
Magic Plank Senior Design - Group 2

1

Senior Design 1

Group 2

Self Balancing Transportation
Platform

(A.K.A. Magic Plank)

Stephen Colby Fraser II

Brian Jacobs

Kenneth Santiago Jr.

Magic Plank Senior Design - Group 2

2

Table of Contents

1. Executive Summary... 4

2. Project Description... 5

2.1. Motivation .. 5

2.2. Objectives, Goals, and Milestones .. 6

3. Initial Research... 10

3.1. Robotics Club .. 10

3.2. Skycraft .. 12

3.3. Initial Research of Coding Implementation ... 13

3.4. Power Supply .. 15

3.5. Steering Implementation ... 20

3.6. Switching Voltage Regulator ... 23

4. Prototype ... 25

4.1. Prototype Test Environment ... 25

4.1.1. Test Environment ... 25

4.1.2. Test Goals ... 25

4.1.3. Test Stages ... 26

4.1.4. Test Data and Expectations ... 28

4.1.5. Test Conclusion .. 28

4.2. Hardware Selection .. 28

4.2.1. IMU (Inertial Measurement Unit) .. 28

4.2.2. Motor Controller .. 30

4.2.3. Microcontroller .. 31

4.3. Hardware Implementation ... 32

4.3.1. Remote Control .. 32

4.3.2. IMU ... 40

4.4. Software Prototyping .. 41

4.4.1. Using Bluetooth with a Wiimote ... 41

4.4.2. Using the Motor Controller .. 45

Magic Plank Senior Design - Group 2

3

4.5. Prototype Implementation ... 46

5. Final Implementation ... 51

5.1. Hardware Design .. 51

5.1.1. Circuit Design .. 51

5.1.2. Motor Controller: Sabertooth 2x25 .. 58

5.1.3. Body Design .. 59

5.2. Software System: Overview .. 61

5.2.1. Operational Concepts: Needs, Scenarios, Limitations, and Risks 61

5.2.2. Project Management .. 62

5.2.3. Software Architecture and Design Issues .. 63

5.2.4. Development Environment and Hardware Interfacing 65

5.3. Software Design ... 66

5.3.1. Motor Controller .. 66

5.3.2. IMU – Raw Data Fetching ... 68

5.3.3. IMU – Raw Data Processing .. 72

5.3.4. RC Coding Implementation .. 74

5.3.5. Top Level – PID Control .. 89

5.4. Final Parts Selection .. 91

5.4.1. Platform Materials .. 91

5.4.2. Motors .. 96

5.4.3. Wheels ... 97

5.4.4. Chain .. 98

5.4.5. Power Supply .. 98

6. Bill of Materials ... 101

6.1. Initial Design Cost Estimates .. 101

6.2. Prototype Bill of Materials ... 102

6.3. Final Design Bill of Materials .. 103

Works Cited ... 105

Magic Plank Senior Design - Group 2

4

1. Executive Summary
This document details plans for a two wheeled self balancing transportation
platform. Inspiration for the project comes from Segway’s line of Personal
Transporters. There is something compelling about a personal transportation
vehicle that can balance itself on just two wheels without any sort of stabilization
mechanism other than the motors themselves. While the concept itself is
fascinating, a Segway Personal Transporter can cost thousands of dollars, so the
foremost strategic part of this project is to make something similar but at a
significantly lower price range.

Development of this project led to some interesting conclusions. Originally, the
plan was to make a transporter in the traditional manner of the Segway PT: front
facing platform with a scooter-like steering column, but after some research on
interesting control methods, an innovative steering solution was reached. This
balancing platform’s steering control is completely wirelessly via Bluetooth
control from the Nintendo Wii wireless remote controller. Handling a bulky and
awkward steering column is replaced by an intuitive control scheme using a
largely familiar console game controller. Since the steering column is removed,
the orientation of the platform is altered from the traditional front-facing design to
a side-facing design where the driver leans side to side in order to move, much
like riding a skateboard. This design set this platform apart from other self
balancing platforms, both significantly reducing the price of the design and giving
the platform a unique look and feel.

Features:

 Two-Wheeled Balancing

 Bluetooth Navigation System

 Unique Look and Feel

 Intuitive Control

 Affordable

This design is done to prove that anyone, given enough time, enough research,
and enough determination, can make their own self balancing transporter at a
fraction of the cost of commercial products.

Magic Plank Senior Design - Group 2

5

2. Project Description

2.1. Motivation
The primary motivation for this senior design project comes from the intended
nature of engineering and implementing a challenging, yet feasible and
rewarding senior design project. Each senior has individually spent many hours
researching various previous senior design projects from various universities
across the nation. After drawing conclusive individual research, several
meetings were scheduled and further discussed the various multitude of senior
design projects individually researched; a mutual concern was shared, that there
appeared to be a pattern of senior design projects being done across the nation:
alternative power supply solutions, robots, motion capture, and imaging
processing to name a few. The main goal of this project was to be very unique,
something that has not been explored yet; what this senior design project has to
offer is distinctiveness and a diverse set of challenges, thus making a very
intriguing conversational topic with fellow engineers or with prospective
employers. Furthermore, a two wheeled balancing platform is completely
impractical when compared to a three or four wheel platform; therefore
presenting an impeccable challenge and a rewarding senior design project
before graduating UCF’s College of Computer Science and Engineering.

One highly appealing aspect of designing and creating a two wheeled balancing
platform, is in its self, very unique and distinguishing; therefore, leading this
senior design group to believe that this may be the first group at UCF’s College
of Computer Science and Engineering to actually engineer and implement this
two wheeled balancing platform. It is strongly believed that future prospective
employers are going to want engineers who are able to approach a problem
outside the normal constraints of problem solving. This particular creative design
thinking is the way complicated tribulations are solved and new innovative
technological advancements are produced. This senior design project is an
excellent way to become distinguished from other more common fields of
research such as robotic or image processing. Engineering and implementing
this two wheeled balancing platform provides the perfect amount of challenge for
four seniors in the College of Computer Science and Engineering; furthermore,
the high level of complexity involved will inspire zeal and eagerness to research
and work on such a significant senior design project.

It is helpful to have previous experience with the electronic hardware and
understanding how the different communication busses talk to one another. An
important set of skills would prove to be invaluable especially when dealing with
the microcontroller and motor controller systems. The quandary can be
surpassed with expressed and demonstrated knowledge in adjusting motor
output via hall sensors and back electromotive force; furthermore, it is pertinent
to be able to identify and make the necessary adjustments to the motors.

Magic Plank Senior Design - Group 2

6

There is a very high amount of expectation and a very positive forward thinking of
how this senior design project will turn out. However, it is understandable that
this project will not be easy; this project will be a worthy challenge and will test
the knowledge base and understanding to the limit. It has been discussed in
immense detail, and recognized that this is new and unexplored territory.
Nevertheless, it still pays to have persistence to push forward with the current
engineering and implementation. No matter the challenge and obstacle that will
be faced during this senior design project, perseverance will lead through to
completion.

2.2. Objectives, Goals, and Milestones
This senior design group has set very concise objectives and goals; it will serve
for the betterment to insure each step processed is deliberate and tangible. The
outlook is to be able to build upon each step while making as little adjustment as
possible to each previous objective and goal. This will allow for a productive and
efficient use of research and man power.

The first objective set out is to have the microcontroller operating. Microcontroller
work involves understanding the pin configurations of the microcontroller, setting
up a working development environment, working cross compiler, and configuring
the correct libraries for the microcontroller. Once basic configuration is complete,
the device must be able to configure on multiple platforms, but at the same time
remain consistent between the different platforms via a centralized code base
from which to refer. After, the first goal is met, the microcontroller has to be
capable of responding to test programs, and it is affirmatively known of how to
continue development. The second goal is to identify the correct pin connections
needed for all the peripheral hardware to communicate with the microcontroller.
Establishing lines of communication with the correct hardware pin addresses will
allow for easy identification on how each individual piece of hardware will
transmit and process data to and from the microcontroller. Equally important is
the establishment of a power supply to each electronic component.

From the completion of first and second objective, the first milestone status is
accomplished. The first milestone after guaranteeing communication with the
microcontroller hardware pin addresses is to build the complete circuit consisting
of the inertial measurement/moment unit, motor controller, and the power supply.
Here it is tested for proper power supply distribution and make the fine
calibrations to insure peak performance and efficiency, while at the same time
safeguarding against any potential power surges that could damage one of the
valuable electrical components, such as using avalanche diodes for surge
protection, or a potential power over draw from any of the electrical components.
Any one of the two would most certainly cause irreversible damage to the power
supply. Moreover, authentication can process through the Arduino – compiler
each major electronic component properly establishing a line of communication

Magic Plank Senior Design - Group 2

7

with the proper hardware address pins. Meeting this milestone will also assist
with development of future software functions and methods, as well as potential
hardware changes. Once the system is properly configured, the next objective is
ready to be attacked, which is the beginning of software development.

The first software objective is to communicate with the motor controller via the
microcontroller. This involves rudimentary control commands such as moving the
motors forward, backward, and turning. This will allow for a better feel for the
motor response and allow software configuration to handle a particular new
wheel set. The second software objective is to obtain raw data readings from the
Inertial Moment Unit (IMU) and process that data inside the microcontroller. The
idea is to simply read the data and calibrate it such that the IMU outputs motion
data that can then be used for the control mechanism that will ultimately balance
the platform. The next objective is to integrate the processed IMU data into a
rudimentary control scheme. This will show how the motors respond to the IMU’s
data and how to approach the refinement of polling and calibration mechanisms
in order to create a smoother control scheme.

Completion of these objectives leads to the second milestone, which is the
finalization of a platform that can balance itself in a stationary position. In the
second milestone, movement refinement will be in process for the motors to be
more fluid and smooth through the use of software. The software will do the
necessary calculations to adjust the acceleration and angle of incline at a gradual
level; moreover, there is a need to possess a polished transition when
decelerating or accelerating, as well as smooth transitions when increasing and
decreasing angle of incline. The continuation with this project relies on the
balancing control mechanisms abilities to smoothly and efficiently balance the
platform, which will entail much tweaking and testing. In order to have the best
product results, this device must be tested for its control scheme limitations to
pinpoint which conditions are possible leading causes for a system failure.
Besides checking for possible system failure, the system’s power draw will be
determined on whether or not the current power solution is sufficient to progress
production.

After completion of the second milestone, software development continues by
incorporating navigation into the control scheme, which is the fifth objective. The
first step in this process requires an established interactive method between
navigation mechanism and microcontroller: what signals are sent, how the data
should be interpreted, and the frequency of data obtained by the microcontroller.
The goal is maintaining the platform’s balance while in a stationary position. The
main mechanism planned for this control scheme utilizes communication via a
Bluetooth device. Bluetooth enabled video game controllers can handle the basic
commands such as: forward, backward, left and right; the current paradigm for
accelerating and decelerating is by leaning, this factor will have to be figured out
in a whole new method followed with a unanimous decision to control the scaled
down prototype’s acceleration and deceleration. Certain Bluetooth enabled video

Magic Plank Senior Design - Group 2

8

game controllers recognize changes in pitch and yaw; controllers’ sensitivity to
these types of changes can allow development towards a free flowing
navigational system that will essentially enable the user to be the steering device.
Each Bluetooth enabled video game controller manufacturer has released
programming code which will permit users, programmers, and engineers to take
advantage of the unique functionalities that each Bluetooth enabled video game
controller possesses. Once, effectively harnessing the code for the particular
Bluetooth enabled video game controller, only then can it be attempted to create
a customized control mechanism that would work seamlessly and specifically for
the designed navigational purposes. Followed by control scheme calibration for
the platform’s abilities to operate smooth turns corresponding intuitively with the
input device being used by the driver. After the platform can successfully turn in
the stationary position, the third milestone is completed.

The next move is to the eighth objective, which is to make the platform capable
of moving forward and backward. Along with the platform’s turning operations is
being able to move forward or backward; which is considered a principle
movement of this platform. Software governors will be coded into place as a
safety measure to prevent steep angles of incline and unsafe acceleration and
speeds for correction purposes in the balancing platform’s stability. If there were
no governors in place, then the sudden possible corrections that platform may
enact to insure its equilibrium may make the platform unstable and therefore
unsafe for the user. As a result, testing and refining software based governors
are desired, as well as the more complex mathematical equations to guarantee
stability and equilibrium. Moreover, at this point in the objective, goals and
milestones the group will further refine methods and functions of steering to
gradually turn, accelerate, and decelerate the platform. Followed up with
improved calibration and refinement will be done to determine when and if the
status needs to be updated. Data from the inertial measurement/moment unit
must be taken and compared to the current status of the balancing platform as
well as the safety parameters and governors that will be instantiated in the code.
In order to accurately gather data readings via proper data sampling rates, which
will provide accurate output calculations that, will adjust balancing platform’s
overall status. It is necessary for this platform to make gradual movements,
while simultaneously providing adequate response times; indemnifying the
inertial measurement/moment unit will process the proper amount of data for the
platform to remain in a balanced state of equilibrium. There will be a fair amount
of calibration needed in order to balance sampling rates of data to insure the
smoothest and quickest physical response times.

The remaining objectives seven and eight now completed and the final
adjustments made to the platform, then the balancing platform will be fully
functional and operational. The platform will be able, whether static or non-static
positions to turn and preserve its equilibrium, including in its active state, capable
of handling the different angles of incline and sufficiently readjust itself whilst the
inertial measurement/moment unit detects the angles of inclination are too

Magic Plank Senior Design - Group 2

9

severe; concurrently occurring when the inertial measurement/moment unit
distinguishes any instance of moving at an unsafe speed and/or the acceleration
of the balancing platform is too high. When with this stage of development is
finished, entails a completed fourth and final milestone: a fully functional self
balancing platform.

Magic Plank Senior Design - Group 2

10

3. Initial Research
Without any prior knowledge of how a self balancing platform would work, further
research was required to get an idea of what was possible for this project.
Supplementary investigation was necessary in projecting plausible routes to
power the system, how to approach and which direction to take towards
designing the software, what hardware would be proficient to run the software,
how the platform would accomplish its main task of balancing, and how one
could control the platform’s movement. This section details several trips and
interviews that were an integral part in setting this project in motion.

3.1. Robotics Club
In order to better understand how to go about building a self balancing platform, it
was decided to visit UCF’s Robotics Club to gain better insight from people who
have had experience with building similar projects. Accessing UCF’s Robotics
Club to learn as much as possible about what motors could be utilized, what
battery technologies were available, what sensors ought to be used, and any
other tips about getting started. During visitation, Cassie Puklavage was
interviewed, treasurer for the Robotics Club and member of the submersible
team. The submersible, named Hippocamp, was designed to participate in the
International RoboSub Competition by the Association for Unmanned Vehicle
Systems International (AUVSI). When asked what Hippocamp used to keep its
bearings underwater, Cassie pointed to a little black box fixed to the inside of the
submersible. She stated that is an Inertial Measurement Unit (IMU) used to
provide feedback for roll, pitch and yaw of the system through the application of
gyroscopes and accelerometers packaged into a convenient single unit. For a
self balancing platform such as this project, some combination of accelerometers
and gyroscopes would be needed to keep the microprocessor informed as to its
tilted position and make corrections accordingly.

Cassie also happened to be doing budgeting at the time and was kind enough to
show the prices of some of the parts used in the Robotics Club’s vehicles. While
the submersible uses a full 3-axis IMU that costs about $350, it was decisively
concluded the projected self balancing platform would only need a dual-axis
gyroscope that would only sense pitch and yaw. However, there was still a need
of an accelerometer to measure acceleration, so considerations on either
purchasing the gyroscope and accelerometer separately or obtaining a single
IMU board. Cassie referred a website: Sparkfun.com, where the Robotics Club
buys many of its parts. Sparkfun provides many options for IMUs,
accelerometers, and gyroscopes. Some options included ST Microelectronics’s
gyroscope line such as the LPY503AL gyro with breakout board for $301, or the
$8 LPY5150AL bare gyro2. The gyroscope would have to be coupled with an
accelerometer such as Freescale’s MMA7361 3-axis accelerometer for $83 or
with breakout board for $124. Buying separate gyroscope and accelerometer
boards would be a combined $42 investment or more depending upon the

Magic Plank Senior Design - Group 2

11

boards used. Another option would be to buy an IMU board such as the Analog
Devices/Invensense accelerometer and gyroscope combo board for $605. The
full 3-axis IMU would be more than enough and it would cost more than
designing a custom-made and unique IMU from the individual accelerometer and
gyroscope, so tailoring an IMU seems to be the more cost effective option.
However, for prototyping, it would be advantageous to have the IMU combo
board for a modular, easy to assemble, easy to debug system. Sparkfun also
offers the PCB schematics for their combo boards, which is very helpful when it
comes to designing couture IMUs in the future.

In addition to the IMU, Cassie informed about DC motors and motor controllers.
She shared about dual-channel motor controllers, which can drive motors either
completely independently or at the same time with differential drive mode, which
would be the preferred method of control for the projected platform, since the
motors would be moving at the same rate except for when making a turn. The
Robotics Club’s currently under development ground vehicle utilizes two dual-
channel RoboteQ motor controllers for the front and back wheel sets. These high
end motor controllers drive 24V DC motors scrapped from a power wheelchair
and run in the range of about $500 each. The self balancing platform would only
need to drive two motors and would require a much less powerful motor
controller. RoboteQ’s low end dual-channel motor controllers (20A) are priced at
$175 each6. Over at DimensionEngineering.com, Sabertooth provides
comparable 25A motor controllers for about $125 and also offers lower
amperage controllers, 12A and 5A, for $80 and $60 respectively7. The lower end
motors of course have a lower maximum voltage rating, so the motors chosen for
the self balancing platform would determine which controllers would be
adaptable.

While browsing the club’s scrap bins and examining the robots sitting in the lab,
several batteries were examined that was used to power their miscellaneous
vehicles. The ground vehicle was powered using a car battery, but the smaller
robots were powered via lithium polymer batteries; lithium provides the lightest
and most dense form of energy storage, which will be very advantageous for
projects such as this; which, requires a battery to have good constant energy
draw and charge, ample battery life, and a low profile. After talking with Cassie
and inquiring about the different power options and the manufactures that
produce them, she introduced Thunder Power RC. Thunder Power RC sells
lithium polymer batteries designed and used for custom built RC vehicles.
Cassie navigated through their many different battery series, and with each
series she provided a brief explanation of application; Cassie did suggest one
particular series that is likely be explored. The “G6 Pro Performance 45C Series
Batteries,” which is described by their website as An incredible combination of
performance, power and price8. It turns out that the “incredible price” part did not
exactly meet budget expectations. While the price for batteries on Thunder
Power RC was cheaper relative to other sites, they were still very expensive. For
example, it costs $69.99 for a 2250 mAh 4-Cell/4S 14.8V battery9. This does not

Magic Plank Senior Design - Group 2

12

include the price of a charger and balancer that is needed in order to maintain
proper battery health, which alone can cost upwards of $100. Considering
lithium battery technology being quite pricy, having elected to explore other
alternative battery technologies. The best advantage was to talk with other
members of the robotics club to get their input. One member mined for
knowledge designed a motor controller for the Arduino based of specifications
from Arduino’s website. He designed it in CadSoft’s Eagle PCB design software,
noting that the free version of Eagle PCB was very restrictive and would probably
be useless on any fairly complex design. Fortunately, UCF offers computers that
have the full licensed software, so access to the full version of Eagle PCB will not
be an issue. This led to a conversation with some of the leaders of the robotics
club, namely faculty advisor Daniel Barber and Robotics Club President
Jonathan Mohlenhoff. They were informed of the intent to design a Segway-like
balancing platform, which was met with some concern. They forewarned that,
while designing a balancing platform was a solid concept, there were a couple
major problems with the idea. First, the ability to carry human weight was a
mechanical engineering problem rather than an electrical or computer
engineering problem. Dealing with the ability to support 200 or more pounds is a
design problem in and of itself, which distracts from the computer and electrical
engineering concept of sensor fusion, circuit board design, and software design.
Second, the problem is not very scalable. The first major landmark is to get the
vehicle to balance. If it does not balance, the project does not work. Throwing
some ideas around, they seemed to think that doing a smaller scale project was
a much more reasonable decision. They reasoned that it would eliminate the
headache of designing a platform robust enough to carry human weight, which
would also be cheaper due to smaller motors and smaller batteries. Taking this
advice under consideration, it was decided that the best move forward would be
to make a small prototype that would give a better idea on the feasibility of
scaling up this project. Depending upon the results of the prototype, the decision
to make a full scale self balancing platform will be reassessed. At the moment, it
moving forward with the full scale design is still the plan.

3.2. Skycraft
During research and development of this senior design project prototype for the
self balancing platform, several trips were made to Skycraft Parts and Surplus,
which sells a wide selection of electronic parts and miscellaneous items suitable
for any hobbyist or any scale of homemade projects. The first visit to Skycraft
was to initially gain ideas and look for potential items for the small scale
prototype and possibly move ahead to make a purchases on some usable parts
and electronics. Initial entertaining thoughts of purchasing and implementing
stepper motors, which offer very deliberate and precise movements. However,
controlling these stepper motors is fairly complicated and requires a completely
different and unique control method altogether, or on the other hand; a counter
approach adapting an alternative motor, which would be brushed Direct Current

Magic Plank Senior Design - Group 2

13

motors. Skycraft offered both motors, but the Direct Current brushed motors were
cheaper, larger, and more robust.

Decisively purchasing some 6 - 12 volt Direct Current brushed motors that
appeared to be suitable enough for implementation of the prototype. The motors
then needed to be attached to wheels, so acquiring two sets of wheels: one set
of 6 inch wheels and one set of 3.5 inch wheels. Two different wheel-set sizes
were purchased for the purposes of scalability, especially when dealing with the
software side of the prototype implementation. The code needs to be specifically
custom engineered for each individual size wheel size, so it is imperative to
isolate any dependencies on a specific wheel set so that ease switching between
wheels with minimal impact to the code. In addition to motors and wheels,
possible platforms on which to place the whole system were perused. There
were various materials available for the platform ranging from thin stainless steel
plates to acrylic squares to lexan sheets. Final results concluded with obtaining a
small sheet of aluminum honeycomb, which was the best material in terms of
weight versus tensile strength that surfaced. Furthermore, some quantifiable time
was spent examining power supply solutions and charging solutions as well.
Consequently there only seemed to be a very limited selection of batteries at the
time.

After the first trip, the prototype was deemed ready for building, which is
described in detail later under the prototyping section. Skycraft was visited a
second time to make specific purchases after designs of the prototype was under
way, most notably including a Lithium Ion battery pack, which is described further
under the Power Supply subsection of this initial research section.

3.3. Initial Research of Coding Implementation
Software implementation for the self balancing platform requires much research
and even more testing to see what will and will not work for this project. The
software development for the self balancing platform will be accomplished using
the C and C++ programming languages, since it is readily apparent that higher
level languages just simply do not work on the embedded level and doing the
development in straight assembly is purely unmanageable. The microcontroller
initially chosen for the project, Texas Instruments’ Stellaris, is an ARM Cortex-M3
based processor1, so finding an ARM compiler and development suite is the first
step in the process.

The GCC and G++ compilers do compile for ARM architectures, but the
compilers themselves lack libraries and development environments, so the actual
compiler is relatively useless without libraries to support it. Texas Instruments
provides its own software, Code Composer Studio, for development of its
products. However, the software is not free, and there are other development
environments to explore, such as Keil SDK, which is a set of embedded
development tools for multiple ARM products. While the Keil SDK has many
features for embedded development, it is a very expensive software suite that

Magic Plank Senior Design - Group 2

14

probably does not fit the budget. The cheaper alternative to Keil SDK is the
Sourcery CodeBench by Mentor Graphics2, which is a full set of embedded
development C/C++ development tools developed from the GCC/G++ compilers.
There are several options for Sourcery CodeBench, most notably the Academic
Edition for $99 and the lite edition, which is a free command line version of the
core development tools. While it may not offer as much and may not be as easy
to use as other products out there, the free Sourcery CodeBench lite seems to be
the best decision financially.

Although the Stellaris is a powerful microcontroller with high performance and
versatile functionality, configuring the development environment and getting
feedback from the board is an excruciating process. Despite TI’s attempts to
provide examples for code use and software development, these resources
dwindle in comparison to the community support provided by Arduino, the open
source prototyping platform that utilizes microcontrollers from Atmel and
combines them with a powerful and easy to use Integrated Development
Environment that allows the ease of coding and debugging the system. One such
product in the Arduino line is the Arduino 328, which utilizes the Atmel
ATmega3283. The smaller 32 pin ATmega328 AVR RISC-based microcontroller
may be a step down from the mighty 100 pin Stellaris ARM microcontroller, but
from a software development perspective, the ATmega series provides free and
easy to use development tools that have seemingly endless amounts of
documentation and community support. Developing on ATmega processors with
the Arduino boot loader installed is intentionally easy and takes the pain out of
configuring a device. Under the Microcontroller subsection of the Prototyping
section later in this document, details further decisions regarding decisions in
choosing between the Stellaris and ATmega microprocessors for full scale
development by experimenting with software development in both prototyping
platforms.

Development environments aside, the software development really boils down to
the programming techniques used on this project. Creating a balancing platform
with the use of a gyroscope requires that the program keep track of the
gyroscope’s orientation and attempt to keep the gyroscope level. The
conventional motor control method for keeping sensor readings within a certain
threshold is the proportional integral derivative, or PID, control loop. PID control
typically provides smooth control with minimal overshoot on corrective action.
Although there are easier control methods like bang-bang, proportional (P), and
Proportional-Derivative (PD), taking the extra time to factor in a smooth integral
will be the best payoff for a smooth and efficient system.

Other areas of concern besides the main PID control loop are obtaining sensor
data from the gyroscopes and accelerometers and communicating with the motor
controller. Analog output accelerometers and gyroscopes communicate with a
Pulse-Width Modulation (PWM) signal, which most microcontrollers support.
Digital output accelerometers and gyroscopes, such as the ones found on

Magic Plank Senior Design - Group 2

15

sparkfun.com, communicate using standard I2C protocol. There are a few
different ways to communicate with motor controllers, which can be categorized
by either analog or digital input. Analog input is done via PWM. Digital input can
be done a couple ways. The first is by simulating an R/C signal that sets the
speed and direction of the motor until specified at another time. The second is to
use serial data to communicate the speed and direction of the motors. The main
advantage to using serial data is that the microcontroller can communicate with
the motor controller with just one serial port. In the prototyping development
section, different ways of controlling the motor controller were explored and make
use of what is available on the motor controller that was purchased.

3.4. Power Supply
Researching and designing the power supply for this senior design project took
serious discussions and considerations on what exactly to look for as far as how
to layout the power supply to affect the rest of the system. Power supply was
discussed and considered the many different types of power supplies, what types
of power supplies would be more common and readily available, and the what
exact voltage and milliamp hours needed. Furthermore, with each different
power supply type, different distinguishable physical specifications followed suit.
Most important of these physical specifications are the mass and size; since the
senior design project chosen addresses the “Inverted Pendulum Problem,” mass
and size could make the calculations and eventual building relatively simple, or
more complicated with more equations and counter weights to compensate for
the increased mass and size of the power supply.

Since this project is funded by personal means, finding power supply solutions
that are readily available, simple to implement, cost effective, and easily
replaceable a top priority. In the midst of researching the most common power
supplies currently available; the most common are nickel – cadmium (NaCd),
nickel – metal hydride (NiMH), lithium – ion (Li – ion), and lithium – ion polymer
(Li – poly). Theses power supplies are listed, in order, from the most size, mass,
and cost effective to least size, mass, and cost inefficiency.

After reviewing all physical specifications of each different power supply, nickel-
cadmium power supply solutions were by far the cheapest choice, but
unfortunately these power supplies also have the most mass and size;
additionally, for these particular power supply solution, nickel-cadmium is a
power supply that is comprised of a heavy metal. By their nature, heavy metals
are very toxic and require special care for using this particular power supply
solution; moreover due to the general composition of the nickel-cadmium power
supply, it suffers from the effect know as the “memory effect.” This means that
as the nickel – cadmium power supply becomes older it “forgets” its charge, and
therefore drains much quicker; unfortunately they maintenance to prevent this is
not simple, and could either be damaging to the power supply and/or a very
involved process1. Needless to say, a nickel – cadmium power supply solution

Magic Plank Senior Design - Group 2

16

disadvantages, physical specifications and built in hardware flaws make nickel –
cadmium a less than ideal power supply solution; therefore it is best to no longer
pursuing this particular power supply solution as a viable choice.

Advantages:

 Cheapest Power Supply Currently Available on Market

Disadvantages:

 Most Mass and Size

 Must Be Completely Discharged before Recharging

 Comprised of a Heavy Metal

 Suffers from “Memory Effect”

A lot more focus was poured into research and design theory with nickel – metal
hydride power supply solutions; nickel – metal hydride is currently replacing
nickel – cadmium power supply solutions, for nickel – metal hydride is not
manufactured with any heavy metals, therefore making handling and usage of
these power supplies safer to handle and use. Moreover, nickel – metal hydride
power supply solutions do not suffer from the “memory effect,” and as a result
nickel – metal hydride power supply solution do not have to fully discharged,
which in the cause of a nickel – cadmium power supply solution would damage
the power supply. Instead nickel – metal hydride power supplies can be used
and charged without any worry of negative effects, affecting the overall health of
the power supply solution2. In addition, the way the power supply is
manufactured allows the nickel metal hydride power supply to charge rapidly and
effective, once it has completed it charge cycle it enters a trickle charge state; as
a result this allows the power supply solution to go longer periods of time without
a charge, again with a nickel – cadmium power supply this would cause negative
effects to the overall health of the power supply3.

Advantages:

 Good Balance Between Mass and Size

 Cost Effective

 Can be Charged Regardless of Charge Level

 Provides More Power Than Nickel – Cadmium Supplies

Disadvantages:

 Slightly Less Efficient Than Nickel – Cadmium

 Has a Risk of Becoming Overcharged

 Less Number of Charge Cycle Times Than Nickel - Cadmium

Another major focus of research and design theory is with lithium – ion power
supply; lithium – ion is one of the most popular and widely used and easily
acquirable in many different configurations. Lithium – ion power supply solutions
are low maintenance, compared to both nickel – cadmium and nickel – metal

Magic Plank Senior Design - Group 2

17

hydride power supply solutions. In addition, the way lithium – ion power supplies
are manufactured they provide little impact in the environment; moreover lithium
– ion power supplies have typically twice the energy density of nickel – cadmium,
nickel – metal hydride power supply solutions share the same power densities of
lithium – ion. Furthermore, the self – discharge is less than half compared with
nickel – cadmium; therefore making lithium – ion power supply solutions more
suited to modern electronics4. Over all lithium power supply solutions have
smaller sizes and masses; this due to the inherent nature of lithium being know
as a light metal and highly reactive, being highly reactive means that the lithium
ions will store large amounts of energy; and coupled with carbon, allows lithium
– ion produced in a very light and compact nature5. As a result lithium – ion
power supply solutions are perfect choice for high energy draw electronic
systems with a very low impact on power supply profile and weight.

Advantages:

 Small Mass and Size

 Twice the Energy Density of Nickel – Cadmium and Nickel – Metal
Hydride

 High Energy Efficiency

Disadvantages:

 Dangerous, Overcharging or Over Depleting May Cause Damage

 Expensive

Along with lithium – ion power supply research and design theory, the group
noticed another lithium – ion polymer power supply solutions; lithium – ion
polymer power supply solutions are the newest type of power supply solutions
that entered the market of portable power supplies. Lithium – ion polymer power
supply solutions act very similar to lithium – ion as far as operation and
application; however, lithium – ion polymer power supply solutions are indeed a
very different than lithium – ion. Lithium – ion polymer use a thin layer of plastic
instead of the porous separator soaked in electrolytes, this allows the exchange
of lithium ions without causing electrical conductivity4,6. Furthermore, in more
commercial production of lithium – ion polymer power supply solutions gelled
electrolytes are used; this eliminates the need for a metal shell around the cells.
Moreover, the gelled electrolytes enhance the overall capacity of the lithium – ion
polymer power supply4,6.Lithium – ion polymer power supply solutions
manufacturing process is not confined by standard cell formats, coupled with the
lack of a hard metal shell allows the lithium – ion polymer power solutions free
form factor. The free form factor allows lithium – ion polymer power supplies to
achieve profiles that resemble credit cards; cells can achieve thicknesses of one
millimeter4,6. The ability to use lithium – ion polymer would provide great
advantages with is extremely low impact on size and mass to the overall design;
unfortunately, lithium – ion polymer power supply solutions are relatively new on

Magic Plank Senior Design - Group 2

18

the market, they are expensive and using new technology can have potential
risks.

Advantages:

 Small Mass and Size

 Very Thin Profile

 Twice the Energy Density of Nickel – Cadmium and Nickel – Metal
Hydride

 High Energy Efficiency

Disadvantages:

 Dangerous, Overcharging or Over Depleting May Cause Damage

 Expensive

After all the initial research and design theory for the most common power supply
solutions available, whittling down to a three way between nickel – metal hydride,
lithium – ion, and lithium – ion polymer power supplies. Nickel – metal hydride,
because this power supply solution is readily available, a well all around balance
of size and mass, manufactured to be used in various applications. The group
would not have any issues looking for nickel – metal hydride power supply of
voltages and milliamp hours; moreover nickel – metal hydride power supply
solutions are inexpensive and reasonably easy to procure replacements. Lithium
– ion power supply solutions, because of very high power density couple size
and mass, very low impact on mass and size to overall build and calculations,
and excellent idle/self discharge; similarly, to nickel – metal hydride power supply
solutions, lithium – ion power supply solutions are readily available and
manufactured to be used in various applications. However, lithium - ion power
supply solutions are more expensive that nickel – metal hydride; yet, coupled
with all the advantages of using a lithium – ion an increase in cost is acceptable
trough cost analysis. Lithium – ion polymer power supply solution, because the
low profile and thin each power cell can be, the higher energy density per cell
over lithium – ion power supplies, and overall enhanced capacity of lithium – ion
polymer power supply solutions. Nevertheless, lithium – ion polymer carries a
higher cost just like lithium – ion, and through cost analysis with all the
advantages lithium polymer power supply solutions have the price per cell make
this power supply a viable choice.

Prior research began by looking online as the main way of purchasing and
procuring necessary power supply solution. From advice given by Cassie
Puklavage, a treasurer with the Robotics Club, an option looked at was Thunder
Power RC as a primary choice for lithium – ion polymer power supply needs7.
More specifically scrutinized at their G6 Pro Performance 45C Series LiPo
Batteries. Thunder Power RC offered a very large variety to select from, and it
took some time reading and analyzing all the viable power supply solutions, but
after some time found TP2250-4SPP45, a 2250 milliamp hours/4 cell 14.8 volts

Magic Plank Senior Design - Group 2

19

lithium – ion power solution. This met the required specifications nicely, with
extra volts for some extra breathing room.

The nickel – metal hydride power supply solution was found through
Lynxmotion10 via Dimension Engineering8, the same location where the motor
controller was purchased9. Lynxmotion has an ample supply of nickel – metal
hydride power supply solutions to choose from; however, due to current
standards for manufacturing nickel – metal hydride power supplies, there is less
subtle variations and more pronounced distinctions between power supply.
Luckily the necessity for a power supply, is a standard variation in nickel – metal
hydride power supply solutions. The BAT – 06 nickel – metal hydride power
supply would provide 2800 milliamp hours/10 cell 12.0 volts of sustained power11.
This nickel – metal hydride power supply would provide more than enough
milliamp hours; however, since the voltage is the exact amount needed we need
to double check all mathematical calculations and physical connections to verify
no possibility of over draw on the nickel – metal hydride power supply.

The lithium – ion power supply resolved initial intended to purchase online via
eBay or Amazon; however, on one particular purchase run for parts from
Skycraft12, a local store that purchases and sells parts and surplus, a quick pass
through their power supply and batteries section and were pleasantly surprised to
find some lithium – ion power supplies being sold. This particular lithium – ion
power supply, 2400 milliamp hour 14.4 volts would provide the perfect balance
power density and run life coupled with all the amazing advantages of lithium –
ion power supply solutions. It would permit for more than adequate power in the
initial prototype implementation and as well as the possible final design
implementation, without any fear of over drawing power and damaging the lithium
– ion power supply solution.

After debating the advantages and disadvantages of all the power supply
technologies that were explored, and satisfactorily choosing nickel – metal
hydride as a preferred power supply solution. Since nickel – metal hydride is a
decent middle ground of price vs size and mass performance. Nickel – metal
hydride energy density ranges from 60-120 Wh/kg(12), which can be expected as
a typical large supply to perform at around 70 Wh/kg. While it under performs the
110-160 Wh/kg lithium – ion power supply solutions, a typical lithium - ion power
supply runs at a significantly steeper price. The TP2250-4SPP45 lithium – ion
polymer power supply found at Thunder Power RC costs around $70; moreover,
this price does not include the charger, which would cost another $100.
Comparing this to the BAT – 06 nickel – metal hydride power supply with $25
charger found at Lynxmotion, nickel – metal hydride is the clear winner in the
price battle. However, while searching for parts at Skycraft, taking a quick pass
through their power supply and batteries section and were pleasantly surprised to
find a few Li-ion power supplies being sold. The group acquired a 2400 milliamp
hour 14.4 volts power supply, charger, and appropriate connective wiring for the

Magic Plank Senior Design - Group 2

20

combined cost of around $15, a price that is impossible to ask from anything but
a surplus store. While being fortunate enough to obtain this rare find and intend
to use this battery at least in the prototyping stage, there may still be a result in
buying a nickel – metal hydride power supply in the event that something
happens to this battery or it is not sufficient to power the final design
implementation. Table 3.4-1 provides a summarization of the researched power
supplies and their properties.

Model
Number

Type Cells

Voltage
V

Battery
Life
mAh

Price
$

TP2250-
4SPP45

LiPO 4 14.8 2250 $69.99

BAT-06 NiMH 10 12 2800 $39.99

CGA18650/4 Li-Ion 4 14.4 2400 $12.50

Table 3.4-1: Summarization of power supplies and properties.

3.5. Steering Implementation
In order to insure that the rider on the motorized self-balancing scooter is able to
control the direction that the scooter is moving in an effective but still creative
manner, several different approaches were considered to implementing the
steering system. Because of the general complexity of the project being miles
above that of a standard scooter, a simple implementation which would have the
steering mechanism directly control either the wheels or the motor controller is
simply just not plausible. It was important to make sure that the method chosen
was both practical and affordable, but still had enough flare in it to make it a
worthy endeavor. Another point necessary to factor in was that the steering
method implemented can’t be too complex that it would overly complicate the
scooter’s self-balancing design when the two algorithms are integrated together.
To this end, three different methods explored to successfully implementing the
scooter’s steering: grip steering, twist steering, and tilt steering.
All three different implementations initially narrowed the search to include for
steering would involve some modification of the self-balancing scooter’s steering
column. The steering column is nearly identical to what is seen on many modern
scooters, motorized or otherwise. As depicted in Figure 3.5-1 in a similar design,
the steering column’s design is a general ‘T’ shape which provides grips on the
upper bars to assist with the personal balancing of the rider. The actual
connection of the steering column to the self-balancing scooter would vary based
on the design of the selected solution to satiate steering needs.

Magic Plank Senior Design - Group 2

21

Figure 3.5-1: Possible implementation of steering.

The grip steering concept initially seemed to be the most obvious solution, as
many modern mainstream self-balancing scooter models initially were designed
with the same steering method. The grip would be attached to one of the T-bars
from the steering column, providing easy access to the rider. Grip steering works
similar to how a throttle grip works in that as twisting a throttle grip forward sends
a signal which is received by the motor and instructs it to increase the vehicle's
acceleration proportional to the degree at which the grip was twisted, a steering
grip would send a similar signal to the microcontroller which would be translated
as the direction the driver wished the vehicle to turn. The actual direction of the
turn would be relative to the twist on the grip: a twist away from the driver on the
grip would translate into either a left or right turn, while a twist towards the driver
would result in a turn in the opposite direction. This system is rather intuitive, as
most people are familiar with the grip throttles equipped on many motorcycles so
use of such an implementation would be easy to learn; however, the average
price of the full system ranges anywhere from $60 to well over $150, so the
research continued into other possible solutions.

Twist steering was another viable option. Most non-motorized scooters operate
via twist steering, utilizing the twisting of the steering column to physically change
the direction of the leading wheel, resulting in the scooter changing direction
according to the orientation of the twist. Because the design of the self-balancing
scooter has wheels parallel to each other and located through the platform’s
center of gravity, there is no leading wheel for the steering column to directly
control; also, the steering implementation cannot directly control the behavior of
the wheels alone due to the factor of the balance of the platform being another

Magic Plank Senior Design - Group 2

22

variable that the microcontroller must account for and be able to alter the steering
and throttle accordingly for. While it is possible utilizing the gyroscope on board
the Inertial Measurement Unit to detect the twist of the steering column and
report that information to the Arduino Atmel processor development board in
order to communicate the desired steering directions, this path seemed rather
troublesome for system that was well overdone. It is a possible solution to our
steering initiative as it is both cheap and effective, but it was decided to continue
searching to see if something fit our design a bit better.

Tilt steering is the system used by the more recent designs of balancing
scooters. This design, just like the previous two, utilizes a steering column which
will be used to transmit the driver’s steering decisions. The way the driver of the
self-balancing scooter would operate the steering in this design is similar to that
of the twist steering design. Both tilt steering and twist steering involve the
physical manipulation of the steering column rather than through some other
electronic medium such as the grip steering; however, unlike with twist steering,
tilt steering operates by having the steering column able to pivot to the left and
right, affectively allowing the user to “tilt” the steering column in the direction that
he/she would have the self-balancing scooter turn.

Implementing the steering column’s ability to pivot left and right is as simple as
attaching it to a stationary joint mounted to the platform which the driver will be
standing on. With the steering column correctly attached to the mount joint, the
task of communicating the direction that the column has been tilted is as simple
as physically attaching the Inertial Measurement Unit to the steering column.
Because the gyroscope on the Inertial Measurement Unit is capable of detecting
and communicating three degrees of movement, it would be able to detect both
the movement of the steering column and the change in the tilt of the standing
platform, as the joint that the steering column is attached to is mounted directly to
the platform; because of this, any change in the tilt of the standing platform
directly affects the tilt of the steering column. This implementation is not only
cheap and plausible but, because it utilizes the gyroscope aboard the Inertial
Measurement Unit which is already reading information from the tilt of the
standing platform, coding it to interpret the data it receives will be a relatively
simple task. Because of these factors, tilt steering was the steering system that
was initially decided on to implement on this project.

Upon researching the possible steering implementations for prototype balancing
board, however, stumbling upon the idea of simply using the same steering
system for the full-scale project as was done for the prototype. Doing so would
not only be less expensive, as it would not require purchasing any additional
parts or engineer any new type of pivot devices, but permitting the project to
have the majority of the work already completed ahead of time as implemented it
with the prototype. Because the prototype’s design was to test out the core
mechanics of the steering and throttle of the full-scale project, the transition from

Magic Plank Senior Design - Group 2

23

moving the code from the prototype over to the motorized balance scooter should
be painless. Another perk of using the prototype’s steering method is that,
because the chosen design model was the Nintendo Wii wireless remote
controller, the possibility exists that the platform could even use an adapter for
the controller which attaches it to a plastic steering wheel, adding a touch of
originality in using a car-like steering wheel to drive a motorized scooter. A
summary of the factors which contributed to our decision is displayed in Table
3.5-1 below.

 Average Price Ease of
Implementation

Grip Steering Steering Rod:
$35

Steering Grip:
$105

Required to
translate input
via code from
steering grip

Twist Steering Steering Rod:
$35

Pivot: $20

Required to
utilize

gyroscope to
detect steering

commands

Tilt Steering Steering Rod:
$35

Pivot: $20

Required to
utilize

gyroscope to
detect steering

commands

Bluetooth
Steering

Free / Parts
Already

Acquired

Already
Designed

Advantage: Bluetooth Bluetooth

Table 3.5-1: Description of various forms of steering and the ease of
implementation of each type.

3.6. Switching Voltage Regulator
While conceptually designing how the Texas Instruments Stellaris
microcontroller1, Dimension Engineering Sabertooth dual 12A motor driver,
Sparkfun Electronics’ IMU Fusion Board3, HTI 12V motors, and power supply all
connect with one another; realizing that though the HTI 12V motors connect to
the Dimension Engineering Sabertooth dual 12A motor driver which then
connects to the Texas Instruments Stellaris mircrocontroller, as well as the power
supply. However, the Sparkfun Electronics IMU Fusion Board is combination of
an accelerometer and gyro scope and acts as speed and angle measurement
senor and feeds the data into the Texas Instruments Stellaris microcontroller; as
a result, the Sparkfun Electronics IMU Fusion Board does not receive any power
and will need either a secondary power supply or power routed from the power

Magic Plank Senior Design - Group 2

24

supply, then stepped down so not to over load the Sparkfun Electronics IMU
Fusion Board.

The first approach to this problem by considering to attach a second lead to the
positive lead of the power supply, then using a voltage step down to reduce the
input voltage to prevent overloading the Sparkfun Electronics IMU Fusion Board.
Unfortunately, this particular method would have to be custom tailored for our
implementation; consequently the cost and the time to research would otherwise
place valuable finances and man power required for our senior design project.
Therefore, as a group decision voted on to explore other options to address our
current power supply and the Sparkfun Electronics IMU Fusion Board problem.

During a senior design group sessions it was suggested that additional
exploration of linear voltage switches. Through a major electronics part
distributor, Digi-Key Corporation, the group found LM7805CT-ND linear voltage
switch. The LM7805CT-ND could take an input voltage up to 35 volts and step it
down to a constant 5 volts. At first, the group thought a LM7805CT-ND switch
was a possible solution to our power diversion problem; indecently, this also an
inefficient solution when considering how the LM7805CT-ND takes care of the
excess power from the power supply. The LM7805CT-ND takes the extra power
from the power supply and using the integrated heat sink, the power is bleed off
as heat. This particular solution would be an acceptable when deal with
alternating current, but when using a direct current power supply, trying to save
and recycle as much power as possible is a top priority.

Two of the Computer Engineers on the team, Stephen Fraser and Brian Jacobs,
found that Dimension Engineering manufactures, recommends, and sells a
switching voltage regulator, DE-SW050 5V 1A Switching voltage regulator6. A
voltage switch acts very similar to a linear voltage, except it siphons small
amounts of energy at set intervals. This allows the DE-SW050 5V 1A Switching
voltage regulator to efficiently use the power from the power supply in small
amounts to minimize the bleed of the excess power as heat. The DE-SW050
can handle up to 30 volts input and output a constant 5 volts. The DE-SW050
makes the perfect choice for using a Direct Current power supply, without worry
of any inefficiency

Using the equation, “Power Wasted = (Input voltage – output voltage) * load
current7.” The group found DE-SW050 5V 1A Switching voltage regulator to be a
more efficient choice. The obvious choice was made clear to purchase the DE-
SW050 5V 1A Switching voltage regulator. The initial concerns of power supply
life, efficiency and over all synergy of circuit implementation are now laid to rest,
and now, research and design with software can begin.

Magic Plank Senior Design - Group 2

25

4. Prototype
In order to answer some pertinent questions about designing the self balancing
platform, it was decided to first design a small scale prototype. This section
details findings on hardware selection, high level design decisions, and software
approaches to solving the problem at hand. The initial concept was to build a
platform that basically resembled Segway’s line of Personal Transporters. As
detailed in this section, much more than the traditional style was explored beyond
the Segway’s line of PT’s front-facing orientation with scooter-like steering
column. In particular, steering and acceleration mechanisms are explored in-
depth with a few innovative variations on the conventional handlebar style
steering mechanism. In addition to the control scheme, the hardware selection
was reevaluated and re-imagined at almost every aspect of the hardware
selection. From high level conceptual design to the low level hardware and
software design, the group has undergone several important revisions that have
helped obtain a better understanding for designing the final product. Although
there are some uncertainties still looming, the prototype has answered the most
important questions and gained group confidence in the final design
implementation.

4.1. Prototype Test Environment

4.1.1. Test Environment

The test environment will have a UART coded specifically for the ATMEGA 328P
Arduino Uno Development Board. Since this project utilizes the Bluetooth RN –
42 and have access to a laptop with Bluetooth capability. The mathematical
results, from the software UART of the Arduino Uno, and positional data, from
the hardware UART of the Bluetooth RN -42, will be displayed on the Bluetooth
enabled laptop. At the this time documentation will be compiled and comparing
both sets of data to make real time adjustments to the software, angle of incline
governor, speed governor, and acceleration governor and project the change in
results; additionally, determine any fine – tuning that may need to be done to the
platform. The code, done in a variation of C++ will be cross – compiled loaded
into the ATMEGA 328P Arduino Uno Development Board to run.

4.1.2. Test Goals

With a completed prototype implementation, testing begins entailing how the
prototype could handle forced stationary movements, such as simply turning
either to a clockwise motion or a counter – clockwise motion while not having to
achieve true independent balance. After completion of forced stationary trials
move forward to test the platform in a stationary position without any assistance
to keep the plat form upright. After successfully turning the platform clockwise
and counter – clockwise with any balancing assistance, the project moves
forward to the second round of testing.

Magic Plank Senior Design - Group 2

26

Second round of testing consists of very similar trials, except trial runs of the
platform ability to move forward and to move backward. As before, with the initial
test round experimenting with the platform’s balancing assistance. Once
sufficient data is gathered from the first test the balancing assistance will be
removed, and test the platform’s ability to move forward and backward. During
this time the group will gather test data; after completing all test data collection.
The data collection will be cross referenced and any necessary calibrations will
be made.

The third and final test round will combine both first and second round testing; in
addition, this testing round will be further evaluated for final calibrations.
Spending much time in the prototype test phase will allow evaluation of very
similar problems to building the final implementation. Furthermore, the test data
gathered during this test phase can and will be carried on to our final
implementation build.

4.1.3. Test Stages

Test one of the round one tests will test the effectiveness and responsiveness of
the platforms ability to turn in a clockwise motion and in a counter – clockwise
motion. During this initial test balancing assistance will be provided; this test is
not to test the balancing capabilities, but the turning itself. The platform reactions
to the command physically will be under observation; additionally observing the
results of the UARTS to see how software is processing the data as well as the
commands given to transition turns. During the observations test data will be
collected, these tests assess effectiveness and responsiveness of the platform.
After assessing the platform’s results, use the assessments, in fine – tuning the
timing of the turns. Having the platform properly tuned is extremely important.
For instance, if the platform responds to slow, it will turn in a similar manner. This
sluggish response to turning commands may not provide the “First In First Out”
buffer with enough data in the Inertial Measurement/Moment Unit Fusion Board
for the ATMEGA 328P Arduino Development Board to process. Therefore,
sending insufficient data to the motor controller will provide less than acceptable
turning. Moreover, having the platform turn too fast will place to much measured
data into the “First In First Out” buffer an overload the Inertial
Measurement/Moment Unit Fusion Board. This will cause important measured
data to drop from the buffer, and the Arduino Uno Development Board will suffer
from data loss as a result of the buffer being overloaded. This in turn, will cause
improper data results to be relayed through the UARTS. Once we have
perfected the timing, the balancing assistance will be removed and we will
perform the second test. The second test is exactly the same as the first test; we
will again test the effectiveness and responsiveness of the platform as it turns in
a clockwise and counter – clockwise. We will observe and gather test data and
rate the effectiveness and responsiveness while the platform balances itself.
With the data gathered from both tests in this stage, we will review and compare
both sets of results to determine if further tuning and calibration is required.

Magic Plank Senior Design - Group 2

27

With the successful conclusion of round one tests we venture forward into
second round of tests. Here we test the performance and sensitivity of the
platform ability to move forward and to move backward. As before we will attach
balancing assistance to record and document base test data; analyzing this data
will determine if further calibration must be done. Again the platform must move
and accelerate at an optimal speed for the Inertial Measurement/Moment Unit
Fusion Board to measure data to store in the “First In First Out” buffer. If the
platform accelerates/decelerates or moves in either direction to slow the buffer
will not have take enough data readings and this would negatively affect the
performance; additionally, with the buffer not having enough important packets of
data the sensitivity of the platform will severely suffer causing much dismay to
the user and overall performance of the platform. On the opposite side of the
spectrum, if the platform sensitivity is too high, this will cause the platform to
accelerate/decelerate or move in either direction to fast. As a result, too much
data will be measure and therefore an overload of data will be present in the
“First In First Out” buffer. Consequently, this will cause the buffer to drop
important packets on measured data; this will negatively affect the performance
of the platform. For example, if the platform is accelerating/decelerating too fast
in either direction and the platform is at an angle of incline where correcting it
could cause the platform to over correct and lose equilibrium. This would be
caused because the rate at which the Inertial Measurement/Moment Unit Fusion
Board is measuring data faster than the buffer is sending to the ATMEGA 328P
Arduino Uno Development Board for processing. Hence, any data measured by
the Inertial Measurement/Moment Unit Fusion Board will be dropped for the “First
In First Out” buffer will be full.

In our third and final round of testing we combine clockwise, counter – clockwise,
forward and backward movements. In the previous rounds of testing, we
specifically tested each individual movement with balancing assistance,
documented the results, process and refine the data to make final modifications
to each movement. These modifications and documented data will permit to gain
the foresight and ability to assess potential problems we will face in this stage of
testing as well as in our final implementation. To gather our base test data for
our third and final state, we will enable balancing assistance with the platform.
Here we will conduct extended maneuvers that will test both the platforms ability
to turn in clockwise and counter – clockwise, as well as accelerate/decelerate
forward and backward. Extended maneuvers will consist of combination of
making gradual clockwise and counter – clockwise turns while moving forward
and backward. Moreover, the maneuvers will also comprise of immediate
clockwise and counter – clockwise turns while moving forward and moving
backward. The extended maneuvers will test the modifications we have made in
the previous first and second stages; additionally we document the performance
of the platform when both sets of movements. Once we conclude our data
documentation we will cross reference results and rate performance and

Magic Plank Senior Design - Group 2

28

responsiveness; we will make the final major calibration to software and tuning to
the motors. Following the conclusions of first test of the final stage, we will
remove the balancing assistance and conduct the same tests of combination of
making gradual clockwise and counter – clockwise turns while moving forward
and backward and immediate clockwise and counter – clockwise turns while
moving forward and moving backward. During the last test we take our final
documentations and refinements.

4.1.4. Test Data and Expectations

Within each stage, within each test, we record and document the results. The
results are then used assist in the process of refinement and enhancement to the
balancing platform. Each stage, each test will be of assisted trial and error and
require multiple runs. The data gathered will provide the foresight and ability to
anticipate problems that we will face with building our final implementation.
Furthermore the data we gather and document can project how changing
environmental variables in our software, angle of incline governor, speed
governor, and acceleration governor will interact with the larger capacity
electronic and physical hardware. We expect that keeping the documented test
data from the prototype build will provide a great advantage come time for our
final implementation.

4.1.5. Test Conclusion

The three stage processed proved to be highly effective in diagnosing and
addressing both software and hardware issues of our balancing platform.
Through each stage, and each tests we were able to identify a immediate
problem as well as a potential problem that would arise later in the prototype
tests and prototype implementation. However, the trials were not free from
frustrations; we would experience having to run a state test multiple times to try
narrow down a problem and multiple tests in order to test weather our solutions
and corrections would work effectively. Moreover, we would find ourselves
during more than one occasion solving a problem in stage test, and then having
to revert back to a previous step in order to identify another problem that had
arisen; as the saying goes “One step forward, two steps back.” Fortunately, we
found that when faced with a situation as such that approaching the problem in a
different mindset and implement a different calibration, or solution would solve
both problems at the same time. From our combined experience and data
collected from the various state tests’ we are confident that we are going to be
able to work through the final implementation build with no fear of being ill –
prepared.

4.2. Hardware Selection

4.2.1. IMU (Inertial Measurement Unit)

During development of our prototype, we have come to some conclusions for
some of the individual components of our self balancing platform. Since the

Magic Plank Senior Design - Group 2

29

platform hinges specifically upon the gyroscope and accelerometer, we start with
these parts and work our way outward. The gyroscope and accelerometer
combine to produce the Inertial Measurement Unit (IMU). In order for the IMU to
produce any valuable output, there is some processing involved in combining the
gyroscope and accelerometer data into rotation and motion data, which is usually
handled by the microcontroller. We have decided to use digital output
gyroscopes and accelerometers, which typically give output via Inter-Integrated
Circuit (I2C) interface. Based on Sparkfun Electronics’ IMU fusion board that we
are using for prototyping, we think that InvenSense’s IMU-3000, as seen in
Figure 4.2.1-1, is sufficient to do the job. The IMU-3000, despite the name, is not
a full IMU, but a gyroscope that takes in an off-chip accelerometer and combines
the gyroscope and accelerometer data into a single interface. This makes the
microcontroller interfacing simpler by providing burst data through the chip rather
than having to worry about reading two separate units. The IMU-3000’s triple axis
gyroscope has a programmable range of ±250, ±500, ±1000, and ±2000°/s. We
anticipate having to only use the most precise range at ±250°/s, since the
balancing platform will not be rotating at any extreme rates. The accelerometer is
input through I2C interface onto the chip, which is then combined with the
gyroscope data and output through a singular I2C interface to the microcontroller.
InvenSense also claims to support what they call MotionFusion™ technology,
which delivers already processed acceleration and rotation data to the
microcontroller, but this requires configuring InvenSense’s code, which seems to
be problematic based on some user reviews on the chip. As it stands, the IMU-
3000 can still deliver both gyroscope and accelerometer data in a combined
format, but further testing will determine whether or not we can utilize this chip to
its full potential.

Figure 4.2.1-1: IMU-3000 block diagram.

With the IMU-3000 selected as our gyroscope, we still need an accelerometer.
Sparkfun Electronics’ IMU combo board comes with the ADXL345 3-Axis Digital
Accelerometer from Analog Devices. This accelerometer is capable at operating

Magic Plank Senior Design - Group 2

30

at a programmable range of ±2g, ±4g, ±8g, and ±16g. As with the gyroscope, we
plan on using the most precise mode of operation at ±2g. It is capable of
operating at a maximum output resolution of 13 bits and can communicate over
I2C interface. While we will be working with this accelerometer on our prototype
and will likely use this accelerometer in the final design, there is another
comparable accelerometer that we may wish to use due to slightly increased
accuracy over the ADXL345. Bosch’s BMA180 3-Axis Digital Accelerometer is
capable of operating at the more precise ranges of ±1g, ±1.5g, ±2g, ±3g, ±4g,
±8g, and ±16g and at a maximum resolution of 14 bits. The increased resolution
and accuracy of this accelerometer is desirable, especially since the price of the
BMA180 is comparable to the ADXL345. The only drawback is redesigning code
to work with the new accelerometer and redesigning the interface to work in
conjunction with the IMU-3000. At the moment, we plan on keeping the ADXL345
for our current design, but are keeping in mind the possibility of switching to the
BMA180 in the event that more precision is needed out of our accelerometer.

The board we purchased, as seen in Figure 4.2.1-2, is a full combination
gyroscope and accelerometer board with the pins to the IMU-3000 broken out for
easy access. There is an on-board connection from the ADXL345 Accelerometer
to the IMU-3000. In addition to the proper connections between components,
there is a 3.3V regulator for safety and convenience.

Figure 4.2.1-2: ADXL345 and IMU3000 IMU Fusion Board from Sparkfun.

4.2.2. Motor Controller

With the accelerometer and gyroscope chosen, the next important piece is the
motor controller. As suggested from our visit to the Robotics Club, we have
decided to choose a Sabertooth motor controller from Dimension Engineering1.
This motor driver is advertised as a synchronous regenerative motor driver that
recharges the system’s batteries whenever the motors slow down or reverse.

Magic Plank Senior Design - Group 2

31

The Sabertooth 2x12 Dual 12A Motor Driver is capable of driving two brushed
motors with up to 12A of continuous current and 25A in bursts. It is capable of
providing up to 18V to each motor and comes with a built in 1A switching 5V
Battery-Elimination Circuit (BEC) which is capable of powering the
microcontroller. It has a lithium cutoff mode that allows it to operate with lithium
power supplies, but this mode is optional, which allows for this controller to be
powered using a wide range of different power supply solutions. The Sabertooth
features its own microcontroller, the ATmega88PA, for handling commands from
the main control device. There are four modes of operation for this controller:
Mode 1- analog input via PWM; Mode 2 – R/C input using two standard R/C
channels to set the speed and direction of the motor; Mode 3 – simplified serial
using RS-232 serial data to set the speed and direction; Mode 4 – packetized
serial using RS-232 serial data packetized into an address byte, a command
byte, a data byte, and 7 bit checksum. During the development of the prototype,
we explored the usage of PWM control, simplified serial control, and packetized
serial control with both the Texas Instruments Stellaris LM3S8962 and Arduino
Uno R3 prototyping boards.

4.2.3. Microcontroller

The first microcontroller chosen for this project was initially the Texas
Instruments Stellaris 8962. This ARM Cortex M-3 RISC microcontroller is
capable of operating at up to 100 Million Instructions Per Second (MIPS). The
primary reason for choosing this microcontroller was due to the TI workshop held
at UCF where each person who attended was given a Stellaris LM3S8962
evaluation board free of charge. This 100 pin microcontroller is a very powerful
solution with an I2C interface, three Pulse Width Modulation generatorsm two
UART interfaces, and a seemingly endless amount of fully programmable digital
input pins. Even though this is a very powerful choice, using the development
environments needed to program the microcontroller was a confusing process
that seemed to be going nowhere. Hours of work configuring TI’s development
environment Code Composer Studio followed by hours of work trying to
understand the chip led us to the reconsider our microcontroller choice and
choice of development environment.

During our reevaluation, we looked toward Arduino, the Italian based open
source prototyping platform. Arduino uses Atmel microcontrollers in conjunction
with a free and open source Integrated Development Environment (IDE)5.
Arduino’s prototyping platforms are designed specifically for easy and rapid
prototyping right out of the box with plenty of documentation and community
support for all Arduino products. There are two main microcontrollers that
Arduino supports: the ATmega328 and ATmega2560. The ATmega2560 is the
most comparable microcontroller to the TI Stellaris 8962. They are both 100 pin
microcontrollers with plenty of options for I2C, UART, and PWM interfaces, but
the ATmega2560 underperforms the Stellaris by a wide margin, operating at 1
MIPS per MHz up to a frequency of 16 MHz giving a maximum instruction

Magic Plank Senior Design - Group 2

32

throughput of 16 MIPS6. This may be only a fraction of the performance of the
Stellaris 8962, but it is still sufficient for the main task of reading accelerometer
and gyroscope data, processing it, and outputting it to the motor controller. In
fact, we can even look at the lower performing ATmega328, which is a 32 pin
microcontroller with just a single I2C port and a single UART port. Our design
really only requires interfacing through one I2C port to communicate with the
Inertial Measuremenr Unit (IMU) and a UART port for serial communication with
our steering mechanism. The ATmega328 is capable of operating at a maximum
frequency of 20 MHz at the same 1 MIPS per MHz rate, giving it a maximum
throughput of 20 MIPS7. The Arduino Uno operates the ATmega328 at a
frequency of 16 MHz8, giving us 16 MIPS, so for prototyping purposes, the
microcontroller would be operating at this frequency. While analyzing our needs,
we decided that the larger ATmega2560 was too much processing power for our
purposes, making the ATmega328 our Atmel microcontroller of choice. With our
new evaluation of our bare minimum needs for this project, it is clear that the
previous choice of the TI Stellaris 8962 is much more than what we need, and in
the end, is simply wasteful both from a power consumption perspective and from
a development time perspective. The ATmega328 in conjunction with Arduino’s
IDE and development libraries make the development process much simpler,
which will allow us to more aptly achieve our goals. Based on these factors, we
have acquired the Arduino Uno R3 for further development of our balancing
platform prototype.

4.3. Hardware Implementation

4.3.1. Remote Control

Because the prototype balance board was constructed primarily for the purpose
of proof of concept, it was scaled down to a size which would render the steering
and acceleration controls of the full scale model impractical to implement. To
control the general movement of the prototype, it was decided to operate the
vehicle via remote control. By implementing remote control, it allowed the ability
to easily test the prototype's self-correction algorithm through varying speeds and
turning rates without needing any direct contact with the device and whilst
avoiding any potential complications that could arise from having to follow it
around with a wired controller. Controlling the prototype via remote control also
provides the project with another challenge, however, as it was another area of
unfamiliar ground which needed to be researched.

The first task was to narrow down the different types of remote control solutions
that could be implemented into the prototype that were compatible with the
design that had been envisioned. A primary difficulty that was encountered was
the fact that a fair amount of the remote control implementations that were
encountered were very inflexible, as they were designed with a specific type of
product in mind. Because of this, these devices are built in such a way that they
would only interface directly with a motor controller. While this would normally be

Magic Plank Senior Design - Group 2

33

ideal since, conceptually, one would want the remote controller to be able to
directly influence the throttle and steering of the prototype balancing board, this is
not a viable solution to this particular design since the board has several other
factors it needs to consider which dictate the speed of the prototype other than
just the input from the controller. To this end, it was needed to narrow the search
down to remote control receivers which could interface directly with the Arduino
development board so that the information the receiver would have received from
the controller could be read in, interpreted and translated into the correct
directions, combined with the information received from the gyroscope and
accelerometer on the Inertial Measurement Unit, and analyzed so that the micro-
controller can make an informed decision as to the correct course of action to
take.

Our initial idea in the process of implementing a remote control system on the
prototype was to use a radio control device. Radio control seemed to be the
obvious option, as the technology is relatively simple and is something that
everyone in the group is familiar with. To this extent, the Futaba 3PRKA 2.4GHz
S-FHSS 3-Channel Radio System was acquired. This appeared to be a viable
solution to the task, as the system included all the necessary components
required for the operation of a generic R/C car (which, since all that was required
of the system was the ability to accelerate, decelerate, and turn, seemed to be a
perfect fit). The system included a 2.4GHz 3-channel receiver which could
interface directly with the Arduino development board, an intuitive transmitter
which allowed for the fine tuning of both the steering and the throttle, and a fail-
safe which disables the device should it move out of range of the transmitter. The
only flaw with using the Futaba 3PRKA 2.4GHz S-FHSS 3-Channel Radio
System is the fact that, because it is an entire kit designed specifically for use
with standard hobby shop R/C cars, it is difficult to interface with it as there is little
to no information available on the protocols it uses to communicate with. Without
this information it would have been difficult, if not impossible, to use it to fit the
needs of the prototype.

Because most of the radio control alternatives that were researched would either
stretch the finances too thin or be unusable due to the lack of information on their
communication protocols, a Bluetooth-based solution was instead implemented
to the remote control initiative. Utilizing the Bluetooth SMD Module – RN – 42
enables the ability to control the balance board through any Bluetooth-enabled
device with the proper software that supports SPP, from a cell phone to a laptop.
The SMD Module – RN – 42 is an ideal wireless communication device for the
prototype, as it provides an acceptable transmission range of 60 feet for the
prototype1. Another perk of the device is its low power consumption, consuming
only 26 uA while in sleep mode and a maximum of 30 mA while transmitting1. The
low power consumption makes this solution perfect for the battery-powered
design. The SMD Module – RN – 42 also supports multiple interface protocols
(including UART), making it flexible enough to give options as to how to have it

Magic Plank Senior Design - Group 2

34

communicate with the Arduino development board. The SMD Module – RN – 42
also comes with built-in error correction for its data transfers, guaranteeing
packet delivery1. Finally, the SMD Module – RN – 42 comes equipped with auto-
discovery and auto-pairing with other Bluetooth devices, making its process of
connecting with the chosen controller require no additional software
configurations1. A summary of the comparison between the Bluetooth
implementation and the radio control implementation is shown in Table 4.3.1-1
below.

 Average
Observed

Price Range

Communication
Protocol

Availability

Bluetooth $15 - $40 for
receiver

$30 - $50 for
transmitter

Unknown /
Unique to each

device

Widely
Available

Radio Control $15 - $50 for
receiver

UART Serial,
USB

Widely
Available

Advantage: Bluetooth Bluetooth Tie

Table 4.3.1-1: Description of control implementations and their
advantages.

Fitting the SMD Module – RN – 42 into the design is a simple enough task, given
the versatility of the Arduino development board. The SMD Module – RN – 42
can interface directly with the Arduino development board, allowing it to provide
the feedback it receives from the remote controller directly to the board. The
Arduino development board is then able to interpret the information via the UART
interface protocol and output these commands to the motor controller, effectively
allowing the SMD Module – RN – 42 to control the behavior of the motor
controller as intended while not requiring direct control of the motor controller.

In order to interface with the Arduino development board, it was required to
research the correct pins that would be required to both communicate input and
receive output from the board, which pins were required to provide power and
ground sources, and which pins would need to be shorted in order to avoid
confusion while the Arduino development board is trying to communicate with the
SMD Module – RN – 42. Because the ability of the SMD Module – RN – 42 to
communicate via the UART protocol available on the Arduino development board
is going to be utilized, the first objective was to establish that communication
channel. As it turned out, the research showed that the connections were much
more intuitive than had been initially thought. Ports 13 and 14 on the SMD
Module – RN – 42 (UART_RX and UARD_TX, respectively) connect directly to
the ports TX and RX on the Arduino development board, with UART_RX pairing

Magic Plank Senior Design - Group 2

35

with the TX and UART_TX pairing with RX. Pins 15 and 16, UART_RTS and
UART_CTS, are to be tied together to enable hardware flow control5. All that is
left for communicating with the Arduino board is to connect one of the ground
pins 1, 12, 28, or 29 all to a common ground and a 3.3V power source to pin 11.

An issue that was stumbled upon while designing the Bluetooth implementation
was that while the Arduino development board was capable of sending the 3.3V
signal required to power the SMD Module – RN – 42, the SMD Module – RN –
42’s pins are intolerant to the 5V supplied by the Arduino board, requiring a 3.3V
signal to operate. Without the proper voltage, the UART_TX and UART_RX pins
would be unusable. To counteract this, it was needed to implement some method
which would be able to step the 5V output of the Arduino development board
down to a usable 3.3V. A few methods to accomplish this were. One of the
solutions that was considered for this issue was simply to purchase a Logic Level
Converter. A Logic Level Converter, available from SparkFun.com, is a small
device that can be used to step down a 5V signal to a 3.3V signal, or it can be
used to step a 3.3V signal up to a 5V signal. Using the device is rather simple, as
it requires only that the UART_TX, UART_RX, UART_CTS, UART_RTS, GND
and VDD pins of the SMD Module – RN – 42 be connected to the correct
corresponding locations on the Logic Level Converter for it to correctly step up or
step down the voltage.

The other alternative was to simply purchase two additional MOSFET transistors
(2N7000) and four more 10k ohm resistors in order to utilize the same solution
that had been deployed for a similar issue with the Inertial Measurement Unit. As
shown in Figure 4.3.2-1 the four 10k ohm resistors and the two MOSFET
transistors can be arranged in such a way as to step down the 5V signal being
provided by the Arduino development board to a 3.3V signal, allowing it to be
used by the SMD Module – RN – 42. While this method would require the
constant use of a breadboard, its simplistic design, cheap components, and
availability made it an ideal solution to the voltage requirements. Because of
these factors, it was decided to use the voltage converter.

There were several different options considered when the decision of what
medium should be chosen to actually transmit the commands to the SMD Module
– RN – 42 was brought up. A clear and obvious prerequisite is that whatever
device would be used must be Bluetooth compatible. Beyond the Bluetooth
compatibility, the controller would also need to be able to be operated intuitively,
as it would be cumbersome to have to learn to drive the balancing platform if it is
more complex than something as simple as “up means go forward”. With this in
mind, the decision was narrowed to the following possible devices which could
control the Bluetooth-enabled balancing platform: an Android-powered cellular
phone, a Sony PlayStation 3 wireless controller, a laptop computer with Bluetooth
capabilities, and a Nintendo Wii wireless remote controller.

Magic Plank Senior Design - Group 2

36

Using an Android-powered cellular phone to control the balance board seemed a
rather intuitive solution to the problem, as an Android cellular phone (just like
many other cellular phones) has software built in to its core programming with
allows it to pair up with other Bluetooth-enabled devices within its area of
discovery. With the SMD Module – RN – 42 installed, all that's required of the
Android cellular phone is to have the proper software installed which would allow
it to communicate the commands to the Bluetooth module. There is a featured
File/Application Manager which can a explore a phone's Bluetooth files called ES
File Explorer that, when installed onto an Android cellular phone, allows a user
more control over the interactions between the cellular phone and whatever
device it has been paired with other than the simple transmission of files2. The
Android-powered cellular phone then can utilize a software toolkit known as
Amarino. The Amarino toolkit was designed specifically to streamline the
interactions between Android-powered cellular phones and Arduino development
boards and processors3. With the Amarino application and plugins installed onto
the Android-powered cellular phone, the setup for the Android is completed.

With the Android-powered cellular phone set up with the proper software to allow
it to communicate with the SMD Module – RN – 42, the only thing that would be
left to be configured would be the Arduino development board. To accomplish
this, all that is required is to simply download the Arduino Library to any available
computer. Once the Arduino Library has been downloaded, it can then be
extracted to a libraries folder. With the libraries successfully extracted, all that's
left is to connect the Arduino development board to the computer via USB to the
computer with all of the files and to upload them, along with the behavioral code,
to the board2. The Android-powered cellular phone would then control the
balancing platform through the orientation of the phone, where tilting the phone
to either the left or the right would command the balancing platform to turn to the
respective direction, while tilting it either forward or backward would command
the platform to either accelerate forward or to drive in reverse. With the ready
availability of the files required to properly set up an Android-powered cellular
phone to act as the remote control device for the balancing platform, the idea of
using an Android-powered cellular phone quickly became a strong contender for
the device of choice; however, the research continued regardless.

The next device that was considered was a Sony PlayStation 3 wireless
controller. This device, while not providing the simplicity of implementation of
simply downloading and transferring some files and libraries as the Android-
powered cellular phone controller would, offers a far more familiar control
scheme than the previously researched implementation method. While the
Android-powered cellular phone would require either the twisting of the phone to
communicate when to turn or accelerate in which direction or the pressing of an
arrow button on a programmed GUI interface which would steer the balance
board in the direction of the arrow, utilizing a PlayStation 3 wireless controller
would provide familiar controls with the directional pad. The PlayStation 3

Magic Plank Senior Design - Group 2

37

wireless controller was already designed to fit comfortably in the user's hands,
with the directional pad located comfortably in reach of the thumb. The directional
pad is very simplistic, in that the left arrow would indicate a left turn, the up arrow
would indicate a desire to accelerate forward, the right arrow would indicate a
right turn, and the down arrow would indicate a desire to drive in reverse.

Setting up the Sony PlayStation 3 wireless controller to be able to send
commands to the SMD Module – RN – 42 involves a bit more configuring than
using an Android-powered cellular phone, but still involves doing the majority of
the configuration from an available desktop or laptop computer. The device and
configuration descriptors can be acquired through plugging the Sony PlayStation
3 wireless controller into a USB port on the computer and running a program
such as USBView4. This is important, as while it is possible that this information
could have been previously documented and provided, it is rather unlikely. One
could then install the USB Host Shield and download the USB_Desc sketch in
order to read the device and configuration descriptors using the Arduino
development board4. With the information derived from the previous USB
descriptors the USB library can be modified to be configured specifically to the
Sony PlayStation 3 wireless controller’s specifications. With the communication
established, the Arduino development board can then be set up to receive
commands in the format that the PlayStation 3 wireless controller sends them.
There are plenty of software solutions available through which one could “sniff”
the connection that is held between the PlayStation 3 wireless controller in order
to distinguish the commands that are to be sent between the controller and the
Bluetooth module. The previously mentioned software will also produce reports
of the values generated by the PlayStation 3 wireless controller. The
accelerometer and gyroscope values that are detected can be used from their
report as soon as some minor formatting is performed on their type structures.

The PlayStation 3 wireless controller’s USB library contains support for
interfacing the controller and the Arduino development board. The USB library
contains the majority of the information that would be used to determine the
user’s commands when controlling the balancing platform, including recognizing
the pressing of the game controller’s buttons, movements of the joystick in any
direction, as well as being able to detect the game controller’s physical
movements through its built-in accelerometers. Of equal importance is the USB
library’s providing of the Bluetooth addresses for reading and writing for use in
pairing when the devices are in Bluetooth mode. With the information provided,
all that would be required would be configuring the data provided from the reports
to integrate the PlayStation 3 wireless controller’s Bluetooth data with the SMD
Module – RN – 42 attached to the Arduino development board to allow
communication between the two once they’ve been paired. With the steps laid
out in advance, further means of communication to the SMD Module – RN – 42
could be explored to make sure the decision was the best available.

Magic Plank Senior Design - Group 2

38

The next potential controller that was explored was simply controlling the
balancing platform from a nearby laptop with Bluetooth capabilities. Implementing
this method is the easiest of the three discussed so far as, unlike with the
Android-powered cellular phone, the software available and the sheer processing
power of a laptop is far more vast; also, the adjustments and configurations done
to the acquired software and libraries which would allow it to communicate
correctly with the SMD Module – RN – 42 would be done directly to the laptop,
unlike like the PlayStation 3 wireless controller which used a laptop or desktop
computer to detect its Bluetooth settings and make changes to its configurations.
Much like an Android-powered cellular phone, a laptop is also capable of
detecting any other nearby Bluetooth-enabled devices when in a discovery
mode. To this end, a laptop would only need to have the proper software and
firmware downloaded and installed which would allow it to communicate to the
SMD Module – RN – 42. This software is just as, if not more, available to
download as the Android-powered cellular phone equivalent solution. An example
of such software is Bluetooth Remote Control which, as its name suggests, is
designed in such a way to make the configuring of a Bluetooth controlled device
via laptop almost simple enough that a novice could make progress with a similar
project.

The process of configuring the Arduino development board to be able to
communicate with a Bluetooth-enabled laptop is also a relatively simple process
as it is nearly identical to the process used to interface it with an Android-
powered cellular phone. With the Arduino Library downloaded to the laptop being
used, all that is required is to connect the laptop to the Arduino development
board via a USB connection to upload it, along with the behavioral code, to the
development board in order to fine tune the interfacing between the two devices.
The behavioral code would be able to determine just how the laptop will issue the
commands to be received by the SMD Module – RN – 42 onboard the Arduino
development board, be it through a WASD command system, through the arrow
directional keys, through a GUI developed specifically for the project, or through
any other developed means.

The final method that was researched was the ability to control the balance board
through the Nintendo Wii wireless remote controller. Because of the nature of the
Nintendo Wii wireless remote controller, the process of configuring the controller
is very similar to that of the PlayStation 3 wireless controller. The primary
difference between the two is in how the controllers actually connect to the SMD
Module – RN – 42. The PlayStation 3 wireless controller initiates the connection
with the Arduino development board, as the controller does not respond to
requests for inquiry or connection4. Because of this, the PlayStation 3 wireless
controller must first know the Bluetooth address of the Arduino development
board in order to establish a connection to it. The Nintendo Wii wireless remote
controller, however, operates in an opposite fashion: the method that would be
utilized, known as soft connect, requires that the Arduino development board

Magic Plank Senior Design - Group 2

39

makes the connection to the controller using a previously discovered Bluetooth
address of the Nintendo Wii wireless remote controller. There is a sketch
available known as BlueUtils which can be run to discover the device’s Bluetooth
address which, when notified that the process is searching for devices, allows the
user to simultaneously press the “1” and “2” buttons on the controller to receive
an output of information about the controller which includes its Bluetooth
address.

The pros and cons of the four researched methods would be the ultimate
deciding factor for which device would be the one to operate the balance board
prototype. While utilizing an Android-powered cellular phone would make pairing
the device with the SMD Module – RN – 42 a simple task, the SMD Module – RN
– 42 comes standard with an auto-pairing feature which renders that
convenience obsolete. Establishing a control system via an Android app which
would interact with the Arduino development board would be an unnecessary
burden, and the system of relying on the tilt of the Android phone to steer and
control the throttle of the balance platform is clunky as the detection of angle
changes in the phone isn’t as smooth as would be required to comfortably control
the balance platform; because of these two factors, it was decided against
implementing the Android-powered cellular phone alternative.

The laptop-based solution comes with a high degree of flexibility in terms of fine-
tuning how we’d like to control the balance board. Maintaining the system also
becomes rather easy as the device through which the balance board is being
controlled also happens to be the means through which the code can be
adjusted, making transitioning between testing and troubleshooting rather simple.
The main perceived drawback of using a laptop controller is the lack of mobility.
The previously considered options were all small, lightweight devices designed
for hand-held use, while a laptop is a relatively heavy piece of hardware
designed to be used while atop a flat, stationary surface. While this isn’t a huge
drawback, it does limit the environments and situations through which the
balance platform could be tested. Because of this limitation, it was decided to
forgo the laptop design and instead continue looking at the wireless video game
controller options.

The decision between the Sony PlayStation 3 wireless controller and the
Nintendo Wii wireless controller, due to their similar implementations and
configurations, came down to a very simple factor: there was access to Wii
remote controllers, but there was no ready access available to a PlayStation 3
controller. Because the implementation of either device would be nearly identical,
this was not a large disadvantage; therefore, it was decided that the Nintendo Wii
wireless controller would be used as the controller of choice to transmit the
steering and throttle choices of the user to the SMD Module – RN – 42. The final
comparisons between the possible remote control implementations are
summarized in Table 4.3.1-2 below.

Magic Plank Senior Design - Group 2

40

 Average
Observed

Price Range

Implementation Availability

Android
Cellular
Phone

Free (already
in possession)

Amarino Toolkit Already in
possession

Laptop
Computer

Free (already
in possession)

Arduino-specific
software

Already in
possession

Nintendo Wii
Wireless
Remote

Controller

Free (already
in possession)

Direct pairing
with Bluetooth

devices

Already in
possession

Sony
PlayStation 3

Wireless
Remote

Controller

$27 USB connection
followed by
pairing with
Bluetooth
devices

Widely
Available

Advantage or
Disadvantage:

Disadvantage:
Sony

PlayStation 3
Wireless
Remote

Controller

Advantage:
Nintendo Wii

Wireless
Remote

Controller

Disadvantage:
Sony

PlayStation 3
Wireless
Remote

Controller

Table 4.3.1-2: Description of Bluetooth devices and their prices,
implementation, and availability.

4.3.2. IMU

The IMU-3000 features a built-in I2C interface between the external ADXL345
accelerometer and the on-chip gyroscope and outputs data from both chips via
the primary I2C port. Due to this feature, communication with the accelerometer
and gyroscope can be accomplished using a single interface across the
ATmega328’s pins 27 and 28 (pins A4 and A5 on the Arduino Uno R3). However,
since the ATmega328 is powered at 5V, the I2C connection is communicating at
5V as opposed to 3.3V for the IMU-3000. This means that there must be a logic
converter that steps down the voltage from the ATmega328 in order to
communicate properly. The conversion can be achieved through the usage of a
2N7000 MOSFET connected to 2 10KΩ resistors, which lead to the 3.3V power

Magic Plank Senior Design - Group 2

41

supply and the 5V power supply. This arrangement is configured in Figure 4.3.2-
1.

Figure 4.3.2-1: Bi-Directional Voltage Level Converter.

One such configuration will be needed for each of the two wires interfacing with
the microcontroller as well as another one for interfacing with the Bluetooth RN-
42 SMD module. Aside from this special level conversion, there need only be a
connection to power and ground in order for the interfacing to be complete.

4.4. Software Prototyping

4.4.1. Using Bluetooth with a Wiimote

To steer our prototype balancing platform as well as our motorized self-balancing
scooter, we implemented a system which would allow us to steer both projects
wirelessly through Bluetooth using a Nintendo Wii wireless remote controller to
send commands which are received by the SMD Module – RN – 42 and
delivered to the development board. This task proved taxing, as no one had any
experience with implementing any sort of wireless communication. The research
that was required to implement this communication was also several layers deep,
as we could not simply just understand how the Nintendo Wii wireless remote
controller communicated with other Bluetooth devices without knowing how to
interpret the information that it was sending. We also knew it was useless to just
know what sort of information the Nintendo Wii wireless remote controller if we
didn’t know how the SMD Module – RN – 42 was going to be able to receive this
information. Beyond understanding how the SMD Module – RN – 42 would
receive the information being transmitted by the Nintendo Wii wireless remote
controller was the task of utilizing the information to create corresponding
commands which would instruct the motor controller to behave according to the
instructions that had been sent. Because all of the aforementioned concepts

Magic Plank Senior Design - Group 2

42

were foreign to the team, this particular challenge proved to be very research
intensive.

Writing a sketch for the Arduino development board required first researching the
basic skeleton of what the sketch requires. We learned that there are two primary
functions which must exist in any Arduino development board sketch, regardless
of the functionality of the sketch: setup() and loop(). The setup() function is the
first function which is called when a sketch is started either by initially being
powered on or by having the Arduino development board’s reset button pressed1.
The function’s name is very indicative of what its purpose is, since it is used to
initialize variable, pin modes, start using libraries, and any other processes or
functions which must be initiated prior to the loop() function being run. This
function, while essential to the execution of the sketch’s code, is only run once
per power-up or reset toggle1.

After the setup() function has been created with all of the necessary beginnings
of the sketch, the loop() function is required. We discovered that the loop()
function is very similar to the main() function in many coding languages in that it
houses the code which will essentially be performing what the sketch is meant to
perform. The loop() function, unlike the more common main() function, does
exactly what its name suggests: it loops endlessly and consecutively, allowing
the program to actively change and respond1. It is the loop function that will be
controlling the Arduino board and allowing it to respond and adapt according to
our coding specifications in Table 4.4.1-1.

Magic Plank Senior Design - Group 2

43

Button Number
(dec)

Value
(hex)

Two 1 0x0001

One 2 0x0002

B 3 0x0004

A 4 0x0008

Minus 5 0x0010

? motion ? 6 0x0020

? motion ? 7 0x0040

Home 8 0x0080

Left 9 0x0100

Right 10 0x0200

Down 11 0x0400

Up 12 0x0800

Plus 13 0x1000

? motion ? 14 0x2000

? motion ? 15 0x4000

? Reading Mii ? 16 0x8000

Table 4.4.1-1: Nintendo Wii Wireless Controller Bit Assignments.

With a basic understanding of the structure required for an Arduino development
board script, the next endeavor was to understand how to allow the Nintendo Wii
wireless remote controller to communicate with our Arduino development board
through the SMD Module – RN – 42. Understanding how to develop the
communication between the Nintendo Wii wireless remote controller and the
SMD Module – RN – 42 required an understanding of the basic functionality of
the Wii controller itself. Our research revealed that the Nintendo Wii wireless
remote controller possesses twelve buttons total (including four buttons for each
of the buttons on the directional pad). Straight out of the package, the Nintendo
Wii wireless remote controller is set up so that whenever a button is pressed or
released a packet will be sent to the paired receiver, through the Bluetooth
Human Interface Device standard, with “a payload containing a 2-byte bitmask
with the current state of all the buttons.”2 An example of this would be when a
button on the Nintendo Wii Wireless remote controller is pressed, a Bluetooth
Human Interface Device data input packet is transmitted from the controller of

Magic Plank Senior Design - Group 2

44

“(a1) 30 00 08”. “(a1)” indicates that the packet sent was a data input packet
(0xa1), “30” indicates the data was sent on channel 0x30, and the data sent was
a two byte payload of 0x00 and 0x08. According to Table 4.4.1-1, which displays
bit assignments in big endian order, 0x0008 corresponds to the pressing of the
‘A’ button which indicates that the ‘A’ button is currently being held down. When
the button is released, another packet of “(a1) 30 00 00” is sent, indicating that
the ‘A’ button is no longer being held down.
Contrary to what we had initially assumed, what data the Nintendo Wii wireless
remote controller sent out had to be set manually, as there simply are not enough
available bytes for the controller to send out all of the possible data types with
any given data packet transmission. The reason for the unavailability of bytes to
transmit all available information is due to the fact that each of the controller’s
peripherals generate and determine the data formats themselves, leaving the
controller to simply have to transmit the data. To handle this, the Nintendo Wii
wireless remote controller has several different data reporting modes.3 Each
mode is able to send a unique combination of the controller’s core data features
to the host through one of the report IDs which are determined by the specific
mode the controller is configured in. We will be able to toggle between the data
reporting modes by sending a two-bye command to the specific report 0x12 in
the format of “(a2) 12 TT MM”. The TT bits default to only forcing the Nintendo
Wii wireless remote controller to send an output report when there has been a
change in data. We will be able to change the reporting mode by changing the
bits represented by MM. The mode that we will be using is 0x31, which will
output a report containing data for the core buttons and the accelerometer
included in the Nintendo Wii wireless remote controller, as our project has no
need for any of the controller’s infrared sensors or its expansion port.

Learning how to set up the SMD Module – RN – 42 to be able to receive the
information from the Nintendo Wii wireless remote controller proved to be a
simpler task than translating the information from the controller. Out of the box,
the SMD Module – RN – 42 is set up to be able to receive information from any
Bluetooth-enabled device due to it being set up in slave mode by default. The
pairing process of the SMD Module – RN – 42 is quite simple as well, as it only
requires our Nintendo Wii wireless remote controller to begin searching for a
device to pair with (this is accomplished by the pressing and holding of the
controller’s “1” and “2” buttons) and the subsequent entering of the default pin
code of “1234”. With the two devices paired, the general setup of the SMD
Module – RN – 42 is complete enough for our purposes.

Understanding how the commands transmitted from the Nintendo Wii wireless
remote controller would be utilized to influence the steering of our prototype
balancing platform involved at least a basic understanding of basic coding
practices. Our research revealed that there were several different libraries
available online that previous developers had created in the past which could be
used to set up a foundation for storing the various data that would be transmitted

Magic Plank Senior Design - Group 2

45

from the Nintendo Wii wireless remote controller. These data structures would
then be initialized in the setup() function and would be repeatedly read in through
the loop() function of the Arduino development board. It is here that the values
that the Nintendo Wii wireless remote controller is transmitting would be
analyzed, allowing the Arduino development board to instruct our motor controller
to behave according to the logic set up in the loop() function. We learned that it is
through this process that our remote controller would be physically altering the
steering and throttle of our prototype balancing board.

4.4.2. Using the Motor Controller

The motor controller chosen for our prototype, the Sabertooth 2x12 from
Dimension Engineering, is capable of receiving commands through a variety of
methods, most notably Pulse-Width-Modulation (PWM) and serial
communication, since the two microcontrollers used during prototyping, the
Texas Instruments Stellaris LM3S8962 and the Atmel ATmega328, support both
modes of communication. Our first inclination was to try to control the motor
controller with PWM, since it is the simplest method of control. We did attempt to
set up a small program that tested the PWM interfacing on both microcontrollers,
but we could not get the control schemes to work. After doing some more
research on how to make PWM work correctly, we found that sending a DC
filtered PWM signal was not as easy as it seemed, since there is apparently an
issue with the motor controller not being able to read signals due to noise on the
channel. Getting the interface to work is possible, but requires designing filters
and tweaking communication rates. In light of this discovery, we abandoned the
attempt to use PWM in favor of serial communication.

Serial communication requires switching the ports from the microcontroller from
analog to digital and using completely different methods of communication.
During setup of serial communication, we decided to completely abandon our
efforts to develop on the TI Stellaris in favor of the ATmega328 and continued
with the Arduino Uno R3 prototyping board. Sabertooth motor controllers support
simplified and packetized serial. Simplified serial, as the name implies, is the
simplest to configure, so we started with that option. We did configure a short test
of the motor controller by hooking up the two small brushed DC motors to the
Sabertooth 2x12 and running it from the Arduino. The configuration worked, but
there was a small snag when trying to run the motors at more than 40% power.
The motor controller’s error LED would blink at us for the duration of the
command. We were not sure what was causing this error, but we did try to
correct it by attempting packetized serial communication. It was surmised that
there may be an error in the communication which could be fixed using the more
robust packet form, which contains a checksum for detecting an incorrectly
received message. Establishing packetized communication was somewhat more
difficult than the simplified version, but it was not terribly hard. Again we set up a
test controlling the motors and encountered the same issue. Through more
testing it became clear that the signals were being received correctly, but the
motor controller could not provide enough power to the motors. We then

Magic Plank Senior Design - Group 2

46

proceeded to disconnect one of the motors, giving us a larger power range of up
to 60%. It was clear that a 9V supply was not sufficient to power our motors. The
reasons for failure were twofold: first, the motors were rated for 12V each and
supplied by a 9V battery, so the voltage supply was not sufficient to power both
motors. Second, the motors were rated at a current draw of 3A1, which the
battery could not support. It was capable of supplying high current in short bursts,
but had difficulty doing so consistently. Our initially alarming issue turned out to
be no issue at all, as a larger power supply could easily provide the power
needed to drive these motors. The 9V alkaline battery had served its purposes
for initial testing.

Continuing with testing, we found that during usage of packetized serial mode,
there was a small lag time in between the two motors responding. This could
have been due to the transmission and processing time between the two
separate packets for each motor. Although it was not a functionally critical issue,
it was slightly annoying that one motor lagged behind the other at a noticeable
rate. Two solutions to this problem were to switch to simplified serial or operate in
differential drive mode. This seemed to be a road block, since we were not sure
how the platform would handle balancing in differential drive mode, so coming to
a conclusion on the better method would have to wait until we could test the input
from the accelerometer and gyroscope. Initial tests in differential drive mode did
seem promising, though. Using differential drive commands means less data
sent and both motors update synchronously. Without the input from external
sensor data, however, it was impossible to know which control method was truly
superior.

4.5. Prototype Implementation

We approached our prototype implementation with the mindset of mimicking the
way we are going to set up all our electrical and physical hardware. Basically we
all had ideas on how all the electrical and physical hardware should be arranged
on the platform, so after so discussion and reworking of the concept sketches of
layout and arrangement, we were able to come up with a design that we could
not only use on our prototype implementation, but also use on our final
implementation. The logic behind this decision is we wanted to be able to
troubleshoot and problem solve much of the potential issues we would face
during the final implementation build process. That way we would be prepared to
handle the build process with as little stress as possible. In addition, this would
allow us more time to work on refining and calibrating our system critical
functions.

Since we are using small twelve Volt motors that came with no mount housing or
bolts we are going to have to attach them directly to our platform. We addressed
this problem by mounting the motors with U – bolts with a rubber washer
between the motor and platform. The rubber washer limits the vibrations from

Magic Plank Senior Design - Group 2

47

the motor; this ensures that the nuts securing the U – Bolts do not come loose.
In addition, we have secured all bolts and thread connections using Loctite. The
twelve motors have been manufactured with built in axels; with slight modification
of the motor axels and a couple of bolts, we were able to directly attach seven
inches in diameter wheels. After our work mounting the motors and wheels to
then we drilled four holes equidistant from one another. These holes served as
ports to pass wire through. Please see Figure 4.5-1 for a visual physical
representation and Figure 4.5-2 for visual wiring representation.

Figure 4.5-1: Underside layout of the prototype magic plank.

Figure 4.5-2: Block diagram of electrical wiring in the prototype.

With all the initial mounting and alterations to the platform complete, we began
our initial stages of wiring the twelve Volt motors, fourteen – point – four Volt
lithium ion power supply to the Sabertooth motor controller. Positive lead will be
placed in “B+” of the motor controller, and the negative lead will be placed in “B-”.

Magic Plank Senior Design - Group 2

48

Next we placed the first motor’s leads in to slots “M1A” and “M1B”; the same is
done for the second motor in the respective slots labeled “M2A” and “M2B”. Pins
“S2” and “S1” of the Sabertooth interface and communicate with twelve and 13
with the ATMEGA 328P Arduino Uno development board, as seen in Figure 4.5-
3 and Table 4.5-1. The power supply and the motor controller are then mounted
to the top side of the platform. Once mounting is completed the power supply will
be disconnected from the main platform until all mounting and securing has been
completed.

Figure 4.5-3: Block diagram of the connections between the Sabertooth

2x12 and Arduino Uno R3.

Arduino Uno R3 Pin Connection Summary

12 Sabertooth 2x12 s1

13 Sabertooth 2x12 s2

Table 4.5-1: Description of pin connection between the Sabertooth 2x12
and Arduino Uno R3.

After all connections are secured and double checked we move to mounting the
ATMEGA 328P Arduino Uno development board, as well as the Bluetooth RN -
42. Once we have completed the mounting and securing process we proceed to
set pin connections between both the pieces of electronic hardware. Pins zero
and one on the ATMEGA 328P Arduino Uno development board communicate
with pins thirteen and fourteen on the Bluetooth RN – 42, as seen in Figure 4.5-3
and Table 4.5-1 This pin communication setup allows us to send signals Wii –
mote, a Bluetooth device. Then Bluetooth RN – 42 translate those signals and
relays the commands to the ATMEGA 328P Arduino Uno. This pin set is directly
translatable to our final implementation; pin zero and one are directly from the
ATMEGA 328P.

Magic Plank Senior Design - Group 2

49

Figure 4.5-4: Block diagram of the connections between the RN-42 and

Arduino Uno R3.

Bluetooth RN - 42 Pin Connection Summary

Pin Connection

13 To IO0 Connected to ATMEGA 328P Pin 0

14 To IO1 Connected to ATMEGA 328P Pin 1

Table 4.5-2: Description of pin connection between the RN-42 and Arduino
Uno R3.

Now, after all of the communication connections have been established we move
install the most important component to our prototype implementation. Inertial
Measurement/Moment Unit Fusion Board - ADXL 345 and the IMU 3000; this
piece of electronic hardware is the heart of the whole operation. The ADXL 345
measures speed and acceleration and relays the raw data into a “First In First
Out” buffer. The IMU3000 measures yaw and pitch and also places this
information into the “First In First Out” buffer. The Inertial Measurement/Moment
Unit Fusion Board interfaces to the ATMEGA 328P Arduino Development Board
by taking clock line, “SCL”, on the Inertial Measurement/Moment Unit Fusion
Board and connecting it the pin labeled “A5” on the ATMEGA 328P. The “First In
First Out” buffer that holds all the measured data is “SDA” and connects to “A4”
on the ATMEGA 328P. When the clock signal goes high from “A5” to “SCL”,
data is transferred from the “First In First Out” buffer, ‘SDA” to “A4” on the
ATMEGA 328P Arduino Development Board for processing, as seen in Figure

Magic Plank Senior Design - Group 2

50

4.5-4 and Table 4.5-2. This processed data is then used in the software and
software governors keep the platform in balanced equilibrium.

Figure 4.5-5: Block diagram of the connections between the ADLX345 and
IMU 3000, with the Arduino Uno R3.

Inertial Measurement/Moment Fusion Board Pin
Connection Summary

Pin Connection

SDA Data Line(FIFO) to Arduino Uno R3

SCL Clock Line to Arduino to R3

Table 4.5-3: Description of pin connection between the ADLX345 and IMU
3000with the Arduino Uno R3.

Now that everything is completely wired, all electrical and physical hardware will
function in unison. As the heart of our prototype the Inertial
Measurement/Moment Unit Fusion Board will be constantly measuring data and
storing it in ‘First In First Out” buffer and only sending this data to the ATMEGA
328P Arduino Uno Development Board for processing when the clock goes high.
The incoming data will then be processed; once processing is completed the
refined data will be used in mathematical calculations within our software. The
results of these calculations then cross checked with the software governors; the
software governors ensure that all corrections to the platform are smooth as well
as prevent the possibility of overcorrection that may cause the platform to lose
stability during its correction process.

Magic Plank Senior Design - Group 2

51

Now adding in the steering controller, The Inertial Measurement/Moment Unit
Fusion Board continues taking data on speed, acceleration, yaw, and pitch. The
Bluetooth RN – 42 will receive the steering commands from the Wii - mote and
relay them through the ATMEGA 328P Arduino Uno Development board to the
Sabertooth motor controller; to turn left or right, accelerate or decelerate, or move
forward of go in reverse. During this command process the Inertial
Measurement/Moment Unit Fusion Board will send the buffered data trough the
ATMEGA 328P. Coupling the Bluetooth RN – 42 commands with the data from
the buffer; processing them both together will smooth out the control commands
from the user and ensure the platform remain in balanced equilibrium. This is
achieved by cross checking both sets of data with the software governors. For
example, if a command control signal pushes the current acceleration, speed, or
angle over the limits of the hardcoded values in the governors; the governors will
only allow the maximum values that have been hardcoded.

5. Final Implementation

5.1. Hardware Design

5.1.1. Circuit Design

The circuit design for the self balancing platform is derived from the Arduino Uno
R31 as seen in Figure 5.1.1-1. Since the Arduino is an open source platform,
anyone is free to modify it. The Uno R3 contains two Atmel microcontrollers: the
ATmega328p, which is the main microcontroller, and the ATmega16U2 that
functions as a USB transceiver and on-chip debugger for interfacing between the
ATmega328p and a computer. The initial plan was to strip this entire interface
from the design, which would save money and power consumption, but there are
a couple disadvantages to eliminating this interface. First, uploading code via
USB would be rendered impossible, forcing us to program the chip on a separate
interface and moving it to the main design. Second, it would render all debugging
impossible as there would be no ability to echo the status of the microcontroller
to a computer screen. With this in mind, the ATmega16U2 will remain on the
design because the potential utility of the interface far outweighs the slight extra
cost and power draw. Details of the interface between the ATmega16U2 and the
ATmega328p are detailed in Figure 5.1.1-2.

The Uno R3 does come equipped with many connectors built for solderless pin
connections to the ATmega328p, so many of these will be stripped in favor of
either on-board connections to some of the sensors or soldered pin connections
to outputs such as the motor controller. Additionally, the Uno R3 features a
2.1mm center-positive power plug for drawing auxiliary power from a battery or
other DC power source, but since the Sabertooth 2x25 motor controller will be
supplying power via the VCC input pin, there is no need for this power adapter,
so it too has been completely removed from the design. Finally, all unnecessary

Magic Plank Senior Design - Group 2

52

pin outs are completely removed from the design. Details for this section of the
design are shown in Figure 5.1.1-3.

In addition to the Arduino Uno R3, other references include breakout boards
courtesy of Sparkfun Electronics. The first reference design is the ADXL345 and
IMU-3000 combo board2, which was the same chip used in the prototyping
section. The second is the Bluetooth Mate Silver, which is a breakout board for
the Bluetooth RN-42 SMD module. Sparkfun provides their designs under the
Creative Commons license, which means that, like the Arduino, their designs are
free to use and modify. Additional features for this overall design were based on
discoveries made during prototyping and circuit building on a solderless
breadboard.

The ADXL345 and IMU-3000 combo board is a breakout board designed to
combine the IMU-3000 gyroscope and processor with the ADXL345 auxiliary
accelerometer. This is a breakout board that is designed for easily accessible off-
board connecting, so the breakouts must be removed and replaced with on-
board connections. The SDA and SCL lines 23 and 24 leading into the IMU-3000
are connected to the ATmega328p’s pins 27 and 28. The extra interrupt pins
ACCEL_INT1 and ACCEL_INT2 leading directly to the accelerometer are
unnecessary, so these connections will be stripped from the final design. This
also applies to the IMU_INT interrupt pin leading to the IMU-3000. In addition, the
included 3.3V voltage regulator is removed and all power inputs are connected to
the 3.3V regulator already present on the Uno R3. It does not feature any logic-
level converters for communicating between the ATmega328p at 5V and the
IMU-3000 at 3.3V, so two regulators must be added: one for the SDA line and
one for the SCL line. Detailed schematics for the IMU unit lie in Figure 5.1.1-4.

The reference for the Bluetooth RN-42 SMD module came from Sparkfun
Electronics’ Bluetooth Mate board. It was designed specifically for easily
interfacing with the Arduino, which means that it breaks out the pins necessary
for establishing a connection as well as featuring a built-in 5V to 3.3V logic level
converter. There are a few modifications to be made, however. The first and
biggest change is that pins 15 (RTS) and 16 (CTS) are broken out, but there is
no need to use these pins, so the connection is severed and the RTS and CTS
pins are looped back to each other. Along with this change, the 5V to 3.3V logic
level converter for these pins is removed. Another major change is the removal of
the 5V to 3.3V voltage regulator, since this is already included on the Uno R3
board, so additional parts would be redundant. Connections to the regulator are
redirected to the one present on the Uno R3. Next, since this is a breakout board,
the breakouts are removed in favor of on-board connections. Notably, the RN-
42’s TX pin 14 and RX pin 15 are connected to the ATmega328p’s RX/TX pins 2
and 3 respectively. Otherwise, the default pin groundings remain the same on the
design. Figure 5.1.1-5 details the design of the Bluetooth module as it connects
to the ATmega328p.

Magic Plank Senior Design - Group 2

53

Figure 5.1.1-1: Starting Reference Design – Arduino Uno R3

Magic Plank Senior Design - Group 2

54

Figure 5.1.1-2: Part 1 of the Arduino R3 Redesign – Atmega 16U2

This section of the design contains the ATmega16U2 USB interface and input
power filters. This section remains largely unchanged from the original Arduino
Uno R3 reference.

Magic Plank Senior Design - Group 2

55

Figure 5.1.1-3: Part 2 of the Arduino R3 Redesign – Atmega328p

This section of the design contains significant modifications to the Uno R3. First
note the removal of the power supply and pin breakouts for the unused pins. Pins
18 and 19 are broken out for interaction with the motor controller. Pins 2 and 3
lead to the Bluetooth module (Figure 5.1.1-5), and pins 27 and 28 lead to the
IMU-3000 (Figure 5.1.1-4). Interface to the ATmega16U2 remains unchanged.

Magic Plank Senior Design - Group 2

56

Figure 5.1.1-4: IMU-3000 & ADXL345 Design

Magic Plank Senior Design - Group 2

57

Figure 5.1.1-5: Bluetooth RN-42 Design

Magic Plank Senior Design - Group 2

58

5.1.2. Motor Controller: Sabertooth 2x25

Our motor controller, the Sabertooth 2x25 Regenerative Motor Driver from
Dimension Engineering, is the larger equivalent to our prototype’s 2x12
Regenerative Motor Driver. The main difference between the two is that the 2x25
is able to support up to 25A continuous current at 50A peaks with 24V nominal
voltage up to a 30V maximum voltage versus the 2x12’s 12A continuous, 25A
peak current with 18V nominal, 24V maximum voltage. The reason for switching
to a larger motor controller is due to the larger power draw from the motors. The
motor controller needs to be able to handle at least 250W motors operating at up
to 24V with up to 18A current draw.

From a software perspective, both Sabertooth motor controllers use the same
communication protocols, so any software design that applies to one naturally
applies to the other. Configuration of the motor controller is done via the 6 Dual
In-line Packages (DIP switches) located on the controller. DIP switch
configuration is identical for all Sabertooth motor controllers. Switches 1 and 2
determine which mode in which to operate the motor controller: mode 1 for
analog input using Pulse-Width-Modulation (PWM) signals, mode 2 for R/C input,
mode 3 for simplified serial, and mode 4 for packetized serial. Switch 3 is for
lithium cutoff mode: down when using lithium supplies and up when using other
conventional battery supplies such as Lead-acid, NiCd, or NiMH. Lithium cutoff
mode is used to prevent the lithium battery from being depleted too much and
causing potential damage. The functions of switches 4-6 vary depending on the
configuration of switches 1 and 2. For reasons explained in the Motor Controller
subsection of the Software Design section, we will be using serial
communication. There are 2 supported types of serial communication: simplified
serial and packetized serial. Simplified serial mode is done by configuring switch
1 to the up position and switch 2 to the down position. Switches 4 and 5
determine the baud rate at which to operate, which can be 2400, 9600, 19200, or
38400. Switch 6 is either up or down for either standard mode or slave mode,
respectively. Packetized serial mode is achieved by setting switches 1 and 2 to
the down position. In packetized serial mode, switches 4-6 determine the
address of the motor controller ranging from 128 to 135. The address can be
configured so that multiple motor controllers can share the same serial
transmitter.

In terms of wiring, the motor controller is powered directly from the battery and
contains a built in 5V 1A regulator capable of powering the microcontroller. Since
it is a dual channel motor controller, it has dedicated terminals to each of the two
motors. Input commands are obtained from the controller’s inputs S1 and S2,
where, in the case of simplified serial input, S1 receives commands from the
microcontroller. S2 is not used, but it is still necessary in order to establish a
connection. S1 will be running to the ATmega328’s digital pin 19, while S2 will be
connected to digital pin 18. Power is obtained through the 5V regulator’s

Magic Plank Senior Design - Group 2

59

connections to VCC pin 7 and GND pin 8. An illustration of the interface between
the motor controller and microcontroller is detailed below in Figure 5.1.2-3.

Figure 5.1.2-3: Wiring configuration between the Sabertooth 2x25 -
ATmega328

5.1.3. Body Design

The main body design for this platform is fairly simple on the surface: A piece of
material to stand upon with 2 chain driven wheels on the bottom driven by 2
250W brushed DC electric motors. The motor controller and other electronics
described in the previous sections are housed in the center of the board in
between the 2 12V 7mAh batteries. The batteries are connected to each other
via a high load power switch, which turns the entire system on or off, as seen in
Figure 5.1.3-1 and Figure 5.1.3-2. Unlike the traditional style design of the
Segway Personal Transporter, there is no scooter-like steering column because
steering has been replaced by wireless control from the Nintendo Wii wireless
remote controller. Removal of this steering column lightens the load and cuts
down on cost significantly, but reduces the driver’s ability to stand on the platform
comfortably. With this in mind, the orientation has been shifted from front-facing
to side-facing in the style of a skateboard. Instead of leaning forward or backward
to move, the driver leans side to side, allowing the driver to more easily balance
on top of the platform while it is in motion.

Magic Plank Senior Design - Group 2

60

Figure 5.1.3-1: Main body diagram, top view

Figure 5.1.3-2: Main body diagram, bottom view

Magic Plank Senior Design - Group 2

61

5.2. Software System: Overview

5.2.1. Operational Concepts: Needs, Scenarios, Limitations, and Risks

Our self balancing transportation platform’s software system will have to address
the issues brought forth when solving both an inverted pendulum problem and a
locomotion problem. The most basic need satisfied by the system is that of
balancing itself on two wheels, which is done by analyzing input from the
accelerometer and gyroscope, processing it, and telling the motor controller how
to react. The microcontroller must make updates to the motor controller in a
timely fashion; otherwise the balance correction would occur too late and cause
the platform to collapse. These corrections need to also be accurate, lest the
platform collapse due to dramatically overshooting or undershooting the ideal
state of being level. The secondary problem addressed by this system is the
problem of motion. The platform must be able to move forward, backward, and
make turns while still satisfying the primary need of staying balanced. The basic
control scheme is achieved wirelessly via input commands from a Bluetooth
device that feeds directional data to the microcontroller. The system must, in
addition to preserving its own balance, must also serve the driver, who will be
standing on the self balancing platform. This means that the system must be user
friendly, so the control mechanisms must be smooth enough to not throw the
driver off of the platform during operation. As a precautionary safety measure, we
may also include a switch that the driver must always have pressed down; in the
event that the driver falls off, this “dead man’s switch” is rendered inactive,
causing the system to shut down.

Implementing this software system requires us to account for several operational
scenarios. The first scenario is that of idle balancing, where the platform has
nothing to worry about except keeping balance. There are no external forces
attempting to throw it off equilibrium and the platform simply tries to achieve the
ideal state of being level. This is the simplest scenario and the first step in
development of the system. The second scenario is the case where either the
driver or something else is imparting an external force upon the platform, thus
changing its center of gravity and upsetting its equilibrium. In this event, the
system must attempt to keep its equilibrium and counteract the upsetting force.
This requires a more refined control scheme that will keep the platform from
either over- or undercompensating, which would have resulted in either the
upsetting of the driver or the collapsing of the platform altogether. Another
scenario is the scenario where the driver tries to input motion commands to make
the platform either move or make turns. This carries the added challenge of
fusing the balancing control scheme with the motion control scheme. This may
be counter-productive to the primary objective of simply maintaining balance, but
the second goal of locomotive ability supersedes the first goal and imposes the
offsets necessary to create movement. This means that we must limit the ability
of the secondary control scheme to upset the system’s absolute equilibrium by
introducing governors that prevent the system from causing the platform to

Magic Plank Senior Design - Group 2

62

collapse. Should we choose to adopt the added safety measure of a “dead man’s
switch” attached to the platform, there is the scenario where the driver lets go of
the switch. In this scenario, the switch would no longer be active, signaling for the
system to halt all operations of the platform. The mechanism handling this
scenario would be considered a top priority safety mechanism, and as such it
supersedes the lower goals at all times. There are still other scenarios such as
hardware failures or physical shortcomings where balancing the platform is
impossible, but these external failures are beyond the control of the software
system, and the best attempt to account for these scenarios lies in the use of the
“dead man’s switch” as a catch-all safety mechanism.

The features present in this system could be ranked in terms of priority and in
terms of whether or not the feature is either essential or desirable. The first and
most important feature of the system is the ability to balance while idle. Without
this feature, the self balancing platform is not much of a self balancing platform.
The second most important feature is the ability to balance while moving or when
an external force attempts to upset its equilibrium. The third most important goal
is the ability to process user input and produce motion output. These two goals
are still considered essential to the operation of the platform, since the entire
purpose of the platform is to move things from one point to another. The fourth
goal is the implementation of the “dead man’s switch”. Although it increases
safety for the driver, the platform is still able to function without it. As such, it is
labeled as a desirable feature.

Our system does have its limitations. It cannot keep balance in absolutely every
situation and it cannot recover from hardware failures. We can attempt to recover
balance through the implementation of governors, but there is still a physical
limitation of the hardware that prevents the platform from balancing under
extreme conditions. Other hardware limitations involve the speed of the
microcontroller, the speed at which the accelerometer and gyroscope send
commands, and the speed at which the motor controller can receive commands.
However, since hardware failures are beyond the scope of the software system
and impossible to circumvent, we have no need or ability to develop measures of
addressing said failures. The system also has some shortcomings that produce a
risk for the user. Even though we plan to implement governors and a possible
“dead man’s switch” for safety, it is not guaranteed that the control mechanism is
smooth enough to keep the driver balanced on the platform. In this event, the
driver could fall off and be injured. With this possibility in mind, we will strive to
make the software system as user friendly as possible in order to take every
possible measure to prevent injury from occurring.

5.2.2. Project Management

This software system will be co-developed by our Senior Design team’s software
designers Brian Jacobs and Kenneth Santiago Jr. There is no hierarchical
structure, rather the team works in parallel on individual software implementation

Magic Plank Senior Design - Group 2

63

and combines the work into a framework that will form the entire system. Division
of responsibilities is as follows:

Brian Jacobs:

 Development of drivers for the motor controller

 Development of drivers for the Accelerometer and Gyroscope

 Creating a control scheme that balances the platform based on processed
data

 Incorporation of the “dead man’s switch”

Kenneth Santiago Jr.:

 Development of drivers for the Bluetooth device

 Development of drivers for the control device that is input via Bluetooth

 Modifying existing control scheme to make the platform move based on
the control device’s input.

While the other member Stephen C Fraser II may contribute to the development
of the project, his primary responsibility is hardware design, and as such, he will
spend the majority of his time configuring the physical aspects of the platform. In
addition to the explicitly defined roles of the team, we have an explicit definition
of communication between developers. The team will meet in person at least
twice weekly to discuss code modifications and to keep each other
understanding how the code works. They will test each other’s work during these
meetings in order to maintain a high standard at all times.

This leads us to our software implementation process, which is commonly known
as the waterfall model. The waterfall model calls for each previous stage to be
completed before moving on to the next stage. After completion of a coding
stage, the work “flows down” to the next stage, building on the previous stage
which does not change. This may seem like a rigid structure to adopt, but design
of this system is an inherently rigid process. We must be confident that the
system will work, and if the initial stages of the project are not complete and
thoroughly tested, we cannot move on to the next part of the process. Following
this implementation process will allow us to create a reliable system with minimal
backtracking, thus minimizing the time spent redoing old code that should have
worked in the first place.

5.2.3. Software Architecture and Design Issues

Our architectural approach is to use a layered approach to create basic control
structures for each of our devices. The idea is to work from the bottom up,
starting with modules that have no dependencies, then building on top of those
modules to create another layer of functionality. There are only three main layers
to this code: the bottom layer of drivers that have direct interaction with the
hardware devices, the middle layer of processing modules that take the hardware
interfacing modules and interpret them to create valuable data, and the top layer,

Magic Plank Senior Design - Group 2

64

which is the control structure for the whole system. The bottom layers can be
grouped into three main blocks: Motor Controller, Inertial Measurement Unit
(IMU), and Bluetooth Controller. The Motor Controller block, which is the only
output of the system, handles commands from the main control and converts
them into commands understandable to the motor controller. The IMU block
contains the Accelerometer and Gyroscope drivers that read the raw data from
the hardware, which is then passed into the module on the next level up for
processing. The upper level of the IMU block then processes the data into a
useful format for the main control loop on the top level. The Bluetooth Controller
block contains two pieces: the bottom level driver module, which handles the
connection with the device and relays the connection to the upper level for
interpretation, and the upper level interpreter module, which takes the input and
parses commands from the controller that is wirelessly connected to the device.
Once the commands are parsed, they are sent to the top level control in a format
readable to the main control. Below, in Figure 5.2.3-1 is an illustration of the
architectural design of the system.

Figure 5.2.3-1: Overall Architectural Layout

The main reason for a small number of layers is that of performance, since
performance is our utmost concern for this system. Using more layers with
complex structures makes the code easier to comprehend and easier to
implement, but it comes at the cost of more overhead, and since we are
developing in a restricted environment with the limitations of the ATmega328, we
need to make our code run as efficiently as possible. Efficient code of course
means that the system is able to respond quickly by doing fewer instructions over
less time, which also translates into improved power efficiency. However,
performance is not our only goal; we also need to make the code maintainable.
This is where the layers come in. With each subsection of the system isolated
into its own library, we can parse through the code more easily than we could

Magic Plank Senior Design - Group 2

65

one large jumbled master file, which makes both writing and understanding the
code much easier.

In addition to our performance and maintainability interest, we chose this
architectural style because it is easily testable due to its parallel nature. Each of
the lower level modules can be tested independently and can be verified without
reliance on the other systems. This allows us to develop multiple modules
simultaneously, or develop a module while testing another. Since we share a
single hardware device, being able to work on one code section while someone
else uses the hardware to test another code section is a significant time saver.
Once the module has been tested thoroughly, it can then be incorporated into the
design, creating a building block on which the upper levels can rest. This
continues until we are ready to code the main control loop, which can depend on
the lower level modules to do their jobs.

One unfortunate drawback of the design is that it is not very portable to other
platforms should we choose to abandon development on the ATmega328 and
switch to another microcontroller with little notice. The hardware drivers are
specific to our particular configuration and are difficult to generalize.
Generalization can be done, but at an increased performance hit due to adding
another layer of functionality that basically takes all the hardware specifics and
puts them into a module or series of modules. However, we are relatively
confident in our decision to use the ATmega328 and do not see this portability
issue as cause for concern.

5.2.4. Development Environment and Hardware Interfacing

Software for our self balancing platform will be developed using the Arduino
programming language, which is a Wiring-based language that is syntax
compatible with the ISO/IEC C and C++ programming languages. The Arduino
Integrated Development Environment (IDE) will be compiling and loading code
onto the ATmega328 microcontroller from Atmel. We intend to use this
environment to develop a series of control schemes that will allow us to realize
our balancing platform. During prototyping, the microcontroller is mounted on the
Arduino Uno R3 development board. Since pin numbers in the code correspond
to the Arduino’s pin numbers and not the microcontroller’s, translation of pin
locations is necessary in order to understand which pin we will be actually
connecting to on our custom developed board.

In order to interface with our three devices, we will be using the ATmega328’s
UART pins 2 and 3 (Arduino pins 0 and 1) for interfacing with the Bluetooth
module, digital pins 18 and 19 (Arduino pins 12 and 13) for interfacing with the
motor controller, and I2C pins 27 and 28 (Arduino pins A4 and A5) for interfacing
with the accelerometer and gyroscope. Further details regarding the physical
connections are located in the Hardware Design section, while the reasons
behind these particular pin choices are in the following subsections for software

Magic Plank Senior Design - Group 2

66

design of each individual component. With the physical pin addresses known, we
can now move on to the development of our individual components.

5.3. Software Design

5.3.1. Motor Controller

The most basic part of the software control scheme is developing drivers that
deliver commands to the motor controller. The Sabertooth 2x12 and 2x25 motor
controllers use a variety of control schemes, most notably including the digital
packetized serial mode and analog Pulse-Width-Modulation (PWM). Our
microcontroller, the ATmega328, supports both PWM and standard serial input
ports. Our first inclination is to use PWM, since this control mechanism is the
simplest to implement. However, after researching further details on how to use
PWM to interface with the motor controller, we discovered that PWM suffers from
noise errors due to interference from the motors. In light of this discovery, we
have decided to stick with the more reliable digital serial input to drive the motor
controller. Sabertooth motor controllers are configurable via Dual In-line
Packages, (DIP switches). The DIP switch configuration is detailed further in the
Motor Controller subsection of the Hardware Design section. In short, the motor
controller is configured in either mode 3: simplified serial or in mode 4:
packetized serial. Serial communication to the Sabertooth motor controller is
done using 8-N-1 protocol: 8 data bits, no parity bits, and 1 stop bit.

Arduino already provides us with a powerful set of tools for use in serial
communication, among which are the HardwareSerial and SoftwareSerial
libraries1. The HardwareSerial library establishes a connection via UART input
and output pins RX and TX, while the SoftwareSerial library is capable of utilizing
any of the digital pins to establish a serial connection. In the case of the motor
controller, we can use either of these libraries. However, the ATmega328 is
limited to only a single set of hardware UART pins, and since we intend to use
those pins on the Bluetooth module, we will be using a software serial connection
for the motor controller. The SoftwareSerial library works by establishing a virtual
UART connection across the desired digital input and output pins. A connection
can be established by making an object of type SoftwareSerial. The constructor
takes in a receive pin and a transmit pin. To connect with our motor controller, we
will be using pins 18 and 19 (pins 12 and 13 on the Arduino Uno R3).

The first mode we will be exploring is simplified serial2. In simplified serial mode,
the commands are in the form of single bytes. The value of the byte determines
the command: sending the value 0 shuts down both motors; sending a value
from 1-127 controls motor 1; sending a value from 128-255 controls motor 2. The
lower values (1 for motor 1 and 128 for motor 2) signal the motors to go in full
reverse, while the upper values (127 for motor 1 and 255 for motor 2) signal the
motors to go full forward. Before sending any information, the baud rate must be
configured on the Sabertooth’s on-board DIP switches 4-6 in a range from 2400
baud to 38400 baud. We intend to use 9600 baud, which lies in the middle of this

Magic Plank Senior Design - Group 2

67

range. Baud is set on the software side using the “begin” command described in
the above code segment and passing in the baud rate. After establishing
connection, Dimension Engineering recommends waiting for a short amount of
time before sending serial commands to the controller. We can write to the
connection using either the “print” command and specifying the data type as a
byte, or the “write” command which will take a single raw byte of data and write it
to the connection.

After initialization, sending commands to the motor controller is as simple as
sending single bytes corresponding to a motor command. The byte is split in half,
reserving the lower half for motor 1 and the upper half for motor 2. Each half is
then split in half again, the lower extreme being the command for full reverse and
the upper extreme for full forward. For instance, to drive both motors full forward,
we would simply write a speed value of 127 for motor 1 and a value of 255 for
motor 2. Similarly, full reverse would be 1 for motor 1 and 128 for motor 2.
Writing a command to the motor controller is as simple as using the “write”
command and using the corresponding values detailed above. This property
makes simplified serial a very easy and efficient option.

The second mode of serial communication is packetized serial2,3. A packet
consists of an address byte, command byte, a data byte, and a checksum of 7
bits. The Address byte ranges from 128 to 135, which allows for multiple
controllers to be connected on the same serial line. However, we only have need
for a single controller, so the address 128 is sufficient. The command byte
interprets 17 different commands. Sending a command of 0 or 1 will drive motor
1 forward or backward, respectively. The same applies for a command of 4 or 5
for motor 2. Command 2 sets a minimum voltage for the battery connected to the
Sabertooth. If the voltage drops below a certain value, the controller shuts down.
There are also mixed mode commands, which affect both motors in a single
command. Command 8 is for driving forward, command 9 is for driving backward,
and commands 10 and 11 are for turning right and left, respectively. Commands
3, 6, 7, and 12-17 are irrelevant for our purposes. The third byte in the packet,
the data byte, contains data relevant to the command. For driving forward,
backward, or turning in mixed mode, data ranges from 0 for full stop to 127 for
maximum speed. For setting minimum voltage, data ranges from 0 to 120, where
value = (desired voltage – 6) * 5. The final packet is the checksum, which is sent
to prevent data corruption. The checksum can be calculated as checksum =
address byte + command byte + data byte. The checksum is a 7 bit value, and
since the ATmega328 is an 8 bit system, the checksum must be ANDed with
0b01111111. Baud rate in packetized serial mode, unless otherwise specified, is
at a default of 9600. Establishing communication is relatively the same for both
packetized and simplified mode, but now we can no longer simply use the “write”
command to send a command to the motors. We now have to send it in the form
of a packet by sending the address, the command, the data, and the checksum
all sequentially.

Magic Plank Senior Design - Group 2

68

Regardless of the serial mode, the properties of moving a motor can be
encapsulated into a single object that handles direct communication with the
motor controller and provides an easier interface for higher level processes.
Sparing the details behind the process, the final interfacing function for writing to
the motor controller can be configured to take in a char for each motor ranging
from -127 to 127, which would correspond to a range from full reverse to full
forward. This could be represented as a function called “MoveMotors” for
example. Note that there is a loss of resolution using simplified serial mode. Even
though the function takes in a range of 255, the motor controller is only capable
of working with a range of 127 for each motor. In this case, packetized serial has
the advantage of being able to operate within the larger range, producing a more
granular control scheme. With the control method encapsulated as this singular
function, we have something that is easily usable to the top level control module.
Now all we have to do is bind these functions into a single object.

Now the top level control mechanism is able to easily communicate with the
Sabertooth motor controller by simply instantiating a new Sabertooth object and
calling the movement function to move each motor. From the upper level
module’s perspective, it is irrelevant whether or not the Sabertooth class is
communicating via simplified serial or packetized serial; all backend functionality
is handled within the class. This completes our design of the Motor Controller
module, which satisfies the most basic needs of the main control scheme.

Before continuing, though, we must analyze which serial mode we should use.
Simplified serial is very easy to implement and very lightweight. There is little
overhead in communicating with the motor controller, as the information is sent
as a single byte. However, there are two main disadvantages for this mode. First,
there is no error checking, so corrupted data can still be interpreted as an
undesired command. This is opposed to packetized serial’s checksum, which
causes the packet to be thrown out if it is corrupted, causing the motor controller
to simply continue with the previous command. Second, the commands sent in
simplified serial suffer from reduced resolution in an attempt to accommodate
commands for both motors in a single byte. Packetized serial is capable of
sending a byte reserved for one motor with full range for either a forward or
backward command. Packetized serial also has the advantage of differential
drive mode, which operates both motors simultaneously. This is potentially
advantageous for the upper level control module, which can operate using more
simplistic commands. Despite the increased overhead of sending commands via
packetized serial, the increased granularity of commands seems to place
packetized mode as our preferred method of communicating with the motor
controller.

5.3.2. IMU – Raw Data Fetching

The ATmega328 and IMU-3000 will be communicating via I2C interface, which is
supported on pins 27 and 28 (Arduino pins A4 and A5). I2C communication is set
up in the Arduino development environment using the Wire library1. This creates

Magic Plank Senior Design - Group 2

69

a Two Wire Interface (TWI) establishing a data line (SDA) and a clock line (SCL).
Unlike the SoftwareSerial library, we do not instantiate any new data types.
There is already an object ready called “Wire”. Establishing communication is
done with the “begin” command. Sending a transmission requires initialization via
“beginTransmission”, which sends the initial address for transmission, using
“send” to send data, and ending with “endTransmission”, which sends the NACK
on the I2C bus to terminate communication. Since this is such a common task,
future code references will refer to this function as “write_I2C” for any necessary
writing.

Now, to receive information from the interface, we can start by requesting
information with the function “requestFrom” and specifying the address of the
device along with a quantity of information. We also must test to see if the wire is
available for use, so we use the “available” function. If the wire is open for use,
we can then obtain data via the “read” command. This is also a common task
that future code references will simply refer to as “read_I2C”. With transmission
and receiving established, we must now determine how to communicate to the
accelerometer and gyroscope, which requires that we know the addresses of the
items with which we wish to communicate. The relevant addresses are described
in Table 5.3.2-1.

Device Description Type Address (hex)

IMU-3000 Gyro address R 0x68

ADXL345 Accelerometer address R 0x53

X_OFFS_USRH / X_OFFS_USRL Gyro X offset high / low R/W 0x0C / 0x0D

Y_OFFS_USRH / Y_OFFS_USRL Gyro Y offset high / low R/W 0x0E / 0x0F

Z_OFFS_USRH / Z_OFFS_USRL Gyro Z offset high / low R/W 0x10 / 0x11

FIFO_EN FIFO enable R/W 0x12

INT_STATUS Interrupt status R 0x1A

GYRO_XOUT_H / GYRO_XOUT_L Gyro X out high / low R 0x1D / 0x1E

GYRO_YOUT_H / GYRO_YOUT_L Gyro Y out high / low R 0x1F / 0x20

GYRO_ZOUT_H / GYRO_ZOUT_L Gyro Z out high / low R 0x21 / 0x22

AUX_XOUT_H / AUX_XOUT_L Accel X out high / low R 0x23 / 0x24

AUX_YOUT_H / AUX_YOUT_L Accel Y out high / low R 0x25 / 0x26

AUX_ZOUT_H / AUX_ZOUT_L Accel Z out high / low R 0x27 / 0x28

FIFO_COUNTH / FIFO_COUNTL Number of bytes in FIFO R 0x3A / 0x3B

Magic Plank Senior Design - Group 2

70

FIFO_DATA FIFO data R 0x3C

USER_CNTRL User control (resets, enables) R/W 0x3D

PWR_MGM Power management R/W 0x3E

Table 5.3.2-1: IMU-3000 & ADXL345 Addresses2,3

We are presented with several options in interfacing with the IMU-3000. First, the
gyroscope and accelerometer data are always available through the outputs at
addresses 0x1D-0x28, which is the most direct way of accessing these values,
so we will explore this option first. We can start by requesting 12 bytes of data
starting at address 0x1D, which is the start of GYRO_XOUT_H, and ending with
AUX_ZOUT_L at address 0x28. This begins by transmitting to address 0x68
(IMU-3000’s I2C address) and setting the start address to 0x1D. Once we
initialize the register value to start from, we can start fetching the values from the
device. These values can be stored into a buffer until we are finished reading.
Reading is done in the format of the most significant byte (high) followed by the
least significant byte (low). We can continue reading until the device is done
sending the requested data, upon which we end transmission.

After the 12 byte fetch is complete, we can read those values from the buffer and
combine the bytes into integers. This formats the 12 byte sequence into relevant
data for each axis of the gyroscope and accelerometer. Data comes in the order
it was requested, starting with 0x1D for the MSB of the x axis of the gyroscope,
0x1E for the LSB, etc. Reading the data in this way is simple, but there is yet
another way to do it: the FIFO

Utilizing the FIFO requires a slightly more advanced approach. The first thing we
must do is become familiar with the FIFO_EN, or FIFO enable register, at
address 0x12. It contains 8 bits that correspond to an output value to be stored in
the FIFO. Setting each of these bits controls what data gets put into the FIFO by
the IMU-3000. For example, writing a value of 0b01111111 enables all data
except the temperature.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

TEMP_OUT GYRO_XOUT GYRO_YOUT GYRO_ZOUT AUX_XOUT AUX_YOUT AUX_ZOUT FIFO_FOOTER

Table 5.3.2-2: FIFO Enable Register 0x123

Second is the usage of the User Control register at address 0x3D. This register,
when written to, will enable or reset certain parts of the IMU-3000. We must set
both the FIFO_EN and FIFO_RST bits by writing the value 0b01000010. Setting
the reset bit then allows us to write to the FIFO_EN register and change the
value to output the desired data. We must then disable the reset bit once we
have configured the FIFO_EN register.

Magic Plank Senior Design - Group 2

71

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

DMP_EN FIFO_EN AUX_IF_EN - AUX_IF_RST DMP_RST FIFO_RST GYRO_RST

Table 5.3.2-3: User Control Register 0x3D3

Initializing the IMU-3000 for FIFO reading would be similar to the following:

 write(0x68 , 0x3D , 0b01000010); //Write to User Control: FIFO_EN / FIFO_RST
 write(0x68 , 0x12 , 0b01111111); // Enable all data except temperature
 write(0x68 , 0x3D , 0b01000000); // Write to User Control: disable FIFO_RST

The next register we must familiarize ourselves with is the FIFO_COUNT
registers 0x3A and 0x3B. These registers store the number of bytes of valid data
that are in the FIFO, which is a maximum of 512. In the event that the FIFO fills
up, the length reads 512. Old FIFO data is pushed out to make room for new
data, so data is never too old. A FIFO reset should be considered if there is an
overflow. Getting this value will allow us to burst read data from the FIFO, which
saves computation time.

Register Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

0x3A - - - - - - FIFO_COUNT_H

0x3B FIFO_COUNT_L

Table 5.3.2-4: FIFO Count Registers 0x3A and 0x3B3

Data is read from the FIFO in the following order:

 TEMP_OUT 2 bytes Temperature high/low
 GYRO_XOUT 2 bytes Gyroscope X high/low
 GYRO_YOUT 2 bytes Gyroscope Y high/low
 GYRO_ZOUT 2 bytes Gyroscope Z high/low
 AUX_XOUT 2 bytes Accelerometer X high/low
 AUX_YOUT 2 bytes Accelerometer Y high/low
 AUX_ZOUT 2 bytes Accelerometer Z high/low
 FIFO_FOOTER 2 bytes Footer, last read operation

The Gyro and accelerometer readings are the same as reading directly from the
registers. (MSB first, followed by LSB), but here we have two extra pieces of
data: TEMP_OUT, which is the temperature reading, and FIFO_FOOTER, which
is just a spacer in between FIFO data blocks that is left over when a read occurs.
There is one advantage to setting up the FIFO, which is the ability to toggle
which inputs we need. We can completely eliminate the axes that are irrelevant
to us, saving time that would otherwise have been wasted reading useless data.
Since we have disabled temperature readings, we need only fetch 14 bytes of
data per block. With knowledge of the FIFO size through the use of
FIFO_COUNT, we can burst read all the data at once. However, before doing a
complete FIFO read, it is recommended that the FIFO input be halted, followed
by a complete read of 512 bytes, then re-enabling the FIFO.

Magic Plank Senior Design - Group 2

72

Now we must address the issues associated with utilizing simplified output or
using the FIFO to get burst readings. Getting burst readings is potentially
advantageous and could save valuable computation time if implemented
correctly, but it is a radically different programming approach than using sampling
when needed. Using large amounts of cached data is an intensive process that is
likely beyond the scope of our 16MIPS ATmega328 microcontroller. The
microcontroller could theoretically handle burst processing, but at the instruction
throughput rate, it is likely that the data could be too old and therefore rendered
irrelevant by the time it needs to be used. With regular sampling, the
microcontroller is always getting the most current values and therefore has a
more reliable output. Keeping this in mind, we have still decided to move forward
with the standard sampling directly from the registers, but still keep in mind the
possibility of doing burst reading through the FIFO. At this stage in development,
it is too early to entirely rule out one possibility. However, since we will initially be
doing standard sampling, we can now develop a class that fully encapsulates this
design. It is capable of initializing the IMU-3000 and reading its inputs, storing
them into integer representations that are easily and readily accessible by the
upper level module.

Now that this module is encapsulated into something that is usable to an upper
level, the bare hardware interfacing between the microcontroller and the IMU-
3000 is no longer a concern. The upper level module only has to worry about
processing this data and making it usable to the top level control module.

5.3.3. IMU – Raw Data Processing

Now that the raw data has been extracted from the accelerometer and
gyroscope, all that is needed is to process the data into a usable format. The
ADXL accelerometer gives data in the form of gravitational force at a precision of
+/- 2g’s in the form of a 16 bit 2s complement binary number. Although it is
represented as 16 bits for convenience of the processor, its maximum resolution
is 14 bits. The gyroscope located inside the IMU-3000 measures data in the form
of degrees per second, of which it will be configured for +/- 250 deg / sec
expressed as a 16 bit 2s compliment binary number. The basic idea behind
processing this raw data is to fuse the accelerometer’s gravitational force rating
with the gyroscope’s degree reading so that the data processed corresponds to
the state of motion of the system in terms of angle and angular velocity. The raw
data output by the hardware must first be normalized pre-processing. This simply
involves taking some samples while the IMU is level and at rest, then figuring out
a constant at which to multiply the raw readings such that the data zeroes out.
The 16 bit integers are thereby converted into floats during this process. After
offsetting comes filtering; there are two main approaches to processing the data:
the complementary filter and the Kalman filter1.

The first and simplest approach, the complementary filter, is one of the most
common ways to process the raw data. A complimentary filter works by
managing both a low pass filter for high frequency signals from the

Magic Plank Senior Design - Group 2

73

accelerometer and a high pass filter for low frequency signals from the
gyroscope. A low pass filter is needed due to the nature of the accelerometer.
Vibration causes small spikes in acceleration that are not desirable, so a low
pass filter generally takes care of the small insignificant spikes and only cares
about the changes caused by true acceleration. A high pass filter is needed for
the gyroscope due to a problem known as gyroscopic drift where the gyroscope
outputs small changes reflected by imperfect sensors. Filtering begins with the
definition of a constant K (which is simply determined to be a nice number that is
specific to the design) and a loop time L (which is the time it takes to sample the
data in seconds). There are two different techniques for doing a complimentary
filter: the first order filter and the second order filter.

In the first order filter, K is usually a small number between 0 and 1. Calculation
on the first order can be done in a couple lines, first by averaging out the
constant K and loop time L into filter constant F, then by multiplying F with the
sum of the current angle, new accelerometer rate, and L and adding it to the
complement of F times the new gyroscope angle2. The resulting calculation is a
simple low and high pass filter that smoothes much of the undesired raw data
values.

The second order filter is accomplished by setting constant K to some number
not necessarily between 0 and 1. The difference of the new angle and the current
angle is multiplied with the square of K, then loop time L is summed with the
difference of the new angle and the current angle multiplied by 2K and then
added to the new rate. These values are multiplied by L and added to the current
angle. This results in a slightly more complicated low and high pass filter that
delivers slightly better results.

The second approach is the Kalman filter, which is largely regarded as the best
approach to the problem. The only drawback is that this is a very complex
algorithm that is not easily understood. This means that a pre-defined library
must be extensively utilized. In addition to reliance on libraries, this filtering
technique requires a large amount of processing power, and since the
ATmega328p is limited in its instruction throughput, the filter’s theoretically
superior results could be outweighed by its performance impact. Creating a
Kalman filter requires configuration of three main constants: The 2nd moment
E(α2), E(bias2) and measurement process noise covariance Sz.

3,4 These
constants are processed through matrix math in addition to the current filter
value, the new acceleration rate measurement, and the new gyroscope angle
measurement. In short, comprehending the particulars about the filter are
irrelevant so long as the library is general enough to be usable. There is a wealth
of knowledge on Kalman filter libraries, including free to use Arduino code that is
readily accessible, so building a Kalman filter from the ground up is completely
unnecessary.

Magic Plank Senior Design - Group 2

74

In order to decide which filtering method is superior requires some analysis on
the filtering values. According to analysis done by Walter T. Higgins Jr. of
Arizona State University, the complementary filter performs comparably to the
Kalman filter, though the Kalman filter does strictly give the best performance
due to reduced response to vibration noise. However, due to increased
computational complexity, real-time performance on a restricted system is
potentially lower than the simpler and faster complementary filter. The overall
consensus seems to be that the complementary filter is a “good enough”
approach that saves a lot of valuable computation time, so at this point in time,
the current approach will be using a complementary filter. The Kalman filter will
still be supported and developed in the event that the complementary filter does
not perform well enough.

Regardless of the filtering method, this module can be summarized with the
creation of a function taking in the accelerometer’s newest angle and the
gyroscope’s newest rate. The function would also need constants that vary
depending on the filtering method used. Constants and background methods can
be summarized in a single class.

With these operations summarized into a single module, the top level control
module can easily operate the filter without any knowledge of the lower level’s
backend functions. This modular approach provides an easy way to modify the
filtering method without interfering with or invalidating the rest of the code.

5.3.4. RC Coding Implementation

The communication between the Nintendo Wii wireless remote controller and the
development board being used (be it the Arduino development board for the
prototype or the Atmel ATmega328p processor development for the final project)
will only need to be one way, as the Nintendo Wii wireless remote controller will
only be needing to transmit the data relating to the orientation of the controller
from the internal accelerometer and the pressing of any of the buttons to the
development board and will not be required to receive any information in order to
perform that task. The Nintendo Wii wireless remote controller is set up to be
defaulted in a mode (0x30) which will transmit only the output of the status of the
core buttons. For use in the project at hand, the mode represented by the bits
(0x31) will be used, which will transmit output from both the core buttons and the
accelerometer. This mode will be accessed through a SET_REPORT request
through channel 0x12 via the following command:

(a1) 12 00 31

There have been many different libraries that have been developed specifically
for developing programs revolving around the Nintendo Wii wireless remote
control due to the uniqueness of its design, as well as how simple the device is to
interface with due to its basic Bluetooth transmission capabilities. The library
pack which has been utilized is known as LibWiiMote-0.4, developed by Joel

Magic Plank Senior Design - Group 2

75

Andersson. The library is very vast, as it contains a basic setup for whether the
application would be reading information from the Nintendo Wii wireless remote
controller or if would be sending information to the controller; however, what it
contains regarding the ability to read information from the controller was
designed in such a way that would make it suitable to the prototype’s and
project’s needs. A flowchart of the interaction between the header files and
source files is seen in Figure 5.3.4-1.

The physical link structure that the Nintendo Wii wireless remote controller will
utilize to connect with the SMD Module – RN – 42 will have its own specific
structure called wiimote_link_t. For the sake of convenience, both the Bluetooth
address of the Nintendo Wii wireless remote controller and the Bluetooth address
of the local host with which it will be connected to are stored in separate char
arrays in the wiimote_link_t struct. Along with the Bluetooth addresses are
variables representing the current connection status of the Nintendo Wii wireless
remote controller, the local host, the Bluetooth device number, the Human
Interface Device interrupt socket, and the Human Interface Device control socket.

The library contains an enumerator list which details the different modes which
are supported by the Nintendo Wii wireless remote controller, as was briefly
mentioned earlier. The enumerator list can be used both when setting the mode
which the Nintendo Wii wireless remote control will be using to transmit data, as
well as in the debugging process to be sure that the mode doesn’t change
through either faulty code or through an unexpected hiccup. The enumerator
names are very intuitive, with WIIMOTE_MODE_ACC representing the value of
“0x31” (the mode which contains the addition of the accelerometer data),
WIIMOTE_MODE_ACC_IR representing the value of “0x33” (the mode which
contains the addition of both the accelerometer data as well as the infrared
reports), and similar naming schemes for the remaining mode types. To complete
the definition of the different modes of the Nintendo Wii wireless remote
controller, the library also contains the definition of a structure specific to the
modes. The basic structure for the modes of the Nintendo Wii wireless remote
controller contains enable bits for the three non-button outputs of the controller:
the accelerometer, the infrared camera, and the extension port.

Magic Plank Senior Design - Group 2

76

Figure 5.3.4-1: Header and source interaction

The other enumerator list that the LibWiiMote-0.4 library pack houses contains
values which are used to determine the status of the Nintendo Wii wireless
remote controller’s connection to its host. This list is of particular importance, as it
not only serves as a way to establish when the controller is able to send
commands, but it also provides a method to establish a kill condition which would
halt the balancing platform project should the controller no long be linked up.

Magic Plank Senior Design - Group 2

77

Because the Nintendo Wii wireless remote controller only sends new packets of
data when the data has changed in some form from the previously sent packet,
the throttle of the prototype balance board and the steering of both the prototype
balance board and the final balancing platform will continue to be controlled by
the last data packet to be sent. While this is convenient in terms of power
conservation since the development board will not be required to waste
processing time to repeat a command that hasn’t changed, it could also prove to
be a rather problematic issue should the Nintendo Wii wireless remote controller
suddenly disconnect after sending a command. An example of this potential
issue would be if the user had commanded the self-balancing motorized platform
to turn to the left at the maximum rate just prior to the Nintendo Wii wireless
remote controller running out of batteries, the driver of the scooter would be left
spinning in circles as fast as the code allows until the controller either
reestablishes a connection via an emergency battery replacement or until the
self-balancing motorized scooter is powered off. This potential design flaw further
emphasizes the convenience of the enumerated list included in the LibWiiMote-
0.4 library pack.

Because the data packet transmitted by every mode available to the Nintendo
Wii wireless remote controller includes bytes related to the change in the state of
the controller’s button presses, the library contains a structure specific to the
controller’s multiple buttons. The format of the data transmitted by the button
presses of the Nintendo Wii wireless remote controller is similar to the following
example:

(a1) 30 BB BB

As shown above, the state of each button press (represented by the variables
BB) is contained within two bytes of data. Each state is then capable of being
stored in the wiimote_keys structure by simply defining each state as having a
two byte (or 16 bit) data type.

Because the majority of the data that will be processed from the Nintendo Wii
wireless remote controller will be information regarding the changes in the
orientation of the controller from its internal accelerometer, there will be a need to
make heavy use a method in which to keep track of different sets of coordinates
existing in 3D space. To accomplish this, the program will be storing the values in
structures of type wiimote_point3_t. This particular structure inside the library
contains three variables, each representing a different attribute of a location in
3D space. The three variable types are unit8_t x, unit8_t y, and unit8_t z, with
each representing a different axis.

The final structure in the library that will be utilized is that which is for the
Nintendo Wii wireless remote controller’s data structure which is simply titled
wiimote_t. This structure was built to be read directly from a Human Interface
Device report. The order in which the variables inside the structure were
specifically designed to match up with the order in which they appear from the

Magic Plank Senior Design - Group 2

78

data packet sent out from the Nintendo Wii wireless remote controller, with the
first entry being mode of type wiimote_mode_t which contains the current report
mode of the controller, the second entry being keys of type wiimote_keys_t in
order to house the current key state, the third entry being axis of type
wiimote_point3_t, and so forth. This structure will be the core structure through
which the data read in from the Nintendo Wii wireless remote controller will be
stored, as it will be utilizing the previously mentioned structure types which have
been defined above. The wiimote_t structure will also house the previously
stored data in another structure called old which will be used in order to detect
the change in the data to determine whether the previously transmitted data
packet should continue to be followed or if it should be altered to match a more
recent packet.

The second library that will be utilized is the wiimote_event.h library. As the name
suggests, this library sets the stage for the reception of each data packet
transmitted by the Nintendo Wii wireless remote controller. This particular library
contains definitions for the bytes which represent all of the buttons on the
Nintendo Wii wireless remote controller, as well as definitions which will be used
to recognize the masks of the keys and whether they are being pressed down or
if they have just been released. These definitions will be able to be used to
translate the bits that are transmitted from the Nintendo Wii wireless remote
controller as they are parsed into their individual parts so that each command
can be deciphered and the appropriate instruction can be sent.

The modes which the Nintendo Wii wireless remote controller can be in which do
not include information regarding anything plugged into the extension port in the
rear of the controller are referred to as the standard modes. Because these
modes all have a similar base of information which they are transmitting with
each data packet, it makes sense to have them all contained within the same
structure. While there exists a structure within the previously mentioned library,
wiimote.h, which will be used to house the specific data pertaining to the
activation of any particular output from the Nintendo Wii wireless remote
controller, this particular structure, wiimote_std_state_t, will be used to contain
the state of each of these features. This structure also utilizes the data types that
had been defined in the wiimote.h library in order to be able to properly store the
current state of each of the Nintendo Wii wireless remote controller's output.

The final structure that exists in the wiimote_event.h library that the self-
balancing motorized scooter project and the balancing platform prototype will be
utilizing to allow the Nintendo Wii wireless remote controller to be used as the
steering implementation of choice is the wiimote_state_t structure. This structure
will be used to house all of the information stored in the previously mentioned
library, wiimote_std_state_t.h, for each of the different information transmission
modes. This particular data type also happens to be a union, allowing it to be
tailored specifically to whatever mode the Nintendo Wii wireless remote controller

Magic Plank Senior Design - Group 2

79

while still being able to be flexible enough to handle any other modes it should be
required to utilize.

With the libraries established, the source files could then be created to use these
predefined data structures and types. A source file of particular note is
wiimote_api.c, which handles the application programming interface used by the
Nintendo Wii wireless remote controller. The source file consists of functions
which set up the Nintendo Wii wireless remote controller variable, referred to as
wiimote and being of type wiimote_t. The source file first establishes the
controller’s side of the connection between the Nintendo Wii wireless remote
controller and the development board in use. It accomplishes this through several
functions. The first of these functions is wiimote_open, which returns data of type
wiimote_t.

The function establishes a variable of type wiimote_t called wiimote and then
checks for whether the variable was correctly created or not through a simple ‘if’
statement. Should the variable have been incorrectly created or not created at
all, the function will return an error of WIIMOTE_NONE to indicate that the
variable for the Nintendo Wii wireless remote controller had failed to be created.
If the variable was successfully created, the function next checks if there is an
active connection between the Nintendo Wii wireless remote controller and the
host by comparing the output of the wiimote_connect function with input variables
of the newly created wiimote and host with the number zero. Should the output
be less than zero, it is indicative of a failure to connect to the host and will result
in the return of an error of WIIMOTE_NONE. Should the function managed to get
past the two previously mentioned error checks, the bits of the mode attribute of
the wiimote variable is initialized to the default mode of reading only in the button
values of the controller through the following command:

wiimote->mode.bits = 0x30;

As mentioned earlier, the 0x30 bits are unique to the default, button-only
configuration of the Nintendo Wii wireless remote controller’s modes. Following
this final declaration of the controller’s default mode, the function then returns the
newly updated wiimote.

Another function contained within the wiimote_api.c source file serves the
express purpose of simply closing the connection between the Nintendo Wii
wireless remote controller and its host, as well as ending the entire session. This
function, named wiimote_close of type int, begins with a check to see if there
exists a connection between the Nintendo Wii wireless remote controller and a
host by simply calling a previously defined function intuitively named
wiimote_is_open. If there does exist a connection, the function continues to
attempt to close the connection, reporting a WIIMOTE_ERROR if the return
value of the function wiimote_disconnect is a negative number when the wiimote
variable is passed in as a parameter. If the open connection had been
successfully closed or if there never was an open connection to a host to begin

Magic Plank Senior Design - Group 2

80

with, the function concludes by freeing up wiimote so as to completely end the
data transfer session, returning a value of WIIMOTE_OK to signify that the
transaction to close out the session was a success.

The final function of note in the wiimote_api.c source file, wiimote_copy, is able
to copy the data from one wiimote structure into another wiimote structure when
the source and destination structures are entered as parameters. The function is
simplistic in design, as it simply calls a memcpy on the passed in source and
destination in order to make the copy. The function then checks to see if the
memcpy call was successful, returning a WIIMOTE_ERROR if the process failed
and returning WIIMOTE_OK if everything checked out.

The source file which handles all of the events prompted by the data packets
sent by the Nintendo Wii wireless remote controller to its host connection is
named wiimote_event.c. This source file is in charge of not only handling the
events that occur, but it is also in charge of doing the calculations required to
translate the data packets transmitted by the Nintendo Wii wireless remote
controller into usable data that’s capable of being used directly to control the
steering and throttle of the self-balancing motorized scooter project and The
prototype balancing board. The functions described in this source file rely heavily
upon the data acquired from the previous source files as most of the data
required for its functions are required to already be interpreted; however, raw
data taken straight from a transmission from the Nintendo Wii wireless remote
controller can still be utilized here.

The first function of this source file is named wiimote_get_state. As the name
implies, this function’s purpose is to read in the state (or mode) of the Nintendo
Wii wireless remote controller and to save the corresponding bit representation
(0x30, 0x31, etc.). The function accomplishes this by checking the Serial port of
the development board to see if there’s any data ready to be received and
acquiring it if there is. The data is then parsed for the first two bytes of data,
which contain the mode of the Nintendo Wii wireless remote controller, and
stores the mode in the state variable which had been passed into the function.
Upon attempting to acquire the data packet, the function makes a check to see if
the acquisition was successful and returns WIIMOTE_ERROR if it failed to do so.
If an error didn’t occur, then the function simply returns WIIMOTE_OK.

The function update_mode performs an update on the current information output
mode of the Nintendo Wii wireless remote controller in the event that the user
wishes to change the mode whilst the device is in use. The function begins with a
check to be sure that the mode has actually changed by comparing the last
stored bit values of the most recently used mode, stored in wiimote-
>old.mode.bits, with the newly read bits. Should these two byte values match up,
the function simply ends there, returning an indication of WIIMOTE_OK since
there is no longer any need to alter the mode of the Nintendo Wii wireless remote
controller. Should the case be where the old mode bits do not match up with the

Magic Plank Senior Design - Group 2

81

newly read bits, indicating that a change in the output mode is desired, the
function continues to make the necessary changes to the mode based on what
the new mode should be.

Following the updating of the mode, the function continues to change the data
types stored in the wiimote structure. For example, should the new mode that
was chosen be one which includes feedback from the Nintendo Wii wireless
remote controller’s infrared camera (indicated by simply checking if both the new
mode has the defined bits of ir and the old mode does not), the function proceeds
to enable the infrared sensor by checking if the bits representing the
WIIMOTE_MODE_ACC_IR mode are set in the current mode in order to
determine if the infrared mode should be set to WIIMOTE_IR_MODE_EXP or if it
should be set to WIIMOTE_IR_MODE_STD. This same function is also capable
disabling the Nintendo Wii wireless remote controller’s infrared sensor. It
accomplishes this by first checking to be sure that the old mode stored in
old.mode in the wiimote structure is set to the value defined by ir and then
checking that the new mode doesn’t have the same value. If both of the
previously mentioned conditions have been met, then the function calls the
wiimote_enable_ir function but passes through the value
WIIMOTE_IR_MODE_OFF, signaling the disabling of the infrared sensor.

The function calc_tilt requires only the input of wiimote structure in order to
calculate the tilt of the Nintendo Wii wireless remote controller. It accomplishes
this through the use of some trigonometry and the output data from the Nintendo
Wii wireless remote controller’s internal accelerometer. The function first begins
by establishing a ratio for each of the three 3D plane coordinates x, y, and z, by
subtracting the specific calibrated zero standard from the scale factor of each
coordinate as shown in the calculation for the x coordinate below:

float xs = wiimote->cal.x_scale - wiimote->cal.x_zero;

Once the ratio has been established, the values of the current accelerometer
data for each of the coordinates can then be utilized. The raw values of the data
from the Nintendo Wii remote controller’s internal accelerometer are seen in a
similar format to those of the standard buttons. An example string is shown
below:

(a1) 31 40 20 86 8a a5

It is already know from previous examples that byte zero is the channel through
which the information will be transmitted, also referred to as the mode. Bytes one
and two are the bitmask for the buttons. Bytes three, four, and five are the related
to the x, y, and z axis measurements, respectively. It is this data that is utilized by
the next part of the calc_tilt function. The function takes the value from the
accelerometer that had been stored in the axis attribute of the wiimote structure
and subtracts from it the previously used zero location for the coordinate. The

Magic Plank Senior Design - Group 2

82

resulting number is then divided by the ratio that had been established earlier
and is then casted as a float for further calculations, as seen below:

float x = (float) (wiimote->axis.x - wiimote->cal.x_zero) / xs;

The final step of the calculation of the tilt of the Nintendo Wii wireless remote
controller is where the trigonometric functions mentioned earlier are put into use.
The trigonometric calculation consists of calculating the arcsine of each of the
three coordinate values that were derived in the previous equation and
converting this answer into degrees by multiplying it by 180 degrees and then
dividing it by the value of pi. The equation used is seen in the example below:

wiimote->tilt.x = (asin(x) * 180.0f / M_PI);

As seen in the above equation, these values are then stored directly in the
wiimote structure for use in determining how to translate these values into
directions which the development board can use.

Similar to the last function, the calc_force function proceeds to calculate the force
of the movement of the Nintendo Wii wireless remote controller. The function
accomplishes this by simply calculating the difference between a coordinate’s
location on its plane of existence and the zero value attributed to that coordinate
and dividing that value by the difference between the scale factor for that
coordinate and the zero value. An example of this equation is reproduced below.

float force_x = (float) (wiimote->axis.x - wiimote->cal.x_zero) /

(wiimote->cal.x_scale - wiimote->cal.x_zero);

With this new value calculated it is then stored into a variable of type float. This
new value is then stored in the wiimote structure in the attributes created
specifically to store the force of each of the three coordinates in 3D space.

The next function in the source file wiimote_event.c is the process_state function.
This function is responsible for utilizing all of the previously mentioned functions
residing within wiimote_event.c in order to put the correct information into the
passed in wiimote structure and its accompanying data transmission mode. It
accomplishes this through a massive switch statement, varying each case based
on the channel which the information shall be traveling (thus dictating the mode).
In the case where the channel is the bits defined by WIIMOTE_RID_ISTATUS,
the function first initializes the device plugged into the Nintendo Wii wireless
remote controller’s extension port. It does this by writing the bytes which the
Nintendo Wii wireless remote controller recognizes as then initialization of the
extension port, ‘0x04a40040’. Should this process fail, the function then displays
an error and returns a value of WIIMOTE_ERROR. The function then reads
which type of device is plugged in and stores the information in the wiimote
structure, displaying a message if it fails to do so.

Magic Plank Senior Design - Group 2

83

The function continues by decoding the Nintendo Wii wireless remote controller’s
Nunchuk attachment if it’s currently attached to the controller. It accomplishes
this by calling the nunchuk_decode function prototyped in the wiimote_nunchuk.h
library and defined in the wiimote_nunchuk.c source file; however, if the function
had previously detected that there was no device currently plugged into the
Nintendo Wii wireless remote controller’s extension port, the previous steps are
skipped and the wiimote structure is notified of the lack of an extension port
device by setting the wiimote’s mode.ext attribute to zero and its ext.id to
negative one. The function then concludes the case by resetting the report mode,
as the Nintendo Wii wireless remote controller will not send any more data
immediately after a status report has been received otherwise. This is
accomplished by setting the bits of the old mode stored in the wiimote structure
to zero ad then calling the update_mode function and passing in the wiimote

structure to finish the update.

The next four cases in the switch statement, WIIMOTE_MODE_ACC_IR,
WIIMOTE_MODE_IR, WIIMOTE_MODE_ACC, and
WIIMOTE_MODE_DEFAULT, execute the same code due to their similar
outputs. Should the case statement match one of the modes mentioned above,
the function starts by handling all of the possible types of data that could be read
in those modes. The function begins by converting the infrared data currently
stored in the passed in wiimote structure into a standard which can be utilized by
a more simplistic function via the conv_ir_std function. Once the potential infrared
data has been handled, the function proceeds to copy over the data from the ev
structure’s axis attribute to the attribute of the same name in the wiimote
structure. The function continues to copy over data from the ev structure to the
wiimote structure by transferring the data related to the bits of the buttons
recently pressed on the Nintendo Wii wireless remote controller. With the values
of the buttons, infrared, and accelerometer copied over, the function then uses
the accelerometer data to calculate the tilt and the force of the recent movements
of the Nintendo Wii wireless remote controller through the two previously
mentioned functions calc_tilt and calc_force before breaking out of the code
applied to those specific mode cases.

In the case of the channel being WIIMOTE_MODE_EXT, or having a bit value of
0x34, the function begins by updating the bits of the key attribute of the wiimote
structure with those of the passed in ev structure. With the bits updated, the
function proceeds to decode the extension data, whose presence is indicated by
the bit value of the channel being WIIMOTE_MODE_EXT, held in the ev
structure. The decoding is accomplished by simply calling the nunchuk_decode
function with the extension data of the ev structure passed in along with the bit
size of the data. The function then proceeds to determine which extension is
currently plugged in to the Nintendo Wii wireless remote controller through a
series of if statements. The first statement checks if a Nintendo Wii Nunchuk is
currently attached by comparing the extension identifier attribute, which was
recently updated in the wiimote structure, with the bit identifier

Magic Plank Senior Design - Group 2

84

WIIMOTE_NUNCHUK_ID. If the check comes out true, the function simply
copies over the data inside the ev structure’s extension data attribute to the
wiimote structure’s Nunchuk extension attribute, as well as modifying the bits of
the Nunchuk attribute by performing the XNOR operation on it with the value of
0xff. If the channel is WIIMOTE_CLASSIC_ID instead of
WIIMOE_NUNCHUK_ID, the function needs only update the extension data of
the wiimote structure with that of the ev structure.

If the channel is represented by the bit definition of
WIIMOTE_MODE_ACC_EXT, or having a bit value of 0x35, the function is
tasked with handling the information received from both the extension port as
well as the Nintendo Wii wireless remote controller’s internal accelerometer. The
function begins this specific case by transferring the bit data held in the ev
structure’s key attribute to the wiimote structure’s same attribute. The function
then copies the information in the ev structure’s accelerometer information from
the axis attribute to the axis attribute of the wiimote structure. The tilt and force
are then both calculated via the calc_tilt and calc_force functions. With the
accelerometer data successfully calculated, the function then decodes the ext2
attribute’s data via the nunchuk_decode function. If the extension identifier for the
wiimote structure has a value of WIIMOTE_NUNCHUK_ID, the function will then
decode the ext1 attribute’s data, followed by copying the newly decoded data into
the wiimote structure’s extension specified for the Nintendo Wii wireless remote
controller and then modifying the data by once again performing an XNOR
operation on it with the value of 0xff. If the extension identifier for the wiimote
structure is instead having a value of WIIMOTE_CLASSIC_ID, the function
instead updates the wiimote structure’s extension data with that of the ev
structure’s.

The next case in the switch statement handles the event where the channel’s bit
representation is WIIMOTE_MODE_IR_EXT, indicating that the current mode
includes data from the core buttons, ten infrared bytes, and nine extension port
bytes. This case begins, much like the other cases, by updating the bits of the
wiimote structure’s keys attribute with those of the ev structure’s. Following the
bit update, the ev structure’s extension data is once again updated via the
nunchuk_decode function. With the extension data decoded and the extension’s
bit data transferred over into the wiimote structure, the function begins its check
for the type of device plugged into the extension port. If the identifier for the
wiimote structure’s extension attribute is the bit definition WIIMOTE-
_MODE_IR_EXT, the function proceeds by performing a memory copy from the
data in the ev structure’s extension data attribute to the wiimote structure’s
Nunchuk extension attribute. Inside the same constraints of the of the ‘if’
statement, the function proceeds to perform an XNOR operation on the stored
bits of the Nunchuk keys attribute of the wiimote structure with the 0xff value. The
statement is concluded by converting the infrared data once again via the
conv_ir_ext function. If the wiimote structure’s extension identifier is

Magic Plank Senior Design - Group 2

85

WIIMOTE_CLASSIC_ID, however, the function updates the wiimote structure’s
extension data to reflect the state.

The following case handles the situation where the Nintendo Wii wireless remote
controller’s bit identification is the bit definition WIIMOTE_MODE_IR_EXT. This
case is handled nearly identically to the previous cases, starting off by updating
the bits of the wiimote structure’s key attribute with those from the ev structure.
Following that command, the function once again decodes the data in the ext2
attribute of the ev structure for use by the wiimote structure. If the wiimote
structure’s extension identifier is the bit identifier WIIMOTE_NUNCHUK_ID, the
function copies the data in the ext2 attribute of the ev structure over to that of the
wiimote structure pertaining to the Nunchuk attribute. After the data has been
copied over, it is once again modified by having an XNOR operation performed
on it with the bits 0xff. After the data has been modified, the infrared data in the
ev structure is converted via the conv_ir_ext function and moved to the wiimote
structure. If the wiimote structure’s extension identifier is, instead, the bits
represented by WIIMOTE_CLASSIC_ID, the function instead simply updates the
wiimote structure’s data with the ev structure’s.

The final case in the process_state function is where the chosen channel is the
bits defined by WIIMOTE_MODE_ACC_IR_EXT, or the bits 0x34. This case
begins, just as most of the other cases began, with transferring the bits from the
keys attribute of the ev structure into the keys attribute of the wiimote structure.
This process is followed by the ext3 attribute’s axis bits from the ev structure
being copied over to the bits of the keys attribute of the wiimote structure. The
next step this case takes is the function calculating the tilt of the newly copied
axis values in the wiimote structure through the use of the calc_tilt function. With
the tilt calculated, the function then utilizes the calc_force function to calculate
the force of the last movement read through the Nintendo Wii wireless remote
controller’s internal accelerometer. Afterwards, the function proceeds to convert
the infrared extension data from the ev structure and copy it into the wiimote
structure via the conv_ir_ext function. Next, the extension data in the ev structure
is decoded through the nunchuk_decode function. The function then makes a
check for which extension is being used by first comparing the byte identifier in
the ext attribute of the wiimote structure with the byte value defined by
WIIMOTE_NUNCHUK_ID. If the two values match, the function then copies the
data from the ext3 attribute of the ev structure into the Nunchuk extension data in
the wiimote structure. Afterwards, like before, the bits of the Nunchuk extension
in the wiimote structure have an XNOR operation performed on them with the
bits 0xff. If the two values did not match, the function then compares the byte
identifier in the ext attribute of the wiimote structure with the byte value defined
by WIIMOTE_CLASSIC_ID. If the two values match in this case, the
wiimote_classic_update function is called to bring updated information to the
wiimote structure via the ev structure’s data. In the event that none of the cases’
conditions were met, the function assumes that an error has occurred. This
situation is handled by setting the default case to a calling of the

Magic Plank Senior Design - Group 2

86

wiimote_set_error function, citing that the mode that was received was invalid
and therefore unusable, and returning the value defined by WIIMOTE_ERROR. If
a case had been met, however, the function closes out by returning the value
defined by WIIMOTE_OK.

The next function described in the wiimote_event.c source file is named
wiimote_pending. The purpose of this function is to keep track of how long input
from the Nintendo Wii wireless remote controller has been waiting to be received
and to establish a timeout in case it isn’t received in time. Through this function
the system can detect if something is causing the algorithm to hang and not
receive the commands as they are being sent by the controller. The function
accomplishes this task by first establishing a struct timeout of type timeval which
will be used to keep track of how long a data packet has been waiting to be
received. The function then uses the variable retval to determine which sockets
are waiting to send additional data, returning an error if it detects that either the
returned value is negative or if the waiting input has exceeded the predetermined
timeout value.

The next function, wiimote_update, checks to see if there are any changes that
have been made to the wiimote structure that should be forwarded to the
Nintendo Wii wireless remote controller. This is accomplished by first establishing
a structure of type wiimote_state_t with which to temporarily store any new states
that need to be used to update the device. The function first checks to see if the
bits of the mode attribute are up to date in the Nintendo Wii wireless remote
controller by comparing the values of the bits in the old mode attribute with those
of the recent mode attribute in the wiimote structure to see if the values are the
same. If the values are not equal, the update_mode function is called on the
wiimote structure in order to normalize the data. The function them performs a
similar process in order to check to see if the light emitting diodes (LEDs) are
properly updated by comparing the bits of the led attribute of the wiimote
structure are the same as those in the old attribute’s mode. The function then
runs the update_leds_rumble function on the wiimote structure if the two values
are not the same. If the values match up, the function proceeds to run another
similar check on the status of the Nintendo Wii wireless remote controller’s
rumble feature. Following the same pattern that the function has with the
previous two checks, the rumble attribute of the wiimote structure is then
compared to the older input from the Nintendo Wii wireless remote controller
housed in the old attribute of the wiimote structure, calling the
update_leds_rumble function if the two values are not the same.

The function proceeds by backing up the current key state. It accomplishes this
by transferring the data bits from the keys attribute of the wiimote structure’s old
and setting them equal to those of the current keys attribute’s bits data. After the
data has been backed up, the function then checks if there is any pending data to
be retrieved from the Nintendo Wii wireless remote controller. It does this by
checking the return value of the wiimote_pending function with the wiimote

Magic Plank Senior Design - Group 2

87

structure as its parameter to determine if the value is zero; if so, the function
returns a zero, indicating that there is no data pending at that point in time.

The function finishes off by receiving the next event being transmitted by the
Nintendo Wii wireless remote controller. This process begins with a check of the
return value of the wiimote_get_state function when given the wiimote structure
and the address of the ev structure as parameters. Should the function return a
negative value, an error is returned via the wiimote_set_error and the function
ends prematurely with a return of WIIMOTE_ERROR. Should the function return
a positive value, however, the process_state function is then called in order to
receive the next event.

The last of the source files utilized from the LibWiiMote-0.4 library pack is the
wiimote_io.c file. This source file could be described as the most crucial of those
utilized thus far, as it is responsible for the functions which read in the data from
either the Nintendo Wii wireless remote controller or from the development
board, as well as the functions when write the data to their address destination.
The functions are also in charge of making sure the values which they are writing
are the correct data type for transmitting, as transmitting the wrong data type
would greatly disrupt the calculations later performed.

The first function of this source file is wiimote_read, which is responsible for
reading a number of size bytes at address addr into the buffer data from the
specified wiimote, where size is the number of bytes to read as a multiple of
sixteen, addr is the start of the address range to read, data is the output buffer to
write data to, and wiimote is the Nintendo Wii wireless remote control from which
data is to be read. Then function begins by establishing two structures, r and p,
of type req_read_out and req_read_in, respectively, to store the initial read data
from the Nintendo Wii wireless remote controller. The function then prepares the
read request through which it was called by first setting the header and channel
attributes of the r structure to the bit values defined by WIIMOTE_HID_HEADER
and WIIMOTE_RID_READ, respectively, and the addr and size attributes to the
returns of the ntohl and ntohs functions.

The function next sends the read request. It does this through the send function,
using the wiimote structure’s link attribute and the r structure as parameters.
Should the send call fail (indicated by a return of negative one), the function
reports an error and closes out. Following this, the function then enters a loop
which continues until all of the bytes have been read or until an error occurs
which ends the loop prematurely. The loop begins by collecting the data returned
from the Nintendo Wii wireless remote controller via the wiimote structure. It does
this by calling the wiimote_recv function, using the wiimote structure and the bits
defined by WIIMOTE_RID_READ_IN as parameters. Should that function call
return an error, the while loop also returns an error for the wiimote_read function.
If the data was collected successfully, the function then checks for errors in the
returned report. Should there have been a denial of access, the err attribute of

Magic Plank Senior Design - Group 2

88

the p structure would report a value of seven; likewise, an invalid address is
shown by a reported value of eight. If no errors were reported, the data is then
copied to the output buffer. This is accomplished through copying the data from
the p structure’s data attribute over to the previously passed in data buffer at a
location indicated by the offset which had been initialized to zero at the start of
the function. So long as the previous copy runs successfully, the function
continues by updating the size of the offset for further use. Once all of the bits
have been read, the function verifies that the request was successful by
comparing the offset with the size to be sure that the two values are not equal,
reporting an error of WIIMOTE_ERROR if they are.

The next step the function takes is to, once again, write a number of size bytes at
address addr into the buffer data from the specified wiimote, where size is the
number of bytes to write, addr is the start of the address range to write, data is
the output buffer to read data from, and wiimote is the Nintendo Wii wireless
remote control from which data is to be written to. It accomplishes this through
the wiimote_write function which takes in the previously mentioned structures
and variables as parameters. The function begins, much like wiimote_read, by
establishing two structures, r and p, to store the write data for the Nintendo Wii
wireless remote controller. The function then prepares the write request by
setting the header attribute of the r structure to the bits defined by
WIIMOTE_HID_HEADER and the channel attribute to WIIMOTE_RID_WRITE.
Next, the function checks to be sure that the size that was passed in is a valid
size by comparing it with the WIIMOTE_BLK_SIZE. If it is concluded that the size
is valid, the function then updates the addr attribute and the size attribute of the r
structure with the corresponding values that were passed in.

The function then proceeds to initialize the data attribute of the r structure to all
zero values via the memset function. If this action returns a false value, the
function then returns a value of WIIMOTE_ERROR. If the memset succeeded,
the function then copies that data from the passed in data parameter into the
data attribute of the r structure. Following this, the function then sends the
request to write through the send function, using the link.s_ctrl attribute of the
wiimote structure as the parameter. If the value returned by the send function is
negative, the function then returns a WIIMOTE_ERROR, indicating that the
action was unsuccessful. If the request to write was sent successfully, the
function then awaits a reply. It does this through a calling of the wiimote_recv
function with the parameters of the wiimote structure and the bits represented by
WIIMOTE_RID_WRITE_IN.

The loop to write the data to the Nintendo Wii wireless remote controller begins
with first setting the addr and size attributes of the r structure through the addr
and size parameters. The function then initializes the data attribute of the r
structure to all zero values, returning a WIIMOTE_ERROR should that procedure
fail. The function, much like in the read function, then copies the data parameter
into the data attribute of the r structure based on the current status of the offset,

Magic Plank Senior Design - Group 2

89

also returning a WIIMOTE_ERROR should that command fail. Following this, a
write request is then sent in order to be sure the writing process will not be
conflicting with any other currently running processes. This is accomplished by
calling the send function, using the address of the r structure and the wiimote
structure’s link attribute as parameters. Should this function call return a negative
value, another error is returned and the function is completed. With the write
request completed, the function then must wait for a reply. This is done through a
simple wiimote_recv function call with the wiimote structure as a parameter,
along with the bits indicating WIIMOTE_RID_WRITE_IN. The statement will
return an error should the result of the call return a negative value.

5.3.5. Top Level – PID Control

With all the previous lower level modules defined, it is time to identify the control
mechanism used for the top level control scheme, which is Proportional Integral
Derivative control, or PID. The PID controller will be implemented in the governor
subroutines. These subroutines are responsible for maintaining the balancing
platform’s equilibrium. The governor subroutines will focus on three important
aspects of maintaining equilibrium, angle of incline, current speed, and
acceleration.

The first aspect is angle of incline, the subroutine responsible for angle position
will insure that the angle of incline will remained as close to zeroed out when in a
static position. Additionally, when the balancing platform is dynamically moving,
the angle of incline governor will limit the angle in which the balancing platform
will bend forward or backward. The limitation is implemented to prevent the
platform from over correcting and therefore, causing the platform to lose
equilibrium.

Second, the current speed of the balancing platform in either moving forward or
backward must be monitored. Speed is monitored to prevent the balancing
platform from moving faster than it can compensate and make corrections.
Essentially if the platform moves to fast the governing subroutine can not
accurately compensate and correct the balancing platform. In addition, the
governing platform may try to over compensate and over correct therefore
causing the balancing platform to lose equilibrium.

Lastly, acceleration must be checked at the start of any movement change, and
compared. The acceleration process is also intertwined with both angle of incline
and speed. The angle in which the platform is leaning will determine the speed
and acceleration; the initial acceleration must be capped, because just like in the
speed governor, if the balancing platform accelerates forward or backward too
fast, compensation and corrections cannot be accurately made; consequently
this will cause a lack of equilibrium for the platform.

Magic Plank Senior Design - Group 2

90

Within each governor subroutine the PID controller will consider three major
values; in which “P”, the proportional will be all current error, “I”, the integral will
be the accumulation of past errors, and “D”, the derivative will be all future error.
Once a governor subroutine calculates each individual value, the weighted sum
of the three values is then used to adjust the angle of incline, modify the speed,
alter the acceleration, or do any combination of such. Bellow, Fig 5.3.5-1 shows
a flow diagram an how each constant calculated and its interactions.

Figure 5.3.5-1: Illustration of how PID will process measured data.1

For example, the inertia measurement/moment unit takes the current angle of
incline and compares the current measurement to the hardcoded limit in the
governor subroutine for angle of incline. If the current angle of incline is less than
the hardcoded limit the governor will allow the user to adjust the angle of the
platform. However, if the user tries to go over the hardcoded limit, the governor
subroutine will only allow the platform to be angled at the hardcoded limit. This
example is similar to what happens inside the other governor subroutines.

Now as the balancing platform moves, gathers measurement data, and sends
the data to the ATMEGA 328P microcontroller; the PID controllers in each
governor subroutines will take the current error added with previous error, and
potential error. This in turn will allow the PID controller to assess and
compensate and correct the position, speed, and acceleration of the balancing
platform. The inclusion of previous error along with current error essentially
allows the platform a limited ability to predict potential movements of the
balancing platform and therefore, compensating and correcting for them.
Moreover, as a user inputs different commands, via steering device, to the
balancing platform the current error and past error will change as a result
changing the potential error, in turn altering the balancing platform’s movements.
This is a delicate never ending loop within the governor subroutines in which data
results are passed back and forth between each subroutine to ensure balanced
equilibrium.

Magic Plank Senior Design - Group 2

91

With this balancing control scheme defined, the last piece of the puzzle is to
incorporate the data sent to this module via the steering control module. Since
the PID control takes care of balancing the platform, all that is needed is to
specify an offset to the command that drives the motors such that it turns but is
still in equilibrium. This would require that the offset be split in half and distributed
equally to each wheel. For example, if the steering command is to move 50% to
the left, the corresponding offset would be to move the right motor forward 25%
and the left motor backward 25%. This ensures that the movement of the
platform remains aligned on the center axis, thus preserving equilibrium.

Now that both balancing and steering control are established, the software
design is complete. The balancing platform is now capable of reading and
processing raw accelerometer and gyroscope data, reading and processing raw
data from the Bluetooth device and from the Nintendo Wii wireless remote
controller, combining these data values into a master balancing and steering
control mechanism, and outputting decisions to the motor controller.

5.4. Final Parts Selection

5.4.1. Platform Materials

The very first step in building the balancing platform was to choose a medium on
which to attach, bolt, and secure all of the electronic and physical hardware. The
group discussed and shared rough sketches of how the setup would be like, and
after comparing ideas, it was concluded that the platform should be twenty four
inches long and twelve inches wide. However, the thickness of the platform
would vary on the material chosen for implementation in the final design. These
minimum requirements on dimensions ensure that there will be enough space to
have all the hardware secured in order for unhindered operation.

First considerations included the most common materials used in everyday
construction as a starting point of what material or composite to use as a
platform. After some careful consideration and research it was concluded that
the most common types are stainless steel, aluminum, acrylics, and
polycarbonates. Each material and composite offered many advantages as well
as disadvantages, and much time was spent in the consideration of the final
material to be used.

Stainless steel was the first consideration for a viable platform. Stainless steel
offers a very rugged, stable, and durable platform to secure all the electrical and
physical hardware. Unfortunately, immediate drawbacks arise from using
stainless steel. It is a conductive metal, and connecting electrical hardware to
this platform can pose a very possible short circuit threat. In addition, the extra
time required ensuring no electrical charge build up or possible short circuits will
cause unnecessary resources and man power hours. Furthermore, specialty
tools will have to be used in order to perform any alterations to the stainless

Magic Plank Senior Design - Group 2

92

steel, which the tools themselves are costly. The major disadvantage of using
stainless steel is a very expensive composite to use; a sheet that is 24 inches in
length,12 inches wide, 0.12 inches thick, costs $61.37 making stainless steel a
very cost inefficient material to use. Table 5.4.1-1 displays some physical data
of Stainless Steel, as well as a recap on the cost.

Material
Length Width Thickness Price

in In in $

Stainless Steel 24 12 0.120 61.37

Table 5.4.1-1: Table displaying physical data and cost of Stainless Steel.

Advantages

 Rugged

 Stable

 Durable

Disadvantages

 Electrical Hardware Hazard

 Requires Special Tools for Alterations

 Very Expensive

While wanting to continue exploring metal materials, aluminum was considered,
specifically nonconductive aluminum. The nonconductive aluminum would
remove the issue of potential of short circuit that stainless steel poses.
Furthermore, the nonconductive aluminum is a cheaper and lighter solution than
the stainless steel. As with stainless steel, the aluminum would prove to be a
stable platform. Unfortunately, nonconductive aluminum is not as rugged and
durable as stainless steel. In addition, aluminum cannot handle heat very well.
The Sabertooth motor controller will be conducting a significant amount of heat
due to an approximate 20A current flow in addition to heat from power supplies
and motors. This in turn would compromise the non-conductivity of the aluminum
as well as cause the aluminum to become more malleable, similarly causing
internal stress within the aluminum alloy. Heat has been accounted for in the
design by incorporating cooling and exhaust fans, but the risk associated with
heat is still a large concern. Table 5.4.1-2 displays some physical data and cost
of Nonconductive Aluminum.

Material
Length Width Thickness Price

in In in $

Nonconductive Aluminum 24 12 0.125 29.35

Table 5.4.1-2: Table displaying physical data and cost of Nonconductive
Aluminum.

Magic Plank Senior Design - Group 2

93

Advantages

 Stable

 Lightweight

 Non – Conductive

 Cheaper than Stainless Steel

Disadvantages

 Not as Rugged as Stainless Steel

 Not as Durable as Stainless Steel

 Heat Susceptible

With metals explored, the next step is to research acrylics and polycarbonates.
The first nonmetallic material to be investigated was Lexan polycarbonate; this
particular polycarbonate has a high impact resistance, therefore, making Lexan
polycarbonate a stable and durable material. Additionally, Lexan polycarbonate is
considered a thermoplastic and can handle heat a lot better than some alloyed
metals. Likewise, the amount of heat the polycarbonate can handle depends on
its thickness. When heated, Lexan polycarbonate does not show signs of
internal stress and crumpling observed in aluminum alloys. Standard
polycarbonate sheets are 0.118 inches thick; unfortunately, because of this
standard thickness, these polycarbonate sheets are not rigid. In turn, to handle
the weight of all the electronic and physical hardware, thicker sheets of
polycarbonate must be found or multiple sheets must be fused together to
achieve desired rigidness. Both methods can prove to be time consuming;
thicker sheets of polycarbonate will have to ordered and the process of fusing
multiple sheets of polycarbonate can be tedious and lengthy. Table 5.4.1-3
displays some physical data and cost of Lexan Polycarbonate.

Material
Length Width Thickness Price

in in In $

Lexan Polycarbonate 24 12 0.118 26.95

Table 5.4.1-3: Table displaying physical data and cost of Lexan
Polycarbonate.

Magic Plank Senior Design - Group 2

94

Advantages

 Lightweight

 Stable

 Durable

 Thermoplastic

Disadvantages

 Not Initially Ridged

 Thicker Sheets Must be Custom Ordered

 Orders are Time Consuming

At the same time we were investigating Lexan polycarbonate we were assessing
OPTIX acrylic. Though acrylics are considered the more economic choice over
polycarbonates, they share very many of the same properties of polycarbonates.
In the case of OPTIX acrylic, this acrylic has a higher thermoplastic rating than
Lexan polycarbonate. Additionally, this acrylic is more stable and rugged than
the polycarbonate; unfortunately, because of its ruggedness it prevents the
acrylic from being durable. This is because acrylic is more brittle making the
acrylic more ridged than the polycarbonate; however, when enough force is
applied to the acrylic is will just cause a clean snap. Consequently, this does
cause complications when it comes times to attach, bolt, and secure all of the
electronic and physical hardware. If care is not exercised when working with the
acrylic, damage could be done to the acrylic or worse yet, irreparable damage
could be done. Table 5.4.1-4 displays some physical data and cost of OPTIX
Acrylic.

Material
Length Width Thickness Price

in in in $

OPTIX Acrylic 24 12 0.118 22.80

Table 5.4.1-4: Table displaying physical data and cost of OPTIX Acrylic.

Advantages

 More cost effective than Lexan Polycarbonate

 Shares many similar features and properties of Lexan Polycarbonate

 Higher thermoplastic rating than Lexan Polycarbonate

 More Ridged than Lexan Polycarbonate

Disadvantages

 OPTIX Acrylic is Brittle

 Higher Risk of Breaking

 Extra Care Must be Taken When Working with OPTIX Acrylic

Once the investigation was completed and assessment of Lexan polycarbonate
and OPTIX acrylic, the decision was not so strong on using either composite,

Magic Plank Senior Design - Group 2

95

thereby leading to the most widely used building material used today: plywood,
specifically pressure treated grade A yellow pine. The first distinct major
advantage of plywood is that it a very cost effective building material that can be
acquired locally at any hardware store and lumberyard. The process in which
pressure treated grade A yellow pine is manufactured makes it a very durable,
rugged, and stable building material, that has been tested by time and nature. In
addition, plywood can handle a very large weight load, which more than handles
all our electrical and physical hardware needs. Moreover, pressure treated
plywood can withstand very high temperatures short of a fire. Furthermore,
making alterations with plywood require no special tools or requires any special
care. With no immediate disadvantages in sight, the decision has been made to
purchase a 24 inches long, 12 inches wide board of pressure treated grade A
yellow pine plywood for the main platform. Table 5.4.1-5 displays some physical
data and cost of Pressure Treated Pine Plywood.

Material
Length Width Thickness Price

in in in $

Pressure Treated Pine
Plywood

24 12 0.719 11.00

Table 5.4.1-5: Table displaying physical data and cost of Pressure Treated
Pine Plywood.

Advantages

 Most Cost Effective Building Material

 Very Durable

 Very Stable

 Very Rugged

 High Tolerance of Heat

 Low Maintenance

Disadvantages

 None

When choosing a vendor for the parts of the final implementation of this project,
this dilemma was approached with a mindset of convince. Essentially, one
vendor was needed who could supply all the fundamental physical hardware
without having to deal with varying shipping times and cost. Time was spent
talking to various people and reading online forums and discussion boards.
Trough various recommendations and suggestions the vendor of choice was
narrowed down to Monster Scooter Parts1; Monster Scooter Parts is a massive
parts depot for various types of scooters of all purposes.

Magic Plank Senior Design - Group 2

96

When first looking, a decision had to be made on what type of scooter would
provide the most cost effective parts as well as be easy to use, easy to integrate,
and easy to replace. After some light research and brief discussions among the
group between mobility scooters, recreational scooters, and street scooters, the
general consensus was that recreation scooters would be cost effective and
meet the needs of the balancing platform.

5.4.2. Motors

When first looking at motors, the initial computation was that the platform would
require two twenty four Volt two hundred Watt motors. These motors would
provide the proper amount of power required to maintain its own weight as well
as the weight of all the electrical and physical hardware while at the same time
still maintaining balanced equilibrium. When first looking at motors through
Monster Scooter Parts, a twenty four Volt two hundred Watt Electric Motor with
#25 Chain Sprocket (MY1016) by United Motor Co. Ltd. was found. As the name
would suggest, the motor is chain driven; and to tell the truth there was no initial
accounting for a motor that would drive a chain; but after a quick re-evaluation of
the plans it was presently discovered that this motor would work very much so to
the advantage of the system. Unfortunately, the twenty four Volt two hundred
Watt Electric Motor with #25 Chain Sprocket (MY1016)2 is currently in back order
with Monster Scooter Parts, and would not be available until June 08, 2012.
This proves to be problematic due to the time constraint of the summer semester;
therefore a suitable substitute had to be found to replace the backordered twenty
four Volt two hundred Watt Electric Motor with #25 Chain Sprocket (MY1016), as
seen below in Table 5.4.2-1.

Model Voltage Rated Speed
Rated

Current Sprocket Power

V RPM +/- 5% A Gage W

MY 1016 by Unite
Motor Co. Ltd

24 DC 2750 11
#25

Chain
200

Table 5.4.2-1: Table displaying physical data of the MY1016 motor.

Keeping close to the original computed standard, the search continued for 24
Volt two hundred Watt motors. A second company by the name of Currie
Technologies creates 24 Volt 200 Watt Motor with an 11 Tooth #25 Chain
Sprocket, as seen in Table 5.4.2-2. The motor produced by Currie Technologies
underperforms the motor by Unite Motor Co. Ltd in the rotations per minute
aspect, but stays fairly the same with the rest of the attributes. This would not
pose a significant problem. In fact, having a slower speed motor could prove
advantages to the platform when balancing. The slower motor by Currie
Technologies would actually be easier for the software speed and acceleration
governors to handle. Unfortunately, the motor is also more expensive than the

Magic Plank Senior Design - Group 2

97

Unite Motor Co. Ltd motor; therefore, justifying a reason to pay more money for a
motor that under performs the primary choice is impractical.

Since no motor with the same power draw could be found, the search was
expanded by looking for motors in the two hundred fifty Watt range. We came
across another motor manufactured by Currie Technologies: the 24 Volt 250
Watt Motor with 11 Tooth #25 Chain Sprocket5, as seen in Table 5.4.2-2. Currie
Technologies motor provides more power, though the increased wattage would
not be a hindrance. In fact, the increase in wattage would prove to be
advantageous in providing more leeway with the motors. However, compared to
other motors in the same class, Currie Technologies motor still underperforms.
Moreover, the price climb for the motor is much steeper than the others in its
class. The cost effectiveness of Currie Technologies motors when compared to
the motor attributes and power output, make choosing and implementing this
particular model a last choice.

Model Voltage Rated Speed
Rated

Current Sprocket Power

V RPM +/- 5% A Gage W

Currie
Technologies

24 DC 2650 10.5
#25

Chain
200

Currie
Technologies

24 DC 2650 - 2800 13.2 - 13.5
#25

Chain
250

Table 5.4.2-2: Table displaying physical data of Currie Technologies motor.

The search continued for twenty four Volt two hundred fifty Watt motors. After
looking through some different models for various scooter chassis, a motor by
the same manufacture Unite Motor Co. Ltd motor was found: the 24 Volt 250
Watt Electric Motor with #25 Chain Sprocket (My1016)3. Just the Currie
Technologies motor the increased wattage would prove to be advantageous in
providing more room with the motors setup. As with the previous Unite Motor
Co. Ltd motor all the rest of the motor attributes, including rotations per minute,
proved to be superior while at the same time still maintaining cost effectiveness.
Moreover, at this time the decision has been made to purchase two of the twenty
four Volt two hundred fifty Watt Electric Motor with #25 Chain Sprocket
(MY1016).

5.4.3. Wheels

With a motor identified from Monster Scooter Parts, the decision must now be
made for wheels for the balancing platform. Since the motor drives a #25 gage
chain, a wheel must be purchased that is chain driven and is of the same #25
gage chain. Since, most chain driven or belt driven wheels are part of a rear
wheel assembly, there were compatible rear wheels for the 24 Volt 250 Watt
Electric Motor with #25 Chain Sprocket (MY1016). Monster Scooter Parts sells a
Razor rear wheel assembly that is compatible with the chain gage of the motors:

Magic Plank Senior Design - Group 2

98

the Chain Drive Rear Wheel Assembly for Razor E100, E125, E150, E175, &
eSpark4, as seen in Table 5.4.3-1. Using a rear wheel assembly offers very
many advantages. For one, the rear wheels will offer a wider surface than a front
wheel. The wider surface will help stabilize the platform and better ensure
balanced equilibrium. Furthermore, with the rear wheels being chain driven,
adjustments can be made to the response of the balancing platform by either
adding links to the chain to increase the slack or removing links to increase the
tension.

Model
Diameter Width Sprocket

Sprocket
Offset Bearings Price

Mm mm
Gage

and teeth mm Type # $

Razor E100,
E125, E150,
E175, and

eSpark

143.5 56.3
#25

Chain,
47

27 6068Z $19.99

Table 5.4.3-1: Table displaying physical data for the wheel assembly.

5.4.4. Chain

Both the motor and the rear wheel assembly require the #25 gage chain. Monster
Scooter Parts sells #25 gage chain in variable length. There were a couple of
different link sizes to choose from; the first link size was 52 links. 52 links is a
common size, and for this link size the rear wheel assembly is located close to
the motor. In the final implementation, the motor and rear wheel assemblies will
be set up in a very similar manner to that of most recreational scooters. In
addition, the 72 Link #25 Chain for Razor E100, E125, E150, E175, & eSpark5 is
another viable #25 gage chain to use with the motor and rear wheel assembly.
Though the 72 link #25 gage chain is longer, this chain can still serve its primary
purpose as well as provide advantages. The longer chain can be modified to
address the needs of the balancing platform. Moreover, spare chains can be
created, so in a rare chance that the #25 gage chain breaks or has any other
unforeseen unfortunate accident, the chain is replaceable on the fly.

5.4.5. Power Supply

During the planning phase for the final implementation of the balancing platform,
it became clear that the initial decision of using a lithium or nickel metal hydride
battery was insufficient for a 24 Volt motor. It was decided that using a sealed
lead acid power supply solution is the better decision. While the other power
supply solutions that were researched during the initial prototype design and
implementation, they all posed a couple of major drawbacks. One major
drawback was that those power supplies manufactured to work in portable
devices. This would not in itself pose a problem, however, since the physical

Magic Plank Senior Design - Group 2

99

hardware is twice the size and the power demands are twice the amount of the
prototype implementation, the smaller power solutions were rendered insufficient.
Moreover, those power supply solutions cannot handle the milliamp hours
required by the final implementation. Therefore, using a power supply for a
portable device unacceptable; furthermore, using one of the prototype power
supply solutions could prove to be costly in the long run, not just from purchasing
multiple power supplies to meet our needs, but there runs the risk of physical and
electrical hardware possible overdrawing the power supplies. As a result,
replacements would have to be purchased to prematurely replace the now bad
power supplies.

Sealed Lead Acid power supply solutions, as their name states, are completely
sealed. This is extremely important, with other battery types the electrolyte used
could leak out if the object or machine to which the power supply provided power
was not in a static position. As a result, the leaked electrolyte would cause
damage to either the machinery/object or the user, and sometimes both. Since
this can pose a very serious safety issue to user, engineer, and equipment
sealed lead acid power supplies are used in these particular applications. As
with the balancing platform that is engineered and implemented to turn,
accelerate, and tip, sealed lead acid batteries provide a very safe and cost
effective solution.

Monster Scooter Parts fortunately provides a very large selection of sealed lead
acid power supplies each with varying weight, dimensions, and Amp hours.
Unfortunately, the decision of choosing a power supply must be precise as
possible. While having more power supply run time would be very nice, there
would also be a negative trade off of weight and dimensions. Weight and
dimensions have everything to do with the way the balancing platform maintains
its equilibrium; in addition, software and mathematical formulas will have to be
tweaked and further refined to compensate for the power supplies’ weight and
center of gravity shift. A power supply with too much weight and unfavorable
dimensions could cause the balancing platform to respond sluggishly and
perform corrections indolently. Table 5.4.5-1 details the different batteries
available from Monster Scooter Parts.

Model
Voltage

Amp
Hour

Length Width Height Weight Price

V Ah in in in lbs $

B51 - 5898 12 7 5.9 2.5 3.74 4.7 21.99

B51 - 5899 12 9 5.9 2.5 3.75 7 29.99

B51 - 5900 12 10 6 2.5 4.3 7.5 32.99

B51 - 5902 12 12 6 3.9 3.74 8.35 34.99

Table 5.4.5-1: Table displaying physical data of the various 12 volt power
supplies.

Magic Plank Senior Design - Group 2

100

Calculations revealed that the electronic components would only take up a small
portion of the battery life: approximately 90mA from the IMU, 100mA from the
main microcontroller, and 60mA from the Bluetooth device. This power draw is
well under a single ampere compared to the 250W electric motors, which are
rated to draw 18-19A each. After carefully discussing the power needs of each
individual electronic components, double checking calculations and reviewing all
viable power supply solutions from Monster Scooter Parts, the decision was
made to move on the 7 Ah 12 Volt AGM Battery (Premium)8. Based on the
current draw, the platform would have roughly a half hour of battery life under
high load conditions. While this is not admirable by any means, it is sufficient.
This vendor brand power supply is the lightest power supply, sporting close to
five pounds compared to the rest of the other power supplies currently offered.
The power supplies will be placed on top of the balancing platform equidistant
from each other will continue to ensure a low center of gravity. With these
properties in mind, the decision has been made to purchase two of these
batteries as the primary supplier of power to the balancing platform.

Magic Plank Senior Design - Group 2

101

6. Bill of Materials

6.1. Initial Design Cost Estimates

The initial cost estimate of the overall design before any significant research had
been conducted is displayed below in Table 6-1. As seen when compared the
final bill of materials in Table 6-3, the final implementation’s cost estimates were
shifted around significantly. The motors, along with the accelerometer and
gyroscope, were significantly less expensive than had been previously estimated.
The estimates for the price of the power supply were also shown to be higher
than what was actually required. While many of the assumed prices that were
included in the initial estimate proved to be much higher than reality, the initial
estimate took neither the price of the microcontroller nor the price of the printed
circuit board into account. It also did not include any price for the steering
mechanism. Table 6.4 summarizes the disparity between the initial and final
estimates.

Item
Cost
(Min)

Cost
(Max)

Motors $100 $500

Motor Controllers $20 $200

Power Supply $80 $250

Gyroscope &
Accelerometer $60 $350

Mechanical Structure $0 $100

Software $0 $0

Total $260 $1,400

Average Cost $830

Table 6-1: Price projections for Magic Plank.

Magic Plank Senior Design - Group 2

102

6.2. Prototype Bill of Materials

The following table, Table 6-2, details the parts purchased for the prototype. All
of the listed parts and tools have since been acquired.

Item Source # Price
Tax/S&

H Total

IMU Fusion Board -
ADXL345 & IMU3000 Sparkfun 1 $59.95 $3.64 $63.59

Arduino Uno R3 Sparkfun 1 $29.95 $3.34 $33.59

Bluetooth Mate Silver Sparkfun 1 $39.95 $17.14 $57.09

Logic Level Converter Sparkfun 1 $1.95 $3.64 $5.59

Bluetooth SMD Module
RN - 42 Sparkfun $15.95 $3.64 $19.95

Sabertooth 2X12 dual
12A Motor Driver

Dimension
Engineering 1 $79.99 $2.50 $82.49

5V 1A switching Voltage
Regulator

Dimension
Engineering 1 $15.00 $1.25 $16.25

13700RPM 6-12VDC
Motor Skycraft 3 $5.95 $1.25 $21.60

Desolder pump Skycraft 1 $5.50 $0.36 $5.86

Solder Wick Skycraft 2 $1.95 $0.25 $4.15

14.4V 24mAh Li-Ion
Battery Skycraft 3 $19.95 $4.19 $72.42

2.5" Wheel Skycraft 2 $0.75 $0.11 $1.71

N-7000 Transistor Skycraft 8 $0.25 $0.14 $3.12

Wire Strippers Skycraft 1 $7.95 $0.52 $8.47

Bernzomatic Butane The Home Depot 2 $3.97 $0.52 $8.46

Betnzomatic Butane
Flame Torch and

Accessory Kit
The Home Depot 1 $15.97 $1.12 $17.09

Bernzomatic 4 oz.
Leaded Solid Wire Solder

The Home Depot 1 $9.97 $0.65 $10.62

CAT IV 600V Auto -
Range Digital Multimeter

The Home Depot 1 $62.95 $4.09 $67.04

Duracell 9V 2 - Pack The Home Depot 1 $7.47 $0.49 $7.96

Total $507.04

Table 6-2: Table displaying cost of prototyping materials and supplies.

http://www.sparkfun.com/
http://www.sparkfun.com/
http://www.sparkfun.com/
http://www.sparkfun.com/
http://www.sparkfun.com/
http://www.dimensionengineering.com/
http://www.dimensionengineering.com/

Magic Plank Senior Design - Group 2

103

6.3. Final Design Bill of Materials

Table 6-3, displayed below, details the bill of materials for the final design. These
parts, while all essential to the design of the project, have not all yet been
acquired and include some price estimates as a result.

Item Source Q Price Total

ADXL345 accelerometer Sparkfun 1 $14.95 $14.95

IMU-3000 gyroscope
Component

Distributors Inc 1 $12.00 $12.00

Bluetooth RN-42 Sparkfun 1 $15.95 $15.95

Nintendo Wii wireless remote
controller - 1 - $0.00

ATmega328P-PU Newark 1 $2.24 $2.24

ATmega16U2 Digi-Key 1 $3.82 $3.82

Sabertooth 2x25 Motor
Controller

Dimension
Engineering 1 $125.00 $125.00

B51-5898 Sealed Lead Acid
Battery 12V

Monster Scooter
Parts 2 $21.99 $43.98

Razor E100 Sprocketed
Wheels

Monster Scooter
Parts 2 $19.99 $39.98

Currie Technologies 24V DC
Sprocketed Motor 250W

Monster Scooter
Parts 2 $36.95 $73.90

#25 Roller Chain - 10' Amazon 1 $28.00 $28.00

Pressure Treated Plywood Lowes 1 $15.00 $15.00

Miscellaneous Circuit Parts - 1 $20.00 $20.00

Miscellaneous Platform Parts - 1 $20.00 $20.00

PCB Cost Estimate - 1 $40.00 $40.00

Subtotal $454.82

Shipping / Tax Estimates $50.00

Estimated Total $504.82

Table 6-3: Table displaying projected cost of final implementation
materials and supplies.

To summarize the disparity between what the predicted financial requirements
for the project were and what it is now seen to be, Table 6-4, shown below,
displays a comparison between the initial cost estimate and the cost actual
implementation. The total money spent was higher than the average initial
estimate, but the cost for final implementation is shown to be significantly less.

http://www.sparkfun.com/

Magic Plank Senior Design - Group 2

104

Prototype
Cost

Final Implementation
Estimate

Total Final
Estimate

Initial Cost
Estimate (Avg)

$507.04 $504.82

$1011.86 $830

Table 6-4: Table summarizing all projected costs.

Magic Plank Senior Design - Group 2

105

Works Cited

3. Initial Research

3.2. Robotics Club

1. LPY503AL Dual 30°/s Gyro Breakout Board.
http://www.sparkfun.com/products/9424

2. LPY5150AL 1500°/s Dual Axis Gyro. http://www.sparkfun.com/products/9445

3. MMA7361L Triple Axis Accelerometer. http://www.sparkfun.com/products/854

4. MMA7361 Triple Axis Accelerometer Breakout
http://www.sparkfun.com/products/9652

5.IMU Digital Combo Board IMU3000/ADXL345
http://www.sparkfun.com/products/10252

6. RoboteQ SDC2150 2x20A (50V) motor controller.

http://www.roboteq.com/brushed-dc-motor-controllers/sdc2130-sdc2150-dual-20a-

brushed-dc-motor-controller

7. Sabertooth 2X25, 2X12, 2X5 motor drivers. http://dimensionengineering.com/

8. Thunder Power RC http://www.thunderpowerrc.com/

9.G6 Pro Performance 45C Series Batteries.

http://www.thunderpowerrc.com/G6ProPerformance45CSeriesLiPoBatteries.htm

3.3. Initial Research of Coding Implementation

1. Texas Instruments Stellaris LM3S8962 http://www.ti.com/product/lm3s8962

2. Sourcery CodeBench - http://www.mentor.com/embedded-software/sourcery-

tools/sourcery-codebench/overview/

3. Arduino Uno - http://arduino.cc/en/Main/ArduinoBoardUno

3.4. Power Supply

1. http://www.hardwaresecrets.com/article/The-Truth-About-NiCd-Batteries/292/1

2. http://www.servocity.com/html/nicad_vs__nimh_batteries.html

3. http://www.greenbatteries.com/bachfa.html

4. http://batteryuniversity.com/learn/article/is_lithium_ion_the_ideal_battery

http://www.sparkfun.com/products/9424
http://www.sparkfun.com/products/9445
http://www.sparkfun.com/products/854
http://www.sparkfun.com/products/9652
http://www.sparkfun.com/products/10252
http://www.roboteq.com/brushed-dc-motor-controllers/sdc2130-sdc2150-dual-20a-brushed-dc-motor-controller
http://www.roboteq.com/brushed-dc-motor-controllers/sdc2130-sdc2150-dual-20a-brushed-dc-motor-controller
http://dimensionengineering.com/
http://www.thunderpowerrc.com/
http://www.thunderpowerrc.com/G6ProPerformance45CSeriesLiPoBatteries.htm
http://www.ti.com/product/lm3s8962
http://www.mentor.com/embedded-software/sourcery-tools/sourcery-codebench/overview/
http://www.mentor.com/embedded-software/sourcery-tools/sourcery-codebench/overview/
http://arduino.cc/en/Main/ArduinoBoardUno
http://www.hardwaresecrets.com/article/The-Truth-About-NiCd-Batteries/292/1
http://www.servocity.com/html/nicad_vs__nimh_batteries.html
http://www.greenbatteries.com/bachfa.html
http://batteryuniversity.com/learn/article/is_lithium_ion_the_ideal_battery

Magic Plank Senior Design - Group 2

106

5. http://electronics.howstuffworks.com/everyday-tech/lithium-ion-battery.htm

6. http://www.batteryeducation.com/2006/04/what_is_the_dif.html

7. http://www.thunderpowerrc.com/

8. http://www.dimensionengineering.com/

9. http://www.dimensionengineering.com/Sabertooth2X12.htm

10. http://www.lynxmotion.com/default.aspx

11. http://www.lynxmotion.com/p-727-120-volt-ni-mh-2800mah-battery-pack.aspx

12. http://batteryuniversity.com/learn/article/whats_the_best_battery

13. http://www.skycraftsurplus.com/index.aspx

3.5. Steering Implementation

1. Scooter Picture - http://www.worx-scooters.com/stunt-scooter-pro/

3.6 Switching Voltage Regulator

1. http://www.ti.com/lsds/ti/microcontroller/arm_stellaris/overview.page

2. http://www.dimensionengineering.com/Sabertooth2X12.htm

3. http://www.sparkfun.com/products/10252

4. http://www.digikey.com/us/en/info/Company-Profile.htm

5.
http://search.digikey.com/scripts/DkSearch/dksus.dll?WT.z_header=search_go&lang=en

&site=us&keywords=LM7805CT-ND&x=13&y=14

6. http://www.dimensionengineering.com/de-sw050.htm

7. http://www.dimensionengineering.com/switchingregulators.htm

4. Prototype

4.1. Macroscopic Design

4.2. Hardware Selection

http://electronics.howstuffworks.com/everyday-tech/lithium-ion-battery.htm
http://www.batteryeducation.com/2006/04/what_is_the_dif.html
http://www.thunderpowerrc.com/
http://www.dimensionengineering.com/
http://www.dimensionengineering.com/Sabertooth2X12.htm
http://www.lynxmotion.com/default.aspx
http://www.lynxmotion.com/p-727-120-volt-ni-mh-2800mah-battery-pack.aspx
http://batteryuniversity.com/learn/article/whats_the_best_battery
http://www.skycraftsurplus.com/index.aspx
http://www.worx-scooters.com/stunt-scooter-pro/
http://www.ti.com/lsds/ti/microcontroller/arm_stellaris/overview.page
http://www.dimensionengineering.com/Sabertooth2X12.htm
http://www.sparkfun.com/products/10252
http://www.digikey.com/us/en/info/Company-Profile.htm
http://search.digikey.com/scripts/DkSearch/dksus.dll?WT.z_header=search_go&lang=en&site=us&keywords=LM7805CT-ND&x=13&y=14
http://search.digikey.com/scripts/DkSearch/dksus.dll?WT.z_header=search_go&lang=en&site=us&keywords=LM7805CT-ND&x=13&y=14
http://www.dimensionengineering.com/de-sw050.htm
http://www.dimensionengineering.com/switchingregulators.htm

Magic Plank Senior Design - Group 2

107

4.2.1. IMU (Inertial Measurement Unit)

1. IMU-3000 Triple Axis Gyroscope:
http://www.invensense.com/mems/gyro/imu3000.html

2. ADXL345 Triple Axis Accelerometer: http://www.sparkfun.com/products/9045

3. BMA180 Triple Axis Accelerometer: http://www.sparkfun.com/products/9630

4.2.2. Motor Controller

1. Sabertooth 2X12 Motor Driver:
http://dimensionengineering.com/Sabertooth2X12.htm

4.2.2. Microcontroller

1. LM3S8962 Datasheet V.G, p. 659

2. LM3S8962 Datasheet V.G, p. 514

3. LM3S8962 Datasheet RevG, p. 434

4. StellarisWare Workshop workbook, p. 1-13

5. Arduino - http://www.arduino.cc/

6. ATmega2560 Datasheet, p. 5

7. ATmega328 Datasheet, p. 5

8. Arduino Uno - http://arduino.cc/en/Main/ArduinoBoardUno

4.3. Hardware Implementation

4.3.1. Remote Control

1. SMD Module – RN – 42 – http://www.sparkfun.com/products/10253

2. Android ES File Explorer – http://www.estrongs.com/products/es-file-explorer.html

3. Amarino Toolkit – http://www.amarino-toolkit.net/

4. PlayStation 3 and Wii Game Controllers on the Arduino –
http://www.circuitsathome.com/mcu/ps3-and-wiimote-game-controllers-on-the-arduino-

host-shield-part-3/

5. BlueZ Bluetooth Protocol Stack – http://www.bluez.org/

6. SMD Module – RN – 42 Design Details –
http://beaversource.oregonstate.edu/projects/44x201125/wiki/WirelessCommunication

http://www.invensense.com/mems/gyro/imu3000.html
http://www.sparkfun.com/products/9045
http://www.sparkfun.com/products/9630
http://dimensionengineering.com/Sabertooth2X12.htm
http://www.arduino.cc/
http://arduino.cc/en/Main/ArduinoBoardUno
http://www.sparkfun.com/products/10253
http://www.estrongs.com/products/es-file-explorer.html
http://www.amarino-toolkit.net/
http://www.circuitsathome.com/mcu/ps3-and-wiimote-game-controllers-on-the-arduino-host-shield-part-3/
http://www.circuitsathome.com/mcu/ps3-and-wiimote-game-controllers-on-the-arduino-host-shield-part-3/

Magic Plank Senior Design - Group 2

108

4.4. Software Prototyping

4.4.1. Using Bluetooth With a Wiimote

1. Arduino Coding Tutorial – http://www.arduino.cc/

2. Nintendo Wii Game Controller Button Layout –
http://homepage.mac.com/ianrickard/wiimote/wiili_wimote.html

3. Nintendo Wii Game Controller Button Layout Configuration –
http://wiibrew.org/wiki/Wiimote

5. Final Implementation

5.1. Hardware Design

5.1.1. Circuit Design

1. Arduino Uno R3 - http://arduino.cc/en/Main/ArduinoBoardUno

2. IMU Fusion Board – ADXL345 & IMU3000 -
http://www.sparkfun.com/products/10252

3. Bluetooth Mate Silver - http://www.sparkfun.com/products/10393

5.1.2. Motor Controller

1. Sabertooth 2x25 guide, used with permission -
http://www.dimensionengineering.com/

5.3. Software Design

5.3.1. Motor Controller: Sabertooth 2x25

1. Arduino Code references: http://arduino.cc/en/Reference/Libraries

2. Sabertooth 2x25 guide -
http://www.dimensionengineering.com/products/sabertooth2x25

3. Packetized Serial guide - http://psurobotics.org/wiki/index.php?title=SyRen_10

5.3.2. IMU – Raw Data Reading

1. Arduino Code references - http://arduino.cc/en/Reference/Libraries

2. ADXL345 Datasheet - Register Map, p. 14.

3. IMU-3000 Datasheet – Register Map, p. 29.

http://www.arduino.cc/
http://homepage.mac.com/ianrickard/wiimote/wiili_wimote.html
http://wiibrew.org/wiki/Wiimote
http://arduino.cc/en/Main/ArduinoBoardUno
http://www.sparkfun.com/products/10252
http://www.sparkfun.com/products/10393
http://www.dimensionengineering.com/
http://arduino.cc/en/Reference/Libraries
http://www.dimensionengineering.com/products/sabertooth2x25
http://psurobotics.org/wiki/index.php?title=SyRen_10
http://arduino.cc/en/Reference/Libraries

Magic Plank Senior Design - Group 2

109

4. Code reference for interfacing - www.hobbytronics.co.uk/arduino-adxl345-

imu3000

5.3.3. IMU – Processing Raw Data

1. Using a Kalman Filter with Arduino -
http://arduino.cc/forum/index.php/topic,58048.0.html

2. Kalman vs Complimentary - http://robottini.altervista.org/tag/complementary-filter

3. Kalman Filtering – http://www.x-firm.com/?page_id=145

4. Kalman Filtering - http://tom.pycke.be/mav/71/kalman-filtering-of-imu-data

5. Higgins, Walter T. – A Comparison of Complementary and Kalman Filtering

5.3.5. Top Level – PID Control

1. PID loop - http://en.wikipedia.org/wiki/File:PID_en.svg

5.4. Final Parts Selection

1. http://www.monsterscooterparts.com/

2. http://www.monsterscooterparts.com/24vo200wamow.html

3. http://www.monsterscooterparts.com/24v250wmotor.html

4. http://www.monsterscooterparts.com/24-volt-200-watt-motor-currie.html

5. http://www.monsterscooterparts.com/24-volt-250-watt-motor-currie.html

6. http://www.monsterscooterparts.com/rae1rewhasch.html

7. http://www.monsterscooterparts.com/rae1ch72li25.html

8. http://www.monsterscooterparts.com/12vo7amphoba.html

http://www.hobbytronics.co.uk/arduino-adxl345-imu3000
http://www.hobbytronics.co.uk/arduino-adxl345-imu3000
http://arduino.cc/forum/index.php/topic,58048.0.html
http://robottini.altervista.org/tag/complementary-filter
http://www.x-firm.com/?page_id=145
http://tom.pycke.be/mav/71/kalman-filtering-of-imu-data
http://en.wikipedia.org/wiki/File:PID_en.svg
http://www.monsterscooterparts.com/(1)
http://www.monsterscooterparts.com/24vo200wamow.html(2)
http://www.monsterscooterparts.com/24v250wmotor.html(3)
http://www.monsterscooterparts.com/24-volt-200-watt-motor-currie.html(4)
http://www.monsterscooterparts.com/24-volt-250-watt-motor-currie.html
http://www.monsterscooterparts.com/rae1rewhasch.html(6)
http://www.monsterscooterparts.com/rae1ch72li25.html
http://www.monsterscooterparts.com/12vo7amphoba.html

