
RADSAT

(Reconnaissance And

Demolition Super Attack Tank)

Jeff Hildebrandt, Bradley Raley, Mick Muzac,

Dylan Lambe

School of Electrical Engineering and Computer

Science, University of Central Florida, Orlando,

Florida, 32816-2450, USA

Abstract — This paper covers the final design of the

Reconnaissance and Demolition Super Attack Tank, A.K.A
RADSAT. RADSAT is a semi-autonomous tank designed to
search out a specified target based on its color and shape.

The autonomous movement of the tank and its turret is
controlled by two separate microcontrollers. While not in
autonomous mode, RADSAT can also be remotely controlled

by a user via a laptop and GUI over a network. A live video
stream from the tank can also be viewed on this GUI. Once a
target has been determined and locked on, the user has the

option of firing off a tank “round” at the target.

Index Terms — Autonomous, color recognition, GUI,
microcontrollers, MJPEG stream, RC-tank, sensors, servo,
shape recognition, video feedback, voice control.

I. INTRODUCTION

As unmanned vehicles are becoming more popular in

today’s warfare, the goals of RADSAT, though small

scale, are comparable to those being applied today by

government agencies. As autonomous behavior allows for

the prevention of human casualty, this is an important

issue for today’s military commanders who want to avoid

the unnecessary loss of a human life at all costs.

RADSAT itself is a prototype of the technology that could

be applied to real life tanks.

The goals of RADSAT are to apply this technology to

an R/C tank that can search out “enemy targets” without

the assistance of human input. Given a specified target

color, such as red, green, or blue, RADSAT can then

begin to execute a series of commands to autonomously

search out a target with that color in a specified shape,

such as a square or a circle. Once the target is identified,

RADSAT can then begin to position itself such that it is

locked on to the target and capable of hitting it when the

human user gives the command to fire. With these goals

in mind, the following lists all of the requirements that are

fulfilled by RADSAT.

1) Color Recognition

2) Shape Recognition

3) Autonomous search algorithm

4) Wireless capability

5) Voice control

II. Hardware Specifications

The physical components that comprise the body of this

project are a tank chassis with motors, a circuit board and

a turret. The tank chassis and turret were purchased and

assembled or stripped down as the case may be. The PCB

was designed and built specifically for this project. It was

designed to be able to route power from the battery to the

various electrical components on board the tank. It also

takes care of passing control signals received via Wifi to

the necessary components such that the tank moves and is

controlled as needed.

A. Tank Body

The tank body is comprised of the chassis and the turret.

Because of its small size, approximately 9 x 14 inches, the

tank chassis was bought as a 1:24 scale R/C replica of a

M26 Pershing tank from World War II. The turret that

came with the R/C tank was scrapped in favor of a

specialized turret. This specialized turret was built from

two servos and a servo attachment kit. It is mounted with

the camera and the laser, which is, in this case, a

representation of a gun. It is simpler and less messy to use

a laser rather than an airsoft gun for demonstration

purposes.

B. Circuit Layout

The layout of the circuit board is shown in Fig. 1. This

is the final product that is used in the tank. It shows how

the power allocation is achieved by use of parallel

regulator sub-assemblies and relays for switching voltages

as needed. Many of the wires shown are for testing and

troubleshooting purposes.

At the bottom of the picture is a socket with eight slots

where wires can be plugged into and taken out. These are

the outputs to the motors. They were not soldered in

because it was desired to be able to remove the circuit

board from the tank chassis if needed. There is another

socket on the upper left, it serves as power supply to the

servos, servo controller, sensors, and camera.

Fig. 1. Photograph of the circuit board showing components

and wiring.

As seen in the picture there are five regulator sub-

assemblies, easily spotted by the large round inductors.

Each sub-assembly has an inductor, two capacitors,

resistors, a diode and the LM2576 regulator itself. The

purpose of these five regulators is to drop the voltage

down from 7.8V to the required 6V or 3.5V for each

output as well as turn off and on the voltage.

The white rectangular items in the picture are DPDT

relays. Their purpose is, in the case of the lower two

relays, is to provide output voltage to the motors that drive

the tank treads. A relay is needed to enable forward as

well as reverse. When the relay is not turned on the

voltage at the output makes the motors move forward,

however, when the relay is turned on, the output from the

relay in that case switches the negative and positive

terminals of the output, thus making the motors move

backward.

The relay at the top of the picture is one of two outputs

of the regulator at the top of the picture. The regulator

supplies a constant 3.5V output to the microchip. It also

must supply that 3.5V to the laser, but it has to be able to

turn off and on. When the relay is off, it has no output, but

when it is turned on it supplies the 3.5V to the laser

pointer, which in turn causes the laser to shine.

Not shown in the above picture are the wireless receiver

and micro-controller. They are also an integral part of the

circuitry, but are mounted separately and attached to the

circuit with connectors. There are actually two microchips,

the main microchip controls the motors, laser, and sensor

feedback, and the servo microchip controls the servos of

the turret. The turret requires one micro-controller

dedicated to it because it handles servo positioning for

targeting, which is a vital part of this project, and some of

the programming for it requires delays. It is also

advantageous to have two microchips because with only

one, there is the risk of running out of memory.

III. Autonomy and Sensors

The problem of implementing autonomous path finding

without possessing a method of determining an absolute

position is not trivial. Fortunately, a noteworthy advantage

of the RADSAT project is that its objective is not to find a

path from point A to point B with minimal cost, but to

start at point A and find a potentially hidden point B.

Although consistently finding the most optimal path

without first being given the location of point B is

generally impossible, minimizing cost is done by ensuring

the same area is searched the fewest possible number of

times. To adequately search a given area, RADSAT is

given three pieces of information. The first is the relative

distance between it and any obstructions that are within

range, both to the front, the sides, and behind it. A way to

identify the color that is being searched for once an

instruction has been received is the second. Lastly,

RADSAT must be aware of its heading.

There are generally two basic types of obstructions

identified as being distinct in terms of sensing

requirements. The first consists primarily of walls and

objects with relatively large surface areas in both the X-Z

and Y-Z planes. The next type of obstruction are objects

that are generally "thinner" than the former type and have

relatively small surface areas. In order to achieve a

reasonable level of autonomy, RADSAT has methods of

detecting both type 1 and type 2 obstructions ("type 1" and

"type 2" obstructions are used to refer to obstructions with

large surface areas and small surface areas, respectfully),

as well as obstructions that are derived from the

combination of both types (e.g. a thin structure with a

large surface area on one side).

A. Sensing Large Surface Areas (Type 1)

RADSAT uses three Sony GP2Y0A02YK infrared

sensors. Two are used as proximity sensors to detect

obstructions located on either side, and one is used to

locate those that are behind it. A major disadvantage of

using infrared sensors is that they are only able to detect

obstructions with sufficiently large surface areas and can

only detect other obstructions in very specific

circumstances. Ultrasonic sensors (sometimes referred to

as sonar sensors) can detect obstructions that infrared

sensors cannot, however, they are slightly more complex

than their infrared counterparts and generally cost more.

Both work using the same general concept: both send a

signal and take note of either the time it takes to receive a

reflection, or the angle at which the reflection is returned.

There are generally two relevant types of proximity

sensors considered by the RADSAT team; digital sensors

and analog sensors. Both types are able to detect

obstructions within their respective ranges, but the major

difference is in the method used to deliver that

information to the microcontrollers. Digital sensors are

only able to inform of the existence of obstructions that

are within range. This type of sensor is able to output a

high voltage level when something is detected, but

neglects to include information regarding the distance to

the obstruction. Analog sensors output an analog voltage

that relates the output voltage to the distance between

itself and the obstruction. There are some types of digital

sensors that are able to give distance information using

multiple output lines, though these sensors are very

expensive. As such, all of the proximity sensors used by

RADSAT are analog sensors.

B. Sensing Small Surface Areas (Type 2)

At one point, the RADSAT team considered dropping

support for sensing obstructions with small surface areas

given the increase in the level and difficulty and the

resources available, coupled with the scheduled project

completion date.

The Sharp GP2Y0A02YK infrared sensor uses

triangulation to determine the distance between it and an

obstruction. This approach may seem ideal, but after

considering the beam size of the infrared sensor, which at

only a few millimeters in radius, makes using it to detect

small surface areas increasingly difficult. There exists

infrared sensors that are more capable of more broad

detection; however, these sensors are prohibitively

expensive. RADSAT uses one MaxBotix MB1210 as its

forward facing proximity sensor. It is a self-calibrating,

ultrasonic sensor that uses the effects of reflecting sound

to detect impeding obstructions. Under ideal conditions,

this sensor could accurately detect the existence of

obstructions within a distance of 0 cm to a maximum of

over 760 cm.

One major advantage is that the MB1210 does not have

the problem of associating virtually every output voltage

with more than one distance (which the Sony

GP2Y0A02YK has). Instead, if an obstruction is detected

at a distance below 20 cm, the sensor will output a voltage

equal to what would have otherwise been the output for an

obstruction detected at exactly 20 cm. In more concise

terms, the sensor's output voltage remains constant at any

distance less than or equal to 20 cm. This feature greatly

simplifies the problem of choosing a mounting location

for the sensor because although 20 cm is the minimum

range, any voltage output values at a distance below 20

cm aren't considered invalid [1].

C. Heading and Searching

Deciding on whether or not to include a heading sensor

is directly related to and could be directly answered by

first determining the kind of searching algorithm

RADSAT uses to find its target. To ensure reduce the cost

and redundancy of the search, RADSAT searches an area

with full knowledge of its absolute facing direction by

using Honeywell's HMC6352 Compass module. The

module has a heading resolution of 0.5 degrees [2],

implying that it can detect a total of 730 possible

headings. Considering that even 50 different headings

could lead to a reasonably cost effective search, using this

sensor is justified. The biggest drawback is that this sensor

(and most other inexpensive magnetometers) uses the

Earth's magnetic field as its basis for determining the

direction north. If it enters another magnet's magnetic

field, then the HMC6352 will measure north from that

magnet's north pole, giving a useless measurement.

The most intuitive way to search is to start anywhere in

a given area and travel in one direction until an

obstruction is blocking its path. To avoid it, a complete

180 degree rotation is done in such a way that RADSAT

moves parallel to the obstruction's surface before

resuming its search. The search is then continued until

either another obstruction is found, or the target is found.

IV. Vocal Command Recognition

Android is a Linux based operating system developed

by Google and is largely focused on being compatible

Fig. 2. GUI

with many different devices including different types of

phones and tablets made by competing manufacturers. The

popularity of Android stems from the fact that it's backed

by Google, it runs on many different mobile devices, and

it has a very expansive and robust set of libraries and APIs

that can handle virtually any task a programmer can

imagine. One of these libraries (or packages in Java

terminology) includes the code for the SpeechRecognition

class. This class equips a developer with the ability to

recognize incoming sound and to translate that sound into

a data string. The programmer has to request the proper

permissions in the project's manifest file and start an

activity with an intent to start recording. From there

Android's built in speech recognition will handle listening

to the user and translating what the user said into an array

of String objects that can be directly used by the

programmer.

One of the core requirements of the RADSAT project is

that a video feed must be displayed for the user. While it

would make logical sense for an Android device to be able

to display an incoming video feed that would allow a user

to see what RADSAT is "seeing", there is a major

roadblock hindering this ideal. Streaming video (or even a

series of images) from a wireless feed while

communicating with another wireless source is currently

too demanding for most Android devices. When that is

combined with having to also process vocal commands, it

became clear that an Android app did not have the ability

to process everything that it was expected to handle.

In the beginning, the team was very biased towards

using Android as the main operating system for very

obvious reasons. Not only would we have been excited to

be able to deploy the controlling aspects of the system

onto cell phones and tablet devices, but the project itself

would be greatly simplified by using the Android SDK

and its built in classes to handle general word recognition.

However, in the end, the team decided against using

Android as the main solution because of its limited

computing capacity and because it would be difficult to

integrate all of the features necessary to adequately control

RADSAT. Android is still incorporated into the final

design as a subcomponent of the entire RADSAT system.

V. Microcontroller Communication

To enable wireless communication between the base

computer (which acts as a client) and RADSAT, the

MICROCHIP MRF24WB0MA wireless module is used.

With the exception of the ability to stream a live camera

feed back to the base computer, RADSAT never actually

sends information to any other device. RADSAT generally

acts as a server which is always listening for requests from

the base computer. This arrangement ensures that

commands will not be ignored if the base computer acted

as the server, and RADSAT's requests were received too

sporadically.

The wireless module communicates directly with an

Atmel ATmega 328P microcontroller. The 328P is an 8-

bit processor with a 32 kilobytes of flash memory and a

maximum of 23 I/O pins [3]. This MCU is responsible for

acting as a server, handling incoming requests, handling

all sensor and path finding calculations, and controlling

the general movement of RADSAT's treads. In addition, it

forwards all servo related instructions to a second 328P,

which directly handles the movement of both of

RADSAT's servos.

VI. Algorithms and Classes

A. GUI

The GUI class includes the code that deals with all of

the commands the user must have access to in order to

fully control RADSAT as well as the video display from

the security camera mounted on top of the tank. As it is

coded in C#, this class not only includes the code that

executes the commands but also a design window that

shows the application in its entirety that the user will have

access to while controlling the tank. The GUI can be seen

in Fig. 2.

Upon opening the application, the GUI first loads the

live video stream from the security camera as it appears

unaltered. The user then has the option of setting a target

using 1 of 3 radio buttons and their corresponding RGB

values, or targeting a specific color’s RGB value by

clicking a specific pixel on the video stream. At this

point, the user has the option of switching the video

display to “Robot Vision”, which will only display the

targeted color recognized by the ColorRecognition class,

while all other pixels in the image will be changed to

black as to isolate the targeted color. An example of how

“Robot Vision” looks can be seen in Fig. 3 and Fig. 4

below. The user also has the option of further filtering the

targeted color based on its HSV values. The threshold

values that the ColorRecognition class uses to determine

whether or not each pixel is the targeted color can also be

changed within the GUI. The final checkbox option that

the user has in the GUI is to set RADSAT to autonomous

mode, which will disable all of the command buttons and

will allow RADSAT to autonomously execute its mission

to search for the targeted color.

 The final code and design included in the GUI class are

the buttons used to control the movement of RADSAT as

well as the turret mounted on top of the tank. Each of

these entities can be rotated to the left or right.

Fig. 3. Screen cap depicting the bitmap not affected by robot

vision.

Furthermore, RADSAT can be controlled to move forward

or backward and the turret can be controlled to rotate up or

down. These commands are executed for as long as their

respective buttons are held down by the user. A Stop

button is included to stop any command that RADSAT is

currently executing, as well as a Fire button that will fire

the turret once the user has discovered the specified target.

While the Autonomous checkbox is activated, all of the

command buttons are disabled except for the Stop and

Fire buttons.

B. Color Recognition

The ColorRecognition class is one of the two classes

used to determine and isolate possible targets that

RADSAT is searching for. Based on the RGB values of

the target specified in the GUI, the ColorRecognition class

is able to determine whether or not each pixel in the live

stream matches that color within a specified threshold. In

order to determine whether the color is within the

specified threshold, the following equation is used:

Once the value D is determined for each pixel, the

ColorRecognition class compares it to the threshold value.

If D is greater than the threshold (i.e. it is not a match for

the color), the pixel is changed to black. This is done by

setting the RGB values to 0. If the D is less than the

threshold (i.e. it is a match) then the pixel is left unaltered.

By doing this to each pixel, the program is able to

determine and isolate groups of pixels that match the

targeted color in its efforts to search out and locate a

target.

 While the main focus of the ColorRecognition class is to

determine the color based on its RGB values, the user also

has the option of further filtering the colors based on their

HSV values. This option is provided for the user in the

case that the lighting is poor and the ColorRecognition

class is having a hard time determining which pixels of the

live stream from the security camera truly match the

specified color. Because the ColorRecognition class’

main goal is to determine the color based on RGB,

however, this option is initialized to the off position in the

GUI design.

C. Targeting

 The Targeting class is the class that will control the

autonomous motions of RADSAT once a specified target

is successfully located. Once this event occurs, the

Targeting class will make efforts to line up the static

crosshairs of the air soft gun with the dynamic crosshairs

drawn in the middle of the discovered target. This is done

by determining the distance in pixels separating these two

crosshairs, both horizontally and vertically. With these

distances determined, the Targeting class will first

continuously send commands to RADSAT to rotate to

either the left or right until the crosshairs are vertically

aligned within a reasonable threshold. At this point, the

Targeting class will begin to continuously send commands

to the turret mounted on top of the tank to rotate upwards

or downwards until the crosshairs are horizontally aligned

within a reasonable threshold. Once both of these goals

are accomplished, the crosshairs will be aligned and

RADSAT will inform the user that a target has been

located and properly targeted. It will then be the user’s

discretion whether or not the Fire command will be

executed.

 If the Targeting class used a static equation to determine

the movement of the tank and turret, then the instance

might come up where the tank gets stuck moving back and

forth between left and right, or the turret might get stuck

moving up and down. For instance, if the tank only

needed to be moved 30 pixels to the left but the equation

was set to move it 60 pixels, then it would be stuck

forever moving back and forth from left to right. In order

to avoid the possibility of this situation occurring, the

equation used to determine how much the tank should be

moved will be dynamic based on the number of pixels the

crosshairs are from the desired location. In this way, the

Targeting class is easily able to quickly line up the

crosshairs both vertically and horizontally.

D. Video Processing

 This process allows the user to view the same image

RADSAT is viewing. This is made possible by a Wifi

enabled security camera which communicates with a

router. The same router also communicates with the

computer, RADSAT, and phone, which enables easy

communication for all the components of the project. The

Wifi security camera places an MJPEG stream on a local

server and the program copies the images from this

stream.

To copy the stream the AForge.net MJPEGStream

library [4] was used to retrieve the MJPEG stream from

the WiFi security camera. This library takes the JPEG

image obtained from the stream, and converts it to bitmap.

When it does this, the library creates a new “Frame Event”

which the program handles.

Every time a new frame event occurs the program has to

do accomplish several tasks. It must run the bitmap

through the ChangePixels, ShapeRecognition, and

DrawCrosshairs functions. It also must display the

finished bitmap on the GUI.

This section also collaborates with the FPS section of

the GUI. Every time a new frame event occurs, a counter

is increased. Then a timer which goes off every second

takes the counter and prints it to the screen, and

subsequently returns the value of the counter to zero.

E. Shape Recognition

 Shape recognition uses the edited version of the

bitmap obtained from Color Recognition. An example of

this image is shown in Fig. 4. Once the bitmap is

obtained, the program then utilizes the AForge.net Blob

library [5].

 This library recognizes clusters of pixels based upon

changes in color, and creates an object based around each

individual cluster, meaning there can potentially be

clusters inside of clusters. If you look at Fig. 4 you’ll

notice a black background and several pink rectangles.

The pink rectangles represent a “blob” type object. Notice

how every separate cluster of pixels has its own rectangle,

this is because of the color contrast between the pixels and

the black background. Because there are so many possible

target choices from this library it is important to

differentiate the desired target from the useless targets.

 In order to accomplish this two conditions must be met

for the blob. 1) At least 75% of the blob must contain

matching pixels, meaning that at least 25% of the blob can

contain black pixels. This ensures that the blob is a flat

object (lighting is the same throughout the blob) with

intentions on being a target, and 75% is enough leeway to

cope with any lighting issues which may arise on the

actual target. 2) The blob must have a length and width

within ten pixels of each other. The desired targets are

square, and this ensures the only shape that will be

recognized will be a square, or something very similar.

Fig. 4. Bitmap image after Color Recognition, and Targeting

were applied.

C. Phone to Computer Communication

 The Android-based phone and computer communicate

through a TCP-type connection [6]. In order to

accomplish this, the computer needs to create a TCP

server which the phone can communicate with. So, a

server is created in C# which communicates on a socket

with the phone. The IP address of the server is

"192.168.1.2", and the port for the socket is 1000. When

the server is initiated, it will patiently wait for a

connection to be established with the phone, in a thread

separate from the rest of the program.

Once a connection is established the server will enter a

perpetual loop constantly waiting for commands. The

commands are received as a byte array, and then it is

converted to a string. The program then takes the string

and uses the data to call upon the correct function.

However, if the connection between phone and

computer is interrupted, or the connection is dropped, then

the program will still wait for a command even through

there is no longer a connection with the phone. To adapt

to this situation, a button on the GUI can be pressed to

attempt to reestablish connection. The button is labeled

“Phone Server Reset”, and pushing this button will reset

the server to the “Waiting for Phone Connection” stage.

F. Computer to RADSAT Communication

 The class RobotMotion, as well as an http server

program running on the RADSAT’s microcontroller is

how the two communicate with each other. The server

located on the RADSAT’s microcontroller is able to read

in HTTP commands, and the class “RobotMotion” is able

to send those commands.

 RobotMotion sends commands by using the C#

command “Webrequest.Create(“http://192.168.1.100/” +

command)” where “http://192.168.1.100/” is the location

of RADSAT’s server. So, if the C# program sends the

command “http://192.168.1.100/go” RADSAT will

receive “/go”. When it receives the command RADSAT

will then take the appropriate action and execute the

command accordingly.

 This system works well in most situations. However

RADSAT can only process one command about every .1-

.2 seconds which can raise a problem in certain situations.

In order to cope with this weakness, several timers are set

in several possible scenarios. For instance, when

RADSAT is in manual mode, the control buttons will

issue the command as long as the button is held down, and

issue a stop command as soon as the button lifted up. So

when the button is lifted a timer goes off for .5 seconds

until the stop command is issued. In the event that a

movement button is quickly pressed and two commands

are trying to be sent almost simultaneously, because of

this system, RADSAT will be able to receive and interpret

all the commands sent to it.

 A very similar situation occurs when in autonomous

mode, and the program discovered the target and is trying

to move the tank and turret in order to align itself with

said target. In this scenario, the program will try to send a

command to realign itself every new frame. So, to cope

with this situation, different timers are implemented

depending on how far away the static target is from the

dynamic target a different timer will be administered. For

instance, if the targets are 100 pixels apart a timer for 100

milliseconds might be implemented. This will also

prevent RADSAT from never lining up with the target

because of constant over-movement of the target had static

timers been used.

VII. CONCLUSION

 RADSAT is a system comprised of a multitude of

different components and subsystems utilizing

technologies ranging from the newest mobile devices to

RC tanks fitted with sensors and embedded

microcontrollers. The goal of the RADSAT project is to

model the methods and communications necessary to

successfully complete search and destroy operations in

potentially dangerous environments.

BIOGRAPHY

Jeff Hildebrandt will be graduating with a

bachelor’s degree in Computer

Engineering. He enjoys cooking as well

as programming. And hopes to one day

land a job where he can do both.

Dylan Lambe is a 4
th

 year Computer

Engineer at the University of Central

Florida. His interests include basketball,

snowboarding, and computer games.

After graduation, Dylan plans to move out to Utah to live

with his family and to get a job as a software developer.

Mick Muzac will be graduating from the

University of Central Florida with a

bachelor's in Computer Engineering. He

is currently employed by the ADL Co-

Lab in Orlando Florida and works on the

technical team as a Software Engineer.

After graduation, he plans to continue working with ADL.

Bradley Raley is graduating with a

bachelor's degree in electrical

engineering from UCF in Summer

2012. He spent almost six years at UCF

and in addition to the learning obtained

from engineering professors, he trained himself in many

other arts and physical disciplines. He can do a back flip

so if you ever see him, ask him to do it, he totally will.

ACKNOWLEDGEMENT

The Internet, Dr. Samuel Richie

REFERENCES

[1] "MB1210." MB1210. N.p., n.d. Web. 25 July 2012.
<http://www.maxbotix.com/products/MB1210.htm>.

[2] "SEN-07915." Compass Module. N.p., n.d. Web. 20 July

2012. <https://www.sparkfun.com/products/7915>.

[3] "ATmega328P." Atmel. N.p., n.d. Web. 20 July 2012.

<http://www.atmel.com/devices/atmega328p.aspx>.

[4] Kirillov, Andrew. "Blob.cs." . AForge.net, Mar 9, 2010.

Web. 24 Jul 2012.
<http://code.google.com/p/aforge/source/browse/trunk/Sour
ces/Imaging/Blob.cs?r=1208>.

[5] . "MJPEGStream Class." AForge.net. N.p., n.d. Web. 24 Jul

2012. <http://www.aforgenet.com/ >.

[6] "A very basic TCP server written in C#." . N.p., 27, Feb

2006. Web. 24 Jul 2012.
<http://www.codeproject.com/Articles/13232/A-very-basic-

TCP-server-written-in-C>.

