
Rubik’s Cube Solving Robot
EEL4914—Spring 2016

Group 12

Daniel Truesdell
Electrical Engineering

Corey Holsey
Computer Engineering

Tony Verbano
Computer Engineering

April 28, 2016

i

Contents
1 Executive Summary 1

2 Introduction 1
2.1 Project Description . 1
2.2 Statement of Purpose . 1
2.3 Goals and Objectives . 2

2.3.1 Performance Requirements . 2
2.3.2 Functionality . 3
2.3.3 Features . 6
2.3.4 Cost Requirements . 6

3 Research 8
3.1 Related Projects . 8

3.1.1 Physical Design . 9
3.1.2 Technology . 10
3.1.3 Performance . 11
3.1.4 Applicability . 11

3.2 Rubik’s Cube . 12
3.2.1 Mapping the Cube . 12
3.2.2 Rotation Naming Convention . 16
3.2.3 History . 16
3.2.4 Mathematics . 17

3.3 Algorithms . 19
3.3.1 Kociemba’s Algorithm . 19
3.3.2 CFOP Method Algorithm . 19

3.4 Hardware . 25
3.4.1 Structural Platform . 25
3.4.2 Processing Platforms . 28
3.4.3 Camera . 30
3.4.4 Motors . 32
3.4.5 Display . 37
3.4.6 Power . 37

3.5 Software . 40
3.5.1 Operating System . 51
3.5.2 Languages . 52

3.6 Hardware-Software Interface . 54
3.6.1 Platform I/O Capabilities . 54
3.6.2 Device I/O Requirements . 55

4 Design 57
4.1 System . 57

4.1.1 System-Level Block Diagram . 57
4.1.2 Hardware/Software Integration . 58

ii

4.2 Hardware . 58
4.2.1 Structural Implementation . 58
4.2.2 Embedded System . 58
4.2.3 Camera . 66

4.3 Programming . 66
4.3.1 Monitor . 66
4.3.2 Hardware Integration . 67

4.4 Software . 67
4.4.1 High-Level Software System Architecture 71
4.4.2 Software Integration . 71
4.4.3 Algorithm Implementation . 72
4.4.4 Detailed Design . 74

5 Schedule 78
5.1 Program . 78
5.2 Robot Arms . 78
5.3 Programming with Arms . 78
5.4 Monitor . 79

6 Prototype Testing 80
6.1 Hardware Testing . 80

6.1.1 Monitor . 80
6.1.2 Motors . 81
6.1.3 Camera . 81

6.2 Software Testing . 81
6.2.1 Environment . 82
6.2.2 Device Integration and Connectivity 82
6.2.3 Algorithms . 83
6.2.4 Software Integration Testing . 83

7 Standards 84

8 Safety and Ethics 86
8.1 IEEE Code of Ethics . 86

9 Appendices 87
9.1 Appendix A –Abbreviations . 87
9.2 Appenix B –References . 88
9.3 Appendix C - Programs Used . 91
9.4 Appendix D - Bill of Materials . 92
9.5 Appendix E . 94

iii

1 Executive Summary
The Rubik’s Cube Solving Robot is a robotic system whose purpose is to autonomously solve
a Rubik’s Cube puzzle. To accomplish this task, the robot is equipped with an image sensing
device and an embedded computer that is interfaced with mechanical hardware. The Rubik’s
Cube has inspired our project because it is a timeless puzzle that has challened both man
and machine for decades.

Lots of research has been done to investigate the mathematical properties of the cube
and deduce algorithms to achieve certain manipulations of the cube faces. These mathemati-
cal algorithms have enabled computers to process data of a scrambled cube and determine
what physical manipulations are needed to solve it. Careful design of a robotic system allows
a computer to directly apply these manipulations to a cube via a mechanical apparatus.

Our system functions in this way by first taking images a scrambled cube and perform-
ing image processing to determine the current position of each cube face. An embedded
processor will run an algorithm to determine what cube manipulations are needed to solve
the puzzle. Then, the processor will control a mechanical apparatus to perform these manip-
ulations and solve the cube. The objective for this process is to accurately solve the puzzle
in a timely manner.

2 Introduction

2.1 Project Description
This project features the design and implementation of a small tabletop robot capable of
autonomously solving a three-sided Rubik’s Cube puzzle. The robotic system consists of
an embedded computer, a mechanical apparatus for physically manipulating the cube, and
peripheral devices such as cameras and graphical displays. The robot is designed to receive a
scrambled Rubik’s Cube, visually evaluate it, and determine how to solve the cube through
manipulation. The robot is equipped with the necessary hardware to quickly manipulate the
cube until it is solved.

2.2 Statement of Purpose
Our motivation to engage this project stems from our enjoyment of the Rubik’s cube
puzzle. The multifaceted challenge of solving it autonomously incorporates our technical
backgrounds in hardware and software which makes it a suitable final design project. In
recent decades, many different machines of various complexities have been created to solve
the cube autonomously. As with many of these existing machines, the importance of our
work lies in the uniqueness of our implementation. By combining hardware and software
technologies into a robotic system, we contribute a unique and well-documented approach to
autonomously solving the Rubik’s Cube puzzle.

1

2.3 Goals and Objectives
The main goal of our project is to design and build a robot that can solve a Rubik’s cube. This
goal can be accomplished by breaking down the project into smaller goals. First the robot
should be able to visualize all the side and colors on the cube. Then with the information
found run an algorithm in its database to solve the cube for all the same color on each
side. After the algorithm is ran the robot then shall take the cube and spin the sides in the
corresponding pattern to solve the cube. Each step stated we determine to be a goal for our
project. Lastly we also determined to attach a monitor to our device that allows the users to
see how many steps are left on solving the cube, the time the cube has taken to work and
other functions we find applicable for our project’s design.

2.3.1 Performance Requirements

Our robot’s requirements are broken down into small parts of equal importance:

• The robot must solve a Rubik’s cube 75% of the time.

• The robot must be able to analyze 75% of the cube’s face and place it into a matrix
correctly

• The robot must be able to analyze atleast 75% of the cubes colors on each face of the
cube and place it into a matrix correctly.

• The robot must solve the cube in at least 15 minutes time.

• The robot must be able to rotate each face of the cube 90 degrees to the right.

• The robot must be able to rotate each face of the cube 90 degrees to the left.

• The robot must be able to rotate each face of the cube 180 degrees to the right.

• The robot must be able to rotate each face of the cube 180 degrees to the left.

Solve Time The goal of our robot is to be able to solve the Rubik’s cube in a very reason-
able time. The fastest Rubik’s cube solving robot according to Guness World Records is set
at .887 seconds. This record was set February 23, 2016 by the robot named Sub1 and build
by Albert Beer.

Our robot will not be able to compete with this time, but with some fire tuning hope-
fully can solve the cube within a range of 60 seconds. We always strive to be the best we can,
therefore if we can make our robot faster we will do everything in our power to make sure it
is. Also we must take into account how the solve time may vary because of our use of the
camera to visualize the cube. This process of visualizing the cube could slow down the time
it takes to solve the cube altering our actual time to solve it.

2

Figure 1: Sub1 with fastest time for solving a Rubik’s cube

Solve Accuracy The goal of any Rubik’s cube is to solve the cube for the same colors on
all 6 sides. We have determined that the robot should be able to solve the cube completely
without error at least 95% of the time. With that being said, that means when the program
has initiated the cube must visualize the sides correctly from start to finish. Then the
program must determine all the moves for the cube to be solved correctly. Lastly the robot
must follow the cube pattern correctly from the program for the cube to be solved correctly.
If any of the steps were to have a flaw or a mistake the robot may not be able to solve the
cube therefore resulting in our accuracy to be lower than 95%.

2.3.2 Functionality

The main functions of our robot are as follows:

• Visualize a face of the cube

• Flip the cube to another face

• Arrange all the faces of the cube on a 2D plane

• Display the GUI of the cube

• Show the steps to solve the cube

• Display a timer

• Solve the cube to allow all the faces to contain the same colors in each different one
(GUI)

• Rotate a side of the cube

• Solve the cube (with the mechanical arms)

3

Movement Movement is one of the biggest aspects of our robot. If the robot can not
move a side of the cube than it will not be able to rotate the sides to solve the cube and our
project will not be a success. As we researched the methods on how to build a robot to solve
a Rubik’s cube we found there were many different methods to rotate the sides of the cube to
solve the cube. In our research we found that one of the simplest methods was to have only
one arm with the ability to rotate a side of the cube. This method would require a lot of
flipping the cube around to each side because one one space may rotate. We have determined
this method may not be the best path for us to follow in solving the cube, because it would
take to much time and we would like our robot to solve the cube in a decent amount of time.
The next method we found was to have 3 rotating arms. This method seems very logical
and easy to use for us. The arms would be on the left and right sides of the cube and one
underneath it. This would allow us to easily flip the cube visualizing every side and also allow
the rotation of each side to be quick and flawless. The next method seems to be the fastest
but doesn’t seem feasible in our minds. It would require every side of the cube to have a
center connector piece that would fit around the middle space of the cube. This would allow
the rotation of each side without flipping the device and be the most efficient way to rotate
each side of the cube. Our issues with this design is that each side of the cube would have to
have a camera in order to visualize each side because there would be no flipping involved.
That would make our project to expensive for our likings and make the project more difficult
than in has to be.

With our design choice we have decided that the robot must be able to flip the cube
on all of its sides therefore making it easier to visualize and easier to solve. This movement is
very simple because all it takes is the rotation from our 3 mechanical arms just in different
patterns. The robot is designed to hold onto the cube with all 3 arms unless a rotation or
flip is in order. When the robot decides to flip to another side the left and right arm will
grasp the cube together and rotate in the same direction flipping the cube to another side.
When the robot needs to rotate the face of a cube without rotating any of the sides the left
and right arm shall let go of the cube and the bottom arm shall rotate on its on allowing the
robot to visualize the rotated part of the cube. The only issue with the design of our cube is
that only 3 faces of the cube can be rotated without flipping the cube into a new direction.
This may cause our robot some delays in solving the cube due to time spent flipping the
cube.

Capability The robots main goal is to solve the Rubik’s cube therefore limiting its capabil-
ities to a narrow spectrum. The first capability the robot should have is the ability to solve a
standard 3 x 3 x 3 Rubik’s cube. If we are capable of solving the 3 x 3 x 3 Rubik’s cube and
our project is finished and we have more time than we will try to design our robot to solve a
more complex cube ranging from 4 x 4 x 4 to 20 x 20 x 20. These cubes would take a lot more
time to write codes and algorithms for, which results in our first decision to just solve a 3 x 3 x 3.

Next our robot should be able to display a GUI for the user to see and interact with.
The GUI should contain a timer so that it can track how long it takes the cube to be solved.
It should layout a 2D or 3D design of the cube that the user can see and witness how

4

the cube is solved with our algorithms. Lastly the GUI should involve a move counter to
tell the user how many moves have been or need to be made to solve the Rubik’s cube in person.

The robot should be capable of visualizing all the sides of the cube. This being said
the robot should have a camera thats able to determine the colors on each face of the cube
and send it to our GUI, that can then decipher the image and determine what colors are on
that face. The robot the should be able to move the cube to another side and that face shall
be then transmitted to the GUI as well with the other and properly places in our program
allowing for no errors when the cube is solved.

Lastly the robot should be capable of rotating a Rubik’s cubes side and flipping the Rubik’s
cube to all of its sides. This will be done using a 3 mechanical arm technique where the arms
lie to the left and right of the cube and one underneath. Both the left and the right arm
shall work together when flipping the cube to all the faces and they shall also work together
to rotate the sides of the cubes that face them. The bottom arm shall rotate the cube when
the left arm and right arm are not holding on. and rotate the bottom face of the cube when
the left arm and right arm are holding on.

Autonomy The autonomy of our robot is a very simple design. Our robots overall minimal
view is to have 6 different mechanical arms all attached to the center of each face of the cube.
The top portion of the design shall be removable to take out the cube an alter then replace
back into the design. The mechanical arms will all be attached to servos at the base. The
servos are designed to rotate each mechanical arm 90 degrees to the left and right and 180
degrees to the right. The servos are attach to our MSP430 board through I/O connections.
The MSP430 is attached to the back of our robot and is the main computer to our system.

Attached to the MSP430 will be a camera named the Pixy Cam. The Pixy cam will
be attached above the front faced servo looking down on the top row of the front face of the
cube and looking at the bottom row of the top facing cube. These two rows will be altered
during the vision process. All segments in the cube shall pass through these 2 rows therefore
we found it the most applicable place to leave the camera. The camera has a processor
attached to it to allow useful data to be transfered from the camera to the MSP430 board.

The MSP430 runs our main algorithm and takes in the matrix found by the camera. This is
our embedded computer but attached to it is a USB port. With this USB port we can at-
tach another computer to run applications or programs to help the understanding of our robot.

Attached to the top of the robot will be a monitor that will show our GUI and the robots
actions. This monitor should be attached to the main frame so that the users can witness
what the robot is doing while the robot is doing it and allow the user to easily see the time it
takes the robot to solve the cube. The main frame of the robot will house all of these features
and protect them from being damaged from outside elements and interferences.

5

2.3.3 Features

The features that our robot includes are:

• GUI

• Replica of cube on display

• Timer

• Move counter

• Move list

Graphical Display Our robot is supposed to make solving a Rubik’s cube easy to under-
stand and fast at the same time. It would be hard to solve the cube at a fast pace while
slowly showing off the moves it making. We found the easiest way to solve this is to add a
GUI to our robot so it can show the initial cube, the moves it makes to solve the cube, and
solve the cube in the mean time. This design makes it easier for the users to learn what the
robot is doing without sacrificing any speed to our robots mechanics. Our GUI also will have
displayed a timer for the users expense. This timer will show how long it takes the robot to
solve the cube without any interruptions. The cube will also be displayed on the monitor so
that the user can see the initial cube before the robot starts to solve it. The cube layout will
be a 2D design that is basically a cut open version of the cube.

Figure 2: The Cube layout on the GUI

2.3.4 Cost Requirements

Our cost requirements are not set in stone because of our flexibility with the project. Our
monitors may change or other parts may change but most likely not but we thought we would
include the fact that they could to improve our product design.

6

N
am

e
Se
ria

lN
um

be
r

M
od

el
N
um

be
r

D
ev
el
op

er
Q
ua

ni
ty

Pr
ic
e
pe

r
ite

m
To

ta
lp

ric
e

C
ap

ac
ito

r
.0
1
uF

27
21
05
1

R
ad

io
Sh

ac
k

6
pi
ec
es

1.
49

C
ap

ac
ito

r
10
0
uF

EK
X
G
20
1E

LL
10
1M

L2
0S

U
ni
te
d
C
he
m
i-C

on
6
pi
ec
e

1.
47

C
ap

ac
ito

r
.1

uF
FK

22
X
7R

2J
10
4K

T
D
K

19
pi
ec
es

1.
48

C
ap

ac
ito

r
.4
7
uF

ES
M
G
45
1E

LL
R
47
M
JC

5S
U
ni
te
d
C
he
m
i-C

on
7
pi
ec
e

.8
4

C
ap

ac
ito

r
1
nF

1
pi
ec
e

C
ap

ac
ito

r
10

pf
,6

V
1
pi
ec
e

C
ap

ac
ito

r
4.
7
uF

,1
0
V

1
pi
ec
e

C
ap

ac
ito

r
22
0
nF

,1
0
V

2
pi
ec
es

C
ap

ac
ito

r
10
0
nF

1
pi
ec
e

C
ap

ac
ito

r
10

uF
1
pi
ec
e

R
es
ist

or
1
M
oh

m
7
pi
ec
es

R
es
ist

or
.2

oh
m

12
pi
ec
es

R
es
ist

or
20

ko
hm

6
pi
ec
es

R
es
ist

or
22
0
ko
hm

6
pi
ec
es

R
es
ist

or
47
0
oh

m
2
pi
ec
es

R
es
ist

or
1.
4
ko
hm

1
pi
ec
e

R
es
ist

or
27

oh
m

2
pi
ec
es

JP
4
he
ad

er
pi
n

6
pi
ec
es

Sw
itc

h
SK

H
M
PS

E0
10

2
pi
ec
es

LE
D

2
pi
ec
es

D
C

Ja
ck

X
1

1
pi
ec
e

R
es
on

at
or

C
ST

C
R
6M

00
G
53
Z

1
pi
ec
e

Se
ria

lI
/O

1
pi
ec
e

JT
A
G

1
pi
ec
e

M
in
iU

SB
Sh

ie
ld
-U

X
60
-M

B-
5S

T
1
pi
ec
e

T
PD

3E
00
1

1
pi
ec
e

U
2B

Va
lu
e

1
pi
ec
e

M
SP

43
0F

66
59

1
pi
ec
e

U
5
D
RV

88
25
-P

W
P-

28
6
pi
ec
e

U
9
T
PS

71
5A

01
-D

RV
-6

1
pi
ec
e

Pi
xy

C
am

1
pi
ec
e

Se
rv
os

6
pi
ec
es

Table 1: List of parts needed for the project

7

3 Research

3.1 Related Projects
As stated in the introduction, Cube-solving robots have been in existence for many years,
with origins in the early 2000’s. One of the earliest documented designs was constructed with
the Lego MindStorms robotics platform, which features motors and a small microprocessor.
The robot, which took months to complete, solved cubes in 15 minutes with 95% accuracy
[30]. Lego-based designs are still popular today, and have broken multiple world records for
solving speed. Figure 3 shows a Lego design from 2012 that solved a cube in only 5.2 seconds,
a world record at the time [13]. Although Lego designs have historically been dominant,

Figure 3: Modern Lego-based Robot

many other structural implementations have been used in recent years, ranging from popsicle
sticks, shown in Figure 4, to custom machined and welded metal, shown in Figure 5. Aside

Figure 4: Popsicle Stick Robot

from physical design, existing robots all vary in their software infrastructure, peripherals,
and hardware-software interface. Some projects place emphasis on advanced programming to
make up for simplistic hardware, while others focus on system portability or overall speed.

8

Figure 5: Metal Robot

An important influence on these design considerations has been time: while hardware abilities
have remained consistent over the last 15 years, there have been many changes in the enabling
technologies for software development that are made evident by consistently innovative
software implementations. Constant improvements in general computing performance have
led to faster algorithms and faster robots.

3.1.1 Physical Design

The most simplistic designs resemble the popsicle stick robot in Figure 4 and feature one
controllable rotational degree of freeom and one translational degree of freedom which is used
to indirectly achieve a second rotational degree of freedom on the cube by pushing it till it
rolls over.

A small step higher in complexity features two controllable rotational degrees of freedom, like
the claw apparatus shown in Figure 6. These designs can manipulate any side of the cube
but must first reorient the cube several times before performing a manipulation. The tradeoff
for these robots is reduced hardware and increased structural simplicity at the expense of
solving speed and additional software programming.

Designs of intermediate complexity resemble Figure 7 and achieve three controllable ro-
tational degrees of freedom with three or four claws. These robots can manipulate any side
of the cube with minor reorientation. These designs balance solving speed with hardware
complexity and software simplicity.

The fastest and most complex designs feature three controllable rotational degrees of freedom
and have the ability to manipulate any side of the cube without having to reorient it. This
design is shown by Figure 5. The caveat to this design is that the cube must be physically
altered in order for the robot to control it. Specifically, these robots require the middle square
of each cube face to be removed or carved with a rotationally symmetric pattern of low order
(like the head of a screw) so that the entire cube face can be rotated via its central axis.

As shown by the figures, building materials are diverse, ranging from Legos to wood to

9

Figure 6: Two-Claw Robot with Two Rotational Degrees of Freedom

Figure 7: Three-Claw Robot with Two Rotational Degrees of Freedom

metal. With the growing accessibility of 3D printers, some newer designs are now being 3D
printed [35]

3.1.2 Technology

Early designs such as the original Lego MindStorms robot were innovative and still continue
to inspire modern system infrastructures. The MindStorm robot creator had to design color-
recognition software from scratch because there was no pre-existing computer software that
worked for the purpose. After receiving images of the cube from a digital camera over a USB
connection, the color-recognition software used an infrared transmitter to communicate with
two Lego RCX devices containing Renesas 8-bit microcontrollers which drove the servo motors.

The modern Lego robot in Figure 3 is roughly 10 years ahead of the original MindStorms robot,
and uses a smartphone camera to capture images of the cube. The two-phase, multi-threaded

10

solving algorithm is run on the phone’s 1.2GHz ARM Cortex-A9 processor and instructions
are sent via Bluetooth to four Lego NXT devices each containing a 32-bit ARM7TDMI-core
Atmel AT91SAM7S256 microcontroller.

The fastest robot currently in existence, which features a design similar to Figure 5, abandons
the use of smaller processors and recruits the processing power of a dedicated desktop PC
with Linux to run Kociemba’s Algorithm (see Pg. 19) and control the motors. Additionally,
every communication interface is wired in order to achieve maximum data speed.

3.1.3 Performance

Two primary performance metrics for cube-solving robots are accuracy and solving time.
Each of these factors are influenced by all aspects of the robot design. Physical design options
such as additional motors or grippers will improve the solving speed by reducing the number
of times the cube must be reoriented prior to manipulation.

While physical and structural design undoubtedly play a role in robot performance, the solving
speed and accuracy are perhaps most greatly affected by the software and programming.
Modern processing platforms are capable of evaluating cube data and and producing solving
instructions within seconds, at which point the goal of solving the cube is limited only by
how quickly and accurately the hardware can execute the determined instructions. Many
cheap servo motors can run at very high speeds, however servo motion is only as fast and
accurate as the PWM that drives them. It follows that the fastest robots all attempt to solve
cubes in the fewest number of steps with the fastest manipulations possible using dedicated
hardware for servo control.

As was previously mentioned, early robots achieved solve times over 10 minutes and accuracies
just under 100%, while newer robots are solving cubes within seconds with 100% accuracy.
The fastest robot in existence as of February 2016 has recorded a solve time of just 0.9
seconds [12].

3.1.4 Applicability

While Lego-based structures offer an interesting design solution, they are most commonly
implemented by less experienced hobbyists who aren’t interested in fully developing a
hardware-software interface and software infrastructure. Based on the high level of our
application and our technical experience, we believe that our system is best implemented
with a more permanent structure with greater design flexibility such as metal or 3D-printed
plastic.

In addition to their dominance in solving speed, designs like the one in Figure 5 also
benefit from straightforward cube manipulation. Although our goal for system performance
isn’t to set a world record, these designs appeal to us because they would allow us to easily
manipulate each side of the cube without a claw or gripping device.

11

3.2 Rubik’s Cube
Breaking down the Rubik’s Cube as much as possible is necessary to solve it. The Rubik’s
Cube is a 3x3x3 cube puzzle with 6 different colors on each side traditionally being red, blue,
yellow, green, white, and orange. It has a standard size of 5.7 cm on each side which is about
2.25in. Due to there not being a center cube instead of it having 27 cubes it only has 26.
The center cube is used for rotation of each side, or face, of the cube. Each face of the cube
will be referenced as Front, Opposite, Left, Right, Top, and Bottom. Each color, or variation,
will be assigned a side due to whichever state the cube is in.

In a solved Rubik’s Cube the yellow face is towards the user then it will be referred to
as the Front. The blue face will be referred to as the Left. The green face will be referred to
as the Right. The orange face will be referred to as the Top. The red face will be referred to
as the Base. And the white face will be referred to as the Back. Also, each face will consist of
layers. The vertical layers will be referenced are the Top, Middle, and Bottom layer. While
the horizontal layers sill be reference as Left, Center, and Right.

3.2.1 Mapping the Cube

It is important to throughly map the Rubik’s Cube because there are 54 cubies to keep track
of. This because extremely important when developing code so that each placement of acubie
can be correctly noted. Also, when explaining algorithms it is important to know which exact
piece of the cube is being referenced.

When breaking down the faces there are 9 cubes, or cubies, that are in place. Under-
standing what each cube consists of and where it is will allow for it to be mapped accordingly.
In the figure below you will find an image of the Rubik’s Cube mapped out as well as a
definition of each mapping.

Figure 8: Mapped Cube

12

Front Face

• The Left horizontal layer, Top vertical layer, and Front face will be denoted as LTF.

• The Left horizontal layer, Middle vertical layer, and Front face will be denoted as LMF.

• The Left horizontal layer, Bottom vertical layer, and Front face will be denoted as LBF.

• The Center horizontal layer, Top vertical layer, and Front face will be denoted as CTF.

• The Center horizontal layer, Middle vertical layer, and Front face will be denoted as
CMF.

• The Center horizontal layer, Bottom vertical layer, and Front Face will be denoted as
CBF.

• The Right horizontal layer, the Top vertical layer, and Front face will be denoted as
RTF.

• The Right horizontal layer, the Middle vertical layer, and Front face will be denoted as
RMF.

• Thr Right horizontal layer, the Bottom vertical layer, and Front face will be denoted as
RBF.

Left Face

• The Left horizontal layer, Top vertical layer, and Left face will be denoted as LTL.

• The Left horizontal layer, Middle vertical layer, and Left face will be denoted as LML.

• The Left horizontal layer, Bottom vertical layer, and Left face will be denoted as LBL.

• The Center horizontal layer, Top vertical layer, and Left face will be denoted as CTL.

• The Center horizontal layer, Middle vertical layer, and Left face will be denoted as
CML.

• The Center horizontal layer, Bottom vertical layer, and Left Face will be denoted as
CBL.

• The Right horizontal layer, the Top vertical layer, and Left face will be denoted as
RTL.

• The Right horizontal layer, the Middle vertical layer, and Left face will be denoted as
RML.

• The Right horizontal layer, the Bottom vertical layer, and Left face will be denoted as
RBL.

13

Right Face

• The Left horizontal layer, Top vertical layer, and Right face will be denoted as LTR.

• The Left horizontal layer, Middle vertical layer, and Right face will be denoted as LMR.

• The Left horizontal layer, Bottom vertical layer, and Right face will be denoted as
LBR.

• The Center horizontal layer, Top vertical layer, and Right face will be denoted as CTR.

• The Center horizontal layer, Middle vertical layer, and Right face will be denoted as
CMR.

• The Center horizontal layer, Bottom vertical layer, and Right Face will be denoted as
CBR.

• The Right horizontal layer, the Top vertical layer, and Right face will be denoted as
RTR.

• The Right horizontal layer, the Middle vertical layer, and Right face will be denoted as
RMR.

• The Right horizontal layer, the Bottom vertical layer, and Right face will be denoted
as RBR.

Top Face

• The Left horizontal layer, Top vertical layer, and Top face will be denoted as LTT.

• The Left horizontal layer, Middle vertical layer, and Top face will be denoted as LMT.

• The Left horizontal layer, Bottom vertical layer, and Top face will be denoted as LBT.

• The Center horizontal layer, Top vertical layer, and Top face will be denoted as CTT.

• The Center horizontal layer, Middle vertical layer, and Top face will be denoted as
CMT.

• The Center horizontal layer, Bottom vertical layer, and Top Face will be denoted as
CBT.

• The Right horizontal layer, the Top vertical layer, and Top face will be denoted as
RTT.

• The Right horizontal layer, the Middle vertical layer, and Top face will be denoted as
RMT.

• The Right horizontal layer, the Bottom vertical layer, and Top face will be denoted as
RBT.

14

Bottom Face

• The Left horizontal layer, Top vertical layer, and Bottom face will be denoted as LTB.

• The Left horizontal layer, Middle vertical layer, and Bottom face will be denoted as
LMB.

• The Left horizontal layer, Bottom vertical layer, and Bottom face will be denoted as
LBB.

• The Center horizontal layer, Top vertical layer, and Bottom face will be denoted as
CTB.

• The Center horizontal layer, Middle vertical layer, and Bottom face will be denoted as
CMB.

• The Center horizontal layer, Bottom vertical layer, and Bottom Face will be denoted
as CBB.

• The Right horizontal layer, the Top vertical layer, and Bottom face will be denoted as
RTB.

• The Right horizontal layer, the Middle vertical layer, and Bottom face will be denoted
as RMB.

• The Right horizontal layer, the Bottom vertical layer, and Bottom face will be denoted
as RBB.

Opposite Face

• The Left horizontal layer, Top vertical layer, and Opposite face will be denoted as LTO.

• The Left horizontal layer, Middle vertical layer, and Opposite face will be denoted as
LMO.

• The Left horizontal layer, Bottom vertical layer, and Opposite face will be denoted as
LBO.

• The Center horizontal layer, Top vertical layer, and Opposite face will be denoted as
CTO.

• The Center horizontal layer, Middle vertical layer, and Opposite face will be denoted
as CMO.

• The Center horizontal layer, Bottom vertical layer, and Opposite Face will be denoted
as CBO.

• The Right horizontal layer, the Top vertical layer, and Opposite face will be denoted as
RTO.

15

• The Right horizontal layer, the Middle vertical layer, and Opposite face will be denoted
as RMO.

• The Right horizontal layer, the Bottom vertical layer, and Opposite face will be denoted
as RBO.

3.2.2 Rotation Naming Convention

In the previous section, the naming convention of each face and cube was discussed (See Pg.
12). For reference on the naming convention for the faces of the Rubik’s Cube and each cube
of the Rubik’s Cube please refer to the section regarding the Rubik’s Cube. Now, each turn
of the cube will indicate movement of a layer in a specified direction. Each explanation is
under the assumption that the user is turning the Front face.

Right Horizontal Layer The Right horizontal layer will be regarded as R if it is turns
towards you and R’ if it is to be turned away from you.

Left Horizontal Layer The Left horizontal layer will be regarded as L if it is turn towards
you L’ if it is to be turned away from you.

Center Horizontal Layer The Center horizontal layer will be regarded C if it is turned
towards you and C’ if it is turned away from you.

Top Vertical Layer The Top vertical layer will be regarded as U if it is turned to the left
and U’ if it turned to the right.

Middle Vertical Layer The Middle vertical layer will be regarded as M if it is turned to
the left and M’ if it is turned to the right.

Bottom Vertical Layer The Bottom vertical layer will be regarded as D if it is turned to
left and D’ if it is turned to the right.

3.2.3 History

The Rubik’s Cube was discovered in 1974 by Erno Rubik. The first working prototype of the
cube was a wooden cube with white centers that twisted and turned. Later he added the
colorful stickers and once it was scrambled the first solving of the Rubik’s cube then named
the Magic cube began. It went through many phases and was initially a work of art rather
than a difficult puzzle. Upon making the cube he actually could not solve it initially and it
took him nearly a month to figure out. However, the algorithmic methods to solve to cube
have steadily progressed over time.

In 1981 Patrick Bossert wrote a famous book that gave instructions on solving cubes named
"You Can Do The Cube". He utilized a layered method of solving the cube. The layered
method has been further optimized since the writing of his book, but continues to meet

16

the most widely used method. The most well known name for the layered method now is
either CFOP method or the Friedrich method, named after Jessica Fridrich. Not only is this
method widely used it is particularly used by speed cubers even though it is not the most
efficient method when considering it takes many more turns.

A more efficient method was discovered in 2007 by Daniel Kunkle and Gene Cooperman by
using computer searching methods. This allowed for the Rubik’s Cube to be solved in under
27 moves! Then, just a year later Tomas Tokicki got the maximum number of moves down to
22. Eventually Herbert Kociemba determined that the Rubik’s Cube can be solved in 20.
His method is known as God’s Algorithm [19].

3.2.4 Mathematics

The mathematics of the Rubik’s Cube is important especially when analyzing the algorithms,
permutations, symmetries. From the research of Kociemba it has been determined that not
only the standard 3 x 3 x 3 Rubik’s Cube, but any Rubik’s Cube of n x n x n can be solved
in O(n2

log(n)) moves.

Permutations When considering the permutations of the standard Rubik’s Cube it has
eight corners and twelve edges. Since there are eight corners that means there are 8! = 40,320
ways to arrange the corners of the cubes. Of those eight corners seven of them can be ori-
ented independently, while the eight cannot which means that there are 37 = 2, 187possibilities.

Similarly because there are twelve edges that means there are 12!
2 = 239, 500, 800 ways

to arrange the edges. The edges are divided by 2 because an even permutation of the corners
implies that the edges must also be of an even permutation. Now of the twelve edges only
eleven can be moved independently while the twelfth cannot which gives a 211 = 2, 048
possibilities.

The corners and edges of the cubes of each possibility must then be multiplied by each
other to figure out the possible combinations.

8! ∗ 37 ∗ (12!
2) ∗ 211 = 43, 252, 003, 274, 489, 856, 000

Even though that is 43 quintillion possibilities there are actually more when you consider
that a Rubik’s Cube can only turn by it’s sides which means the math would be more along
the lines of this equation:

8! ∗ 38 ∗ 12! ∗ 212 = 519, 024, 039, 293, 878, 272, 000

That is 519 quintillion different possibilities! The reason it goes up so much is that the cube
cannot be moved in any sequence that can rotate a single corner, swap a single pair of pieces,
or an edge of the cube. Also, a standard Rubik’s Cube uses solid colors on each face, but
if the center cubies were to be marked that would increase the possibilities even greater!
However, for the scope of this project the increase by the center cubes will not be considered.

17

Symmetries The symmetric patterns are an essential part to actually understanding the
solving algorithms. There are 164,604,041,664 symmetric cubes that exist! That is a lot of
possibilities, but the number greatly reduces for the most efficient algorithm being that of
Kociemba. That number reduces to 32,625 different symmetric cubes that can be solved in
20 moves. Also, there is 48 possible symmetries of the cube. From geometry we know that
this can be determined when one counts all of the combinations of when vertices’s are chosen:
8*3*2= 48. In the figure below you will find an image of the rotational symmetrical axes of a
cube.

Figure 9: Cube Symmetries

• 1/2 rotation around an edge 6 elements

• Reflection through a place 6 elements

• 1/2 rotation around a face 3 elements

• Reflection through a plane 3 elements

• 1/4 rotation around a face 2x3 elements

• 1/4 rotation + reflection through the center 2x3 elements

• 1/3 rotation around an edge 2x4 elements

• Reflection through the center 1 element

• 1/3 rotation + reflection through the center 2x4 elements

• Identity 1 element

18

3.3 Algorithms
3.3.1 Kociemba’s Algorithm

Kociemba’s algorithm is a two-phase algorithm that is also known as God’s algorithm. God’s
algorithm is a fancy term of most efficient algorithm in the sense that the Rubik’s Cube
can be turned in the fewest number of times to be solved in any given state. Kociemba’s
algorithm allows for the popular Rubik’s Cube to be solved in only 20 turns.

Kociemba’s Algorithms is considered a two-phase algorithm because after an initial so-
lution is reached additional optimal solutions are searched for. It was developed from the
former most efficient algorithm being Thistlethwaite’s algorithm. It solves the cube by looking
at it in groups and phases. The first group is the G0 group which is the randomly mixed cube
group. At this stage there are no restrictions on what moves can be made when utilizing this
algorithm. To complete this state the cube needs at most 12 moves. The next group is the
G1 group which is when the cube gets in a specific state of U, D, L2, R2, F2, B2. When the
cube is in this state there are specific moves that cannot be made. To complete this state the
cube needs at most 18 moves.

3.3.2 CFOP Method Algorithm

The most popular of the Rubik’s Cube solving algorithms is the CFOP Algorithm Method.
Which stands for Cross - F2S - OLL - PLL. It is also known as the Fridrich method. Jessica
Fridrich is an Electrical Engineering professor at Binghamtom University and is credited for
documenting and popularizing this method. She is considered a pioneer of speedcubing. This
method involves solving each layer of a Rubik’s Cube until it is completely solved. The layers
of a Rubik’s Cube can be noted as Top, Middle, and Bottom as shown below. To actually
solve the Rubik’s Cube using the Layer Method the user must get the Rubik’s Cube into a
base state. This method does not have an algorithm to get the Rubik’s Cube into the base
state therefore the user must be able to this on their own. The base state has been reached
once there is a cross shape on one face of the Rubik’s Cube with each of the cube in the
correct place. Once the user has obtained the base state a series of rotational algorithms must
be implemented. The order of these algorithms are extremely important and each can only
be implemented properly when the cube gets into a specific state. However, implemented the
algorithms can only be done once the rotation naming is clear.

Corner Rotational Algorithm The Corner Rotational algorithm is a key algorithm used
to solve the Rubik’s Cube. It is the only one of the algorithms that is used throughout. It is
the first algorithm used once the Rubik’s Cube is in the Base State on the Top face. The
purpose of this method is to place a cube in the correct orientation of a corner when it is
in the specified column. It is used to completely solve the first face(Top) of the cube. An
example of this algorithm being implemented is shown in figures 10 through 12. Above the
Corner Algorithm is implemented on the Base State image and places one cube in the correct
corner. This algorithm can be done six times in a row to get back to the original state of the
cube before the algorithm was implemented. The actual algorithm is as follows: R D R’ D’

19

Figure 10: Base State of Layer Method

Figure 11: Corner Algorithm Initial Implementation

The Corner Rotational algorithm must be implemented on each corner cube of the Base State
that is in an unsolved state. Once it is completed a face, Top in this case, should be solved.

Middle Layer Rotational Algorithms Middle Vertical Layer Rotational Algorithms
The Middle Vertical Layer Rotational algorithms are utilized to solve the Middle vertical

20

Figure 12: Face Solved

layer. There are only two algorithms to solve this layer which are practically inversions of
each other. One is to place the FTC cube in the FMR location and the other is to place it in
the FML location. Middle Layer Rotational Right Algorithm

Right Rotational Algorithm The Middle Layer Rotational Right algorithm is used to
solve the second layer using the CFOP Method algorithm. To implement this state the user
must have correctly solved a face of the cube and have the solved face put as the Bottom
face. There are only a maximum of four cubes to solve using this algorithm. In this current
example we will flip the Green color solved face of the cube from the Top to now the Bottom.
The Orange color FMC cube will be considered the Front for this example as well. Once
that is done the user must place the cube that correctly fits the FMR positon in the FTC
(Front-Top-Center) position by simply turning the Top vertical layer of the cube. If the cube
is in the correct position, but the wrong orientation the user can utilize this algorithm to put
any arbitrary wrong cube in the FMR position and the correctly place the cube in question
in the correct position as normal. Then the algorithm is implemented as follows: U R’ U’ R
U’ F U F’

Left Rotational Algorithm The Middle Layer Rotational Left algorithm is used to solve
the second layer using the CFOP Method algorithm. To implement this state the user must
have correctly solved a face of the cube and have the solved face put as the Bottom face.
There are only a maximum of four cubes to solve using this algorithm. In this current
example we will flip the Green color solved face of the cube from the Top to now the Bottom.
The Orange color FMC cube will be considered the Front for this example as well. Once
that is done the user must place the cube that correctly fits the FML position in the FTC

21

Figure 13: FMR Unsolved

Figure 14: FMR Solved

(Front-Top-Center) position by simply turning the Top vertical layer of the cube. If the cube
is in the correct position, but the wrong orientation the user can utilize this algorithm to put
any arbitrary wrong cube in the FML position and the correctly place the cube in question
in the correct position as normal. Then the algorithm is implemented as follows: U’ L U L’
U F’ U’ F Once both of these Middle Layer Rotational Algorithms have been implemented

22

Figure 15: FML Unsolved

Figure 16: FML Solved

to solve the four cubes on the Middle vertical layer this state has been completed and should
resemble Figure 17 with the Bottom vertical layer and Middle vertical layer solved.

Top Vertical Layer Rotational Algorithms The Top Vertical Layer is the most involved
layer of the three vertical layers Top, Middle, and Bottom. There are a number of Top

23

Figure 17: Middle Vertical Layer Complete

vertical layer rotational algorithms. But, initially it has the same goal as the Bottom layer to
get to the Base State, which is the cross. Assuming the face in question is the Front face the
Base State can be further defined as the state in which the Rubik’s Cube has the FTC, FMR,
FML, FBC, and FC (Front Center) cube. The Center cubes denote which color each face
should be associated with. Eventually, after all the Top vertical layer rotational algorithms
are implemented the Rubik’s Cube will be completely solved.

Top Cross Algorithm The Top Cross algorithm achieves the goal of the Base State. It
must be the first to be implemented of all of the Top vertical layer rotational algorithms.
There are only four forms the Top face can be in assuming the Green color solved face is the
Bottom face. One form it can possibly be in is the TC (Top Center) cube being the only one
in place. If the user is in this form the Top Cross algorithm should be implemented multiple
times until it gets into the cross state. Another form it can be in is an ’L’ shape in the
corner of the face. If the Top vertical layer is flipped so that it is now the Front face the ’L’
shape can be specifically referenced as the FTC, FML, and FC cubes being in the correct place.

However, the Top vertical layer should not actually be flipped when doing the algorithm only
to understand the mapping. If the user gets into this form then the algorithm should be
done two more times until it is in the cross state. Now, the other state that the cube can be
in is a horizontal line across. This can be specifically mapped as the FML, FMR, and FC
cube being in the correct positions if the cube were flipped so that the Top vertical layer
became the Front face. Again, the cube is not actually flipped only for the understanding of
the mapping. If the user is in this form the algorithm only needs to be implemented once.
The actual algorithm is: F R U R’ U’ F .

24

Figure 18: top vertical solved

Top Corners Permutation Algorithm The Top corners have to be should be the only
ones unsolved. This algorithm is used to place the four corners into the correct place. The
algorithm should not have to be done more than three times. The user must find a corner
that is in the correct position even if it is in the incorrect orientation then have that in the
bottom right corner of the top layer. If there is no cube in the correct position the user can
simply choose a random corner and implement the algorithm which will result in at minimum
one corner being in the correct position. The actual algorithm is: U R U’ L’ U R U L’

The Final Algorithm The Final algorithm to be applied to solve the Top vertical layer
and thus the entire Rubik’s Cube will be solved. It is very familiar to the first algorithm used
once in the Base State to solve the Bottom vertical layer in the sense that it is exactly the
same. That is why it is a key algorithm as mentioned previously. The only difference is that
this algorithm must be applied to each corner until the particular corner is in the correct
state and then the Top vertical layer must be rotated R’. Again the algorithm is: R D R’ D’

3.4 Hardware
3.4.1 Structural Platform

The structural platform of the robot refers to its building materials, method of construction,
and physical layout. The following sections investigate the resources and options available to
us for the structural platform of the robot.

Materials The building materials for the robot will dictate its structural integrity as well
as method of its construction. Considerations for building materials include but are not

25

Figure 19: top corners solved

Figure 20: solved

limited to: cost, accessibility, ease of assembly, and structural strength.

3D Printing 3D printing for consumer use has gained popularity in recent years as the
costs of buying and maintaining these machines have rapidly declined. Lower resolution
printers can be found in private homes and hobby workshops, while most universities offer

26

more advanced 3D printing equipment for student use, as is the case here at UCF.

Discussions with previous UCF design groups indicate that the total fabrication time for
student print jobs averages 3-6 days which is adequate for our needs. Student design groups
are allowed a certain amount of free printing every semester, and the printer is reportedly
very reliable. Inspection of various completed print jobs reveals that the print resolution is
high enough for most project applications.

3D printing materials are plastic-based and come in various forms which are listed and
shortly described below [36]:

• ABS (Acrylonitrile Butadiene Styrene): Generally very strong and durable. Easy
to sand down and broken pieces can be glued with ABS glue. Generates mildly irritating
fumes during printing which may require ventilation or fume hood.

• PLA (Polylactic Acid): Biodegradable and environmentally friendly. Not as durable
as ABS and becomes brittle once cooled. Does not require heated printbed or printing
ventilation.

• PVA (Polyvinyl Alcohol): Water-soluble and high-priced. Not as frequently used
as ABS and PLA.

The short fabrication time and relatively cheap cost of 3D printing make it a great option for
rapid prototyping of custom physical designs, but it can also suffice as a final construction
option for designs that won’t be under high physical stress or temperature. Figure 21 shows
a cube-solving robot that was 3D-printed.

Figure 21: 3D-printed robot structure

Robotic Kits Robotics kits are a more durable alternative to 3D printing, however they
offer less customizability and cannot be prototyped as quickly. Structures can be created
from machined aluminum parts similar to the ones shown in Figure 22. These structures can

27

presumably be designed and constructed in less time than it would take to design and print
a structure, but the parts can cost upwards of $100 and usually need to be shipped from a
warehouse.

Figure 22: Aluminum robotics kit parts

Layout and Orientation As discussed in the “Similar Projects” section (see 3.1.1), the
simplest robots feature a single motor and claw combination to achieve one controllable
rotational degree of freedom. In order for the claw to rotate a different side of the cube,
these robots use a linear actuator to push an edge of the cube until it flips over, a process
that dramatically increases solving time. Moreover, structures that reorient the cube also
require additional programming to accomodate this functionality and keep track of the cube’s
orientation

Adding additional motors or claws allows the robot to rotate a given side of the cube with
less reorientation, leading to more simplistic programming. This relationship, demonstrated
by Figure 23, continues to the point of having a dedicated motor for each side of the cube
which allows the robot to rotate any side of the cube without any preparation or reorientation.

Another design aspect that is different in many existing robots is how the cube is ori-
ented within the hardware. Some robots hold the cube with one face parallel to the floor,
while others hold it with a corner facing the floor. Other robots such as the popsicle stick
robot in Figure 4 rely on a tilted positioning that allows the cube to slide back into position
after it is reoriented.

3.4.2 Processing Platforms

One feature common to all cube-solving robots is a processing platform. Processing hardware
is necessary for several steps of the autonomous cube-solving process:

• Image processing

28

Hardware Complexity
So

ft
w

ar
e

 C
o

m
p

le
xi

ty

Figure 23: Robotic system complexity

• Application of solving algorithms

• Manipulation of hardware

Many factors such as cost, complexity, and performance will influence what kind of processing
platform is necessary for a robot. Some designs rely on pre-written computer software
to perform image processing and thus recruit entire laptop or desktop computers as their
processing platforms. The opposite end of the complexity spectrum, occupied by lego-based
robots, implements image processing and solving algorithms on 8-bit processors within
handheld, black-box embedded systems that shield the engineer from most technical design
considerations. Our project lies somewhere between these two hardware complexities with an
embedded processor on a custom PCB.

This section is dedicated to identifying and evaluating several embedded processors that could
potentially be used in our robotic system. Candidate processing platforms should satisfy the
project requirement for low cost and provide adequate performance for our needs. Because of
our familiarity with Texas Instruments devices and because TI offers such a wide variety of
processor families, we are choosing to focus our review on their device families.

TI MSP430 The MSP430 family is an ultra-low power processor family with a large variety
of memory sizes and I/O capabilities. Processor speeds can range up to 48MHz and the
largest devices contain up to 265KB of RAM and feature 90 GPIO pins [15]. While their
specialty is in low-power operarion, the MSP430 is also a good candidate for general purpose
applications because of it’s straightforward implementation and large base of documentation
and support.

TI MSP432 The MSP432 is the higher-performance cousin of the MSP430 that swaps out
the MSP430 core for a 32-bit ARM Cortex core. Most MSP432 chip features and peripherals
match those of the MSP430, including GPIO, RAM, and chip speed. Unfortunately, this
chip is not available on TI’s website individually, and can only be purchased as part of a
development board.

29

TI C2000 The C2000 family is a 32-bit group of processors geared toward sensing and
actuation for applications in closed loop systems. Motor control is one specialty of the C2000
family, which offers devices that feature dedicated hardware for PWM generation. The
C2000 hardware and software development tools make it possible to develop and fine-tune
the motion, power, and feedback processing of motor setups.

TI Sitara The Sitara is an ARM-based high performance family better suited for compli-
cated applications than the previously mentioned devices. Sitara processors, outfitted with
DDR3 RAM interfaces and 1GHz clock speeds, are capable of running Linux systems. The
well-known BeagleBone development board uses a Sitara processor [26].

Summary of Processing Devices Table 2 details the features of several processors from
the families that are described above.

Family Device Core RAM GPIO Features Cost

MSP430
MSP430F2131 MSP430 0.25KB 16 low-power, small

footprint $1.20

MSP430F5528 MSP430 8KB 47 low-power, USB
support $3.55

MSP430F6659 MSP430 66KB 74
low-power, USB
support, LCD
support

$6.48

MSP432 MSP432P401M ARM Cortex-
M4F 32K 84 low-power N/A

C2000 TMS320F2837xD Dual
TMS320C28x 512KB 169 USB, enhanced

PWM output $17.03

TMS320F28069M TMS320C28x 100kB 54

High-resolution
PWM, ROM
motor control
library

$12.96

Sitara AM4376 ARM Cortex-
A9 DDR2/3 192

3D graphics,
SIMD copro-
cessor, 2x USB
support

$9.00

Table 2: Processor Comparison

3.4.3 Camera

Image sensing is a big part of our project. For this task we had to visualize all of our options
and decided which camera would fit our project the best. While doing research for our
project we discovered a camera referred to as the Pixy Cam. This camera has been used in
recent robotics design because of its ability to visualize objects easily while using minimum
processing power on the CPU bored.

30

Vision sensors have been extremely useful for projects they have become a staple in au-
tonomous robotics. The issues with most cameras though when used for Vision sensing come
down to 2 main points. The first point is the whenever a robot is using vision sensing it outputs
lost of data, even up to dozens of megabytes per second. Secondly processing the amount of
data taken in by the camera using Vision sensing overloads many processors. If the processor
can keep up with the data though it won’t have enough power for other task it needs to handle.

Pixy Cam has discovered a way to solve both of these issues with its design, making it
the leader in a class that has few competitors. How the Pixy Cam does this is by pairing the
camera with a powerful dedicated processor. This processors takes in the images and only
sends useful information to the micro-controller. This information is taken in at a fast pace
and with 50 frames per second to ensure the best quality imaging for the robot. The Pixy
cam also has several port interfaces that make it very easy and accessible to get information
to our micro-controller without limiting the controller at all.

The main algorithm used by for vision sensing the Pixy Cam works on is called purple
dinosaurs. Purple dinosaur is a color based filtering algorithm that is used to detect different
objects. This method is popular because its fast, efficient, and relatively robust. This
algorithm is used by RGB to calculate color hue and saturation. The only issue with this is
when lighting and exposure comes into play, the purple dinosaur method sometimes fails and
view the same object as two different ones. The Pixy cam has a filtering algorithm attached
to its purple dinosaur method that allows the camera to detect lighting and exposure changes
and neglect it.

Lastly a huge feature included in the Pixy cam is that it remembers 7 different signifi-
cant colors. This is perfect for our design because the Rubik’s cube only involves 6 different
colors making it perfect for us to use. With this feature the Pixy cam looks for and detects
these colors making our camera process less information because it will not use its power on
images other than the colors we are telling it to.

Figure 24 shows the camera we decided would fit best for our project. It is referred to
as the Pixy CMUcam5 designed by Carnegie Mellon Robotics Institute with partnerships
with Charmed Labs. The Pixy Cam was initially started in 2014 to solve the issues of image
processing that many vision sensors have had issues with in the past. Pixy cams have been
used in many systems including picking up objects, chasing a ball, or locating a station
designated by the operator. We feels if the Pixy Cam can be used for these task it will be
more than enough to help us solve our problem of imaging.

31

Figure 24: Pixy Cam

3.4.4 Motors

The motors are a key component of our robot and will be responsible for physically manipu-
lating the cube in order to solve it. There are several types of motors that can be used in a
robot system, each with their advantages and disadvantages. This section identifies three
types of motors and discusses their features in an effort to identify a suitable motor type for
our project. Here we also explore various aspects of controlling these motors and identify
potential motor control methods that suit our application.

Motor Types Here we explore the functionality of DC motors, servo motors, and stepper
motors. Table 5 summarizes the functional advantages and disadvantages that these motor
types offer for our application

Servo Motors Servo motors generally contain three wires for power, ground, and control.
Servo motors require constant power and use a constant PWM signal to move to positions
within ±180◦ of the home position. A neutral PWM pulse whose width is intrinsic to the
motor allows it to remain in the same position even with external force applied. Optional
feedback allows the shaft position to be finely tuned. Table 3 lists the specifications of a few
servo motors on sale that could fit our application [11] [28] [20].

Motor Wires Max Voltage Max Current Price
Diligent 290-006 2 12V 200mA $19.99
Adafruit Metal Gear Servo 3 6V N/A $19.95
Parallax Continuous Rotation Servo 3 6V 190mA $12.99

Table 3: Servo Motors

32

Stepper Motors Stepper motors are similar to servo motors with the exception of their
internal gearing. Usually equipped with four wires, stepper motors have multiple sets of
internal coils that allow the shaft to be rotated bidirectionally within a central toothed gear.
Actuating one set of internal coils will cause the shaft to rotate, or “step” slightly by a set
amount. By engaging all the coils in different speeds or patterns, the shaft can be precisely
rotated by a predetermined amount. Unlike servo motors, stepper motors will hold their
current position without and external power or signals. Table 4 lists the specifications and
prices of a few reasonably-sized stepper motors available online [31] [29].

Motor Wires Max Voltage Max Current Price
Adafruit Stepper Motor 4 12V 350mA $14.00
SureStep STP-MTR-17040 4 N/A 1.7A/Phase $18.00
Sparkfun Stepper Motor 4 12V 330mA $14.95

Table 4: Stepper Motors

DC Motors DC motors are simple two-wire motors that operate continuously in a direction
dependent on the polarity of the applied power. Most DC motors run at very high speeds
that can be controlled by applying a PWM signal in place of DC power.

Type Advantages Disadvantages

DC High RPM Lack of positioning control
Easy to operate

Servo Can be driven from single
PWM input

Usually require feedback pro-
cessing or PWM-tuning for
accurate positioning

Stepper Predetermined, reliable po-
sitioning Usually require driver IC

Table 5: Comparison of Motor Types

Motor Control In considering devices such as stepper and servo motors for our project, we
must also evaluate methods for interfacing and controlling them. The following paragraphs
discuss the driving requirements of these motors and present several solutions for controlling
them.

Stepper Motor Actuation Stepper motors require bidirectional current sourcing on four
separate wires to achieve bidirectional motion as is necessary in our project. The simplest
method of stepper motor actuation is to engage one coil after the other, incrementally turning
the rotor. This driving method is called “wave drive” and is illustrated by Figure 25.

A problem with wave drive is that it does not recruit the maximum torque output from the mo-
tor because only one phase is active at any given time. A similar driving technique that enables

33

Figure 25: Stepper Motor Wave Drive

Figure 26: Stepper Motor Full Step Drive

maximum torque is called “full step drive”, which overlaps coil currents as shown in Figure 26.

A more precise alternative to full step driving is “half step” driving which is depicted
by Figure 27. With half step driving, the motor coils are actuated in a way such that the
rotor steps in fractional (one half) increments which allows for smoother motion.

Figure 27: Stepper Motor Half Step Drive

Dedicated motor-driving hardware allows these fractional-step driving techniques to be
extended to a high level of precision called “mircostepping” that allows the rotor to be
stepped in increments as small as 1

32 of a single step. The resulting control waveforms are
shown in Figure 28.

Figure 28: Stepper Motor Mircostep Drive

34

Stepper Motor Drivers As stated in the previous section, stepper motors achieve bidirec-
tional motion by swapping voltage polarity across the motor coils. While embedded processors
can generate the PWM signals that motors require, they usually cannot source/sink an ade-
quate amount of current to do so directly. Additionally, the inductive properties of a motor
can potentially damage a fragile embedded processor without any buffer circuitry. These
issues generally necessitate the inclusion of dedicated hardware for motor control. One
popular method of controlling signal polarity in motor applications is with an H-bridge circuit,
which is depicted in Figure 29. Controlling the internal switches allows current to be directed
differently through the motor coils as shown in Figure 30.

Simple motor-driving applications use single, double, or quad H-bridge integrated cir-

Figure 29: H-Bridge Circuit

cuits such as the TI L293 whose functional block digram is shown in Figure 31. These
devices accept PWM inputs along with H-bridge enable signals and a power supply input.
This hardware works well as a buffer between a motor and a microprocessor but it does not
include built-in functionality for special motor driving techniques such as half wave driving or
microstepping. To help simplify system designs, some ICs provide additional hardware that
can decode input signals and automatically drive an H-bridge setup to achieve microstepping
functionality.

Figure 30: H-Bridge Switching Function

35

Figure 31: TI L293 Functional Block Diagram

Texas Instruments’ DRV family is an example of integrated motor driving and control
hardware. Figure 32 shows a block diagram of a DRV implementation. Control inputs
determine the step size of the rotor, direction of rotation, and decay strength of the coil
current. The simplified control scheme offered by these devices make them good candidates
for our project. Several components in the DRV family are listed in table 6, which details
their pricing and technical specifications.

Figure 32: DRV Application Block Diagram

36

Device H-Bridges RMS Output Current Features Price

DRC8884 4 700mA
1
16 Microstepping,
current sensing $1.30

DRV8818 4 1.75A
1
8 Microstepping,
current sensing $1.85

DRV8825 4 1.8A
1
32 Microstepping,
current sensing $1.90

Table 6: TI DRV Stepper Driver Devices

3.4.5 Display

One of our newest features we have added to the project is a Display that can promote our
robots functions in a GUI format. For this we had many questions on what we wanted to
prioritize on the display and how to run it with our system without slowing down the other
functions of our system. We found these displays and compared them to our system to help
us decide which one may be the best fit for us.

Name Type Dimensions Connection Cost
Angelelec Open Source Display LED 8-bit x 1-bit SPI Interface $15.93
SparkFun Graphic Display LCD 128-bit x 64-bit Serial Interface $36.95
SainSmart IIC/I2C/TWI LCD 20-bit x 4-bit Serial Interface $14.99
LCD Touch Panel ILI9341 LCD 240-bit x 320-bit SPI Interface $5.73
LCD Display module
51/AVR/STM32/ARM/PIC

LCD 240-bit x 320-bit SPI Interface $4.75

Graphical LCD DIsplay GLCD LCD 128-bit x 64-bit SPI Interface $10.58
909-Shield LCD 16-bit x 2-bit Serial Interface $16.90

Table 7: Selection of Displays

3.4.6 Power

System power is an important design aspect that has the potential to constrain or impact
many other design considerations. To begin the development of a power system for our robot,
we first need to reflect on professional standards regarding electrical system safety as well as
any project objectives related to power consumption and sustainability. We can dramatically
narrow down our design choices because our system is expected to remain connected to a
power outlet during its operation which eliminates the need for batteries. Moreover, our
system’s access to a power outlet allows it to consume energy more liberally than would
a battery-operated system with limited charge. It follows that our design process will be
limited to focus on AC-DC conversion and DC power regulation.

The next step in designing our power system is to identify the power requirements of
the devices we plan on using in our robot. As shown by Tables 3 and 4, most of our potential
motors would recommend a 12V input with at least 300mA peak current. Aside from the

37

motors and their associated driver hardware, the remaining parts of our electrical system all
operate in a sub-5V domain. Table 8 lists the general power options and requirements for
our system components.

Component Description Vmin Vmax

Motors Recommended voltage for most potential motors 3V 12V
Motor Drivers DRV Family Vs supply 8.2V 45V

CMUcam5 Pixy
USB Connector (regulated) 5V 5V
I/O Connector (regulated) 5V 5V
Power Connector (unregulated) 6V 10V

Processor Most TI device families (Table 2) 1.8V 3.6V

Table 8: Robotic System Power Specifications

AC-DC Conversion AC-DC conversion is necessary for our system to be able to source
power from a wall outlet. It is a multi-step process that begins with the rectification of
an alternating-current (bipolar) waveform to one that is direct-current, or unipolar. This
process is shown in Figure 33 [39]. After the AC signal is rectified, it needs to be smoothed

Figure 33: Full-Wave Rectification

to maintain a constant voltage level. This can be done with a simple RC filter, shown in
Figure 34, which will output a near constant DC voltage. [38]. While this AC-DC conversion
hardware can be designed and assembled with discrete components, it can also be easily
purchased as a pre-assembled device that outputs a finely tuned DC voltage. Based on the
information in Table 8, we can choose a AC-DC converter device that will supply the motors
with a rectified and smoothed 12VDC . This will also allow the motors to draw their required
amounts of current.

DC-DC Conversion DC-DC conversion is the process of converting a DC voltage of one
magnitude to a DC voltage of a different magnitude. Hardware devices that perform this
task are called “voltage regulators” and can either increase (boost) or decrease (buck) the
voltage level between the input and output. The following sections describe two popular
types of voltage regulators, which are compared in Table 9.

Linear Voltage Regulators Linear voltage regulators operate continuously in the linear
region and are known for having a clean and stable output voltages. They are only capable
of stepping down voltage levels, which they achieve by acting as variable resistors within

38

Figure 34: Rectifier Output Smoothing

a voltage divider setup. Linear voltage regulators are limited in efficiency by the fact that
extra power is dissipated as heat.

Switching Voltage Regulators As their name suggests, switching voltage regulators
rapidly switches the output on and off to maintain a set voltage level. Because switching
regulators can intelligently switch between and on and off state, they achieve high efficiency
and are also capable of boosting the output voltage to a level higher than the input.

Linear Switching
Function Step down only Step down, step up, inverting
Efficiency Low-Medium, dependent on dif-

ference between input and output
voltages

High except at low load currents

Heat Dissipation High Low
Complexity Low, few external components

needed
High, usually reuires several exter-
nal components

Cost Low Medium-High
Ripple/Noise Low Medium-High

Table 9: Voltage Regulator Comparison

As shown by Table 8, The CMUcam5 Pixy requires at least 5V, but cannot handle the
12VDC input from the AC-DC converter, which means that we need to include a 5V step-down
regulator in our system. Table 8 shows that the Processor should not receive more than 3.6V,
which means that we need another step-down regular to provide this output level. Table 10
provides specifications of several devices that could fit our project’s needs.

39

Device Type Output Voltage Output Current Cost
TI TPS715A Linear 3.3V 80mA $0.40
TI TLV701 Linear 3.3V 150mA $0.29
TI TLV1117-50 Linear 5V 800mA $0.19
TI TLV1117-18 Linear 5V 1A $0.19
TI LM1086 Linear 5V 1.5A $0.95

Table 10: Potential Voltage Regulators

3.5 Software
The software for our robot is separated into multiple portions because its used so much in
our project. We separate the code into a vision portion, an algorithm portion and lastly a
GUI portion. The vision portion is designed to be written in OpenCV and work with the
camera we determined would be the best for our system. The algorithm portion is to be
written in C for its easy processing power and easy to implement with our device. Lastly we
have determined that our GUI will be written in C most likely because it will not take up to
much processing power and easy to implement through the USB port on our board.

Vision One of the biggest aspects of our project is the vision of the cube. Our project must
take in the layout of the cube discriminating between the colors and placing the information
found into a matrix. If the robot can not do this or messes up placing colors in the wrong
spots in our matrix then our project can not solve the cube or may not find a algorithm to
solve the cube either.

The optimal design for our project would include a six camera layout. If we were to
have an unlimited supply of money and could afford as many parts as needed we would buy
six different cameras each connected to its own PCB board. With the six camera design
each arm would have its own camera. This design would is set to be the most optimal for
efficiency and correctness. With the six camera design the system would take a picture of
each side of the cube and interface it into the matrix making it so that the matricie could be
complete and the algorithm could start right after this step.

Due to our limited budget we can only afford one camera for our robot which makes
imaging the cube more difficult and less efficient. This makes the design of our software more
adaptable and harder for the matrix to be formed. We decided the easiest way to integrate
our cube into the algorithm was to place the camera with the ability to see just a row of
three across the top of the front facing side and a row of three across the bottom of the top
facing side. We determined that from this point on the cube you can turn the cube enough
times to see all of the sides of the cube and place them into our algorithm.

To determine the location of all colors on the cube we drew a 2D cube and went through steps
to show how we can visualize the whole cube. We will show the steps as followed explaining
what moves have been done to the cube and highlighting where the camera will be looking.
In our actual design our camera doesn’t move, but to illustrate us rotating the cube it was

40

easier to just move the cameras location. The cameras vision is outlined in Brown as shown.

Figure 35: The brown outline symbolizes where the camera is viewing at the moment.

Also for easier explanation the cube we have illustrated has been solved just so we don’t lose
track of any spots on the cube. For our first step we have determined that all the centers of
the cubes will be stuck in a single location therefore we can place those colors to our matrix
showing the won’t move. This is shown with the following example:

Figure 36: All centers determined

Next our camera takes its first picture of its starting location without any alterations

41

to the cube. We use a slash through the cube to illiustrate those cubes had been taken pic-
tures of and put into the matrix. This pictures is yellow’s top side and the white’s bottom side.

Figure 37: Inital location

The cubes front face is now rotated to the left, taking a picture of the yellow’s left side and
the red’s right side.

Figure 38: Yellow and red side

Next the cubes front face is rotated to the left, taking a picture of the yellow’s bottom
side and the blue’s top side.

42

Figure 39: Yellow and blue side

Next the cubes front face is rotated to the left, take a picture of the yellow’s right side and
the oranges left side.

Figure 40: Yellow and orange side

The next figure shows all the places the camera has visualized and placed into a matrix after
just those little amount of moves.

The next few steps are harder to visualize with a 2D design. The standards are the same
though. The camera will be shown on the parts that are outlined in brown and the places

43

Figure 41: Front face rotation visualizations

will be marked with a slash after they have been seen. This first images is after you turn the
top face to the right, the camera will intake red’s top and white’s right side.

Figure 42: Red and white side

Next the cube’s top face will rotate to the right, the camera will then intake green’s top and
white’s top.

Next the cube’s top face will rotate to the right, The camera will then intake orange’s
top and white’s left.

44

Figure 43: Green and white side

Figure 44: Orange and white side

Next the cube’s top face will rotate right reseting it back to normal. From here we will rotate
the right face to the left and the top face to the right. From this position the camera will
intake red’s right and green’s left side.

Next the cubes top face will rotate to the left, then the right face will rotate to the left and
last the top face will rotate back to the right. The camera will then intake red’s bottom and
blue’s right side.

Next the cube’s top face will roate to the left then the right face will rotate left twice.

45

Figure 45: Red and green side

Figure 46: Red and blue side

After that the left face will rotate to the right and then the top face to the left. The camera
will intake the image of orange’s left and green’s right side.

Next the cube’s top face will rotate to the right the left face to the right and then the
top face to the left again. The camera will take in orange’s bot and blue’s left side.

There now should only be two spots left unseen by our device. We could take the chance to
guess what these spots could be but just to be sure we will image them to put them into the
matrix as well. We do this by turning the top face to the right and the left face to the right

46

Figure 47: Orange and green side

Figure 48: Orange and blue side

twice. The cube should now be set back to its normal state and from here we will rotate
the bottom face twice and then the front face twice. The camera should then intake blues
bottom and greens bottom.

After the last picture is taken the robot should now rotate the cubes front face right twice
and then the bottom face right twice. This should reset the cube back to initial coordination
and able to start the algorithm solving method of our design.

47

Figure 49: Blue and green side

Figure 50: Initial locations with all parts being seen

Interface While using a serial protocol the Pixy cam will output detected objects every
20ms. The ports that can be used with the Pixy cam are SPI, I2C, UART, and analog/digital
I/O ports. Pixy also is compatible with USB 2.0 and all these ports are easily switched and
easily interfaced with the camera.

• SPI with SS - this is the same as the Arduino ICSP SPI except that it includes support
for Slave Select through pin 7 (SPI SS). That is you need to drive SPI SS low before
sending/receiving each byte.

• I2C - this is a multi-drop 2-wire port (pins 5 and 9 of the I/O connector) that allows

48

a single master to communicate with up to 127 slaves (up to 127 Pixys). You can
configure the I2C address through the "I2C address" parameter.

• UART - this is the common "serial port" (pins 1 and 4 of the I/O connector). Pixy
receives data via pin 1 (input) and transmits data via pin 4 (output). You can configure
the UART baudrate through the "UART baudrate" parameter.

• analog/digital x - this will output the x value of the largest detected object as an analog
value between 0 and 3.3V (pin 3). It also outputs whether an object is detected or not
as a digital signal (pin 1 of the I/O connector).

• analog/digital y - this will output the y value of the largest detected object as an analog
value between 0 and 3.3V (pin 3). It also outputs whether an object is detected or not
as a digital signal (pin 1 of the I/O connector).

Out of all of these ports we will be looking into using either SPI or the UART serial protocol.
Luckily for the Pixy cam whether you’re using SPI, I2C or UART serial, the protocol is
exactly the same.

• The protocol is data-efficient binary.

• The objects in each frame are sorted by size, with the largest objects sent first.

• You can configure the maximum number of objects sent per image frame ("Max blocks"
parameter).

• SPI and I2C operate in "slave mode" and rely on polling to receive updates.

• When there are no detected objects (no data) Pixy sends zeros if the interface is SPI or
I2C (since Pixy is a slave, it has to send something).

• Each object is sent in an "object block" (see below).

• All values in the object block are 16-bit words, sent least-significant byte first (little
endian). So, for example, when sending the sync word 0xaa55, Pixy sends 0x55 (first
byte) then 0xaa (second byte).

From these protocols outcomes the object block format that is sent to our board to communi-
cate data that can be implemented into our matrix.

From research from the Pixy cams website we feel our best option for using the cam-
era is to run the interface through UART. SPI has been known to run the images faster but
has also known to have more errors in sending the correct data and less confusing code for
implementation. We have discussed the idea of using SPI but we determined that we don’t
want to make our code any more confusing.

49

Bytes 16-bit word Description
0, 1 0 sync: 0xaa55=normal object, 0xaa56=color code object
2, 3 1 checksum (sum of all 16-bit words 2-6)
4, 5 2 signature number
6, 7 3 x center of object
8, 9 4 y center of object
10, 11 5 width of object
12, 13 6 height of object

Table 11: Object Block format Description

Object block format The table above is shows how the object block format is sent to
the board using the Pixy cam processor. It takes in objects using the purple dinosaur method
and finds the color of the cube using the 4 and 5 bytes or the signature number. Then using
the 6 and 7 bytes it determines the horizontal center of the object. The 8 and 9 bytes are
used for the vertical center of the object. The last 4 bytes are used to find the horizontal
width of the object its looking at and the vertical height of the object its looking at. We will
have to use the signature number found and the width and height bytes to determine what
colors are where in the matrix.

Processor The specs of the processor are as follows:
• NXP LPC4330

• dual core, ARM Cortex-M4 and Cortex-M0

• 208 MHz (both cores)

• 264k RAM (0 wait state)

• USB 2.0 high speed (OTG support)

• I2C, SPI, UART, etc.

• A/D, D/A

• Floating point unit (M4)

• SIMD instructions (M4)

Sensor The specs of the sensor are as follows:
• Omnivision OV9715

• 1/4” sensor - low light, low noise

• 1280x800, RGB bayer direct

• 25 fps full resolution, 50 fps 640x400

• end-of-life tolerant

50

Communicating The Pixy cam communicates by sending bits back to the board. If the
information sent back to the board is then read into a program it can be read and manipulated
to figure out what is located where in the system. We have broken down a list of what is
read into the program when sent in.

• pixy.blocks[i].signature The signature number of the detected object (1-7 for normal
signatures)

• pixy.blocks[i].x The x location of the center of the detected object (0 to 319)

• pixy.blocks[i].y The y location of the center of the detected object (0 to 199)

• pixy.blocks[i].width The width of the detected object (1 to 320)

• pixy.blocks[i].height The height of the detected object (1 to 200)

• pixy.blocks[i].angle The angle of the object detected object if the detected object is a
color code.

• pixy.blocks[i].print() A member function that prints the detected object information to
the serial port

Using this information we can determine the color of the cube that is being sent in using the
signature function. next we can determine if there are any of the same cubes touching by
looking at the width and center location on the x axis, and also the height and y location.
Using these two sets of numbers we can determine if 2 or 3 of the same colors are touching
or if none of the same colors are touching at all. Lastly the print function will send the
information needed back to the serial port or our board and allow us to configure the cube
using our algorithms function.

3.5.1 Operating System

For our robot we needed to run an operating system for our devices. When we first did our
research we discovered that the MSP430 runs a RTOS or real time operating system, later
on we will discuss what this means for our device. The only other part of our device that
needs an operating system is the Pixy cam. Luckily the Pixy cam can learn a lot of different
types of Operating systems. Through our research though we have determined that the most
applicable operating system for our robots camera will be Linux.

Real Time Operating System A real-time operating system (RTOS) is a multitasking
operating system which provides scheduling algorithms to help a software developer guarantee
deadlines of system tasks. The most efficient algorithm that is written for performing the
task switching will have the least amount of overhead. We found a list of RTOS that could
work for our project. They are listed as follows:

• uC/OS-II

• Contiki

51

• CMX-Tiny+

• DioneOs

• embOs

• FreeROTS

• PowerPac

• QP

• Salvo

• TinyOS

• ChibiOS

• B.lu BOS

• FunkOS

• SYS/BIOS

• Abassi

• MSS

Through our research we have determined that the operating system that will be most
applicable for our project would be QP. The reason for this is because its a very lightweight,
open source, state machine-based frameworks for embedded microprocessor. This framework
can be used with or without tradition RTOS and can be configured to whatever families and
libraries needed for our robot.

Linux For our Pixy cam to run the PixyMon application we have determined that we
would need an operating system for our device. The easiest operating system we decided
to use would be Linux. Linux is an open source free library operating system that can be
easily manipulated and configured to fit whatever needs. We determined any other operating
system may in return be to big for our device or may not have the library needed for our
program.

3.5.2 Languages

For our project we have determined that the best option to implement our code through
programing will be to use C language. When we were determining which language should be
used we looked at Java, C, C++, Vpython, OpenCV, and JavaScript. While doing research
we found that Java and JavaScript when implemented on the MSP430 board they tend to
take up to much space. This wouldn’t be an issue if they board was only implementing an
Algorithm code set but since it also has to move the arms of our robot, intake the data found

52

from our PixyCam and lastly build and run our GUI during the process of solving the cube.
With all of these functions running we would need to find a language that doesn’t take up to
much space and processes the code easily. Lastly we had determined the best way we could
implement the vision portion of our code was to run an OpenCV program that could intake
the images and process them itself. The big issue with OpenCV is it tends to take up too
much processing power no matter what it is ran on and the data sent into the device is most
of the time useless because it tends to include bits that are not necessary or relevant to our
information. Luckily with the camera we decided to order for our robot it was designed to
work with our board and has its own processor on it. This processor takes in all the data
from the camera and removes all the information that is useless from the image processing
and sends the useful information to the MSP430 Board.

C C has facilities for structured programming and allows lexical variable scope and recursion,
while a static type system prevents many unintended operations. Function parameters are
always passed by value. Pass-by-reference is simulated in C by explicitly passing pointer
values. C program source text is free-format. Many later languages have borrowed directly or
indirectly from C, including C++, Java, JavaScript, Limbo, C#, Objective-Cl, PHP, Python,
Verilog, and etc. These languages have drawn many of their control structures and other
basic features from C. Most of them are also very syntactically similar to C in general, and
they tend to combine the recognizable expression and statement syntax of C with underlying
type systems, data models, and semantics that can be radically different. We have decided
that C will be the basis for most of our programming because of its open-source library and
its free-format. Also a library known as OpenCV can be ran through it which will be used
for our vision processing.

OpenCV OpenCV is a library of programming functions mainly aimed at real-time
computer vision. The library is a cross-platform and free for use under the open-source
BSD license. In the early days of OpenCV, the goals of the project were described as
Advanced vision research by providing not only open but also optimized code for basic vision
infrastructure, disseminate vision knowledge by providing a common infrastructure that
developers could build on, so that code would be more readily readable and transferable,
and lastly advanced vision-based commercial application by making portable, performance-
optimized code available for free. OpenCV is written in C++ and its primary interface is
in C++, but it still retains a less comprehensive though extensive older C interface. The
applications for OpenCV include:

• 2D and 3D feature toolkits

• Egomotion estimation

• Facial recognition system

• Gesture recognition

• HumanâĂŞcomputer interaction (HCI)

• Mobile robotics

53

• Motion understanding

• Object identification

• Segmentation and recognition

• Stereopsis stereo vision: depth perception from 2 cameras

• Structure from motion (SFM)

• Motion tracking

• Augmented reality

We will only be using the object identification and segmentation and recognition aspect of
this programming. But it is very helpful that OpenCV could be used for all of these different
types of vision control.

PixyMon PixyMon is an application that allows you to configure Pixy and see what it
sees. It runs on several different platforms including Windows, MacOS and Linux, as well as
other smaller embedded systems like Raspberry Pi and BeagleBone Black. We are hoping we
can implement PixyMon into our application as well to make the camera operation of our
robot easier. The picture below shows how PixyMon is implemented with the Pixy cam.
We are hoping by using this program it can help us write our code to implement the making
of the matrix even if we can’t find a way to use it with our embedded computer.

3.6 Hardware-Software Interface
For connecting our hardware to software we need to use different types of connections. For
example we need a UART connection for our Pixy cam, and a USB connection for either
a computer application or graphical display. All these functions can only connect to our
hardware using I/O interfaces. Without the correct I/O our system will have issues running
the correct features or even getting data from the other devices.

3.6.1 Platform I/O Capabilities

The following I/O capabilities are available for our MSP430 and will be used to connect our
hardware to our software:

• GPIO

• Serial

• I2C

• UART

• USB

54

Figure 51: PixyMon GUI

GPIO

USB The purpose of our USB port is to implement any portion of the project we can’t
run in its designated port or even to allow more work to be done. The USB port has had a
rise in popularity as of late in the field of technology. It now has the ability to connect to
most devices therefore many devices are being made with them. This is a great aspect for us
because it allows us to have a fail safe method where if a GPIO or platform I/O doesn’t work
with a device we can implement it with the USB port. Also as discussed in our design for
the embedded computer we may use the USB to connect our device to the computer. With
this connection we can run applications from our computer and allow them to run through
the embedded computer.

3.6.2 Device I/O Requirements

Through our research we have determined that the following I/Os will be needed to implement
all parts of our robot’s design. A UART, SPI, or I2C will be needed to implement our Pixy
cam, but our decision among those three ports is to use the UART. We will need to use a
SPI or serial interface to implement our monitors. We will need a USB port to implement a
actual computer for the program or any function that doesn’t work with the port determined

55

Port Function
PxIN Port x input. This is a read-only register, and reflects the current state of the port’s pins.
PxOUT Port x output. The values written to this read/write register are driven out the corresponding pins when they are configured to output.
PxDIR Port x data direction. Bits written as 1 configure the corresponding pin for output. Bits written as 0 configure the pin for input.
PxSEL Port x function select. Bits written as 1 configure the corresponding pin for use by the specialized peripheral. Bits written as 0 configure the pin for general purpose I/O. Port 0 is not multiplexed with other peripherals and does not have a P0SEL register.
PxREN Port x resistor enable. Bits set in this register enable weak pull-up or pull-down resistors on the corresponding I/O pins even when they are configured as inputs. The direction of the pull is set by the bit written to the PxOUT register.
PxDS Port x drive strength. Bits set in this register enable high current outputs. This increases output power, but may cause EMI.
PxIES Port x interrupt edge select. Selects the edge which will cause the PxIFG bit to be set. When the input bit changes from matching the PxIES state to not matching it, the corresponding PxIFG bit is set.
PxIE Port x interrupt enable. When this bit and the corresponding PxIFG bit are both set, an interrupt is generated.
PxIFG Port x interrupt flag. Set whenever the corresponding pin makes the state change requested by PxIES. Can be cleared only by software.
PxIV Port x interrupt vector. This 16-bit register is a priority encoder which can be used to handle pin-change interrupts. If n is the lowest-numbered interrupt bit which is pending in PxIFG and enabled in PxIE, this register reads as 2n+2. If there is no such bit, it reads as 0. The scale factor of 2 allows direct use as an offset into a branch table. Reading this register also clears the reported PxIFG flag.

Table 12: GPIO Ports

for it. Lastly we will need one GPIO ports for each servo motor needed to implement our
design. In all we will need a total of 6 GPIO ports to run ever servo motor.

PWM Pulse-width modulation is a modulation technique used to encode messages into a
pulsing signal. Even though this method can be used to encode information for transmission,
its main use is to allow control of the power supplied to electrical devices. We will be
using this method in are servos control to turn the robot’s arms when necessary. The main
advantage of PWM is that power loss in the switching devices is very low.

Figure 52: Modulation of PWM with clock cycle

A/D Conversion An analog to digital converter is a device that converts a continuous
physical quantity to a digital number that usually represents the quantities amplitude. A
ADC is defined by its bandwidth and its signal to noise ratio. It is mostly used to detect
binary signals as in if the button is being pressed or not. When a microcontroller is controlled
by a power source it determines the amount of voltages being fed to it will be a binary of 1
and when no voltage being sent to it as a binary of 0. By using this device we can convert
from the analog world to the digital world. This in return allows us to interface electronics
to the analog world around us.

56

4 Design

4.1 System
The system of the robot is designed to work off each others functions. The power supplied is
separated and sent to the Pixy cam and also sent to MSP430. From this the Pixy cam is
attached to the MSP430 where it can intake data from its vision processing and send it back
to the MSP430 for the rest of our system to work off it. The Pixy cam has to communicate
with the board while its doing its actions to visualize the cube. The communication has to
be sending pictures of what it currently see and then it needs to have the cube rotate to
visualize the rest of the cube. After the whole cube’s orientation is loaded into a matrix the
MSP430 runs an algorithm on it to determine the instructions needed to solve the cubes
orientation to its correct state. These instructions are then sent to the servos corresponding
with the sides that need to be rotated. The servos then rotate the arms connecting to the
cube between 90 degrees either direction or 180 degrees.

4.1.1 System-Level Block Diagram

Figure 53: System-Level Block Diagram

We designed the figure above to show the our block diagram of our system. Our design
initially starts off at the DC power supply and heads to the embedded computer attached
to our MSP430. Next from the MSP430 the block diagram splits into 3 different directions.
First it heads to Pixy cam processor. The Pixy cam processor then sends data to the camera
to take picture of what its looking at. It then returns to the processor where it takes the
information from the camera and transcribes it to useful information to return to the MSP430.
The information that now has been sent back to the MSP430 is now sent to the algorithm
code. The algorithm code is now set into instructions that are feasible by the mechanical

57

arms. This information is now sent back to the MSP430 where it is sent out again. The
instructions are sent to the servos that apply to the instructions and lastly the robotic arms
are twisted to whatever the instructions are set.

4.1.2 Hardware/Software Integration

Through our research we have determined the easiest way to integrate our hardware with our
software is to use C code. Through the ports on the MSP430 and the ports designed on our
schematics we can communicate C coding without error to any part or function on the board.
The MSP430 communicate with Pixy cam through C coding and a UART port therefore
making it accessible for use and the Pixy cam can communicate with a computer through
USB if alternations are needed to change the design. The servos integrated on the board
are linked up using GPIO connections. These GPIO connections can be altered using any
common C language and using clock cycles we can implement the servos to rotate whatever
direction needed and the certain amount of degrees needed to rotate.

4.2 Hardware
4.2.1 Structural Implementation

Daniel

4.2.2 Embedded System

The embedded system is the central electronic platform for our robot that hosts the embedded
processor as well as hardware for interfacing the perihperal devices such as the motors and
Pixy camera. Figure 54 shows a functional diagram of our embedded system.

Processing Platform As shown in Figure 54, our embedded system implements a TI
MSP430F6659 microprocessor whose detailed specifications are listed in Table 13. We have
selected this device because it has a reasonable price, sufficient memory for our needs, and
allows us the option of using USB-based programming tools in the future. The following
subsections detail our implementation of the of the MSP430.

58

DRV8825

Stepper

Motor Drivers

12VDC

Stepper

Motors

MSP430F6659

TLV1117-50 TPS715A
5VDC

3.3VDC

USB

JTAG

GPIO

16

CMUcam5 Pixy

Figure 54: Rubik’s Cube Solving Robot Embedded System Functional Diagram

Frequency 20MHz
Non-volatile Memory 512KB
RAM 66KB
GPIO 74
I2C 3
SPI 6
UART 2
DMA 6
Timers (16-bit) 4
Multiplier 32x32
BSL USB
Min VCC 1.8V
Max VCC 3.6V
Active Power 360µA/MHZ
Package 100LQFP

Table 13: MSP430F6659 Specifications

GPIO The MSP430F6659 offers a maximum of 74 GPIO connections, but our application
only requires a fraction of these. Table 14 lists the GPIO connections that we are using in
our system. This list does not include shared functionality GPIO pins that we use for other
purposes such as oscillators, JTAG connections, etc.

59

Purpose Total Pins Pin Names
Motor Driving 14 P1.0→P1.7, P2.0→P2.5
Serial I/O 16 P8.0→P8.7, P9.0→P9.7
Physical user I/O 4 P3.0→P3.3

Table 14: MSP430 GPIO Connections

USB Interface The MSP430 is interfaced with a micro USB port in our embedded system
via its dedicated USB pins as shown in Figure 56. In our USB interface, we include a Texas
Instruments TPD2E001DRLR (Figure 55) for electrostatic discharge protection to protect
the MSP430.

Figure 55: TPD2E ESD Protection Application

Additionally, the USB 2.0 operation requires the use of a 48MHz PLL built into the MSP430’s
USB engine [34]. This PLL depends on a reference clock input higher than 4MHz through one
of the MSP430 system oscillator ports (XT1 or XT2). Our solution for this follows TI’s design
recommendations by using a 4MHz Murata CSTCRG15L, which is a cheap, high-precision
ceramic resonator. Table 15 outlines the specifications of this device. The resonator schematic
is shown in Figure 57.

Part Number CSTCR4M00G15L99-R0
Frequency 4MHz to 7.99MHz
Initial Frequency Tolerance ±0.1%
Frequency Shift by Temperature ±0.08%

Table 15: Murata CSTCRG15L Specifications

60

Figure 56: USB Port with ESD Protection

Figure 57: 4MHz Ceramic Resonator for USB Enginer PLL

Motor Driving We use the TI DRV8825 Stepper Motor Driver to interface the motors
with the MSP430. One DRV8825 is required per motor, meaning that we need six separate
DRV8825 ICs. As listed in Table 6, the DRV8825 provides 1

32 microstepping. It also features
a configurable decay mode and a simple control interface that is shown in the functional
block diagram in Figure 58.

Most of the control signals can be driven by single pins on the MSP430 and applied to
to all 6 driver units . These signals include the microstep size, decay mode, PWM input
signal, and direction signal. The DRV8825 features an active low enable line that can force
the unit to disable the H-bridges, leave the outputs in a high-Z state, and ignore step input
commands. We can take advantage of this functionality by allowing the MSP430 to control

61

Figure 58: DRV8825 Functional Block Diagram

the enable line of each DRV8825 independently. In this way, it only needs to supply one
PWM signal and pick which motor driver it wants to enable. Figure 59 shows the schematic
of our DRV8825 implementation.

Figure 59: Motor Driver Schematic

62

Power Our system is designed to recieve a 12Vdc input which supplies the motor drivers.
To supply the Pixy camera, we use a Texas Instruments LM1086 fixed output linear voltage
regulator. The specifications for this device are shown in Table 16.

Maximum Output Current 1.5A
Output Voltage 5V
Minimum Input Voltage 2.6V
Maximum Input Voltage 29V

Table 16: LM1086 Low Dropout Regulator

The MSP430F6659 has a maximum input voltage of 3.6V so it is necessary to add an-
other step down voltge regulator that can reduce the 5V output of the LM1086 to a more
lower level. Because the efficiency of a linear voltage regulator is inversely proportional to
the voltage difference between its input and output, it makes sense to supply this sub-3.6V
regulator with the 5V supply from the LM1086 rather than the 12V system input supply. The
Texas Instruments TPS715A works well for this purpose because its maximum output current
of 80mA is more than enough to supply the 295µA/MHz requirements of the MSP430.
Figure 60 shows the schematics of both linear voltage regulators.

Figure 60: Linear Voltage Regulator Schematics

User Feedback I/O Many development boards provide buttons, switches, and LEDs for
users to interact with. These I/O devices can be useful for project development and execution
by allowing users to send and receive simple feedback to and from integrated hardware. In
our project, we can use the switches to test hardware functionality, run the robot, reset the
robot, and have the robot scramble the cube. Figure 61 shows the simple feedback I/O
schematic.

63

Figure 61: User Feedback I/O Schematic

64

4/
26

/2
01

6
10

:1
1

PM

C:
\U

se
rs

\D
an

ie
l T

ru
es

de
ll\

D
oc

um
en

ts
\e

ag
le

\S
D

1\
sc

he
m

at
ic

2.
sc

h
(S

he
et

:
1/

1)

SpiceOrder 1SpiceOrder 2

G
N

D

D
R
V8

82
5_

PW
P_

28

0.
1u

F

0.01uF

G
N

D

10
0u

F

G
N

D

0.
1u

FG
N

D

1M

0.
1u

F

G
N

D

0.
47

uF

G
N

D

20
k

22
0k

G
N

D

0.2

0.2

G
N

D

G
N

D

Va
lu

e

Va
lu

e

MINI-USB-SHIELD-UX60-MB-5ST

CGRM4001-G

4.7uF,10V

GND

27
27

G
N

D
10

pF
,6

V

10
pF

,6
V

G
N

D
G

N
D

1M

G
N

D

220nF,10V

220nF,10V

G
N

D

GND

G
N

D

CS
TC

R
6M

00
G

53
Z

GND

G
N

D

1.
4k

TPD2E001_DRL_5

G
N

D
G

N
D

47k

1n
F

G
N

D

TP
S7

15
A0

1_
D

R
V_

6

G
N

D0.
1u

F
0.

47
uF

G
N

D

VCC

VCC

VCC

10
uF

10
0n

SK
H

M
PS

E0
10

SK
H

M
PS

E0
10

47
0

47
0

G
N

D

LM
10

86
_K

TT
_3

G
N

D

X1
1 23

C
P1

1

C
P2

2

VC
P

3

VM
A

4

A
O

U
T1

5

IS
EN

A
6

A
O

U
T2

7

BO
U

T2
8

IS
EN

B
9

BO
U

T1
10

VM
B

11

A
VR

EF
12

BV
R

EF
13

G
N

D
_2

14

V3
P3

O
U

T
15

N
R

ES
ET

16
N

SL
EE

P
17

N
FA

U
LT

18
D

EC
A
Y

19
D

IR
20

N
EN

BL
21

ST
EP

22
N

C
23

M
O

D
E0

24
M

O
D

E1
25

M
O

D
E2

26
N

H
O

M
E

27
G

N
D

28
EP

A
D

29

U
5

C1
9

C20

JP
4

1234
C2

1

C2
2

R16

C2
3

C2
4

R
17

R
18

R19

R20

P6
.4

_C
B4

_A
4

1

P6
.5

_C
B5

_A
5

2

P6
.6

_C
B6

_A
6_

D
A
C
0

3

P6
.7

_C
B7

_A
7_

D
A
C
1

4

P7
.4

_C
B8

_A
12

5

P7
.5

_C
B9

_A
13

6

P7
.6

_C
B1

0_
A
14

_D
A
C
0

7

P7
.7

_C
B1

1_
A
15

_D
A
C
1

8

P5
.0

_V
R

EF
+

_V
ER

EF
+

9

P5
.1

_V
R

EF
-_

VE
R

EF
-

10

XI
N

13

XO
U

T
14

P5
.6

_A
D

C
12

C
LK

_D
M

A
E0

16

P2
.0

_P
2M

A
P0

17

P2
.1

_P
2M

A
P1

18

P2
.2

_P
2M

A
P2

19

P2
.3

_P
2M

A
P3

20

P2
.4

_P
2M

A
P4

21

P2
.5

_P
2M

A
P5

22

P2
.6

_P
2M

A
P6

_R
03

23

P2
.7

_P
2M

A
P7

_L
C
D

R
EF

_R
13

24

P5
.2

_R
23

28

LC
D

C
A
P_

R
33

29

C
O

M
0

30

P5
.3

_C
O

M
1_

S4
2

31

P5
.4

_C
O

M
2_

S4
1

32

P5
.5

_C
O

M
3_

S4
0

33

P1
.0

_T
A
0C

LK
_A

C
LK

_S
39

34

P1
.1

_T
A
0.

0_
S3

8
35

P1
.2

_T
A
0.

1_
S3

7
36

P1
.3

_T
A
0.

2_
S3

6
37

P1
.4

_T
A
0.

3_
S3

5
38

P1
.5

_T
A
0.

4_
S3

4
39

P1
.6

_T
A
0.

1_
S3

3
40

P1
.7

_T
A
0.

2_
S3

2
41

P3
.0

_T
A
1C

LK
_C

BO
U

T_
S3

1
42

P3
.1

_T
A
1.

0_
S3

0
43

P3
.2

_T
A
1.

1_
S2

9
44

P3
.3

_T
A
1.

2_
S2

8
45

P3
.4

_T
A
2C

LK
_S

M
C
LK

_S
27

46

P3
.5

_T
A
2.

0_
S2

6
47

P3
.6

_T
A
2.

1_
S2

5
48

P3
.7

_T
A
2.

2_
S2

4
49

P4
.0

_T
B0

.0
_S

23
50

P4
.1

_T
B0

.1
_S

22
51

P4
.2

_T
B0

.2
_S

21
52

P4
.3

_T
B0

.3
_S

20
53

P4
.4

_T
B0

.4
_S

19
54

P4
.5

_T
B0

.5
_S

18
55

P4
.6

_T
B0

.6
_S

17
56

P4
.7

_T
B0

O
U

TH
_S

VM
O

U
T_

S1
6

57

P8
.0

_T
B0

C
LK

_S
15

58

P8
.1

_U
C
B1

ST
E_

U
C
A
1C

LK
_S

14
59

P8
.2

_U
C
A
1T

XD
_U

C
A
1S

IM
O

_S
13

60

P8
.3

_U
C
A
1R

XD
_U

C
A
1S

O
M

I_
S1

2
61

P8
.4

_U
C
B1

C
LK

_U
C
A
1S

TE
_S

11
62

P8
.5

_U
C
B1

SI
M

O
_U

C
B1

SD
A
_S

10
65

P8
.6

_U
C
B1

SO
M

I_
U

C
B1

SC
L_

S9
66

P8
.7

_S
8

67

P9
.0

_S
7

68

P9
.1

_U
C
B2

ST
E_

U
C
A
2C

LK
_S

6
69

P9
.2

_U
C
A
2T

XD
_U

C
A
2S

IM
O

_S
5

70

P9
.3

_U
C
A
2R

XD
_U

C
A
2S

O
M

I_
S4

71

P9
.4

_U
C
B2

C
LK

_U
C
A
2S

TE
_S

3
72

P9
.5

_U
C
B2

SI
M

O
_U

C
B2

SD
A
_S

2
73

P9
.6

_U
C
B2

SO
M

I_
U

C
B2

SC
L_

S1
74

P9
.7

_S
0

75

PU
.0

_D
P

77

PU
R

78

PU
.1

_D
M

79

P7
.2

_X
T2

IN
84

P7
.3

_X
T2

O
U

T
85

VB
A
K

86

P5
.7

_R
TC

C
LK

88

TE
ST

_S
BW

TC
K

91

PJ
.0

_T
D

O
92

PJ
.1

_T
D

I_
TC

LK
93

PJ
.2

_T
M

S
94

PJ
.3

_T
C
K

95

R
ST

_N
M

I_
SB

W
TD

IO
_N

96

P6
.0

_C
B0

_A
0

97

P6
.1

_C
B1

_A
1

98

P6
.2

_C
B2

_A
2

99

P6
.3

_C
B3

_A
3

10
0

U
2A

A
VC

C
1

11

A
VS

S1
12

A
VS

S2
15

D
VC

C
1

25

D
VS

S1
26

VC
O

R
E

27

D
VS

S2
63

D
VC

C
2

64

VS
SU

76
VB

U
S

80

VU
SB

81

V1
8

82
A
VS

S3
83

VB
A
T

87

D
VC

C
3

89

D
VS

S3
90

U
2B

X2

1 2 3 4 5

D1_5V
C37

R
31

R
32

C3
8

C3
9

R
33

C40

C41

Q
1

1

2

3

R
35

VCC1
NC2

IO1 3

GND 4

IO2 5

U8

SV
2

1 3 5

2 4 6
7 9 11

8 10 12 14
13

SV
1

135

246
79

810
111315

121416

R34

C4
2

IN
1

N
C
_2

2

G
N

D
3

FB
/N

C
4

N
C

5
O

U
T

6
EP

A
D

7

U
9

C4
3

C4
4

C4
5

C4
6

S1 S2 LE
D

1

LE
D

2

R
36

R
37

A
D

J/
G

N
D

1

VO
U

T
2

VI
N

3

4
4

U
1

D
M

D
M

D
P

D
P

M
O

D
E0

M
O

D
E0

M
O

D
E0

SW
_2

SW
_2

LE
D

2
LE

D
2

M
O

D
E1

M
O

D
E1

M
O

D
E2

12
V

12
V

ST
EP

ST
EP

D
IR

D
IR

N
EN

BL
_0

N
EN

BL
_0

D
EC

AY

D
EC

AY

N
R
ES

ET

N
R
ES

ET

N
SL

EE
P

N
SL

EE
P

N
EN

BL
_1

N
EN

BL
_2

N
EN

BL
_3

N
EN

BL
_4

N
EN

BL
_5

SW
_1

SW
_1

LE
D

1

LE
D

1

PU
R

PU
R

VB
U

S

VB
U

S

VB
U

S

5V

5V

Se
ria

l I
/O

JT
AG

ESD protection

4M
H

z
re

so
na

to
r

M
SP

43
0F

66
59

5.1V Zener

Figure 62: Full System Schematic

65

4.2.3 Camera

Our robots main method for taking in data from the cube is its camera. We had many issues
trying to decide which way of using the camera would be the easiest for the robot to intake
data. Most importantly though with all these designs we needed the camera to intake the
data without mistakes and be able to insert it into a matrix where it can solve the cubes
algorithm.

Our first design was to use six different cameras, one on each end of the arm so each
side could intake the data and set it into a matrix easily. This design by far is the easiest
and the fastest to implement. With this design the arms can instantly intake the cubes
layout and instantly start solving the algorithm for the correct cube. The issues with this
design is the amount of money it would take to make it and the amount of data taken
into the robots processor. With this design we would need multiple Pixy cams. The Pixy
cam can also only connect to one MSP430 at a time therefore meaning we would need
multiple MSP430s. This would in return would increase the price of our project substan-
tially which is not what we were looking for in our project. Next the processing all of the
data from 6 different camera’s into one processor would over work our central processor
and not allow it and energy to run any other function it is capable of doing. Overall this
way is the most efficient way but it has many flaws that could result in our project not working.

Our next design is to implement one camera into the robot. This we feel is the best
option for our project because it then in return doesn’t cost to much, leaves room in our
processor for other functions and then lastly can visualize the whole cube without error. In
this design we have decided that if we take one Pixy cam and place it above the front face of
the cube and tilt it so it can visualize the bottom row of the top face and the top row of the
front face of the cube than we can manipulate the cube enough to know the position of each
color on the cube. Also as long as we remember our motions we can convert the cube back
to its initial scramble. This design doesn’t happen to be efficient because of the time it will
take to visualize the whole cube but it is cost efficient and process efficient which makes it
our pick.

4.3 Programming
4.3.1 Monitor

We decided to incorporate a display into our design to allow for a GUI to be integrated
into our project. With this GUI we would have more for our project to be graded on and
allow us more work if we finish our project early. The only issue is we are not sure if
we would have enough processing power on our board and enough funds to incorporate a
display that would be pleasing to the eyes and useful for someone who doesn’t know whats
going on with our robot. We determined that there are three different design we could do
to fulfill this goal. One design is to have a full GUI with a display of the cube and the
actions the robot will be taken to solve the cube. The next idea for a design would be
a half GUI. This idea is to not incorporate all the designs from the full design but still
some features. Lastly we decided the bare minimum for our GUI would be just a timer display.

66

For the full GUI display we would incorporate multiple features into our design. The
features include a display of the cube that is being solved. This display will interact and
move the cube on the display as the cube is moved in real time. This GUI will also include a
move counter. The move counter would taken in the total amount of moves it would take for
the robot to solve the cube. Lastly the GUI would incorporate a timer onto it. This timer
would start when the robot started visualizing the cube and end when the cube was solved.

For a half GUI display we would incorporate multiple features into our design that have been
mentioned above but not all the same features. For this design we figured the easiest and
best way to place information onto the GUI would be to just add a move counter onto the
GUI. We felt as if this wouldn’t take up to much space and also not increase the processing
power of the MSP430 to much. Also we would add a timer onto our robot to allow the user
to see how long it would take the robot to solve the cube.

The last way we would build the GUI to design our robot would be to just place a timer on
the robot. The timer would still go through our embedded processor and would be tracked
by the robot but it wouldn’t take up barely any processing power and would be a good use
for the user to tell how long the robot takes to solve the cube.

4.3.2 Hardware Integration

We have determined that to integrate the hardware with our software programming we could
use C coding. The parts of the hardware that need to be integrated with our software include
the Pixy cam with its processor, the MSP430, the robotic arms and servos, and the display.
For the Pixy cam we can integrate all of our commands through C coding and the information
sent into our device is easily readable and modifiable when put into C. Next the MSP430 is
ran though our operating system which is capable of C programming. The robotic arms and
servos for our device can be altered and rotated in C programing. The servos are designed to
be run with C. Lastly when designing a GUI we decided to stick to the same type of coding
as the rest of the system and not confuse ourselves by integrating a different language for
just one part.

In the picture above is C code to demonstrate a basic setup of the PWM. It also shows
how the servo rotation will be handled by saving the rotation values into an array name
servoDegree. Once the algorithm has determined the order to move the robot arms it will also
tell to which degree in which the servoDegree array will be called upon for each particular
arm.

4.4 Software
The software programming is very important and has multiple parts and functions for our
robot. If any part of these functions do not work though our robot can not succeed in solving
the cube and therefore our project will be a failure. The software is broken up into three
main functions. The first being the integration of the colors into an matrix that can be

67

Figure 63: Basic setup of PWM and servo rotation

worked with. The second function is the algorithm of solving the cube with the matrix we
found in our first function. Lastly we will have a function that can implements the rotation
of the robots arms to solve the cube. If one of these functions doesn’t successfully work than
project will be a bust.

Camera Intake The first part of the software design is to determine what color cube goes
where in each of the six 3x3 matrices (faces) of the cube. Each color of the cube will have
already been determined by the Pixy cam and read in as a two dimensional array of integers.
Each of these array of integers will correlate with a specific color. Handling the outside
environment such as light must be handled by the code as well. Light is dynamic in that it
differs by location so we have an algorithm that will catch when there is an outliers will help
to reduce mistakes. The main mistake this algorithm prevents is assigning the wrong color to
a position in the matrix.

Algorithm Another part is actually implementing the algorithm after all of the Rubik’s
Cube matrices are filled with the correlating colors. This process is the basis for solving the
cube for its correct orientation. It takes in the matrix found from the first function of our
system and alters it till it is in the correct orientation where all the same colors are on the
same sides. The robot should also have multiple algorithms to solve the cube and take the
one that has the least amount of moves in it to solve the cube. If the first function inputs the
wrong matrix this step can be faulted and then will leave to the last step being in fault as well.

Before any robotic vision can be incorporated the Rubik’s Cube must be properly mapped.
The naming convention to explain the abbreviations used in the software were provided in
the Research - Rubik’s Cube section. Also, included in that section was the Mapping of the
Cube in more laments terms. Once the base cube has been mapped then the algorithms can
be implemented.

68

Now with the image below the cube sets the eight corners and 12 edges of the cube.

Figure 64: Mapping of the Corner and Edges

Scrambling the cube With the design of our robot having 6 separate arms attached to
the cube we have determined that it wouldn’t be completely safe to constantly remove the
cube from the robot and place it back in. Our design should be applicable of doing this
process for the worst case scenario and we need to the cube out, but we don’t prefer doing
this process. Also we don’t want to have to remove the cube every time its solved it would
get redundant and tedious. To solve this issue we will be designing a random scrambling
process that will use a random number generator to determine which face needs to be turned
and which direction to turn it. The design of the program will generate a number 1 to 1000

69

Face Beginning Number Ending Number
Front Face 1 166
Top Face 167 333

Bottom Face 334 500
Right Face 501 666
Left Face 667 833
Back Face 834 1000

Table 17: Number Value for each face

Degrees Direction Beginning Number Ending Number
90 degrees Right 1 33
90 degrees Left 34 66
180 degrees Either 67 99

Table 18: Number Value for rotation

and the number will determine which face will be turned by the following list: After the
number above is found we will run another random number generator to determine how
much that face will be rotated. We have determined this number can be 1 to 99 because
their are only 3 possible outcomes that can happen. The first one is a 90 degree rotation
to the right. The second would be a 90 degree rotation to the left. Last there can be a 180
degree rotation either way because no matter which way the the cube is turned 180 degrees
the same outcome will result. We decided not to incorporate 270 degree turn because that
is the same as turning the cube 90 degrees in the opposite direction. We have determined
that if you use 40 moves to randomize how the cube is oriented before the start, would be
enough to make sure the cube is not in a layout to easy for the robot to handle. We also are
going to delete these moves after they happen therefore making sure that the robot doesn’t
just reverse the move set to mix up the cube. If both of these of sets do seem to come in to
question the integrity of if the robot is actually solving the cube we will show that the robot
can solve a cube that it doesn’t mix up.

Software to Hardware Our last function for our software will be our software to hardware
communication. This is needed throughout the process of solving the cube. At the beginning
we are going to need the communication between the camera and board. This process will
help build our matrix and will lead to solving the cube. The camera will also need the cube
turned during the image processing therefore we will need the arms to move during this whole
process. After the algorithm is solved we will need the robot to turn the cube in the direction
made by the algorithm so this in another portion that needs the communication between
the software and hardware. If for some reason the software doesn’t communicate with the
hardware our robot can not solve the cube and our project will be a failure.

70

Figure 65: The design for our High-level Software Architecture

4.4.1 High-Level Software System Architecture

The design for our high-level software architecture that we felt was best to describe our system
is a component system with event driven processes. We decided it would be a component
based system because each component is necessary to work with each other. One component
is used to drive to the next component but each component can work on its own, they just
need each other to solve the goal of the project. Next we also believed that the system was
also event driven process. It happens to be event driven because each task is reliant on its
previous task. We can prove this by showing that the arms can’t rotate to solve the cube
without the algorithm, and the algorithm for solving the cube can’t be done until the matrix
is made and the matrix can’t be made without the camera intaking the images it can process.
Therefore we have determined that our system is a component based system with even driven
processes.

4.4.2 Software Integration

For the design of our project we have two different options on how to run our project. We
have determined that we could build a program on a computer and run the application from
our computer to our embedded computer. This way of integration would be the most efficient
way and easy to see implement. The issue with this plan is it would limit our capabilities with
the GUI to just using our IO pins. Our other way of integrating our code would by putting
the application on the MSP430. This way would be an ideal design because we wouldn’t have
to run any applications through our computer. We also would have an open spot to run a
graphical display. This gives us more opportunity to allow our project to smaller and easily
transportable. Our final design decision is not fully determined but one of these plans will be
used in the final design.

71

4.4.3 Algorithm Implementation

The design we decided to take for our algorithm Implementation is based on how the camera
takes in the images of the cubes. The Pixy cam is to designed to work as the purple dinosaur
method. This basically means it intakes 7 significant colors and determines them as keys.
We will be able to take in the 6 different colors on each side of the cube include green, white ,
orange, blue, red, and yellow. Given this information we will place the color locations into a
matrix. This matrix should be 6 different 3 by 3 matrices. After the matrices are made our
algorithm will be put into place. It will take the results of the matrices and determine the
fastest and most efficient way to solve the cube. It will keep track of the amount of moves it
must take to solve the cube and what moves need to be taken to solve the cube. After the
algorithm is ran and the cube is determined able to be solved the directions to solve the cube
shall be sent to the servos. The servos then will work together to solve the cube. Once the
values have been retrieved from the Pixy camera the code will map the necessary values to
the six matrices. Then the algorithm will be implemented from here.

Robot Vision The design we decided to take for our algorithm Implementation is based on
how the camera takes in the images of the cubes. The Pixy cam is to designed to work as the
purple dinosaur method. This basically means it intakes 7 significant colors and determines
them as keys. We will be able to take in the 6 different colors on each side of the cube include
green, white , orange, blue, red, and yellow. Given this information we will place the color
locations into a matrix. This matrix should be 6 different 3 by 3 matrices. After the matrices
are made our algorithm will be put into place.

Kociemba’s Algorithm Kociemba’s Algorithm begins from coordinating the cube. Which
is the initial mapping of the matrices. Then symmetries of the cube are identified. Once the
symmetries of the cube have been successfully identified then the pruning of the cube comes
into play. In the pruning process a table is made which will check for parities within the
cube. It will also take in multiple possible solutions in order to improve upon efficiency. After
the cube has been properly pruned them the optimum solution is found. Also, there will be
an initial declaring of functions to be called by all of the C programs. This declaration of
function will allow for the identity of the cube to be easier identified. The algorithm should
then have successfully solved the Rubik’s Cube.

CFOP The CFOP algorithm is less efficient when done by a computer, but easier to
implement. However, the same initial mapping of the cube must be properly done by the
robotic vision just as with the Kociemba algorithm. To begin an initial Mapping of LMF,
CMF, RMF, CTF, CBF must be found. The edgeFacelet function will have need to have
those cube in there correct position according to our mapping. Multiple scans of the camera
may be necessary to get to this Base State of the algorithm. We will always solve for the
Green color first. We chose Green because it was the one we began learning with when we
doing our research on this method and decided to simply stay consistent. Also, solving for
the same color first will produce less error of getting the cube to the Base State to actually
start the algorithm.

72

Figure 66: The C code of what all cubies will be affected by a Face turn

Once the Base State is produced then the cornerFacelet function for the Front face, being the
Green side, must be solved for. The values that must be found and properly mapped to the
Front Face are LTF, RTF, LBF, RBF. Next, the second layer is taken into account to be solved.

The second layer, whcih is the Middle layer, will only have four cubes to be solved for
at most because there are only eight cubes that make up the Middle layer and only half
of them will be utilized. There will be a function to find the following values [RTL,LBT],
[RMT,CTR], [CBR,RMB], [CBL,LMB]. Now the Middle layer should be solved and we will
proceed to move on to the Top layer.

The third layer, which is the Top layer, will look for the top facelets to be in the fol-
lowing states: only facelet CMT in the correct position, only facelets CMT, CTT, LMT in
the correct position, facelets LMT, CMT, and RMT in the correct positions, and the goal
of CMT, LMT, RMT, CTT, and CBT in the correct positions. In the case of only facelet
CMT being in the correct position then the matrix will be manipulated so that it gets to
only CMT, CTT, LMT in the correct places. Which will lead to LMT, CMT, RMT in the
correct positions. Which will finally lead to a cross of CMT, LMT, RMT, CTT, and CBT in

73

the correct positions. Finally the corners of the matrix will be manipulated until the cube
gets into a solved state.

4.4.4 Detailed Design

Our full design method of the software portion is a very long list of task after task. The task
should be taken in order and the next task shall only be completed after the previous task is
full accomplished. The program starts by entering its random scramble phase. This phase
will generate a mixture of spins and turns to all sides of the cube that will in the end mix up
the cube to a scrambled the orientations of the colors. After this program is ran we then can
start the visual portion of solving the cube. The robot will run the purple dinosaur algorithm
designed by the developers of the Pixy cam and the visualization algorithm designed by
our group. With the purple dinosaur algorithm we will intake bits that show the location
of significant colors and their width and height. The width and height functions will be
debugged to determine if more than one of the same color are next to each other. During the
process of vision processing is done the robot will be filling up 6 different matrices each one
coordinating to a different face of the cube. These matrices will then be added one to each
other to determine the total layout of the cube.

After the process of placing the colors into a matrices is completed, the algorithm por-
tion of our code will begin. The program will run a single algorithm at a time to solve the
cube for its correct orientation. This portion may result in more than one algorithm that can
solve the cube. If this issue is reached than the program will pick which ever algorithm takes
the least amount of moves. The algorithms moves will be saved into a 2 D array where it
will determine what face needs to be turned by using the color signature as a description of
the face and a number between 1-3 to show how that rotation is made. We have determined
that 1 would correspond to a 90 degree rotation to the right, a 2 would result in a 90 degree
rotation to the left, and last a 3 would be 180 degree rotation. The signature numbers will be
set according to how the colors are set into our purple dinosaur algorithm but for example we
could determine yellow to be 1 if its the front face of the cube. The reason why we can do this
is because we don’t expect the center of the cubes to be moved out of the positions that they
start at because our cube rotates sides from that position and the cube doesn’t ever actual
rotate. The table below shows how the 2 D array for rotating sides will be laid out: The table
above is just an example of what will be done when the solution to solve the cube is being
found. The reason why in our design we only have 3 different moves to rotate the cube is
because those 3 moves can do all moves to one face. For example rotating the face of the cube
270 degrees to the right is the same as rotating the face 90 degrees the opposite direction.
Also rotating 180 degrees to the right is determined the same as rotating 180 degrees to the left.

After this array is made it will be sent back to the MSP430 for the execution by the
robot’s arms. Each instruction will be sent to the corresponding servo that fits with the
significant number at the center of each side. The next part of our code will just be the
rotation of each side till all instructions found during our algorithm phase and met. The
instructions will go in one at a time therefore not allowing any issues of rotating adjacent
sides either breaking an arm of the robot or breaking a side of the cube.

74

Face Rotation Signature Number Rotation Number
Blue 90 degrees, right 6 1
Red 90 degrees, left 3 2
Blue 90 degrees, left 6 2
White 180 degrees 2 3
Yellow 90 degrees, right 1 1
Green 180 degrees 4 3
Red 90 degrees, right 3 1

Orange 90 degrees, right 5 1

Table 19: Example of our solution array compared to move that needs to be made

After all instructions are met we will determine if the robot has solved the cube to its
100 % correctness or if the programs routine needs to be ran again for an issue of the cube
not being 100 % correct.

The last part of our detailed design of our software we are going to integrate a graphi-
cal display with our robot. This graphical display will have functions to allow the users to
feel more involved with the robots actions. If everything goes as plan our graphical display
shall show a 2 D display of the cube, a move list showing off which moves are being taken by
the robot to solve the cube, a move counter to show how many moves are needed to solve
the cube to 100 % correctness, and lastly a timer to show how long it takes the robot to
solve the cube. We have discussed among each other that it may slow down the process of
solving the cube if it takes time to show how its solving the cube. Therefore we are thinking
about designing two different modes of solving. Both design modes are exactly the same to
solve the cube the difference is how long it takes to solve it. If we slow down how fast the
instructions are fed into the servos we can show the user exactly what moves are taken place.
This function may be useful for people to watch our robot function at a much slower pace
keeping track of the moves and helping them determine how to solve the cube. The other
design is to not worry about the showing of the moves list so the robot doesn’t need to take
its time to solve the cube. This would increase the time it takes to solve the cube and make
it easier for the robot to function so this will be our first design direction.

Usecase Diagrams The Usecase diagram shown above describes how we all of our parts
integrate with each other making the basis for our design the MSP430. There are 5 different
sources in this Usecase diagram. The five different sources are Camera, MSP430, Algorithm,
Robot, and Monitor. We decided that this design covered all the aspects of our vision controls
and how it integrated with the other aspects of our project. As you can see the Camera
is used for the image processing, and designing the cube matrix. It is also used for color
detection in our implementation of the matrix. Lastly it needs the robots arm rotation to
finish its programing. The MSP430 is used to take in the image processing and help design
the cube matrix. It also sends power and processing speed to our robot to allow arm rotations.
Our algorithm is used to solve our cube so it intakes the cube matrix and is used to determine

75

Figure 67: Usecase diagram made to describe the vision concept of our project

what arm rotations are necessary for our robot. Lastly we have our monitors as a source.
This basically doesn’t output to much material besides our GUI who has two representing
factors which are the timer and the display of the cube.

Figure 68: Simple Class diagram that describes our system

Class Diagrams The class diagram above shows the communication between each program
side of our system. The system starts off with vision processing with the Pixy cam. The pixy

76

cam takes it raw data and sends it to the MSP430 to place in a matrix that can be solved
later. The Pixy cam also needs to communicate with the servos so that it can visualize the
whole cube. The servos are fed an algorithm during the visualization phase because we plan
to process the cube the same way ever time. After the full matrix is sent to the MSP430 from
the camera the matrix is sent to the algorithm process of our code. The algorithm process
takes the matrix and solves it to find instructions that will allow our cube to be placed in the
correct orientation with the same colors. This instruction set is then sent back to MSP430
to process for the servos/motors. The servos intake the instructions one step at a time and
rotate the corresponding arm to the corresponding angle.

77

5 Schedule
• Programing(8 weeks)

• Arm testing (3 weeks)

• Programing with arms(2 weeks)

• Monitor(2 weeks)

5.1 Program
• Rubik’s Cube GUI (2 weeks)

• Rubik’s Cube Algorithm (3 weeks)

• OpenCV and cube coloration (2 weeks)

• OpenCv with GUI (1 week)

• Algorithm and GUI (1 week)

5.2 Robot Arms
• Design arms (1 week)

• Order servos and parts(1 week)

• Build arms (1 week)

• Build arms (2 weeks)

• Test griping (1 week)

• Test rotation (1 week)

• Test cube work (1 week)

5.3 Programming with Arms
• Test arms with program (1 week)

• Test flip pattern (1 week)

• Test rotation pattern (1 week)

• Test arms movement pattern (1 week)

• Test arms with OpenCv (1 week)

• Test arms with GUI (1 week)

78

5.4 Monitor
• Test monitor with raspberry pi(1 week)

• Test GUI on monitor (1 week)

• Implement GUI with timer (1 week)

• Implement GUI with moves list and counter (1 week)

79

6 Prototype Testing

6.1 Hardware Testing
• Test if all of our circuits are correct

• Test if there are no shorts in our circuit

• Test the voltage output at monitor connection

• Test the voltage output at the Pixy cam connection

• Test the voltage output at the MSP430 connection

• Test the processor for a power drain

• Test the processor for over clocking

• Test our ports to make sure correct signals can come in and out of the circuit

• Test the monitor for an output through SPI connection

• Test the camera for an input through UART connection

• Test the USB port for input and output connection

6.1.1 Monitor

• Test if the monitor can connect to the MSP430 with a SPI port

• Test if the monitor can produce an image

• Test if the monitor can produce a timer

• Test if the monitor’s timer is at correct clock rate

• Test if the monitor can produce a move counter

• Test if the monitor’s move counter is correct with actual moves

• Test if the monitor can produce a GUI

• Test if the monitor can produce a 2 D display of the cube

• Test if the monitor’s 2 D display of the cube is correct with actual cube

• Test if the monitor can produce a instruction set of moves

• Test if the monitor’s instruction set is correct

80

6.1.2 Motors

• Test if the motors can connect to the MSP430 with I/O ports

• Test if the motors can rotate a face of the cube to the right

• Test if the motors can rotate a face of the cube 90 degrees to the right

• Test if the motors can rotate a face of the cube 180 degrees to the right

• Test if the motors can rotate a face of the cube to the left

• Test if the motors can rotate a face of the cube 90 degrees to the left

• Test if the motors can rotate a face of the cube 180 degrees to the left

• Test if the motors can listen to an instruction set

6.1.3 Camera

• Test if the camera can recognize one significant color on the cube

• Test if the camera can recognize 6 different significant colors on the cube

• Test if the camera can recognize 2 different rows of colors

• Test if the camera can separate adjacent colors

• Test if the camera can send data to the MSP430

• Test if the camera can process the information to useful data

• Test if the camera sends separate bits for different aspects of the image

• Test if the camera can take process image after rotation of the cube

• Test if the camera sends data which rotation

6.2 Software Testing
Robot Vision Test The software has to be tested in multiple steps. The first step will
be to test that the robotic vision is being correctly handled. The software has to correctly
interpret the values identified by the pixy cam for each side of the cube. An initial test of
identifying the cube color values of a solved cube will be done initially. A solved cube should
be much easier to detect and result in the least amount of error due to the solid color on
each side. When tested the each integer value passed by the pixy camera to the code must
be correctly mapped. After it has passed an initial solved cube test it should be tried in
different lighting conditions. This will help determine the best and worse lighting conditions
that the robot vision done by the pixy camera can handle.

81

Next, the more difficult test should be done being that of an unsolved cube. The vary-
ing color qualities of each cube will make error more likely. However, this error has to be
held to a great minimum or the code with incorrectly interpret the cube resulting in a failed
attempt of solving it. After, the cube has been identified and mapped to each matrix properly
in a unsolved state it will now be tested against lighting conditions again. Light can cause
color values to spike so making sure the code handles this conditions well will increase the
success rate of it.

Algorithm Test Once the robot vision done by the Pixy camera has been properly
identified and mapped the code must then manipulate the values to find a solved state. The
solving algorithm will be tested to see the percentage of times it can solve the Rubik’s Cube
succesfully. The algorithm itself should have the least percentage of error because the pixy
camera has moving parts as well as the hardware has moving parts.

Hardware Communication Test Hardware communication test is essential because if
the code cannot tell the robot to move properly then it will result in the Rubik’s Cube not
being solved. The fist hardware communication test would be making sure the pixy camera
can be properly rotated to analyze the entire cube. Making sure the pixy camera moves in
all directions desired to capture the cube is essential.

The next communication test will be to make sure that the code can turn each of the
six arms of the robot. The code should be able to turn each arm 90 degrees, 180 degrees, 270
degrees, and 360 degrees in both clockwise and counterclockwise motions. It is essential for
each arm to move according to specification for the Rubik’s Cube to successfully be solved.

Finally, the timing of the arms to turn after the code tells it to is incredibly important. The
timing of each arm should be measured and accounted for when the code changes algorithms
into arms movements. The arm movement must be in sync or an arm could get jammed
trying to go at the same time as another arm causing an error in solving the cube.

6.2.1 Environment

Operating System We will be ensuring that the Linux operating system boots up and
is running. Once it is booted up the Integrated Development Environment (IDE) being
CodeBlocks will be launched to make sure it has no errors.

6.2.2 Device Integration and Connectivity

• Test the connection with UART and the MSP430

• Test the connection with UART and the Pixy Cam

• Test the connection with the MSP430 and the Pixy Cam

• Test the connection with SPI and the MSP430

82

• Test the connection with SPI and the monitor

• Test the connection with the MSP430 and the monitor

• Test the connection with USB and the MSP430

• Test the connection with USB and a computer

• Test the connection with MSP430 and a computer

• Test the connection with I/O ports and the MSP430

• Test the connection with I/O ports and servos

• Test the connection with MSP430 and servos

6.2.3 Algorithms

• Test if the algorithm can solve an easily messed up cube

• Test if the algorithm can solve solve a severely messed up cube

• Test if the algorithm can solve the cube with 1 method

• Test if the algorithm can solve the cube with multiple methods

• Test if the algorithm can pick which method has least amount of moves

• Test if the algorithm can save instructions into a list

• Test if the algorithm can send instructions to MSP430

• Test if the algorithm’s instructions are easily debugged

• Test if the algorithm can parse through matrix

6.2.4 Software Integration Testing

• Test if instruction set can be worked into servos

• Test if camera’s code can be taken into the MSP430

• Test if MSP430 can push the matrix to the algorithm

• Test if the algorithm can be ran on the MSP430

• Test if the GUI is operational on the display

• Test if the the ports push and pull data

83

7 Standards
In this section we take a look at some of the many electrical standards that have been created
and specifically how they affect the design constraints and requirements specifications of our
product.

Standard Summary
IEC60027 Part 1: Letters symbols to be used in electrical engineering
IEC60038 IEC standard voltages
IEC60050 International electro-technical vocabulary
IEC60059 Standard current ratings
IEC60071 Insulation coordination
IEC60072 Dimensions and output ratings
IEC60073 Indicating lamps
IEC60076 Power transformers
IEC60083 Plugs and socket-outlets for domestic and similar general use
IEC60088 Standard related current (2 to 63 A) of fuse links for low

voltage
IEC60112 Methods for determining the comparative and the proof-

tracking indices of solid insulating material under moist condi-
tions

IEC60113 Diagrams, charts, and tables
IEC60146 Semiconductor converts
IEC60157 Low voltage switchgear and controlgear
IEC60185 Current transformers
IEC60186 Voltage transformers
IEC60189 Low-frequency cables and wire with PVC insulation and PVC

sheath
IEC60228 Conductors for insulated cables
IEC60255/ BS142 Electrical protection relays
IEC60269 Low-voltage fuses
IEC60270 Partial discharge measurements
IEC60337 Control auxiliary switches, relays, and push buttons
IEC60478 Stabilized power supplies, DC output
IEC60479 Effects of current on human beings and livestock
IEC60529 Classification of degrees of protection provided by enclosures
IEC60536 Part 1: Classification of electrical and electronic equipment

with regards to protection against electric shock. Part 2:
Guideline to requirements for protection against electric shock

IEC60606 Application guide for power transformers
IEC60617 Graphic symbols for diagrams
IEC60688 Electrical measuring transducers for converting AC electrical

quantities into DC electrical quantities

84

Standard Summary
IEC60896 Stationary lead-acid batteries. General requirements and meth-

ods of test
IEC60906 IEC systems of plugs and socket-outlets for household and

similar purposes
EN55022 Limits and methods of measurement of radio interference

characteristics of information technology equipment
IPC-2615 Printed circuit board dimensions and tolerances
IPC-D-325 Documentation requirements for printed circuit boards
IPC-ET-652 Guidelines and requirements for electrical testing of unpopu-

lated printed circuit boards
IPC-2612 Sectional requirements for electronic diagramming documen-

tation (schematic and logic descriptions)
IPC-2221 Generic standard on printed board design
IPC-2223 Sectional design standard for flexible printed circuit boards
IPC-FC-234 Pressure sensitive adhesives assembly guidelines for single-

sided and double-sided flexible printed circuits
IPC-4101 Laminate prepreg materials standard for printed circuit boards
IPC-4202 Flexible base dielectrics for use in flexible printed circuitry
IPC-4203 Adhesive coated dielectric films for use as cover sheets for

flexible printed circuitry and flexible adhesive bonding films
IPC-4204 Flexible metal-clad dielectrics for use in fabrication of flexible

printed circuitry
IPC-A-600 Acceptability of printed circuit boards
IPC-A-610 Acceptability of electronic assemblies
IPC-6011 Generic performance specification for printed boards
IPC-6013 Specification for printed wiring, flexible and rigid-flex
IPC-6202 / PAS-62123 Performance Guide Manual for single and double sided flexible

printed wiring boards
IPC-TF-870 Qualification and performance of polymer thick film printed

boards
ANSI/ISEA 105-2011 Hand protection selection criteria
ANSI/ASSSE A10.1-2011 Pre-Project and Pre-Task Safety and Health Planning
USB Universal Serial Bus standard
RS-232 Serial port communication standard
I2C Serial port communication standard
SPI Serial Peripheral Interface standard

85

8 Safety and Ethics

8.1 IEEE Code of Ethics
We will set our ethics standards to align with those of IEEE Code of Ethics.

1) To accept responsibility in making decisions consistent with the safety, health, and
welfare of the public, and to disclose promptly factors that might endanger the public or the
environment;

2) To avoid real or perceived conflicts of interest whenever possible, and to disclose them to
affected parties when they do exist;

3) To be honest and realistic in stating claims or estimates based on available data;

4) To reject bribery in all its forms;

5) To improve the understanding of technology; its appropriate application, and poten-
tial consequences;

6) To maintain and improve our technical competence and to undertake technological tasks for
others only if qualified by training or experience, or after full disclosure of pertinent limitations;

7) To seek, accept, and offer honest criticism of technical work, to acknowledge and correct
errors, and to credit properly the contributions of others;

8) To treat fairly all persons and to not engage in acts of discrimination based on race,
religion, gender, disability, age, national origin, sexual orientation, gender identity, or gender
expression;

9) To avoid injuring others, their property, reputation, or employment by false or mali-
cious action;

10) To assist colleagues and co-workers in their professional development and to support
them in following this code of ethics.

86

9 Appendices

9.1 Appendix A –Abbreviations

AC Alternating Current
DC Direct Current
FPS Frames Per Second
GB Gigabyte
GPIO General-Purpose Input/Output
Hz Hertz
IDE Integrate Development Environment
kHz kiloHertz
MCU Microcontroller
MSP430 Texas Instruments board
PCB Printed Circuit Board
PWM Pulse-width modulation
RAM Random Access Memory
RTOS Real Time Operating System
SPI Serial Peripheral Interface
UART Universal Asynchronous Receiver/Transmitter
USB Universal Serial Bus
UML Unified Modeling Language

87

9.2 Appenix B –References
[1]

[2] 1.8 inch/cog 128 x 64 graphic lcd. http://www.ebay.com/itm/like/291037052683?
lpid=82&chn=ps&ul_noapp=true.

[3] 2.2 inch 240 x 320 spi tft lcd. www.ebay.com/itm/like/171756246358?lpid=82&chn=
ps&ul_noapp=true.

[4] Analog to digital conversion. https://learn.sparkfun.com/tutorials/
analog-to-digital-conversion.

[5] Angelelec diy open source led display. http://www.amazon.com/
Angelelec-Compatible-Principle-Interface-Automatically/dp/B01E6XXO5E/
ref=sr_1_10?ie=UTF8&qid=1461631444&sr=8-10&keywords=spi+led+display.

[6] C (programming language). https://en.wikipedia.org/wiki/C_\%28programming_
language\%29.

[7] Cmucam5 pixy overview. http://www.cmucam.org/projects/cmucam5.

[8] Cmucam5 pixy porting. http://cmucam.org/projects/cmucam5/wiki/Porting_
Guide.

[9] Cmucam5 pixy wiki. http://cmucam.org/projects/cmucam5/wiki.

[10] Cmucam5 pixyspec. http://www.cmucam.org/projects/cmucam5/wiki/Wiki?
version=35.

[11] Diligent 290-006. http://www.mouser.com.

[12] Give up, humanity. this robot can solve a rubik’s cube in under 1 second. http:
//www.digitaltrends.com/cool-tech/rubiks-cube-robot-2/.

[13] Lego robot : Fastest rubik’s cube solver. https://hotgears.wordpress.com/2012/11/
04/lego-robot-fastest-rubiks-cube-solver/.

[14] Low-level i/o. http://www.tinyos.net/tinyos-2.x/doc/html/tep117.html.

[15] Msp430 product search. http://www.ti.com/lsds/ti/microcontrollers_16-bit_
32-bit/msp/products.page.

[16] Msp430 real time operating systems overview. http://processors.wiki.ti.com/
index.php/MSP430_Real_Time_Operating_Systems_Overview.

[17] Olimex. http://www.mouser.com/ProductDetail/Olimex-Ltd/
SHIELD-LCD-16X2/?qs=J7x7253A5u648zrOBSewkA\%3D\%3D\&gclid=
CjwKEAjwgPe4BRCB66GG8PO69QkSJAC4EhHh7LmyrSeHEiSohfatSrrMnB3jqZFJYVnyv-zo4BhqxRoCCMPw_
wcB.

88

[18] Opencv. https://en.wikipedia.org/wiki/OpenCV.

[19] Optimal solutions for rubik’s cube. https://en.wikipedia.org/wiki/Optimal_
solutions_for_Rubik%27s_Cube#Kociemba.27s_algorithm.

[20] Parallax (futaba) continuous rotation servo. http://www.robotshop.com/en/
parallax-futaba-continuous-rotation-servo.html.

[21] Pixy serial protocoll. http://cmucam.org/projects/cmucam5/wiki/Pixy_Serial_
Protocol.

[22] Pixy smart vision sensor. http://www.amazon.com/
Pixy-CMUcam5-Smart-Vision-Sensor/dp/B00IUYUA80.

[23] Pixymon overview. http://cmucam.org/projects/cmucam5/wiki/PixyMon_
Overview.

[24] Rubik’s cube wikipedia. https://en.wikipedia.org/wiki/Rubik\%27s_Cube.

[25] Sainsmart iic/i2c/twi serial. http://www.amazon.com/
SainSmart-Serial-Module-Shield-Arduino/dp/B00A61SEU6/ref=sr_1_4?ie=
UTF8&qid=1461631059&sr=8-4&keywords=spi+lcd+graphics.

[26] Sitara processors overview. http://www.ti.com/lsds/ti/processors/sitara/
overview.page.

[27] Sparkfun serial graphic lcd. https://www.sparkfun.com/products/9351.

[28] Standard size - high torque - metal gear servo. https://www.adafruit.com/products/
1142.

[29] Stepper motor with cable. https://www.sparkfun.com/products/9238.

[30] Stumped by rubik’s cube? let the lego robot solve it. http://www.nytimes.com/2001/
10/11/technology/circuits/11RUBI.html?pagewanted=all.

[31] Surestep stp-mtr-17040. http://www.automationdirect.com.

[32] Ti msp430. https://en.wikipedia.org/wiki/TI_MSP430#MSP430x6xx_series.

[33] Tpd2e001 low-capacitance 2-channel esd-protection for high-speed data interfaces. http:
//www.ti.com/lit/ds/symlink/tpd2e001.pdf.

[34] Usb module. http://www.ti.com/lit/ug/slau284d/slau284d.pdf.

[35] Watch this robot solve a rubikâĂŹs cube in less
than 2 seconds. http://motherboard.vice.com/read/
watch-this-robot-solve-a-rubiks-cube-in-less-than-2-seconds.

[36] What material should i use for 3d printing? http://3dprintingforbeginners.com/
filamentprimer-2/.

89

[37] Steven Keeping. Understanding the advantages and disadvantages of lin-
ear regulators. http://www.digikey.com/en/articles/techzone/2012/may/
understanding-the-advantages-and-disadvantages-of-linear-regulators.

[38] Krishnavedala. Rc filter image. https://commons.wikimedia.org/wiki/File:RC_
filter.svg.

[39] Wdwd. Half-wave rectifier image. https://commons.wikimedia.org/wiki/File:
Gratz.rectifier.en.svg.

90

9.3 Appendix C - Programs Used

Software Usage
Eagle 7.4.0 Schematic and PCB editing
TeXstudio Documentation
TeXworks Documentation
SourceTree Project collaboration
CodeBlocks Documentation
Sublime Text Editor Documentation
Microsoft Paint Documentation

91

9.4 Appendix D - Bill of Materials

Part Value Package Description

C19 0.1uF C0402 CAPACITOR, Ameri-
can symbol

C20 0.01uF C0402 CAPACITOR, Ameri-
can symbol

C21 100uF E2,5-6
POLARIZED CA-
PACITOR, American
symbol

C22 0.1uF C0402 CAPACITOR, Ameri-
can symbol

C23 0.1uF C0402 CAPACITOR, Ameri-
can symbol

C24 0.47uF C0402 CAPACITOR, Ameri-
can symbol

C37 4.7uF,10V C0603 CAPACITOR, Ameri-
can symbol

C38 10pF,6V C0603 CAPACITOR, Ameri-
can symbol

C39 10pF,6V C0603 CAPACITOR, Ameri-
can symbol

C40 220nF,10V C0603 CAPACITOR, Ameri-
can symbol

C41 220nF,10V C0603 CAPACITOR, Ameri-
can symbol

C42 1nF C0603 CAPACITOR, Ameri-
can symbol

C43 0.1uF C0402 CAPACITOR, Ameri-
can symbol

C44 0.47uF C0402 CAPACITOR, Ameri-
can symbol

C45 10uF E2,5-6
POLARIZED CA-
PACITOR, American
symbol

C46 100n C0603 CAPACITOR, Ameri-
can symbol

D1_5V CGRM4001-G SOD-123_MINI-SMA
Molded pla-
sitc,JEDEC SOD-
123/Mini SMA

JP4 1X04 PIN HEADER
LED1 SML0805 LED
LED2 SML0805 LED
Q1 CSTCR6M00G53Z CSTCR6M Resonator

92

R16 1M M1206 RESISTOR, American
symbol

R17 20k R0402 RESISTOR, American
symbol

R18 220k R0402 RESISTOR, American
symbol

R19 0.2 R0402 RESISTOR, American
symbol

R20 0.2 R0402 RESISTOR, American
symbol

R31 27 R0402 RESISTOR, American
symbol

R32 27 R0402 RESISTOR, American
symbol

R33 1M M1206 RESISTOR, American
symbol

R34 47k R0402 RESISTOR, American
symbol

R35 1.4k R0402 RESISTOR, American
symbol

R36 470 R0402 RESISTOR, American
symbol

R37 470 R0402 RESISTOR, American
symbol

S1 SKHMPSE010 SKHMPXE010 6.2 X 6.5mm TACT
Switch (SMD)

S2 SKHMPSE010 SKHMPXE010 6.2 X 6.5mm TACT
Switch (SMD)

SV1 MA08-2 PIN HEADER
SV2 MA07-2 PIN HEADER
U1 LM1086_KTT_3 TS3B
U2 Value PZ0100A_N
U5 DRV8825_PWP_28 PWP28_5P18X3P1
U8 TPD2E001_DRL_5 DRL5
U9 TPS715A01_DRV_6 DRV6_1P6X1
X1 SCD-014-A Power Jack 2.5mm

X2 MINI-USB-SHIELD-
UX60-MB-5ST UX60-MB-5ST MINI USB Connector

93

9.5 Appendix E

Figure 69

Figure 70

94

Figure 71

Figure 72

95

