
Rubik’s Cube Solving Robot
Daniel Truesdell1, Corey Holsey2, Tony Verbano3

Department of Engineering and Computer Science
University of Central Florida

Orlando, Fl.
Email: 1danieltruesdell@knights.ucf.edu,2holseyc@knights.ucf.edu,3tonyverbano@knights.ucf.edu

Abstract—In this paper we present the design and
implementation of a robotic system that is capable of
autonomously solving a Rubik’s Cube puzzle. The four
main components of our system are an integrated image
sensing device, a custom embedded processing platform,
a PC-based software application, and a physical robotic
structure. These components function together to accu-
rately decode and solve the Rubik’s Cube puzzle in a timely
manner.

I. INTRODUCTION

The Rubik’s Cube is a timeless puzzle that has
challenged people since its creation in 1974. Significant
mathematical investigations of the Rubik’s Cube over
the past decades have provided many frameworks and
algorithms for systematically decoding and solving it. In
recent years, cube enthusiasts have leveraged the power
and speed of modern computers to analyze scrambled
cubes in real time and determine what manipulations
are necessary to solve them. The computerization of this
process has prompted the creation of robotic devices
that are capable of carrying out the computer-generated
manipulation sequences in order to physically solve a
cube from start to finish. The speed and accuracy of these
systems showcase the power of engineering to perform
tasks far beyond human capability.

Existing implementations of these systems range in
complexity from simple hobbyist weekend projects to
high-level university projects such as the present work.
Some systems take minutes to solve a cube while
others are finished in under a second, and some systems
are hardware-oriented while others place emphasis on
elaborate software programming. Each project contributes
a unique solution to a growing pool of knowledge and
resources that collectively advance our ability to solve
the challenge. To this end, we herein present the design
and implementation of a robotic system that is capable
of autonomously solving a Rubik’s Cube puzzle.

II. SYSTEM OVERVIEW

The robotic system, shown in Figure 1, consists of four
main functional components: An image sensing device, a
software application, an embedded system, and a physical
structure. The following subsections briefly describe these
components and their functionality within the system.

Stepper

Motors

Embedded System

MSP430

Stepper

Drivers

CMUcam5

Pixy

Software Application

Image

Processing

Algorithms

GUI

Physical Structure Image Sensing

Fig. 1: Functional System Block Diagram

A. Image Sensing

This project implements the CMUcam5 Pixy as an
integrated image sensing solution. The Pixy is a palm-
sized camera with an on-board 204MHz NSP LPC4330
processor that allows it to perform image processing
on raw data before it is sent over USB to our software
application. Pixy’s convenient libraries can be used to
identify the colors of the cube as well as their positions
so that the software can determine how the cube needs
to be manipulated.

B. Software Application

Our robot software consists of several components for
image processing and visualization, cube deciphering, a

solving algorithm, a GUI, and physical structure control.
This software is collectively responsible for detecting the
current state of the cube, deciphering the cube positions,
applying the solving algorithm, and sending a string of
information to the embedded system that tells it how it
needs to manipulate the cube.

C. Physical Structure

The physical structure, shown in Figure 2, is what
holds and manipulates the cube. The frame was designed
using Autodesk Inventor and is intended to be laser cut
from a variety of materials. The design of the structure
allows any face of the cube to be turned with a dedicated
stepper motor, which allows the cube to be manipulated
in any way without needing any prior reorientation. This
decreases the number of instructions needed to solve the
cube which in turn reduces the amount of time it takes
to do so.

Fig. 2: Robot Structure

D. Embedded System

The embedded system, shown in Figure 3, is de-
signed with a Texas Instruments (TI) MSP430F6659
microcontroller that is interfaced with six TI DRV8825
stepper driver integrated circuits (IC’s). The device is
designed to receive a string of commands from the
software application over a serial connection that will be
decoded and used to actuate the stepper motors in order
to manipulate the cube.

III. SOFTWARE DESIGN

A. Image Processing

One of the main components of our project is taking
in the image of the cube from its mixed up state and

Fig. 3: Embedded System with MSP430F6659

placing its orientation into an array. We initially start this
by with our Pixy CMU5 camera. This camera is set up
to have a set of 7 signature colors that are recognizes
easily. Luckily we will only need 6 signature colors for
our cube leaving one value unknown. Each color will be
given a signature color number as its initial value and
that will be used to make our cube array. The camera
is positioned to look at the bottom row of the top face
and the top row of the front face. We have determined
that from this position the whole cube can be viewed
and oriented back to its initial state in 11 move sets. The
camera takes a picture of the state of these rows at this
position than rotates one face at a time till the whole
cube is recognized.

After each initial picture is taken and before the cube
is rotated, the image is the deciphered for the significant
colors which are then placed into a string corresponding
with their position on the cube. The image is than replaced
with the next image after the rotation of the cube and
the process of deciphering the state of the cube starts
over until the whole cube is processed. After the whole
cube is processed and the total cube is laid out into a
string, our string is sent to our main program where it is
placed into a matrix. The matrix is used with our GUI
and our algorithm to help visualize and solve for the
cubes correct orientation.

B. Kociemba’s Algorithm

The algorithm we chose was Kociembas algorithm
which is also known as Gods algorithm because it can
solve the cube optimally. It is a two-phase algorithm
that solves the cube in at most twenty moves when used
optimally. It was founded in 2010 by Herbert Kociemba
and was basically a refinement of another Rubiks cube
algorithm [1]. Rather than using five groups it was cut
down to merely three groups. The groups were identified

as G0, G1, and G2. The G0 group identified the initial
state of the cube. The algorithm also utilizes symmetries
and by reducing the number of symmetries that are
available on the cube decreases the number of possible
moves.

The Rubiks cube has billions of different symmetries
164,604,041,664 to be exact. Reducing those possible
symmetries by finding correlation between symmetry, anti-
symmetry, and conjugations greatly reduces the number of
relevant symmetries to a little over a million. Once twenty
turns have been completed utilizing the algorithm then
exactly 32,625 different symmetric cubes can be solved
using the twenty move algorithm by Herbert Kociemba.

The G1 state has a goal state which utilizes conjuga-
tions. The conjugation to move the edges of the middle
cube in a way that once three moves are done it will
result in the opposite of those three moves being done.
It does not allow for the edges or corners to change
orientation once in this state. The conjugate is sought
by having millions of lookup tables that are generated
and then pruned to find a solution to the cube. Pruning
the cube while in this state is very important as to make
the solution much faster on solving the cube. Deciding
when to prune made the biggest difference in speed for
our application. Then, that completes the phase 1 and it
moves on to phase 2 of the algorithm.

While in phase 2 the corners and edges of the cube are
permutated. Finally, once one solution to the cube is found
then another solution is sought out that does not conflict
with any of the possibilities that were discovered from the
first solution. The second solution only goal is to make
the first solution shorter. When phase 2 finally gets to zero
then an optimal solution has been found and the algorithm
is complete. A problem we had with this algorithm was
there being so many lookup tables is the reason it was not
possible to implement Kociembas algorithm directly on
our microcontroller. It abuses entirely too much RAM for
our MCU to handle. The easiest solution to this problem
because RAM cannot be added to our MCU was to make
a desktop application. A desktop computer (laptop) can
handle a significant amount of RAM and still talk to our
MCU by sending the solution string over UART.

Another difficulty is where to prune for the millions
of lookup tables that are stored utilizing this algorithm.
Pruning the tables in certain places can be the difference
between these algorithm taking seconds or it taking a
quarter hour. The prune tables could be loaded automati-
cally when they are called upon which would make the
time significantly longer. However, we chose to manually
load the prune tables from the beginning of the program.

Manually loading the prune tables is a bit more inefficient,
but it is much faster which we were more concerned
about.

Our software application will not look for solution that
are completely optimal which would mean be done in
20 moves. This is because it increases the time for the
solution to be found and having it solve in a consistent
time was important to us. Therefore, we only look to
solve the cube in approximately 24 moves.

C. Graphical User Interface

Fig. 4: Graphical User Interface

The software application will have a Graphical User
Interface that will have a display of the cube. The display
of the cube will be a 2D display that shows the different
faces of the cube. The faces shown will be mapped
appropriately once the initial string is interpreted to
display the state of the cube. Each color of the cube
is denoted by the center face that it is on. For example,
the Green face is on the front face therefore it will be
denoted as F rather than Green.

The Graphical User Interface will also consist of
multiple buttons. One button that will made available
is a solution button. The solution button will solve the
cube at its current state by generating a solution string
and sending it over to the robot over UART. The next
button that is made available is that randomize button.
The randomize button will change the state of the cube
from its current state without looking to solve the cube.
It will manipulate the array position in valid ways to
give the cube a different state. In Figure 5 the randomize
button is denoted by Scramble. While in the same figure
the solution button is denoted by Solve. Other buttons or
text may be added if we have time such as a timer or a

stop button. However, that is only if we have time in the
end will we look to add additional functionality to the
Graphical User Interface.

We chose to use java programming language to make
the Graphical User Interface because it is friendlier to
use for a Graphical User Interface than C programming
language is. Java has libraries built in to make this process
as seamless as possible. Visually the buttons are likely to
simply be j-buttons from the standard java library. Both
button will generate a solution string then convert that
so that the our MCU can understand it and move the
robotic arms appropriately.

In Figure 4 is an example of what our Graphical User
Interface should look similar to once completed. We are
still working on the Graphical User Interface because the
front end it not as important nor difficult as the backend
and actual assembly of the robot. Also, keeping things
simple usually helps to generate as few errors as possible
which is what we are seeking.

IV. HARDWARE DESIGN

A. Processor

The block diagram for the embedded system is shown
in Figure 5. The on-board MSP430F6659 offers con-
nectivity and I/O through a micro-USB port with ESD
protection, 4-wire JTAG pins, 16 GPIO pins that are
mappable to various serial modules, 2 pushbuttons, and
2 LEDs. An additional 14 GPIO pins on the MSP430
are interfaced with the six DRV8824 stepper drivers.

16

DRV8825

Stepper

Motor Drivers

12VDC

Stepper

Motors

MSP430F6659

UA78M05 TPS715A
5VDC

3.3VDC

USB

JTAG, SBW

GPIO

CMUcam5 Pixy

2x UART

2x I2C

4x SPI

Push

button LED

2 2

14

4x6

Fig. 5: Embedded System Block Diagram

B. Power

The board is intended to be supplied with 12Vdc via
a 2.1mm barrel jack. This voltage is needed by the
DRV8825 IC’s to power the connected stepper motors,

but it is too high for the MSP, so it is stepped down
to 5Vdc by the UA78M05 and again to 3.3Vdc by the
TSP715. A power LED indicates that the MSP430 is
receiving the necessary 3.3Vdc. If the 12Vdc connection
is not used, the MSP430 can still be powered via the
5Vdc header pin, the USB port, or the JTAG Vcc pin.

C. Stepper Drivers

Dedicated stepper driver IC’s are vital to the operation
of the embedded system. Figure 6 shows the schematic
for the DRV8825 stepper driver IC. The motors used in
this system require 12V for maximum torque which is
far beyond what the MSP430 can provide [2][3]. The
DRV8825 solves this problem as it can be interfaced with
an external motor supply voltage of up to 45V while
still accepting the low-voltage control signals from the
MSP430 [4]. It also protects the MSP430 from potentially
harmful back-EMF from the large inductive loads of the
stepper motors. The maximum full-scale motor current
(IFS) for this application was limited to 300mA to stay
within the limits of the PCB traces as well as the 350mA
current limit of the motors. The voltage divider calculation
for IFS is adapted from the device datasheet and shown
below in equation 1:

300mA = IFS(A) =
xV REF (V)

AV ×RSENSE(Ω)
(1)

Where the gain AV = 5, RSENSE = 0.2Ω, and the
voltage reference xV REF is given in equation 2 as

xV REF (V) =
V 3P3OUT (V) ×R17(Ω)

R17(Ω) + R18(Ω)
(2)

Where V 3P3OUT = 3.3V . Equation 1 yields
xV REF = 0.3V . Using this value in equation 2, R17
and R18 are selected as 20 kΩ and 220 kΩ, respectively.

Another benefit of the DRV8825 is that it offers a
microcontroller-friendly control interface. Bipolar stepper
motors such as the ones in this project rely on bidirec-
tional current control on four separate motor coil wires.
Complex, high-precision drive patterns are required on
these four wires in order to achieve smooth rotation of
the motor shaft. The DRV8825 is used to handle all of the
timing and current control on these wires by accepting
1-bit step and direction inputs from the MSP430. A chip
enable signal allows the device to be disabled which
causes it to ignore input signals and consume essentially
zero power. The embedded system design takes advantage
of this by using a single step signal to control all six
DRV8825s but having multiple enable signals to enable

7/14/2016 2:56 PM C:\Users\Daniel Truesdell\Documents\eagle\SD1\schematic2.sch (Sheet: 1/1)

Sp
ic

eO
rd

er
 1

Sp
ic

eO
rd

er
 2

GND

DRV8825_PWP_28

0.1uF

0.
01

uF

GND

100uF

GND

0.1uF

GND

1M

0.1uF

GND

0.47uF

GND

20k 220k

GND

0.
2

0.
2

GND

GND

Value

Value

M
IN

I-
U

SB
-S

H
IE

LD
-U

X6
0-

M
B-

5S
T

CG
R
M

40
01

-G

4.
7u

F,
10

V

G
N

D

27

27

GND
10pF,6V

10pF,6V

GND

GND

1M

GND

22
0n

F,
10

V

22
0n

F,
10

V

GND

G
N

D GND

CSTCR6M00G53Z

G
N

D

GND

1.4k

TP
D

2E
00

1_
D

R
L_

5

GND
GND

47
k

1nF

GND

TPS715A01_DRV_6

GND

0.1uF
0.47uF

GND

VC
C

VC
C

VC
C

10uF100n

470

470

GND

47
0

GND

DRV8825_PWP_28

0.1uF

0.
01

uF

GND

100uF

GND

0.1uF

GND

1M

0.1uF

GND

0.47uF

GND

20k 220k

GND

0.
2

0.
2

GND

GND

GND

DRV8825_PWP_28

0.1uF

0.
01

uF

GND

100uF

GND

0.1uF

GND

1M

0.1uF

GND

0.47uF

GND

20k 220k

GND

0.
2

0.
2

GND

GND

GND

DRV8825_PWP_28

0.1uF

0.
01

uF

GND

100uF

GND

0.1uF

GND

1M

0.1uF

GND

0.47uF

GND

20k 220k

GND

0.
2

0.
2

GND

GND

GND

DRV8825_PWP_28

0.1uF

0.
01

uF

GND

100uF

GND

0.1uF

GND

1M

0.1uF

GND

0.47uF

GND

20k 220k

GND

0.
2

0.
2

GND

GND

GND

DRV8825_PWP_28

0.1uF

0.
01

uF

GND

100uF

GND

0.1uF

GND

1M

0.1uF

GND

0.47uF

GND

20k 220k

GND

0.
2

0.
2

GND

GND

GND

100n100n100n

Value

0.33uF

GND

0.1uF

GND

47
0n

FG
N

D

X11

2
3

CP11

CP22

VCP3

VMA4

AOUT15

ISENA6

AOUT27

BOUT28

ISENB9

BOUT110

VMB11

AVREF12

BVREF13

GND_214

V3P3OUT 15
NRESET 16
NSLEEP 17
NFAULT 18
DECAY 19

DIR 20
NENBL 21

STEP 22
NC 23

MODE0 24
MODE1 25
MODE2 26
NHOME 27

GND 28
EPAD GND

U5

C19

C2
0

JP4

1
2
3
4

C21

C22

R
16

C23

C24R17 R18

R
19

R
20

P6.4_CB4_A4 1

P6.5_CB5_A5 2

P6.6_CB6_A6_DAC0 3

P6.7_CB7_A7_DAC1 4

P7.4_CB8_A12 5

P7.5_CB9_A13 6

P7.6_CB10_A14_DAC0 7

P7.7_CB11_A15_DAC1 8

P5.0_VREF+_VEREF+9

P5.1_VREF-_VEREF-10

XIN13

XOUT14

P5.6_ADC12CLK_DMAE016

P2.0_P2MAP017

P2.1_P2MAP118

P2.2_P2MAP219

P2.3_P2MAP320

P2.4_P2MAP421

P2.5_P2MAP522

P2.6_P2MAP6_R0323

P2.7_P2MAP7_LCDREF_R1324

P5.2_R2328

LCDCAP_R3329

COM0 30

P5.3_COM1_S4231

P5.4_COM2_S4132

P5.5_COM3_S4033

P1.0_TA0CLK_ACLK_S3934

P1.1_TA0.0_S3835

P1.2_TA0.1_S3736

P1.3_TA0.2_S3637

P1.4_TA0.3_S3538

P1.5_TA0.4_S3439

P1.6_TA0.1_S3340

P1.7_TA0.2_S3241

P3.0_TA1CLK_CBOUT_S3142

P3.1_TA1.0_S3043

P3.2_TA1.1_S2944

P3.3_TA1.2_S2845

P3.4_TA2CLK_SMCLK_S2746

P3.5_TA2.0_S2647

P3.6_TA2.1_S2548

P3.7_TA2.2_S2449

P4.0_TB0.0_S2350

P4.1_TB0.1_S2251

P4.2_TB0.2_S2152

P4.3_TB0.3_S2053

P4.4_TB0.4_S1954

P4.5_TB0.5_S1855

P4.6_TB0.6_S1756

P4.7_TB0OUTH_SVMOUT_S1657

P8.0_TB0CLK_S15 58

P8.1_UCB1STE_UCA1CLK_S14 59

P8.2_UCA1TXD_UCA1SIMO_S13 60

P8.3_UCA1RXD_UCA1SOMI_S12 61

P8.4_UCB1CLK_UCA1STE_S11 62

P8.5_UCB1SIMO_UCB1SDA_S10 65

P8.6_UCB1SOMI_UCB1SCL_S9 66

P8.7_S8 67

P9.0_S7 68

P9.1_UCB2STE_UCA2CLK_S6 69

P9.2_UCA2TXD_UCA2SIMO_S5 70

P9.3_UCA2RXD_UCA2SOMI_S4 71

P9.4_UCB2CLK_UCA2STE_S3 72

P9.5_UCB2SIMO_UCB2SDA_S2 73

P9.6_UCB2SOMI_UCB2SCL_S1 74

P9.7_S0 75

PU.0_DP 77

PUR 78

PU.1_DM 79

P7.2_XT2IN 84

P7.3_XT2OUT 85

VBAK 86

P5.7_RTCCLK88

TEST_SBWTCK 91

PJ.0_TDO 92

PJ.1_TDI_TCLK 93

PJ.2_TMS 94

PJ.3_TCK 95

RST_NMI_SBWTDIO_N 96

P6.0_CB0_A0 97

P6.1_CB1_A1 98

P6.2_CB2_A2 99

P6.3_CB3_A3 100

U2A

AVCC111

AVSS1 12

AVSS2 15

DVCC125

DVSS1 26

VCORE27

DVSS2 63

DVCC264

VSSU 76VBUS80

VUSB81

V1882 AVSS3 83

VBAT87

DVCC389

DVSS3 90

U2B

X2

1
2
3
4
5

D
1_

5V
C3

7

R31

R32

C38

C39

R33

C4
0

C4
1

Q1
1

2

3

R35

VC
C

1
N

C
2

IO
1

3

G
N

D
4

IO
2

5

U
8

SV2

1
3
5

2
4
6

7
9
11

8
10
12
14 13

SV1

1
3
5

2
4
6

7
9

8
10

11
13
15

12
14
16

R
34

C42

IN1

NC_22

GND3

FB/NC 4
NC 5

OUT 6
EPAD GND

U9

C43
C44

C45C46

LED2

LED1

R36

R37

LE
D

3
R
1

CP11

CP22

VCP3

VMA4

AOUT15

ISENA6

AOUT27

BOUT28

ISENB9

BOUT110

VMB11

AVREF12

BVREF13

GND_214

V3P3OUT 15
NRESET 16
NSLEEP 17
NFAULT 18
DECAY 19

DIR 20
NENBL 21

STEP 22
NC 23

MODE0 24
MODE1 25
MODE2 26
NHOME 27

GND 28
EPAD GND

U3

C1

C2

JP1

1
2
3
4

C3

C4

R
2

C5

C6R3 R4

R
5

R
6

CP11

CP22

VCP3

VMA4

AOUT15

ISENA6

AOUT27

BOUT28

ISENB9

BOUT110

VMB11

AVREF12

BVREF13

GND_214

V3P3OUT 15
NRESET 16
NSLEEP 17
NFAULT 18
DECAY 19

DIR 20
NENBL 21

STEP 22
NC 23

MODE0 24
MODE1 25
MODE2 26
NHOME 27

GND 28
EPAD GND

U4

C7

C8

JP2

1
2
3
4

C9

C10

R
7

C11

C12R8 R9

R
10

R
11

CP11

CP22

VCP3

VMA4

AOUT15

ISENA6

AOUT27

BOUT28

ISENB9

BOUT110

VMB11

AVREF12

BVREF13

GND_214

V3P3OUT 15
NRESET 16
NSLEEP 17
NFAULT 18
DECAY 19

DIR 20
NENBL 21

STEP 22
NC 23

MODE0 24
MODE1 25
MODE2 26
NHOME 27

GND 28
EPAD GND

U6

C13

C1
4

JP3

1
2
3
4

C15

C16

R
12

C17

C18R13 R14

R
15

R
21

CP11

CP22

VCP3

VMA4

AOUT15

ISENA6

AOUT27

BOUT28

ISENB9

BOUT110

VMB11

AVREF12

BVREF13

GND_214

V3P3OUT 15
NRESET 16
NSLEEP 17
NFAULT 18
DECAY 19

DIR 20
NENBL 21

STEP 22
NC 23

MODE0 24
MODE1 25
MODE2 26
NHOME 27

GND 28
EPAD GND

U7

C25

C2
6

JP5

1
2
3
4

C27

C28

R
22

C29

C30R23 R24

R
25

R
26

CP11

CP22

VCP3

VMA4

AOUT15

ISENA6

AOUT27

BOUT28

ISENB9

BOUT110

VMB11

AVREF12

BVREF13

GND_214

V3P3OUT 15
NRESET 16
NSLEEP 17
NFAULT 18
DECAY 19

DIR 20
NENBL 21

STEP 22
NC 23

MODE0 24
MODE1 25
MODE2 26
NHOME 27

GND 28
EPAD GND

U10

C31

C3
2

JP6

1
2
3
4

C33

C34

R
27

C35

C36R28 R29

R
30

R
38

SV
3

1 2 3

S2

3 1
24

S1

3 1
24

C47C48C49

INPUT1

COMMON_2 2

OUTPUT 3

COMMON 4

U11
C50

C51

C5
2

G
N

D

DM

DM

DPDP

MODE0

MODE0

MODE0

MODE0

MODE0

MODE0

MODE0

N$45

N$45

LED2
LED2

MODE1

MODE1

MODE1

MODE1

MODE1

MODE1

MODE1

MODE2

MODE2

MODE2

MODE2

MODE2

MODE2

MODE2

STEP

STEP

STEP

STEP

STEP

STEP

STEP

DIR

DIR

DIR

DIR

DIR

DIR

DIR

NENBL_0

NENBL_0

DECAY

DECAY

DECAY

DECAY

DECAY

DECAY

DECAY

NRESET

NRESET

NRESET

NRESET

NRESET

NRESET

NRESET

NSLEEP

NSLEEP

NSLEEP

NSLEEP

NSLEEP

NSLEEP

NSLEEP

NENBL_1

NENBL_1

NENBL_2

NENBL_2

NENBL_3

NENBL_3

NENBL_4

NENBL_4

NENBL_5

NENBL_5

N$46

N$46
LED1

LED1

PURPUR

5V

5V

5V

VBUS

VBUS

VBUS

12V 12V

12V

12V

12V

12V

12V

12V

12
V

Serial I/O

JTAG

ES
D

 p
ro

te
ct

io
n

USE CSTCR4M00G15L99-R0

MSP430F6659

5.
1V

 Z
en

er

Fig. 6: Stepper Driver Circuit

the chips separately. This is shown in a simplified version
of the interface in Figure 7. The result is the same as
having a different step signal for each DRV8825 except
that there is far less power consumption due to only one
device being enabled at a time instead of all six.

MSP430

DRV8825

DRV8825

x6

●

●
STEP

DIRECTION

ENABLE[5:0]
6

Fig. 7: Stepper Control Interface

D. Physical Structure

The physical structure of the robot is shown in Figure 2.
The primary goal of the design was to allow any face of
the cube to be turned without having to reorient the cube
itself. The advantage of doing this is that it minimizes
the number of commands that are needed to solve the
cube. To implement this design, a motor is attached to
the center tile of each face. Rotating the center tile will
cause the entire face to be rotated. Because the cube is
internally connected by the center tiles of each face, the
positions of these tiles do not move relative to each other
and thus the cube can be help stationary this way without
limiting the ability to manipulate it.

The structure is divided into six separate pieces that
are meant to hold each of the six motors. As shown in

Figure 2, one of the motor supports will support the Pixy
camera so that it can capture the colors of the tiles on
one edge of the cube. Although the robot will be able
to scramble a cube on its own, the modular assembly of
the robot allows it to be easily detached from the cube
so that a human can remove it and scramble it manually.

The Rubik’s Cube is connected to the stepper motors
by a 3D-printed motor shaft attachment that is designed to
replace the center tiles of the cube. It is nearly identical to
the original cube tile except that it has an outward-facing
female connector for the motor shaft. To ensure that the
connection is tight, the plastic connector is heat-fitted to
the motor shaft once it is in place.

V. SYSTEM OPERATION

The operation of our system depends on all individual
hardware and software components working together
correctly. This section discusses the integration of our
system components and reviews the flow of operation
for the system to complete its task of solving a Rubik’s
Cube.

A. Determining Cube State

The system operation begins with a scrambled Rubik’s
Cube being present within the physical structure. If the
cube is not already scrambled, the GUI can be used to
instruct the robot to automatically scramble the cube.
Following this, the first goal of the system is to use the
Pixy camera to detect the signature colors of the cube.
Because the Pixy is stationary and has a limited view of
the cube, it is necessary to rotate the cube several times in
order for the Pixy to gather all the necessary information.
The software keeps track of the transformations that are
made and will returm the cube to its original scrambled
state after all the cube data is collected. The information
gathered is sent to the software application over a USB
connection and is used to form a data structure that
represents the positions and colors of the tiles of the
scrambled cube.

B. Determining Cube Solution

Once a data structure has been formed within the
software, The user can use the GUI to instruct the robot
to solve the cube. Here, Kociemba’s algorithm is applied
to determine the shortest possible series of manipulations
necessary to solve the cube. The output from this solving
algorithm exists as a string of characters that indicates
the order and direction that the faces of the cube need
to be turned. An example of this string is shown below:

DLD′L′F ′UL′RRU ′BD′UL′UR′BBR′F

Where the letters correspond with the faces of the cube,
and a tick mark (′) indicates a counter-clockwise direction
of rotation. Clockwise direction is the default direction
of rotation. This string of characters is sent over a UART
connection to the embedded system.

C. Performing Cube Manipulation

Once the embedded system receives the solving se-
quence from the software application, it deciphers the
information to determine which motors need to be turned
as well as the directions of rotation. The timing of
the motor actuation is optimized to perform the cube
manipulation as fast as possible.

D. Assessment of Completion

The embedded system will communicate to the soft-
ware when the prescribed manipulations have been
completed. At this time, our software can instruct the
Pixy to assess the cube once again to verify that the Cube
has been solved correctly. If it is necessary, the solving
process can be automatically initiated again to attempt
to solve the cube to completion.

VI. CONCLUSION

In this paper we present the design of a robotic system
for autonomously solving a Rubik’s Cube puzzle. Our
unique implementation demonstrates application-specific
hardware and software design for a high-level solution
to this challenge. The contributions of our work support
the ongoing quest to solve a Rubik’s Cube puzzle in
the fastest time possible. As a result of this project, we
have gained hands-on experience with engineering design,
prototyping, and production.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Samuel Richie
and Dr. Lei Wei for their guidance in Senior Design I
and Senior Design II.

REFERENCES

[1] H. Kociemba. Cube explorer 5.12 htm and qtm. [Online].
Available: “http://kociemba.org/cube.htm”

[2] Adafruit NEMA-17 Stepper Motor, Adafruit. [Online]. Available:
“https://www.adafruit.com/product/324”

[3] MSP430F665x, MSP430F645x, MSP430F565x, MSP430F535x
Mixed Signal Microcontrollers, Texas Instruments. [Online].
Available: “http://www.ti.com/lit/ds/symlink/msp430f5659.pdf”

[4] DRV8825 Stepper Motor Controller IC, Texas Instruments. [On-
line]. Available: “http://www.ti.com/lit/ds/symlink/drv8825.pdf”

[5] sample author, “sample title,” Proceedings of the IEEE, vol. 103,
no. 4, pp. 665–681, 2015.

