDs, LED driver, and the Stellaris microcontroller. It also protects the public from any injuries when the cube was running, as current was flowing in the LEDs.
5.3 Animations

Getting the LED cube to run was one thing, but the animations that the group chooses are an important part of the overall design of our project. The group most likely take advantage of the animations that the group had seen on various sites and sources, but the group also implement our own unique designs. The group feels that since the cube was displayed in the Harris Engineering Corporation building, it needs to implement more animations in addition to static 3-dimensional designs.
Video Emulation:

An idea the group had was for the cube to emulate an image of our own design. The group could display shapes, or groups of shapes, and have the cube mimic what was on the computer screen. This could become as advanced as moving images and even the color wheel that our source at “How not to engineer” described in their tutorial. With the resolution our cube have due to the large amount of LEDs, there are many animations that the group could explore.

Rain Effect:

The rain effect the group had seen was quite impressive. The pixels “rain” down the cube either one at a time or in random patterns, simulating rain drops. This effect can be reversed and have the pixels traveled up instead of down. The group had many options in terms of colors, for example they can have the LEDs retain their colors as the effect rains down, or have them change colors on the way down or after they reach the end for an impressive effect.
Sound Reaction:

If the group completes the cube at an early enough date, or if everything was going better than planned, the group might include a feature which incorporates music or a reaction to sounds around the cube. This could be anywhere from synchronized movement from a sound input such as a song, or perhaps changing colors of animations due to surrounding noise. The group believes this would be an impressive feature if time permits, but even without this effect the cube still be quite impressive.
Functions:

Because the group have a computer controlling the main animations, they was able to incorporate many advanced functions. These could range from simple sine waves to more advanced functions. Perhaps the group could even add a “trace” feature which draws the functions at a slow rate, and trace multiple functions using different color LEDs. This was just one of the many advantages of using a computer for our animations.

Letters and Numbers:

The group of course be incorporating some kind of letter and number scheme into the programming of our cube. This was rather easy because only 26 letters and 9 number have to be programmed, and the software can take advantage of reusing them. Because our cube was built from 4096 LEDs, it was possible to fit many characters on a single surface. The group was unsure how many characters can be projected without the view diminishing, however, so this have to be a topic the group investigates once the cube was built.

5.4 Cube Construction

After researching and observing many cubes of various sizes, there was two ways to construct a cube. The layer approach involves having a base with a 3mm drill bit. The base was then drilled 256 times to form a square with equal spacing. The LEDs was able to fit inside with the cathode and anode wires being upright. This base helps the LEDs to be held in place for stability when they are soldered to each other. The rig can be reused to hold a layer while another was being soldered. The flaw with this method was that the when soldering layer by layer, the current top layer needs to held in place when being soldered to the preceding one. This could cause problems in soldering, as well as too much weight being applied to the subsequent layers. Not only that, but it was possible that one side of soldered layer may not be perfectly leveled and may look slightly tilted from the side. This approach seems to work rather well for smaller cubes, but for larger designs it would be difficult, but not an impossible way to construct the cube.

The next approach was constructing in panels or sheets of LEDs. The rig involved had a base with 15 columns made from wood drilled on the base. With the help of blue sticky tack or another weak adhesive to hold the LEDs in place, the LEDs was between each column and soldered to form a column of 16 LEDs. From the column the rig can be reused again to construct the next sheet of LEDs. The rig can also be reconstructed to hold the LED sheets when the cube was being soldered as described in section 3.1.4. The group plans to use the panel or sheet method to make the cube.

5.4.1 The Rig

The rig was custom made by the group members. All materials was purchased at a local Home Depot or a hobby shop with the proportions ready ahead of time. Below was a list of materials that was needed in order to construct a proper jig:

· 32’x32’ inch, 89x89 cm Acrylic base

· 16 - 35’x1’x1’ inch (L * W * H) Acrylic columns

· Each column was 1.5 inches or 4 cm apart

· 32 nails

It was important to ensure that the jig was measured perfectly and there are no errors in construction. A slight miscalculation could mean a cube that was unpleasing to the eye and awkwardly built.

5.4.2 The Panel

To construct a panel, the LEDs are lined up similar to Figure 5.6. Align each LED to the edge of the column and solder the RGB cathode wires, this set the height of the cube. In Figure 5.6, the LEDs are held down with blue tack and soldered in a parallel manner. Each time column was created, the LEDs was tested to check if the LEDs are burned. All of the anode wires was hooked up to a voltage source. Nine volts was wired to test each of the RGB wires and light up all of the LEDs in an entire column.

These 16 LED columns have all of the anode wires bent 90 degrees from the cathode wires. In Figure 5.6, the columns was facing in the same direction and solder 16 times relative to the direction the anode wires are pointing. The anodes are soldered in a series manner of the panel. After the solder was dried a panel was created, this set the length of the cube. Testing for the panel was done again similar to the column testing. There was 16 anode wires hooked up to a power supply and 16 cathode wires hooked up to a ground wire.

 [image: image38.png]

[image: image39.png]

Figure 5.6 Left: light emitting are lined up on the wires the edge of the column. The columns are lined up the wooden columns to solder the anode wires.

Pending permission from HNTE [8]

The process above was repeated multiple times until there are 16 individual layers available with working LEDs. After all the layers are completed, it was time to combine them to form the cube.

5.4.3 The Cube

The final part of the construction reuse the rig. Some of the wooden columns was undrilled and repositioned to face away from the board. In doing this the group can use hanging wooden columns to hold the 16 LED panels, set how far apart from each panel was, and solder them together. Additional wires are required to solder all of panels together.

5.5 Test Plan

Because of the complexity of the design of the groups cube, there had to be a method of testing to see if the steps they are taking in the construction of the cube are proceeding according to the drawn out plans. Not only do the main components like the LEDs in the cube and the operation of the LED drivers have to be tested, but also how the components work together and operate as a single system. It had to be ensured that proper documentation was taken along the construction of the cube and of the controls for it, so that if any errors are encountered it was easy to backtrack and identify any potential problem that might have halted progress in the fabrication of the final design.

5.5.1 Objective for Main Design

The group expects the cube to be functional and possess as few errors possible. To do so the group had to perform constant testing for the entire main design. The testing consist mostly of observing the LEDs and checking the amount of current and voltages that are applied to one LED, a column of LEDs, panel of LEDs, and the whole cube. The construction of the actual cube was vulnerable to many errors involving soldering and short circuits, but with the group taking their time and constantly testing, this step should provide no problems.

Following the testing of the LEDs, the next step was to account for the microcontroller functioning with the LED drivers. This was a very important phase, but after the group initially gets the microcontroller to communicate with the drivers, there should be no problem in incorporating them into the final design. After sampling prototypes, the group had a general understanding of what to expect in the testing phase in terms of LED hardware, and hopefully after the group constructs a test cube they have a better knowledge of the testing of the microcontroller and LED drivers.

5.5.2 Testing Environment

Testing was done in the University of Central Florida Senior Design lab in EGN1 room 456. The cube was tested by two Electrical Engineers and two Computer Engineers. The Senior Design lab was equipped with a variable voltage source to test the LEDs, columns, panels, and cube. With a variable voltage source, the group does not have to purchase a power supply unit that may overload a single LED and provide the necessary amount to power an LED.

Once the cube had been fully built, the testing for the microcontroller and the LED boards was done in the lab again. The group can observe the resistance and capacitance given to the cube by the boards with the equipment provided. After that, the group can proceed to the software testing either in the senior design lab or from their current location.

5.5.3 Stopping Criteria

After completing the prototype phase for the Seedstudios kit, the group got a firsthand account of what to expect during each phase of the main design. The only difference was the Rainbow Arduino had its own light emitting driver capabilities so that rules an important feature when dealing with the Stellaris and LED drivers. The was many stopping criteria for the cube phase, control phase, and the software phase that take many hours.

For the hardware portion of the main design, it was crucial that the LED cube was working without any burnt LEDs. So therefore the soldering portion of the cube involve testing the LEDs, solder the diode, then test the diodes again after it was soldered. The LEDs have three cathodes and one anode wire. The anode was connected to ground and one wire to the power source was tested on each cathode wire. The result should produce the RGB output of the LED. If not, the LED was scrapped and another one was tested.

Next was the LED columns. Testing was done similar to testing a single LED, but there was 16 anode wires and 3 cathode wires. All 16 anode wires was connected to ground. If there was a single LED that does not work, either the column was discarded or the LED was unsoldered and replaced by another LED. This also applies to the panels when the columns are soldered together. This time when a LED does not work, it was unsoldered and replaced instead of the panel being discarded. The worst case scenario would feature more than 10 LEDs not working for a 256 LED panel.

With a decent amount of knowledge of how the microcontroller works with the light emitting driver board, the group take notice of how it functions when hooking up the cathodes and anodes to the input and output ports.

The final steps include the software and animations into the cube. This portion include many hours of debugging and testing the code necessary for the animation to communicate with the microcontroller. Any errors in the code was taken noted for a solution to operate the cube. There are some software libraries available, but most likely the group code their own software to animate the cube. The group also take into consideration of sample functions for additional animations and effects.

For this main design, the group hopes to not make the same mistakes as it did when the prototype was done. The group was confident in their ability to know what kinds of problems are expected if things go wrong. With minimal stopping criteria, the group can proceed to each phase in a timely manner to be presented and compete in the Texas Instruments competition. The stopping criteria also be applied to any further prototypes done.

5.5.4 Description of Individual Test Cases

To determine whether the cube was operating properly, to do this the group would need to test the cube. In order to verify it was operating properly a clear and concise listing of how the cube would operate in different conditions was needed, below follows the groups:

· Test Objective: Individual LED Testing

· Test Description: The group test each LED to see if they are capable of emitting RGB output when connected with a 2.7-3.3 V power supply.

· Test Conditions: This test was conducted in the Senior Design Lab. Further details in 5.5.2 Testing Environment.

Expected Results: The group expects all of the LEDs to work. Each LED should light up red, green, and blue when power was supplied. With 4000+ LEDs, many LEDs was tested to reduce time.
· Test Objective: Column LED Testing

· Test Description: The group hook up the column of LEDs to see if any of them are burned when they are being soldered together. This features 16 anodes and 3 cathode wires hooked up when tested.

· Test Conditions: This test was conducted in the Senior Design Lab. Further details in 5.5.2 Testing Environment.

Expected Results: The group expects the column to have all the LEDs working. If a more than one LED was not working, another column most likely be made.

· Test Objective: Panel LED Testing

· Test Description: The group test the panel of LEDs to check if they are all working. This includes the 16 anode and 16 cathodes hooked up to a breadboard.

· Test Conditions: This test was conducted in the Senior Design Lab. Further details in 5.5.2 Testing Environment.

Expected Results: The group expects the panel to not have any burnt LEDs. This shows the soldering done on the LEDs was superb without any errors. Any burnt LEDs was unsoldered and replaced.

· Test Objective: Cube LED Testing

· Test Description: This test the whole cube to check if the LEDs work once the panels are soldered together. With this large of a scale, this include 256 cathodes and anodes to be hooked up together.

· Test Conditions: This test was conducted in the Senior Design Lab. Further details in 5.5.2 Testing Environment.

Expected Results: When the blue cathode wire was applied power, all of the LEDs should produce blue. This goes the same for the green and red cathode wires. The group expects that the cube not to have any burnt LEDs and work perfectly fine.

· Test Objective: Stellaris Microcontroller and LED Drivers

· Test Description:

· Test Conditions: This test was conducted in the Senior Design Lab. Further details in 5.5.2 Testing Environment.

Expected results:

· Test Objective: Software and Animations

· Test Description: Software was compiled and sent to the Stellaris Microcontroller.

· Test Conditions: This test was conducted in the Senior Design Lab. Further details in 5.5.2 Testing Environment.

Expected Results: The group hopes the animations and effects work with the code they have written. By testing out simple code, the group can understand how and which parts of the code was applied to the cube and creates more advanced animations.

6.0 Project Prototype Construction and Coding

The selection of a prototype kit was one of the greatest decisions that our group could have made. It not only helped the group in seeing the architecture first hand and helping to understand the benefits and flaws of the method used, but it also introduced the various errors and solutions that were presented in the construction. The group plans to have a couple of prototype’s set up. The first prototype was conducted during the spring semester of senior design. Afterwards a second prototype was constructed the following semester and features many of the products from the main design.

6.1 Selection of the LED Cube Kit

There were a few elements that the group needed to consider when picking out our prototype. First was the cost of the kit. Since this was only going to be a prototype, the group did not want to make a purchase that would be too high in cost and that they would regret. Being $54.90 for the actual kit, plus and extra $24.90 for the Rainbowduino, $79.80 fell right into our price range.
Another factor to consider was the components that were included with the kit. Many of the available kits did not come with LEDs, making it necessary to purchase from another source. Since Rainbow Cube kit came with all 64 LEDs needed, plus 6 extra, this seemed appealing to our group.
The final factor to consider was the size of the cube. There were many different sizes that were considered, ranging from 3x3x3 to 8x8x8. Our group did not want a cube that was too small to get a decent feel for building a cube, but also did not want to go all the way up to an 8x8x8 cube because of time, difficulty, and price constraints. Our group felt that a 4x4x4 cube was a happy medium for all the constraints present, and as engineers factors of 2 are just appealing in general.

6.1.1 Overall Objective for Prototype Activity

The group hopes to expect the cube to be properly working. This includes the LEDs working, the whole cube being soldered, and the communication between the computer and the Rainbow Arduino to function together animate the cube. This prototype give us a general idea of the work included in terms of the soldering involved and the software library that was included.

6.1.2 Prototype High Level Design

The prototype was a pre designed system so the structure of the system was pre described. A computer compiles and places code onto the Rainbowduino board. The Rainbowduino drive the drive the LEDs. The benefit of using the Rainbowduino was that the group did not have to worry about laying out selecting any of the loose components as everything was provided. In the case of the smaller 4 * 4* 4 cube the group could drive the LEDs without a driver as the chip was capable of handling these demands. In Figure 6.1, this was a simple block diagram for the prototype LED cube.

[image: image40.png]Computer: Rainbow Arduino 4x4x4 Cube

Arduino Software.

Figure 6.1: Block diagram architecture of prototype cube.

Computer: The computer have the Arduino compiler to help generate the data and send them to the Arduino. The computer also include the software download from the Seedstudios website to create different kinds of animations. The .pde sketch opened on the Arduino.exe and then compiled. Once it was compiled, it was uploaded onto the Arduino board.
Rainbow Arduino: The compiled data was sent from the computer to the Rainbow Arduino microcontroller. The Arduino was capable of multiplexing the layers with its own LED driver. Each layer light up and generate an animation effect as it was being multiplexed one at a time.
Cube: The cube was a simple structure where the LEDs are arranged in a system of parallel and series. Each horizontal layer of LED are arranged in a parallel so that if one LED was damaged it not ruin the function of the entire cube. Each layer of the cube was then set in series with each other to provide the optimal current distribution.
6.1.3 Testing Environment

Testing on the Seedstudios LED cube was conducted by two Electrical Engineers and two Computer Engineers. They conduct the hardware testing in the Senior Design Lab in EGN1 from 456. With a variable power source, they can control the voltages applied to each LED on the cube.

Once the cube was completed, the group can test the software in the senior design lab or have the computer engineers test the software animations when they have possession of the cube. When tested in the senior design lab, the group can observe the functions of the software relative to the hardware of the cube. The prototype requirements should be operable in similar conditions as the main 16x16x16 cube.

6.1.4 Stopping Criteria

The group hopes to expect some errors with the process of constructing the LED cube and making it work with Rainbow Arduino software. If there was something wrong with the hardware aspect of the cube, it was difficult to reconstruct as the group the kit provides slim PCB panels that holds the LEDs. Therefore the group had to unsolder the LEDs from the slim PCB panels.
In terms of hardware side of the cube, the group had to test the LEDs if they are in working condition. The group had to make sure that the group had enough LEDs for the 4x4x4 cube and to see if the LEDs are capable of emitting RGB colors. The kit includes 70 RGB LEDs with only 64 necessary for the cube, if there a couple dead LEDs, the group would be fine with the 6 extra LEDs included. There are four prongs on the LEDs that refer to each RGB color and a ground. Knowing that there the group had enough LEDs provided for the cube the group can proceed to solder the LEDs onto the slim PCB boards.

The next criterion was to check if the LEDs work after soldering the cube, but happen once the cube was complete. This means all the LEDs are soldered, all the PCBs are soldered together, and the Rainbow Arduino was hooked up. The Rainbow Arduino help power the cube. So if there are any mistakes, it was dire as it may be very difficult to work backwards and unsolder some parts. If everything works out fine, the group can proceed to the software aspect of testing the cube.

With the software library provided from Seedstudios, the group had to check if each set of code was able to compile with the Arduino software. There a sample code in the library to animate the LEDs with various colors. The group conduct five test cases provided in the library. For example, the group test specific coordinates in the cube with a specific color, color a layer with a specific color, or light up the whole cube with random colors. The group hopes to not find any errors in the code but maybe some difficulty in implementing and compiling the code as the group was unfamiliar with the Arduino software.

In the end, what matters was that the group feels comfortable with the cube. A better understanding of the process involved can be obtained when testing the cube. Even if the cube does not work properly, the group was planning a different approach with wires instead of the slim PCB panels that was included in the Seedstudios cube kit.

6.1.5 Description of Individual Prototype Test Cases

Even the prototype would need to be tested to verify the processes viability for continued construction of the DAC below are the test cases for the prototype cube build:

· Test Objective: LED Testing

· Test Description: The group test each LED to see if they are working and functional. The group use a power supply of 2.7-3.3 V. With four prongs, which three are of the RGB and the fourth as a ground.

· Test Conditions: This test was conducted in the Senior Design Lab. The group use a voltage source to power the LEDs. See Test Environment for further details.

Expected Results: The group expects all LEDs in the Seedstudios kit to be working and functional. The LED should also display all three red, green, and blue colors when it was hooked up. This test help root out any dead or fail LEDs within the kit.

· Test Objective: LED Testing after soldering

· Test Description: The group test the layer of LEDs to see if they are working and functional. The group use a power supply of 4 V on the layer and each LED to see if they light up.

· Test Conditions: This test was conducted in the Senior Design Lab. The group use a voltage source to power the LEDs. See Test Environment for further details.

Expected Results: The group expects to see an LED to be lit up individually when tested individually or the whole layer to light up when tested for the whole layer. The cube lighting up was last.

· Test Objective: Code “Cube1.pde”

· Test Description: The group test the sample code with the Arduino software.

· Test Conditions: This test was conducted in the Senior Design Lab and outside the lab. See the Test Environment for further details.

Expected Results: The group expects to see three of the LEDs to be lit up, with one red, one green, and one blue in specific locations.

· Test Objective: Code “Cube2.pde”

· Test Description: The group use the sample code with the Arduino software.

· Test Conditions: This test was conducted in the Senior Design Lab and outside the lab. See the Test Environment for further details.

Expected Results: The group expects to see two layers lit up, one green and one blue. The bottom layer, layer 0, was completely green and the third from the bottom layer, layer 3, was blue.

· Test Objective: Code “Cube3.pde”

· Test Description: The group test each set of sample code with the Arduino software.

· Test Conditions: This test was conducted in the Senior Design Lab and outside the lab. See the Test Environment for further details.

Expected Results: The group expects to see all the LEDs painted with some random color, five seconds later, the whole cube was painted with random colors.

· Test Objective: Code “PlasmaCube.pde”

· Test Description: The group test each set of sample code with the Arduino software.

· Test Conditions: This test was conducted in the Senior Design Lab and outside the lab. See the Test Environment for further details.

Expected Results: The group expects a wave effect of random colors on the cube.

· Test Objective: Code “Moodlamp.pde”

· Test Description: The group test each set of sample code with the Arduino software.

· Test Conditions: This test was conducted in the Senior Design Lab and outside the lab. See the Test Environment for further details.

Expected Results: The group expects to see the cube display random colors then delay and then display random colors.

6.2 Construction of the LED Cube Kit

First, our group checked that all the parts were included in the kit provided. After going to the side for Seedstudios, the group discovered the instruction to assembling the cube, and also found an image detailing the individual components included with the kit. Table 6.1 lists the materials included in Seedstudios Rainbow Cube Kit.

[image: image41.png][-8mm RGB LED x70 P-Cube Panel X1 [F-Siim Panel PCB X4

[F-Side A sim PCB Xa Side B sim PCB X4 [F-2 54mm 40pin male header X5
2 54mm 40pin femall header _[3.2 54mm 16pin female header [0.2 0mm 10pin female header 12|
p2

[10.8pin female header X5 [11.2X3 female header X1 [T205T power cable X1
[13:3.5mm 4pin green terminal X1]i4 3 5mm DC jack X1 [15.3mm LED red X1
[16-3mm LED green X1 [T7IK 78w resistor X4 [13.10K 176w resistor X1

[19-15K 178w resistor X1 0. inear voltage reguiator X1 _[21 10UF_16v_E-CAP X2

Table 6.1: Materials included in the Seedstudios kit.

Pending permission from Seedstudios [3]

The only components that were needed to be supplied by the user were the solder and a soldering iron, something that was on-hand already. Before the process of soldering could begin, the LEDs needed to be inserted into the through holes on the slim panel PCBs. This process was made easier by slightly “fanning” the legs of the LEDs prior to inserting them.

The group needed to make sure that the longest leg of the LED was inserted into the square through hole to insure proper function of the cube. Below was an image of the slim panel PCB and a zoomed in view of the through holes that the LEDs must be inserted into. In Figure 6.2, notice how the second hole from the left was in the shape of a square, rather than a circle like the other three.
[image: image42.jpg]

Figure 6.2: Slim Panel PCB with Close Up of Through Hole.

The first row of the LEDs were by far the toughest shown in Figure 6.3, but after our group had some practice the other 60 were not quite as difficult. Now was time for the soldering. The first technique used was to go about soldering row by row, inserting the next row, and repeating.

[image: image43.jpg]

Figure 6.3: A single row of inserted LEDs.

This proved to be difficult due to the base sitting off-center and moving around quite a bit. Next, it was decided to insert all of the LEDs for a given panel, and then proceed to solder them all. This again proved fruitless, because the long legs of the LEDs were getting in the way. It was then decided to insert all the LEDs into a given panel and then to trim the legs pre-soldering so that they would not get in the way. This was the optimal method, and was used to solder the rest of the panels. It was a concern at first that the LEDs would come loose and fall out of the PCB, never to be re-inserted because of the shortened legs, but this proved to not matter since the LEDs were fit snuggly.
Next, the LEDs’ are trimmed. This was then repeated for the rest of the rows so that soldering could proceed routinely and without errors. The LED legs were trimmed at a long length at first, but after seeing how securely they were held by the solder and the fact that the legs are rather unsightly when visible in the LED cube, they were trimmed much shorter, as can be seen in Figure 6.4.

[image: image44.jpg]

Figure 6.4: Entire Soldered Panel.

Soon, all the LEDs for a single panel were soldered and it was time to move on to the next panel. It took roughly 30 minutes per panel, some longer than other because errors were difficult to fix. There were some errors due to soldering the small LEDs given the improper soldering iron tip and solder that was far too large. The only solder readily available was 1.62mm, and it was recommended to use .5 millimeter gauge. This led to large amounts of solder melting on more than one LED connection which resulted in unwanted and difficult extraction of the solder.
This was made hard because a solder wick was not available at the time, which would have made removal quick and painless. Also, the tip of the soldering iron was one eighth of an inch, making it difficult to heat up only one LED at a time. The large tip also made it difficult not to directly come in contact with the large gauge solder, also causing the problem of large amounts of solder being dripped onto the LEDs.

It was important to make sure that each leg are soldered correctly, because inserting the LEDs into the slim board PCB was hard enough with the longer legs; it would be nearly impossible with the trimmed ones.
Finally, all of the LEDs were soldered to the panels. They all lined up rather well, with only a few LEDs seeming to be slightly off center. The entire process of soldering the four panels took approximately 2 to 2 and a half hours, but with a proper soldering iron tip, thinner solder, a solder wick, and a better cleaning apparatus, the process would have taken about an hour.
Next, it was time to solder the layers together. Provided with the kit were 8 “slim PCBs”, which just appeared as supports. Our group was instructed to solder “Side A” first, which was easy enough to find since all the components were clearly marked. The first 2 slim PCBs were very difficult to solder because there was nothing to support the panels, but after some time the panels were soldered on a straight level. In Figure 6.5, all four slim PCBs soldered to side A.

Next, side B needed to be soldered. This proved much easier because the panels were supported by the already soldered side A. It simply took inserting the slim side B PCBs and applying solder to the surface mount devices. These surface mount devices proved to be much easier to solder than the through hole, so this step went relatively fast.

[image: image45.jpg]

Figure 6.5: After attaching Side B Slim PCBs

Finally, all the panels were soldered together and the cube aspect of the kit was complete demonstrated in Figure 6.6. The final cube turned out rather well, with most of the LEDs lining up perfectly, with a few not directly noticeably at an angle. These few not deter from the cube because they can only be noticed if pointed out. Our group most certainly take more time and caution when soldering the LEDs for our LED cube and see that it meets the highest standards.
[image: image46.jpg]

Figure 6.6: Completely soldered LED cube.

Finally, it was time to solder the cube panel, aka the brains of the cube. Our group began by soldering the Xbee headers onto the cube. Even though the group not be using Xbee socket compatible module with the cube, the group felt that it was better safe than sorry to include it on the PCB. Next, resistors were added to the panel. It was important that they were added in the exact order specified, which was not hard because the PCB was clearly marked.

Next, the status LEDs[3] were added. Again, the longer leg of the LEDs needed to go through the square through hole. They were then soldered and trimmed. After that the power jack[4] was added accordingly, fitting snugly into its designated space. It was then soldered and trimmed of excess wire. The voltage regulator[5] was the next piece to be added, having to be simply soldered into place because this component possessed no wires to be trimmed. The terminal[6] was then added next to the power jack. After the terminal was added, two capacitors[7] were then soldered into place. Finally, the pin headers[8] for the Rainbowduino were added.
The above task of insertion and soldering was very simple because everything was marked and soldering the components was trivial compared to that of the LEDs for the actual cube itself. The next step was to solder the cube onto the silkscreen base in Figure 6.7. Again, this step was easy because the cube fit smoothly into the base, and all that was left to do was solder the surface mount devices on the cube to the ones that are on the silkscreen base.

[image: image47.png]

Figure 6.7 Left: Cube attached to base; Right: Bottom of base exposed; zoomed: Cube Soldered to Base

Finally, it was time to attach the Rainbowduino to the silkscreen base. It connected directly underneath the cube, allowing for a low profile design. It was then connected to the terminal so that the cube could be powered via USB.
6.3 Software for the Rainbowduino

Along with our Rainbow Arduino, Seedstudios provided software for programming the LED cube. This cube was meant to be programmed by novices, and made to run out of the box. The group hopes to improve upon this code and write our own animations that can be programmed to the rainbow cube.

6.3.1 Original Software for the Rainbowduino

The Rainbowduino had its own library of code that can be used in conjunction with its 3D LED cube. The library comes with the base drawing functions along with the interrupt service routine to send the data to the Rainbowduino. The library uses an interesting method to hold the frame buffer of the cube. Since the cube's LEDs utilizes color using red, blue and green it had three different arrays for each color. Then to map each point in the 4 x 4 x 4 cube to correct color values they use two matrices. Using the X, Y and Z coordinates and the two matrices they map those 3 numbers to a point on an 8 x 8 grid that represents all of the LEDs in the cube. In Figure 6.9, it shows a flowchart of the process mapping with an 8x8 grid. There are three 8 x 8 grids in the buffer were each one represents either red, blue, or green. The number in this grid then represents how much of that color should be turned on in each LED.

[image: image48.jpg]Flow chart explaing how the Rainbowduino converts the 4x4x4 coordinates to
8x8 coordinates with matrix mapping

Send X, Y, Z coordinates with
the color value

The Z and X coords are mapped | The Y and X coords are mapped
to an X index in the 8x8 grid to an Y index in the 8x8 grid

The value is broken down into its
RGB components and they are sent
to the corresponding Red, Blue, or

Green 8x8 buffer at the X, Y
coordinate it was mapped to

Figure 6.9: Flow chart of the Rainbow Arduino matrix mapping.

There was only one function in the library for interacting with the cube which was lighting up a single LED in the cube. The other functions were for an 8 x 8 LED matrix that can also be attached to the Rainbowduino. For that 8 x 8 matrix it had many functions for drawing lines and basic shapes. The library stated that its algorithm for drawing shapes borrowed heavily from "The Beauty of Bresenham's Algorithm" by Alois Zingl. These algorithms are efficient and designed to be used in a discrete 2D plane which was perfect for the 8 x 8 LED matrix. Also among the drawing functions was a function for using ASCII characters along with corresponding PGMs to draw letters.

The code in this library was useful for our project as the group was attempting what was a larger version of this. The drawing algorithms probably have to expanded to include the third dimension in our project. This also means the matrix mapping was just a way to be able to send points to either the cube or the 2D panel without needing more code. Since they have the same number of LEDs in each it was an efficient way to manage the LED colors without needing different data structures for each.

6.3.2 Modified Code for the Rainbowduino

The code the group write for the cube just be an extension upon the code they already provided for the cube. The group would have to make our own code for lines and shapes in 3D. Using the function to turn on an LED the group can create functions that that draw lines from point to point as follows in Figure 6.10.

[image: image49.jpg]Drawing lines in 3D

Determine if the line's end points
has any points in a common plane

common plane no common
pldne
Draw theline asif itis Draw the line out in a 2D
ona 2D plane on the plane then rotate the line|
common plane using to its 3D position,
Breshenham's Algorithm

Figure 6.10: Drawing lines in 3D

This code utilizes the line drawing algorithm if the line happens to fall on the X, Y or Z planes. This means the line can ignore that dimension and just draw the line as if it were in a 2D plane. This would help cut back on the math required to compute for all three planes and save that for only when it was necessary.

For the prototype the group not be making a sphere drawing function as it would be outside the scope of what the small cube could show. Due to the low resolution of the cube it would not make for a good spherical representation. The other shape the group could extend the code to draw would be to make a rectangular prism. This would use the line drawing function to draw all the lines that make up the shape:

This code takes in two points and from them draws out a rectangular prism. The two points it uses to make the prism are assumed to be points on opposite corners of the prism, because of this the function can only make regular prisms and it not allow for slanted lines. From the two points passed it uses the shape of a regular prism to draw the twelve lines required to form the cube. Since it draws the lines based on the two points it can also draw rectangles if the two points lie on the same plane. The code should be optimized so that it does not draw repeated lines if it was not necessary.

6.4 Moving towards group implemented software

For our final project the group was not allowed to simply use an Arduino based processor, and nor would the group wants to. Our group have to write our own code for controlling the cube and program it to display 3 dimensional images and animations.

6.4.1 Replacing the Rainbowduino

For our project the group was replacing the Rainbowduino with a Stellaris LM3S8962. The Rainbowduino was designed for a specific setup and to go beyond that the group was going to build our own system based around the Stellaris processor. This means the group have to write our own code to interface with the Stellaris and the various other devices and come up with our own architecture for multiplexing the LEDs. This allow us to overcome the limitations of the Rainbowduino so that the group realize the goal of a 16x16x16 LED cube.

6.5 What the Group Learned

As mentioned at the start of the section, our group had a productive experience in the building and research into this particular LED cube kit.

6.5.1 Construction

Just from the construction of the 4x4x4 LED cube, our group felt that the group had a better understanding of how to build the cube, as well as a better idea of the materials that it was going to take to build the cube. First, the actual materials that went into constructing the cube have to be examined. The solder and soldering iron used were unsuitable for the job of soldering the small connections between the LEDs and through-hole components of the slim board PCBs. Our group have to go to a hobby shop or order suitable solder and tips for our soldering irons online.
The group first examine the solder recommended by the source from the 8x8x8 LED cube from Instructables and use 0.5mm solder, and perhaps procure several different sizes deviating slightly from this choice. Next, tip of the soldering iron used was approximately 1/8”. Online, there are 1/16”, 1/32”, and 1/64” replaceable tips ranging from $6.00 to $8.00 that would be much more suited for the job.
Lastly in terms of the soldering, the actual irons used were cheap, and their cost showed in their performance. When the group was in the senior design lab, a relatively inexpensive soldering station with temperature control was used, and it was far superior to our irons. The control allowed for us to keep the temperature of the iron to the recommended value of 350 degree Celsius, whereas the irons the group had purchased only had an operating temperature of 400 degrees Celsius. Besides the advantage of not risking a burnt out LED was the fact that the solder was more controllable and oxidation did not occur quite as quickly, leading us to believe that an upgrade in soldering irons was a necessary component to our project.
Next, the actual method in which the cube was constructed was very impressive. The use of through hole components and surface mount devices was well thought out, and allowed for easy installation. There were virtually no wires to deal with, because all of the LEDs were connected together using the slim panel PCBs. However, the group purchased this cube to get a feeling for our final project, not to be a device easily put together. It would have been nice to actually hook up the wires and have a feel for making all of the connections. There was no way the group would be able to make these slim PCBs implemented into our final project, and the group must rely on wiring the cube in the same fashion that was done in section 3.1.3 of the Instructables 8x8x8 LED cube or the HNTE 8x8x8 RGB cube.
6.5.2 Testing

Differentiation from Test Plan:

The initial test phase was to separate into two phases of hardware and software testing. The first phase was to test the LEDs to see if they are functional and display RGB color output. Once there are enough working LEDs for the cube and the construction was finished, the group had to test the LEDs again to see if any of them were burned in the process. The whole cube with the Rainbow Arduino hooked up so power can be placed in it. The next phase was to test the sample software from the Arduino library. In table 6.2, it shows a table of the test cases with the results of each case.

	Test Case
	Test Description
	Pass/Fail
	Comments

	LED Testing
	Test 64 LEDs
	 Pass
	LEDs are capable of lighting up Red, Green, and Blue

	LED Testing (Post Solder)
	Test LEDs after all the soldering
	 Fail (1 LED did not produce red)
	LEDs are tested if they are burned by the soldering process

	Cube1.pde
	3 LEDs: one green, one blue, one red lighting up
	 Fail
	Sample code provided with the Arduino software

	Cube2.pde
	2 layers green and blue light up
	 Fail
	Sample code provided with the Arduino software

	Cube3.pde
	All LEDs with random colors being animated
	 Fail
	Sample code provided with the Arduino software

	PlasmaCube.pde
	All LEDs with random colors being animated
	 Fail
	Sample code provided with the Arduino software

Table 6.2: Test results of the prototype.

When testing the LEDs it was noted that one LED was not capable of emitting RED. The group was not sure if it was due to a soldering issue or was dead to begin with. That LED was marked to be removed from the cube and be replaced by another LED. During the testing, post solder, almost all LEDs was working functional. There was also another LED that was working, but not soldered correctly. That LED was marked and soldered correctly.

After connecting the cube to the computer, the group was unsuccessful in programming any kind of animation to the cube. This was not expected, and the group needed to find the source of the error. The group began by testing each individual LED. The group looked online at the rainbow cube reference page, and found that the turn on voltage for the LEDs was 3.3 volts. The group then set the voltage source to the correct value and proceeded to test each LED, connecting the ground wire to the anode leg of the LED and then applying our voltage source to each individual cathode leg corresponding to red, green, and blue.
When initially testing the Rainbowduino the group could not get it to connect to any of the computers in order to upload code to it. Due to this complication, the group assumed that there was some sort of hardware issue so the group attempted to make another smaller version from individual parts. This means the group did not get to test any of the modified code on the Rainbowduino. With the smaller prototype, the group hopefully was able to test the code.

The group was not able to animate any of the software from the Arduino library. The group had a hard time compiling the software onto the Arduino board. Unsure of the problem, the group just desoldered the PCBs. To make the testing easier, the group added wires to the alligator clips so that the group simply needed to touch each leg with the appropriate wire.
When testing the LEDs, the group had to make sure that each individual color was working correctly demonstrated in Figure 6.11. Each LED had four legs: one anode(+), one ground for red, one ground for green, and one ground for blue. The anode was the third wire from the left, being marked clearly by a square through-hole. The blue was the first leg, the green was the second, and the red was the farthest leg from the left.

[image: image50.jpg]

Figure 6.11: All Three LED Colors.

After testing a few of the LEDs, it was apparent that there was a problem. The group was getting LEDs that lit up unexpectedly, sometimes in the same layer as the LED being tested, sometimes in the same column, and sometimes at random locations not appear to have any correlation to the LED in question. Figure 6.12 was an example of one of the more severe errors the group received, having multiple LEDs light up when applying a voltage to just one single LED.

[image: image51.jpg]

Figure 6.12: A short circuit error from improper soldering.

The exact source of the error was not apparent, but our group knew the reason that the cube was behaving unexpectedly. Soldering was the main reason for the error in Figure 6.12, but there are multiple sources that could have caused the different LEDs turning on due to the poor soldering. The group began to search for a solution by first desoldering the main sections of the cube. To unsolder the cube, the group had two options; a device to “suck” the solder off of the apparatus, or a braided wire known as a soldering wick. The soldering wick was chosen due to cost and availability. The solder was attracted to the metal wick, and all that had to be done was heat up the wick and allow the solder to melt and be pulled off. Figure 6.13 shows a small section of the base after the solder had been removed, and also an image of the wick that was used to extract the solder:

[image: image52.png]

Figure 6.13 Left: Unsoldered Portion of Side B

As seen above, the base was the first portion of the cube to be desoldered. It seemed like a wise idea to disassemble the cube opposite to the way it was assembled. Next, after the base was removed, the slim board PCB legs of the cube were next to being desoldered. The legs, as well as the base in the above image, display a discoloration due to the silk screen on the PCB reaching too high of a temperature. This was unavoidable because, though unknown, the melting point of the silk screen was far less than that of the solder.

Now that the cube was de-soldered, it was time to test the LEDs and figure out what was causing the errors the group had seen. The first step was to figure out the wiring of the LEDs. While testing the cube as a whole, it was hard to tell what LEDs were supposed to turn on and which ones were not. Figure 6.14 and Figure 6.15 was a diagram from the wiki that details the wires and exactly where they are connected. For this diagram, I refer to the Y side as the columns, and the X side as the rows.

[image: image53.png]\
Atk

AkE]

stk

Atk

Atk

AtF

ikF

Akk

- Red LED _» Green LED

s Blue LED

RED BLUE
l6 ooooooomooooooon|l

Top View

GREEN

17/coonoocooocoonfooon|32
uccz ucc1

Figure 6.14 Left: LED wiring;

Figure 6.15 Right: Rainbowduino pin layout.
Pending permission from Seedstudios [3]

At first, this diagram seemed to be rather confusing, but after breaking it down it was just using almost the same wiring as the Instructables cube, with subtle differences. After figuring out what the Rainbowduino pins mapped to it was rather easy to see what was going on. The pins are displayed in the following table 6.3:

[image: image54.png]Pin Function

1to8 Ground for Blue
9t0 16 Ground for Red
17t0 20 Veel

21t028 | Ground for Green
29t0 32 Vee2

Table 6.3: Rainbowduino Pins and their Function.
From the two above images, one can see that X0 - X3 are connected to lines 17-20, corresponding to Vcc1. Also, X4 - X7 are connected to 29-32, corresponding to Vcc2. These are the anodes(+), whereas Y0 - Y7 are all the cathodes(-). What’s different about the cathode side of this cube, in comparison to the other single LED cubes that the group have seen, was that it requires 3 ground wires as opposed to one because there are obviously 3 different colors that can be displayed. This can be viewed by examining each element of the Y side, for example Y0: It contains lines 9, 28, and 1, which after viewing the Rainbowduino pin layout can be identified as the ground wires.

To display an image, this cube supplies a voltage to the X side, and then grounds the Y side to light the LEDs responsible. Also, as seen in the images, the rows are all connected in series, and the columns are connected in series. So, for example, if one were to supply a voltage to X0-X7 and ground any or all pins 1, 9, and 28, LEDs (0,0), (0,1), (0,2), (0,3), (04), (0,5), (0,6), and (0,7) would be illuminated.

Now it was time to test each LED in each of the four panels. The group went about testing the same way the group previously did, first by supplying 3.2 volts to Vcc, then by grounding each of the legs for all three colors. There was only one LED that was burnt out, which was replaced after being de-soldered.

After testing of the LEDs, it was discovered that some of the surface mount devices were stripped from the slim board PCBs. This caused a problem, which was capable of being fixed by wiring up individual buses that, for example, would control the common anode of each layer. However, with such little time left in the semester, it was chosen to scrap this LED cube. The group was dismayed that they would not have a cube to program and try out ideas on, but this led to perhaps an even better alternative. The Instructables source had a smaller 4x4x4 version of the LED cube that matched our overall design much more than the rainbow cube. Also, after constructing the LED cube from Instructables, the group could have the opportunity to alter the design to more perfectly emulate our overall design. This new cube was constructed over the break in between semesters, and allow our group to test out animations and programming while the group are in the process of soldering the 4096 LEDs that was required for our final design.

In Figure 6.16, when viewed for the first time, was utterly confusing. It was not until the research in section 3.1.4 that the true power of the above method of wiring the layers was recognized. In the above image, each layer had a common anode which supplies the voltage Vcc. Next, three buses control the red, green, and blue LEDs. Now, what was unrealized was the power of grounding more than one LED at a time, as well as toggling the intensity of the LEDs to generate a multitude of colors.
[image: image55.png]Seeedstudio’s

Legend:

0. This block diagram is modelled from the driver software view point.

1. Each snall square is a RGB LED.) .

2. 2-0 ... 13 indicates layers of 4x4 RGB LEDs from botton to top. Rainbow Cube Kit (RGB 4x4x4 LEDs)
3. The remaining 3D coordinates X,Y are represented by outer X,Y numbers. BLOCK DIAGRAM

4. 20-XY values are 20 LED Matrix equivalent coordinates of 30 coordinates Z,X,Y . (€) 2011 www.seeedstudio.com, CC-BY-SA
5.

Vee is connected to groups of 8 LEDs : So, there are 8 common anodes

Figure 6.16: How the Rainbowduino was connected to the Layers.

Pending permission from Seedstudios [3]
6.5.3 Programming

From the testing of the prototype's code the group learned that they would need to continuously send signals to the LEDs in a manner that makes use of the persistence of light. Our LED buffer have to be sent in pieces that correspond to the various sections of LEDs that can be lit up simultaneously. This depend on how the LEDs are wired. Once the group knows that they can program the buffer to be sent in chunks that correspond to a certain set of LEDs. Then cycle through all the section quickly to create the illusion that they are all on. Whether an LED gets turned on or not of course depend on what was inside of the buffer when it was being sent.

The way the Rainbowduino code accomplished this task was with an interrupt service routine(ISR) that went off after a specific time interval. Every time this ISR was tripped it would send the data from the LED buffer to the LED drivers.

The group also learned that they should use a header file to define port names to make it easier to program around them. The Rainbow Arduinos' header file contained the various ports that would be used by the Atmega 328 inside the Rainbowduino to communicate with its LED drivers. This also makes the code more portable as the group only needed to change the definition of the ports in one place rather than all over our code.

The way the Rainbowduino code kept track of its pixels was by using a 2D array and mapping the 3D points to that grid. This was done because the program was designed to interface with not only a cube but also with a 2D matrix of LEDs. The 2D matrix of LEDs simply used the 2D array to interact with its LEDs and the cube had some transformation matrices. For our code the group not need such a roundabout method as they only be interfacing with a cube. They won't need to represent the cube on a 2D matrix. The group probably use a 3D matrix to represent the LED cube and just place values directly into that instead of using a matrix transform.

6.6 Homemade 4x4x4 Prototype LED Cube
It was decided that it would be in our group's best interests to construct an LED cube that more closely resembled the one in which the group would be creating for our final project. Below was a short summary of the cube the group intends to erect including cost, design detail, and the components the group plans to integrate to test on a small scale.
6.6.1 Component List and Cost

Below was a price list for the components purchased for the prototype cube. As seen in table 6.4, some components like the transistors were purchased from RadioShack, leading to an increased cost for these relatively inexpensive components. Table 6.4 details the components and their costs.

[image: image56.png]Protoboard $4.00
Atmel AVR Atmegal6 microcontroller $6.80
64 Leds $20.00
2 status leds $1.50
Max232 1s-232 chip $3.47
16x resistor 100 ohm $1.27
2x resistor 470 ohm 50.30
1x resistor 10k $0.11
4x resistor 2.2k 50.52
4x NPN transistor $2.80
1x 10uF capacitor 50.12
1x 1000uF capacitor 50.76
6x 0.1uF ceramic capacitor 50.84
2x 22pF ceramic capacitor 50.12
1x crystal 14.7456 MHz 50.70
2x tactile button 50.58
optional pwr switch $2.00
[Total $45.89

Table 6.4: Price List for 4x4x4 LED Cube

It was relatively easy to attain all the components in question. Online retailers had plenty of stock for all that was needed and everything else was obtained from RadioShack and Sky Craft.

6.6.2 Summary of Design Detail

The 4x4x4 LED cube from Instructables was by the same author that designed the 8x8x8 one that was explained in detail in an earlier part of this document. Some design features that the group was changing are adopted from the NTE cube detailed in the same section as the Instructables one. For instance, the group construct the cube in vertical sheets as opposed to horizontal layers. This made constructing the cube easier and mimic the design the group plans to use in the final implementation of the cube.
Another major design the group planned to implement was the use of tri-color LEDs as opposed to the single color ones used in the Instructables reference. This should not be too complicated, and come in use during the programming aspect of the cube. There was much source code available for the cube that the group was building, so only minor changes need to be made initially to the code.

6.6.3 Advanced Implementation

Our group plans to expand upon the cube described by Instructables by implementing our own components into the design. For instance, the group was using LED drivers in our final implementation. The way that data was loaded to the cube using the TLC was far different from the method of decoding and using da d-latch array, but it was more efficient at programming advanced images. It would be beneficial to get the TLC LED driver working on a small scale prior to hooking up our enormous final designing and trying to figure out how to make it work.
Another aspect, even more major than the LED drivers, was the use of the LM3S microcontroller. The group was using the atmega16 to design the cube above because there was already a variety of source code and animations available. However, the group needs to get used to programming with the Stellaris and find out how to use it to control our cube. This give us great insight into the final design and give us a jump start on figuring out just how to make the cube work.

7.0 DAC Operation

With the construction of the DAC complete, as a whole the operation of the DAC is simple as it is designed to be an all-inclusive package with very little input required from the user. However, as with all devices an extended period of usage either continuous or not will lead to errors in the device, for this reason included in this section will also be a section about trouble shooting problems.

7.1 Initializing the DAC

As the cube is designed to be self-sufficient for most users the initializing of the DAC is incredibly simple. For general operation by using the animations, simply plug in the power supply to a standard and flip the power switch into the “on” position. For safety purposes, before activating the cube, it is advisable to first check to make sure the power switch is in the “off” position. With the power verified in the off position, plug in the standard computer power supply cable into the DAC receptacle and a 120 V wall socket. With the power supply plugged in, flip the power switch into the on position and animations should begin with 10 seconds. When the DAC is to be shut down, return the power switch to the off position and remove the power cord from both the DAC and the wall socket.

With the simplified initializing, the user can decide whether to take advantage of some of the DACs more advanced features. While the DAC comes preprogrammed with animations the end user can decide to either add or remove animations from the predetermined schedule. At the moment, to perform this function the user will need to use another Stellaris microcontroller to flash the system with new animations to be added however there is a plan to add USB functionality to the DAC so animations may be added or removed on the fly through the USB device. To alter the animation schedule of the DAC the user must first open the base of the cube that contains the microcontroller, the layer select, and the LED drivers. Locate the Stellaris and Layer Select board and on the board find the JTAG connector. Connect the Stellaris evaluation board to the DACs and the new software can be flashed to the DAC. Once the data has been loaded onto the microprocessor for the DAC, the cube can be activated in the same way that it is activated for standard animations. In time, the group hopes to add features in order to increase its relevance. One of the functions the group hopes to implement is the ability to place an SD containing a text file. The DAC will read the letters from the text file and display the letters on the cube. With this capability, the DAC can be used as a sign to greet visitors and display messages of welcoming. All of these functions are things the group hopes to add to the cube in the coming months. Many members have expressed an interest in continuing to work on the cube in order to increase its functions and appearance.

7.2 Troubleshooting the DAC

While the operation of the DAC is a simple, task the troubleshooting of it is another matter entirely. With 4,096 individual LEDs, connected to 16,384 wires, that intern connects to 48 LED drivers there are a lot of things that can go wrong. With all of this in mind, the group in this section will seek to describe all of the possible issues that can be thought of however, there will more than likely by scenarios that the group has not thought of and therefor may require a little bit of problem solving. To do this, each of the problems will be described in the form of what the LEDs are doing on the cube and what the possible solutions to the errors could be.

One of the most likely problems to occur would be the wrong LEDs lighting up or the LEDs not lighting up at all. The difference between this and other issues is the apparent randomness with which the LEDs do or do not illuminate. Many other issues will entail either columns or sheets not lighting up and are therefore much more organized. If the LEDs appear to be performing randomly first try to switch the LEDs off and restart it, as more than likely an error on microcontroller. If this does not fix the problem, most likely error is a shorted wire in the base. To fix this problem, examine all of the wires in the base and make sure that all of the wires still have their protective sheath and that none of the exposed wires are touching each other. If however the cube still does not function to specification the microprocessor may be damage. Test the microprocessor using the steps provided on the TI website to ensure that the Stellaris is still functioning properly.

While random lighting of the LEDs is an issue, there are different errors that appear a little more organized. One of the ways the LEDs can fail is by getting errors in columns. If one of the colors does not light then this means that there is an open in the circuit somewhere. Since all of the LEDs are in parallel if one diode was to “burn out” it would not cause the other diodes to stop working meaning if an entire column is not lighting this is not the issue. If an entire column is not lit the issue is in the wiring of that column to the LED driver, the connection to the board, or in the LED driver. First, check that the column is still connected to the wire that will bring it down to the LED driver. If the wire is still connected, ensure that the driver is still connected to the driver board. This can be done by unplugging the driver completely from the board and attempting to reseat the connector to the board. If the problem still persists, the fault is probably in the LED driver. First, check to see that the pin that is driving that column of LEDs is still connected to the pad on the PCB. If the LED driver is connected to the PCB properly verify that it is still functioning properly by using the testing procedures provided on the TI website.

Another orderly fashion in which the LEDs could fail is a whole sheet of one type of color fails. A sheet in this context is a 2-dimensional array of LEDs existing in the traditional X-Z plane. If all the LEDs are failing to light in a specific color of either red, green, or blue this means that there is a failure either in the connection to the LED driver board or the driver itself. First the connections should be checked to ensure that the connecter is firmly connected to the driver board. If the connector is seated properly and the LEDs still continue to not activate in the prescribed color than the failure is in the LED driver itself. The first thing that should be check is if the LED driver is properly connected and it is receiving power. If the LED driver appears to be connected properly check it by placing your finger against the surface while the cube is in operation. If the LED driver quickly becomes hot the LED driver is damaged and needs to be replaced. Even if the LED driver does not become hot the driver could be damaged and should be tested using the testing procedures provided on the TI website.

Another of the organized type failures appears in the traditional X-Y plane otherwise known as a layer. If a layer is to fail than all of the colors whether they are red, green, or blue fail to illuminate. This is a failure of layer select function of the DAC. The first and most probable solution to a layer failure is to ensure that the transistor that is to connect that layer to the power supply is properly seated to the PCB; to do this turn off the DAC and unplug it. Remove the transistor from its connector and attempt to reseat it so that the transistor is firmly held by the PCB. If however the layer still does not light up the transistor may be damage. Test the transistor and if the transistor is verified to be working the problem is either from the Stellaris in connections to the layer select transistor. First check and make sure that the connection from the Stellaris to the transistor is solid and there are no open connections. If all of the connections to the transistor from the Stellaris are ok ensure that the transistor is connected properly to the power supply. If all of these connections are ok check the Stellaris and ensure that the specified GPIO is working correctly.
Finally, if a single LED diode is out there are one of two simple problems that could be happening. First, if none of the colors are illuminating check to ensure that the cathode line is securely soldered to the common power line coming from the transistors, this can be checked by gently moving the wire back and forth if it is not connected it will move freely and if it is touched to the cathode line the LED will illuminate. If however, the line is not connected but when the two are touched the LED does not light up the diode is probably damaged and should be replaced. If only one of the colors is not lighting the LED is not properly connected to ground. Test the anode connection the same way the cathode was tested, if the LED light up it needs to be re-soldered if however it does not the LED is damaged and needs to be replaced.

While these are not all of the issues that can come up with the DAC they are the most likely to occur and the easiest to fix. Most issues can be solved with a basic understanding of electrical engineering principles and the layout of the cube. All of the LEDs in a sheet are in parallel with each other. All of those LEDs in a column are grounded through the LED drivers with each color in a sheet being controlled by its own LED driver. Finally the power is provided to the LEDs through the transistors which are used as a layer select so all of the LEDs on a single layer receive their power from a single source.

8.0 Final schematics

While the final design is very close to the initial designs it has varied slightly from the initial design because of factors like cost, size, and some issues found during testing. The following section is dedicated to what the designs of the project ended up looking like, in it the basic layout will be discussed as well as why how it differs from the original design and why the design was changed.

The heart of the DAC is unequivocally the Stellaris microprocessor. While the microprocessor board remains mostly unchanged from the original specifications it does have some changes. First, in the middle left side of Figure 8.1 you can see two connectors; these are now the connectors that go to the LED drivers as they have been split into two separate boards. Above the lines to the layer select is the schematic for a new status LED to let the user know when the system is powered on. Below the layer select is the SD card bay which will be where our animations are stored. On the bottom middle are the outputs to the layer select to provide power. Finally to the left and right of the layer select outputs are the UART and JTAG connections which are used to interface with the board.

[image: image57.png]+3V3

R35

68K

LM358962
8 I"\op2s sonp |22
821 \oo2s sonp |4
3] yop2s oo [
1] voo2s oo 2
oo 2
oo [
geias) (s s gy L o %
Dt e L o _&x /13
oo o 2= E
VBT ono (-2 1ogg o\
GND
o [o
GND GND 3
21 oo oo 5 GND R39
1 oo oo |22 AW
] oo oo 22
[=1 oo oo |21 o
o 2 8] oo oo [HE 2
=] oo oo |2 o w | s
«l(_“% %6 | yoo el
S 44 1 voo cwopt |8 LED2
Bz 2] oo cwmopo |22
- Y e [
§| = VoD TRE =
E) pS @ &8
i ? ADD xosco [5
= oy
? S OuF " oscr 4 = (= JP3
e o pE :
17 G 1. 7
&b XTALNPHY o bz
ES sy [HE—2 =t B
a 64 7 B
" 40 rup ST it -
- 48] mon potpw [HE L
By is 01uF P 2]
PG
i i T
5 oP B 2
Bs soca |-
e 1 oo woc2 [e B
Bhve anct - :
€<|(<r4|% ADCO [B
21 Leowers peaphat 12 -
201 Leover2 pezphen [o
£ et pevpas [
PIWHOIPFD PEOPWIS I3 ¥ peergpm—
35 S
e ror |22 CARD_DETECT!
2 | Fuieos peapre0 (22
i e e I paa_out
2 ccruros poapran [B
2 Uineros peamoswo [o
121 wirero: peamor 7 2
CANITHPD1 PC1MMSISADIO B
< |
181 canorwPD poamoiswoLk [] o
waay e
3] 3 R37
o ol = 4| oo SD & MMC
2| o e [o Ves
2| coorss R = E
2 coper Pusaior [0 L= 2| o
T i2cosparss paagaiorss (22 1 o
10 iacoscursz pasgainolk |2
S pewaper e = NI |
PIH2PEO PADIUDRX =
I; Ut
>
1
) 1c2 uF e
JPs cie Y
e 2 =5
e |ET
0o °(*_¢ o) L
L2 %1 r [i GND
4
7R K o2+
3 Syl e
e o TEI .
9 Qit] o Trour [.
1S S o T2N T20UT o 1€ i
198 8 2] Rriour mim = -
RI0UT RIN =< T
‘ N MARZZ s ¢
B i S &ND
&ND EEB e

GND

Figure 8.1: The final Stellaris microprocessor schematic.

While the Stellaris board is the central part of the board it would not function properly without its appendages. The layer select board is an important part of the system because it is the gateway through which power is supplied to the LEDs. Without the layer select system would not be multiplexed. The Figure 8.2 shows the final schematic for the layer select board.

[image: image58.png]e

RIS

e

R15

e

A

e

R13

e

ziL

2
W

oL

A

5l

MWW ZI0HINOO

e

6L

R

TTOSINOT

] 916 1ajss Jafke]

e

al

R
AW

T
-1 103ias Jake

T
R

-1 103ias Jake

e

1L

A

e

9L

AW

RE

e

18

A

e

vL

MW

R

3

e

el

A

3

e

zl

MWW

R2

f vy

W
i
[FRE
= 2 ano) Tanoo) 28
CL B o B
—>

Figure 8.2: Final schematic for the layer select board.

For the initial concept the group decided to use 2N5195 transistors because they saw they were used in an 8 * 8 * 8 cube online. However, when they tried to turn the cube on with the 2N5195s the LEDs brightness was greatly diminished and there was a lot of flicker to in the display. After a lot of research the group found that the 2N5195 had a transition frequency of around 2 MHz. This turned out to be too low for a system being run at 50 MHz. To rectify this situation P2N2222A033s were used instead. With their switching frequency of 300 MHz were more than fast enough for the system. With the new transistors inserted the LEDs performed as expected with a luminosity that met expectations and a small refresh flicker due to the limitations of writing speeds to the LED drivers. The transistors are connected to the LED drivers, the power supply, and the Stellaris. When there is no signal being sent to a specific layer the Stellaris will send out a constant voltage to that transistor. When the specified layer is to be activated the GPIO form the Stellaris turns off and the transistor allows power to flow to the LEDs that will eventually be grounded by the desired LED driver.

The last of the PCBs to be described are the LED driver boards. Originally the group intended to have all of the LED drivers on one board but when they went to price them out, the board house that they selected had a special on PCBs for students as long as they fit within certain size restraints. All of the boards that were designed fit these size restraints except the LED driver board which was to large. To amend this situation the group split the drivers up onto separate boards. Half of the drivers would be on one board and have of the other drivers would be on a second board that was exactly the same. Figure 8.3 shows one of the LED driver boards as both boards are exactly the same.

[image: image59.png]ey

\

)wéfm

fig)
;

\

\

& & & & & & & &
? ? ? ? ? ? ? ?
TLC5941 TLC5941 TLC5941 TLC5941 TLC5941 TLC5941 TLC5941 TLC5941
vee ou [ez & fvee oum L L o (e oo oum L A & fvee oum L T o [vee oum |4 CEL & fvee oum L 2 o [vee oo L CEL & fvee oum L
Test oot [£ E R i e L reer oom 2 E R i e L reer oom 2 E R i e L reer oom 2 E R i e
oo oom |2 F e on om 2 T oo om 2 F e on om 2 T oo om 2 F e on om 2 T oo om 2 F e on om 2
0) S 0) S 0) S 0) S 0 i} 0) S 0 i} 0
PAD 0TS [2K oo PO ouTs [2K oo PAD oUT3 [2K oo PO ouTs [2K oo PAD oUT3 [2K oo PO ouTs [2K oo PAD oUT3 [2K oo PO ouTs [
wer ours I M wer ours I W weFourt [A wer ours I W weFourt [M wer ours I W weFourt [M wer ours I
outs (2 R14 . outs (2 R19 . outs (12 R25 . outs (2 R31 . outs (12 R37 . outs (2 R43 . outs (12 R45 . outs (2
o outs 2 e Lpesce oo [Lpsct oo [Lpesce oo [Lpsct oo [Lpesce oo [Lpsct oo [Lpesce oo [
sn - ourr FH B | e oo L B | —{en o 2 B | e oo L B | —{en o 2 B | e oo L B | —{en o 2 B | e o L B |
s0UT ouTe s0UT ouTe s0UT ouTa s0UT ouTe s0UT ouTa s0UT ouTe s0UT ouTa 21 sour oute
To 4 il To 4 il To 4 il To 4 il To 4 il To 4 il To 4 il To 4 il
o T o 5 2 o T o 5 2 o o 5 2 o T o 5 2 o o 5 2 o T o 5 2 o o 5 2 o T o 5
sscLk outto - - 2 pescik ourto [T - - 2 posclk outo [- - 2 pescik ourto [T - - 2 posclk outo [- - 2 pescik ourto [T - - 2 posclk outo [- - 2 pescik ourto [T - -
sLank ourit (2 = - g sk outn H2 = - g ek outnt |2 = - g sk outn H2 = - g ek outnt |2 = - g sk outn H2 = - g ek outnt |2 = - g sk outn H2 = -
WA ouTiz WA ouTiz XA ouTi2 WA ouTiz XA ouTi2 WA ouTiz XA ouTi2 WA ouTiz
70 2 i 70 2 i 70 2 i 70 2 i 70 2 i 70 2 i 70 2 i 70 2 i
N [re 3 6 N [re 3 6 N [re 13 6 N [re 3 6 N [re 13 6 N [re 3 6 N [re 13 6 N [re 3
wobe outi4 (21 - - 2 wooe ours L - - 2 wooe ours |2 - -~ 2 wooe ours L - - 2 wooe ours |2 - -~ 2 wooe ours L - - 2 wooe ours |2 - -~ 2 wooe ours L - -
XERR OUTIS 2 xgrr oUTIS 2 xerr ouTis 2 xgrr oUTIS 2 xerr ouTis 2 xgrr oUTIS 2 xerr ouTis 2 xgrr oUTIS
REDT REDZ RED3 REDA REDS REDE REDT RED
& & & & & & &
? ? ? ? ? ? ?
TLC5941 TLC5941 TLC5941 TLC5941 TLC5941 TLC5941 TLC5941 TLC5941
vee outo A S Eg— vee outo RS S, Eg— vee ouro | RS Eg— vee outo [S, Eg— vee ouro | RIS Eg— vee outo I S, Eg— vee ouro | R S Eg— vee outo
TEST oUTI TEST oUTI TEST oumi TEST oUTI TEST oumi TEST oUTI TEST oumi TEST oUTI
o our2 |2] oo am 2 F e an 2] oo am 2 F e an 2] oo am 2 F e an 2] oo am 2
10 T_PAD 10 PAD 10 FAD 10 PAD 10 T_PAD 10 T_PAD 10 T_PAD 10
PAD 0TS [2% T o oums (7 2% o P oums (2 2% T o oums (7 2% o P oums (2 2% T o oums (7 2% o P oums (2 2% T o oums (7
ReFours [W Reroume [0 W Rerours [0 W Reroume [0 W Rerours [0 W Reroume [0 W Rerours [0 W ReFours [
ours (2 RS . ours (2 R12 ours (12 R20 . ours (2 R26 . ours (12 R32 . ours (2 R3E . ours (12 R44 . ours (2
ok outs [sk oure [i psolk oute [sk oure [i psolk oute [sk oure [i psolk oute [sk oure [
sn - ourr B i S s oo HE B i S s oo B i S s oo HE B i S s oo B i S s oo HE B i S s oo B i S s oo HE B i
s0UT ouTe s0UT ouTe s0UT ouTa s0UT ouTe s0UT ouTa s0UT ouTe s0UT ouTa 241 sour ouTe
o) 5 o) 5 o) 5 o) 5 o) 5 o) 5 o) 5 o) 5
o T o 5 2 o T o 5 2 o o 5 2 o T o 5 2 o o 5 2 o T o 5 2 o o 5 2 o T o 5
sscLk outto - - 2 pescik ourto [T - - 2 PoscLk outo [- - 2 pescik ourto [T - - 2 PoscLk outo [- - 2 pescik ourto [T - - 2 PoscLk outo [- - 2 pescik ourto [T - -
sLank ournn (2 = - g sk outn H2 = - g ek ount |2 = - g sk outn H2 = - g ek ount |2 = - g sk outn H2 = - g ek ount |2 = - g sk outn H2 = -
WA ouTiz WA ouTiz XA ouTi2 WA ouTiz XA ouTi2 WA ouTiz XA ouTi2 WA ouTiz
70 2 i 70 2 i 70 2 i 70 2 i 70 2 i 70 2 i 70 2 i 70 2 i
N [re 3 6 N [re 3 6 N [re 13 6 N [re 3 6 N [re 13 6 N [re 3 6 N [re 13 6 N [re 3
wobe outi4 (21 - - 52 wooe ourie (2L - - 2 wooe ouria (2L - -~ 52 wooe ourie (2L - - 2 wooe ouria (2L - -~ 52 wooe ourie (2L - - 2 wooe ouria (2L - -~ 52 wooe ourie (2L - -
XERR OUTIS 2 xgrr oUTIS 2 xerr ouTis 2 xgrr oUTIS 2 xerr ouTis 2 xgrr oUTIS 2 xerr ouTis 2 xgrr oUTIS
REDY REDTD REDTI REDT2 REDT3 RED14 REDTS REDT6
& & & & & & &
? ? ? ? ? ? ?
TLC5941 TLC5941 TLC5941 TLC5941 TLC5941 TLC5941 TLC5941 TLC5941
o BTl [oon |2 T e o e Tl e o 2 BT M o | s ey |3 pyeemy Bt Tl Mo | e Mee o 2
Test ourt [2 T 2 { test ourt [2 T Bt rest outt [8 T 2 { test ourt [2 T Bt rest outt [8 T 2 { test ourt [2 T Bt rest outt [8 T 2 { test ourt [2
oo oom [F oo o [2 oo oum [F oo o [2 0 W v F oo o [2 0 W v F oo o [2
T_PAD 10 FAD 10 T_PAD 10 FAD 10 T_PAD 10 T_PAD 10 T_PAD 10
pap ours (10 2K PAD OUT3 2K PAD OUT3 2K PAD OUT3 2K PAD OUT3 2K PAD OUT3 2K PAD OUT3 2K PAD OUT3
ReF ours 1 ww— e oums [ww— R oo [ww— R oums [wW— e oo [ww— R oums [ww— R oo [ww— e oums [
ours (12 RS ours (12 RIS ours 12 R21T ours (12 R27 ours 12 R33 ours (12 R39 ours 12 [ours (12
sok outs 12 4 beotk oute (12 L bhsoik oute (13 4 beotk oute (12 L bhsoik oute (13 4 beotk oute (12 L bhsoik oute (13 4 beotk oute (12
an ourr 4 5en ourr (14 51an ourr (14 5en ourr (14 51an ourr (14 5en ourr (14 51an ourr (14 5en ourr (14
sour oure [13 2 ! 2t gour outs [15 2 ! 2t sour oure [15 2 ! 2t gour outs [15 2 ! 2t sour oure [15 2 ! 2t gour outs [15 2 ! 2t sour oure [15 2 ! 221 sour oute (15 2 !
oore |1) 5 oore |1) 5 oore |) 5 oore |1) 5 oore |) 5 oore |1) 5 oore |) 5 oore |1) 5
esolk outtn [T o o 25 Besclk outin [T o o 25 Fesok outin [T o o 25 Besclk outin [T o o 25 Fesok outin [T o o 25 Besclk outin [T o o 25 Fesok outin [T o o 25 Besclk outin [T o o
BLank outti 18 o z 2 eLank ournt (12 o z 2 eLank outi (18 o z 2 eLank ournt (12 o z 2 eLank outi (18 o z 2 eLank ournt (12 o z 2 eLank outi (18 o z 2 eLank ournt (12 o z
xar outiz [13 o a 3 aar oumz (18 o a 3 xar oumz (18 o a 3 aar oumz (18 o a 3 xar oumz (18 o a 3 aar oumz (18 o a 3 xar oumz (18 o a 3 aar oumz (18 o a
oo [2 i oo [2 i oot [2 i oo [2 i oot [2 i oo [2 i oot [2 i oo [2 i
5 { wooe ouris [i i 5 { wooe ouris [i i 6 { wope ours 21 i i 5 { wooe ouris [i i 6 { wope ours 21 i i 5 { wooe ouris [i i 6 { wope ours 21 i i 5 { wooe ouris [i i
L1 xerr oums [22 1 = L1 xerr oums [22 1 = Z | xerr oumis 22 1 B L1 xerr oums [22 1 = Z | xerr oumis 22 1 B L1 xerr oums [22 1 = Z | xerr oumis 22 1 B L1 xerr oums [22 1 =
GREEN1 GREENZ GREEN3 GREEN4 GREENS GREENS GREENT GREENS

Figure 8.3: Shows the layout of one of the LED driver boards.

For the LED drivers information is shifted from the first driver down to the last driver by shifting in pits serially. Once all the information is loaded in the layer select is flashed and the LEDs are illuminated. After the layer select is turned off the LED drivers are loaded with the new information and the next layer is prepared to be lit. All of this done 16 times to create the one frame. The LEDs all receive power at the same time but it is up to the drivers to ground the necessary ones thereby causing them to light up. Each LED driver controls a row of LEDs on the cube. There are 16 LED drivers for the 16 rows for each color.

9.0 Administrative Content

With the design fully outlined it falls to the group to fully describe themselves. Along describing themselves the group also lay down the timeline for which the project was completed by laying out when everything should be completed. Finally, the group lay out exactly how much they plan to spend on all of the items and list a final budget.
9.1 Milestones

[image: image60.jpg]uoneyuasaid

Bunsay.
sBng X3
a1emjos 3po3

aqn) pRAsu)
sqa1IseL
aseg g3 2102

SWaU0dW0D 13pi0
sonewayds azjeurs
adhioioi szeurs

April

14

2

May
June

16

2

EY

14

July

Aug

1

Table 7.1 Milestones

9.2 Budget and Finances

Available Budget: $800

SeedStudio kit: Price: $54.90 Available at Seedstudio.com
Description: This kit includes parts to construct a 4x4x4 LED cube. All the LEDs, PCBs, resistors, capacitors, and various other components necessary for operation are available. The only thing that was necessary for operation that was not included in the kit was the Rainbow Arduino for the necessary drivers and connections.

Rainbowduino LED driver platform – Atmega 328: Price: $24.90 Available at Seedstudio.com
Features:

· Provides 2 x 16 pin header

· Can drive 4x4x4 RGB LED Cube or Can drive 8x8 RGB LED Matrix

· Constant current of 20.8mA LED driver

TI Stellaris Microcontroller – LM3S8962: Price: $14.00 Available at TI.com

Features: Features listed in 3.2.3.1

RGB LEDs Price: $0.14/ LED
Features: LEDs have 3 cathode wires and one anode ground wire. Each cathode wire corresponds to a single red, green, or blue diode. When voltage was supplied to the anode wire and the cathode was grounded at the same time, this causes the LED to illuminate. When voltage was supplied to a single anode and multiple cathodes are grounded, this allows for the use of a wide array of colors.

TLC5941 LED Driver: Price: $3.31 Available at TI.com

Description: Features listed in 3.2.1.2

Acrylic: Price: $1 / 6 feet, Available at Home Depot

Description: This feature the acrylic base and the rods to create the rig

Laptops and Computers: Price: $0.00
Description: the group use the computers in the Senior Design Lab; the Laptops are the users’ property.

Power Supply: Price: $0.00
Description: With multiple power supplies available, the group have at hand a 7V and a 10V psu.

Resistors: Price: $3.00 Available at Digikey.com
Features: The resistors range from 100 to 200 Ohms.

Transistors: Price: $0.17, Available at Digikey.com

Features: It was unsure whether MOSFETs or BJTs was used to drive the voltage supplied to the layers. More testing need to be done on the prototype cube in the following weeks.

Capacitors: Price: $0.03, Available at Digikey.com

Features: The capacitors range with various capacitance.

Summary of Expenses
	Item
	Price
	Quantity
	total Price

	RGB LEDs
	0.14
	4300
	640

	PCB
	3
	3
	99

	PNP Transistors
	0.82
	16
	13.12

	Acrylic
	81
	2
	162

	MCU
	14.19
	1
	14.19

	TLCs
	3.31
	48
	134

	Resistors/Capacitors
	0.38
	128
	48.49

	Ribbon Cable
	0.33
	150 Ft
	50

	Wire
	0.025
	2000
	50

	Acrylic Rods
	$1/6 ft
	768 Ft
	128

	PSU
	0
	1
	0

	Total
	
	
	1486.3

Table 9.2: Budget and Parts

9.3 Group Member Bios

The group was made up of 4 members. The group contains two electrical engineers; Joseph Clark and Michael Alberts are seniors in Electrical Engineering and plan to graduate in August 2012. Isaiah Walker and Arnold Li are both seniors in Computer Engineering who also hope to graduate in August 2012.

9.3.1 Joseph Clark

Joseph Clark was born January 6th 1986, in Saratoga Springs New York. He spent most of his childhood in Titusville Florida, but also lived in Glenville New York, Austin Texas, and Niceville Florida where he would graduate from Niceville High School. In high school he took a vast array of classes trying to find what interested him the most. During high school he took advanced digital design classes, college level programming classes, college level accounting classes, and college level foreign language classes alongside his standard academic course load.

During his tenure in high school he was involved in a number of extracurricular activities. The most significant activity that he participated in was the Forensics Team. While on the Forensics team he competed in the debate events of public forum, Lincoln-Douglass, and policy debate. He maintained a winning record in all three of the events and was invited to multiple national event to compete, and winning multiple top speaker awards. He also served as a special advisor of digital media for the school year book. During this time he provided photo manipulation and page layout services. In high school he also co-founded a multicultural media club. In his time they would view movies and television shows from England, France, Japan, China, and many other countries from around the world.

After graduating from Niceville High School Joseph did not immediately return to school. However in 2008 he returned to school by enrolling at Valencia Community College. While at Valencia, Joseph competed in the brain bowl academic team for 2 years. Joseph was a part of a four person team and was in charge of answering question about science and math for his team. Josephs’ team was invited to the national competition. Joseph Graduated from Valencia Community College in 2008 and was accepted to the University of Central Florida electrical engineering program.

While attending the University of Central Florida Joseph became involved in undergraduate research at the Center for Research and Education in Optics and Lasers. Joseph worked for Dr. Peter Delfyette and was able to work on many projects and gain a vast array new knowledge. His first project involved Allan Variance measurements. Joseph wrote programs to automate the process and was involved in the purchase of an automated test bed. Joseph also developed a base for holding a Vertical Cavity Surface Emitting Laser. The base worked both as a platform to hold the laser and a heat sink. The base would hold the Laser above a Printed Circuit Board. The printed circuit board was a special design capable of handling a 5 GHz signal and performing impedance matching from 50 to 90 ohms. Joseph hopes he can bring some of these experiences to the senior design project to aid the group.

Joseph plans to graduate in August 2102. He had plans to work in the field of optics. He currently hopes to work for the Harris Center for Optics excellence where he continue his learning in the field of optics. He also helps to continue his education at The University of Central Florida at the Center for Research and Education in Optics and Lasers. Joseph had hopes of earning his Ph.D.

9.3.2 Michael Alberts

Michael Alberts was born in Saint Petersburg Florida on December 20th, 1988. He attended Lakewood High School where he was enrolled in the Center for Advanced Technologies (CAT); a magnet program geared to ready students for college and provide them with technical skills that they would require. While attending the CAT program he took classes pertaining to science, math, and programming. Some of the classes that prepared him the most for college included physics, calculus, Java, and C programming. During his junior year he was inducted into the National Honor Society and maintained this status all the way until the time of graduation. He feels that the NHS was beneficial to his success in both high school and college, because he felt the need to maintain the level of prestige that was awarded to him, as well as uphold the standards that the NHS enforced.

Besides high school academics, Michael was on the Lakewood varsity baseball team from the time he was a freshman until the time of graduation. During his four years of playing, he won numerous awards granted by both the school and during tournaments that were held throughout the state, and had the privilege of being the captain of the team his senior year. The highlight of his high school baseball career was when he was asked to play on the Pinellas county all-star team during his senior year, being only one of twenty athletes from the area chosen. He believes that his baseball career was very beneficial to his professional success because it taught him the importance of teamwork, the qualities of being a leader, and seeing first hand that hard work pays off.

Michael began attending the University of Central Florida the summer directly following graduation from Lakewood high school in 2007. He was enrolled in the College of Engineering where he planned on attaining his bachelor’s degree in electrical engineering. During his career at UCF, Michael completed his engineering classes, all the while maintaining a 3.0+ GPA, thus allowing his to keep his bright futures scholarship the entirety of his attendance. While engineering was his main focus, he enjoys the programming aspect as well. Taking an object oriented programming class in Java as a technical elective, and also taking computer science I just for the understanding of the material, Michael realizes the importance of programming in electrical engineering, which led him to enroll in a hardware/software co-design tech elective, as well as a computer architecture tech elective.

Michael believes that he was an important asset to the group because of his problem solving skills and his ability to dedicate himself to learning any subject he needs to. He enjoyed computer science mainly because of the problem solving aspect of the class, and often dedicated hours of continuous work to class projects due to the sheer enjoyment of solving the given problem. He was also able to educate himself without the need of a professor or a guide. This quality was a necessity to any engineer, and one of the main focuses of senior design.

Aside from his focus on academics, Michael enjoys playing numerous intramural sports for UCF, including basketball, volleyball, flag football, and floor hockey. In his spare time he also enjoys writing small android applications, cooking, and reading. Michael was set to graduate in August 2012, and was pursuing a job in the engineering field.
9.3.3 Isaiah Walker

Isaiah Renaldo Walker was a computer engineering major. He comes from Pembroke Pines in Miramar, which was north of Miami. His hobbies include playing video games, listening to music, playing bass guitar and programming. He went to Everglades High School for ninth and tenth grade then went into College Academy for the remainder of my high school career. College academy was a program in which the last two years of high school are done at Broward College and high school classes are taken alongside college level classes with it all counting as college credit. Through this program he not only graduated high school but he also got his A. A. Degree.

Throughout his college career most of his focus had been on the software side of computer engineering. His electives have focused on learning more about programming and also some topics on machine learning. After he gets his Bachelor’s degree he wants to continue his education by going into the Master’s program at the Florida Interactive Entertainment Academy to go into game design. He would like to go work for one of the major video game companies after his education was over. He would love to one day be a programmer for Blizzard or Nintendo.

He had worked on some other programming projects, both for classes and outside of classes. These projects mostly focused on Java as the main language. He had written some code for a small android application for a group project. The application used GPS to search for coupons near your location that other people have submitted. It did not go on the market but the group did get it to work with multiple phones. He also wrote most of the base code for a vertical scrolling shooter game on the Android platform. He wrote the code for the ship that flies through the levels as well as the code for scrolling through the level and spawning enemies. As for his experience in C and C++, he had written several things on his own that showcases my skills in those languages. He had written a text based letter scrambler and even a small maze game using a free game software development kit. Most of his programming does involve working with games since that was what he wants to pursue in my career after college. Despite that being his focus he still be able to help with the programming of the cube's software.

He does not have much experience working with microcontrollers but he try to learn quickly to be able to assist in helping make this project work. He had always been very good at figuring out software related problems when they occur and quickly find solutions. The biggest challenge he shall face was learning to work with the limited space and speed of a micro-controller as compared to that of the more powerful CPUs found in a desktop computer where he would normally do my programming. The micro-controller may also have some limitations in its implementation of C/C++ that he may have to make adjustments to. The micro-controller may not be able to handle floating point math or certain complex math functions such as sine and square rooting. This means that some of my normal programming habits have to alter to fit in with the micro-controller's environment.

9.3.4 Arnold Li

My name was Arnold Li. He was born on January 13, 1990 in Miami, Florida. Arnold graduated from Michael M. Krop Senior High School and cherished every moment of it. He took a moderate amount of Advance Placement classes and passed them for college credits and attended many clubs. Compared to college, there were classes that made high school classes look like a cake walk and there were classes that literally blow his mind away. Arnold takes every class seriously and tries to his utmost ability to pass with flying colors. There may be some topics he may be weak in, but he makes sure he had some help to facilitate his learning.

When Arnold had free time, he enjoys playing video games with his friends. Back in freshman year, he and his friends would sign up to play first person shooters professionally. They would practice by playing normal games in public rooms or versus each other. They didn’t mind if it was consoles like Xbox 360, PlayStation 3, or PC, but it was easier to get together playing on the PC. Back at home Arnold enjoys fishing, football, basketball, ultimate Frisbee, practicing guitar, and eating. He gets in touch with his friends to watch football or watch the Miami Heat for dinner and have a fun time, unless they lose.
If it wasn’t for the expensive costs of a plane ticket, Arnold probably would have traveled more often. He had traveled to many parts of the United States, cruised out in the Caribbean, and flew to the other side of the world to China. He enjoys the cultural experiences and the food that comes with it. He hopes to venture to other parts of the world and maybe learn a language or two.

During his years in University of Central Florida, the first couple years were probably the most stressful and difficult. Taking five classes was never an easy task, but helped him realize that he have to put some effort and time if he needed to pass. Not only that, the best way to approach a class was probably to have friends to study with and learn together. When Arnold enrolled in a world history class with all of his roommates and friends, the group expected to be an easy A. This class includes online quizzes with two attempts, an online midterm, and in-class final. During the whole process all of them scored 100s consecutively on all their quizzes, aced the midterm, and passed the final with relative ease. It truly was an easy A.

Arnold plans to graduate this August with a Bachelor in Computer Engineering. There was never a semester in college where he probably wasn’t programming or sleeping. Arnold hopes to continue to program in the working field. When Arnold signed up for the major, he did not have prior knowledge of programming nor electronics. This was one field that continue to grow. Arnold was experienced in many types of programming languages, an understanding how to fix and make computers, and with this project, have a better understanding with microcontrollers with software.

9.4 Division of Labor

There are two major parts to this project, hardware and software. The hardware aspect of the project was mainly handled by Mike Alberts and Joseph Clark. They handle the soldering and placement of the components on the printed circuit board. They also be responsible for making the jig that they use to assist them in the soldering of the LEDs. The software aspect of the project was handled by Arnold Li and Isaiah Walker. They handle writing the code that controls the hardware to make the LEDs light up according to the various animations. They also handle creating the animations for the cube to use.

10.0 Conclusion

In conclusion, the group feels that they have a flawless understand of how an LED cube works, as well as a concrete plan on how the cube was built. It was ironic that this was chosen as the final project, because when the group set out to try to decide on a final project they had originally intended to make a function one as opposed to one that was strictly for viewing pleasure. The LED cube was chosen due to viewing a video online of a cube and the animations it could perform. The group was immediately impressed and decided that the LED cube was going to be what they created as their senior design

project.

From the amount of research that was done, the group was able to incorporate many different elements of design from multiple cubes, picking out the features that would benefit their design and ensure a professional, well-built final project. The group was gin working on prototype LED cube that was planned to be completed before the start of the next semester with the hopes of gaining insight on how it was to build and test the final design. This provided for not only testing of the construction method, but also a means to test the code for the animations and provide a way to test the controller that the group was using.

The expectation was that they LEDs take at least 30 hours or more to completely solder into a single cube, and then the testing to begin. It was unsure as to how long the testing phase was, but it was planned that code already be written and the control layout was finalized at the time the LEDs are soldered into a cube so that this phase proceeds smoothly and the project was completed early on in the semester. After the completion of a cube that performs standard animation and three dimensional images, whatever was left of the remaining time was spent working on providing more animations, a graphical user interface, and completely debugging the system of any errors that could shorten the life of the cube.

The group also plans on entering the Texas Instruments design contest that was being held. The design contest was early in time than the deadline for the cube, so this event provide motivation for the group to complete their final project in a timely manner. One of the requirements for the competition was to use at least three Texas Instruments analog parts in the design of the project, which was why the group had planned on using so many components acquired from Texas Instruments.
The group was also very pleased that their design was on display of the Harris Engineering Corporation building. This honor had motivated them to build the best possible cube given the amount of time they have. When presented with the option of choosing single color or RGB LEDs, the group chose to select the RGB LEDs due to the fact that the tri color displays are far superior to the single color. The amount of time required to construct a cube from RGB was far more than that of the single color, but the RGB provide for far more impressive animations and displays. Also, the decision to use LED drivers was fueled by this. The use of LED drivers significantly enhances the performance of the cube, providing for such functions as pulse width modulation, making sure all the LEDs shine at the same luminosity, and taking full control over the spectrum of colors that the cube can display.

Finally, the group was pleased that they chose to build an LED cube. The amount of work that must be done to solder was not the most appealing aspect of the project, but they hardware and software code sign that had to be implemented was a beneficial aspect the members. Great amounts of thought have been put into how the microcontroller control the cube, and how it interact with the different components that make up the project. There are many factors that have to be investigated such as operating frequency, general purpose input/output pin usage, voltage required to power the entire setup, how to drive the LEDs, and the exact layout of the printed circuit board to save space and provide for the best configuration of the elements of the design.

11.0 References

 "3D LED Cube Kit." Nuts and Volts. N.p., n.d. Web. 16 Feb 2012. <http://store.nutsvolts.com/product.php?productid=17052&cat=341&bestseller=Y>.

"4Cube USB Kit." Hypnocube. N.p., n.d. Web. 16 Feb 2012. <http://hypnocube.com/products/4cube-all/4cube-usb-kit/>.

Chr. "Led Cube 8x8x8." Instructables. N.p., n.d. Web. 2 Feb 2012. <http://www.instructables.com/id/Led-Cube-8x8x8/?ALLSTEPS>.

 "LED Cube Kit." Picprojects. N.p., n.d. Web. 16 Feb 2012. <http://picprojects.biz/shop/article_555FSK/LED-Cube-Kit-#555FSK.html?shop_param=cid=2&aid=555FSK&>.

 "LT3754 ." Linear Technology. Linear Technology, n.d. Web. 11 Mar 2012. <http://www.linear.com/product/LT3754>.

Phil. "Charlieplexing LEDs- The Theory." Instructables. 27 Aug 2008, n.d. Web. 20 Feb 2012. <http://www.instructables.com/id/Charlieplexing-LEDs--The-theory/?ALLSTEPS>.

 "qubeled." qubeled. N.p., n.d. Web. 16 Feb 2012. <http://qubeled.com/

 "Rainbow Cube." seeedwiki. N.p., 15 March 2012. Web. 16 Fwb 2012. <http://seeedstudio.com/wiki/Rainbow_Cube>.

Reitzfeld, Wesley, Sachit Bakshi, Shatrovoy Oleg, and Elaine Uy. "3D LED Cube Display." BU Electrical & Computer Engineering. N.p., n.d. Web. 11 Apr 2012. <http://www.bu.edu/ece/undergraduate/senior-design-project/senior-design-projects-2008/3d-led-cube-display/>.

Shulze, Nick. "RGB LED Cube." How Not to Engineer. N.p., 06 April 2012. Web. 18 Apr 2012. <http://www.hownottoengineer.com/projects/rgb-led-cube.html>.

Texas Instruments. Texas Instruments, n.d. Web. 11 Mar 2012. <http://www.ti.com/>.
LED Frequently Asked Questions. BeteLED.com Web. 20 April 2012. <http://www.betaled.com/us-en/LEDEducation/LEDFAQ.aspx#16>
Appendix

Appendix A Copyright Permissions

 [1] Boston University

[image: image61.jpg]Re: Your 3D LED Cube Final Project 3%

Full view
o Sachit Bakshi Add to contacts 4/20/12
To Michael Alberts Reply [*

Hi Michael,

Sure you can use the image. May I ask the context in which you plan to use it? Are you comparing it to other designs or using it in some other manner?

Thanks,
sachit

[2] Quebled

[image: image62.jpg]Re: Form submission from [QUBE LED] - [Contact] - [Advanced Form 1] & imbox x & 8

Simon Harper simon@aubeled com Apr 20 (1 day aqo -
to mike [+ Fr, Apr 20, 2012 at 4:28 PM

Hi Mike,
Yes that is fine
Kind Regards,

Simon Harper

M:+447869 429115

T- 0844 770 6685

Skype: QUBELED

http://ww facebook com/QUBELED
http-//www_qubeled com

[3] Pending Permission -Seedstudios

Permission Pending from Seedstudios
[4] Picprojects

[image: image63.jpg]Re: Picprojects: New enquiry 3 | Fullview

5 admin@picprojects.org Add to contacts 420712
To Michsel Albert Repy *

ES

Yes, you can use the photograph referenced in the email below providing:
) it is for academic purposes only.

b) it is not used for any commercial purpose or financial gain,

©) you reference the source of the image where it used.

Regards

Pete
Picprojects

[5] Hypnocube

[image: image64.jpg]Re: Hypnocube Contact: 4x4x4 Hypnocube & | Fullview
o Gene Foulk Addto contacts 420012
To michaelalberts@knights.uct.cdu Reply [+

From: Gene Foulk (gene@hypnocube.com)
Sent. Fri4/20/12718 PM
To: michaelalberts@knights.ucf.edu

Michael,

Sure, you have my permission to use our images in your paper.

Best regards,

Gene

[6] Pending Permission - Nuts and volts

Permissions Pending from Nuts and volts.

[7]Instructables 8x8x8
[image: image65.png]ttribution L))

© winwinstructable.com i/ enty lcense Y NC S i

Attribution Non-commercial Share Alike (by-nc-sa)

‘This license lets others remix, tweak, and build upon .@@
‘your work non-commercially, as long as they credit !
ou and license their new creations under the

identical terms. Others can dowsload and redistribute your work just
like the by-nc-nd license, but they can also translate, make remixes, and
‘produce new stories based on your work. All new work based on yours
will carry the same license, so any derivatives will also be non-
commercial in nature. I

[8] Nick Schulze - HNTE
[image: image66.png]Re: 8x8x8 LED Cube & ¢ | Fullview

To see messages related to this one, group messages by conversation.

o Nick Schulze Addto contacts 5:17 AM
To Michael Alberts Reply[*

From: Nick Schulze (info@hownottoengineer.com)
Sent: Sun4/22/12 517 AM
To: Michael Alberts (michael alberts@knights.ucf.edu)

Awesome! Can't wat to see what you come up with.
Tam currently thinking of building myself a larger 3D display of some sorts, til in the thinking stage at the moment though..

Of course you can use my pictures, just reference me and my site and I will be happy.

How are you planning on generating the animations? You might find some useful bits and pieces in my code, but 1 am assuming you are
going to be using something a with a little more omph than the chipKIT. Chuck me an email any time if you want to chat about some of
the code..

Cheers
Nick Schulze

‘www.HowNotToEngineer.com

[9] Instructables Charlieplexing

[image: image67.png]© ity ceoss o =

© wwowinstructables.comsatic/entryicense/BY.tml

Attribution (by)

‘This license lets others distribute, remix, tweak, and build upon .
‘your work, even commercially, as long as they credit you for the
original creation. This is the most accommodating of licenses

offered, in terms of what others can do with your works licensed under
Attribution.

Read the Commons Deed | View Legal Code

98

