
Rubik’s Cube Solving Robot

Daniel Truesdell - EE

Corey Holsey - CpE

Tony Verbano - CpE

Group 12

Motivation
Build a robot that can solve a scrambled Rubik’s Cube

● Combination of hardware and software systems

● Rubik’s Cube is a fascinating puzzle

blog.zok.pw

General
● Four separate parts of the project

○ Physical Structure

■ Stepper Motors

○ Embedded System

■ Motor control

■ Processor

○ Cube Visualization

■ CMUcam5 Pixy

■ Visualization implementation

■ Matrix Input

○ Rubik’s cube algorithm

■ CFOP method Vs Kociemba

■ Mathematics

■ Randomization of the cube

Desired Functions
● Solve a Rubik’s cube correctly 90 % of the time

● Fully visualize and map the cube 90% of the time

● Solve the cube in at least 15 minutes

● Mechanical manipulation of cube in all ways

● Provide Graphical User Interface

Mechanical Design - Structural Platform

Prototype

YouTube - Calit2ube (Raspberry Pi - based)

3D-Print

YouTube - Jay Flatland (PC-based)

Mechanical Design - Cube Control
● One motor per side of the cube

● No repositioning necessary

● No claw/gripper necessary

● Fastest cube manipulation

Mechanical Design - Motors

DC Servo Stepper

Pros High RPM
Easy to operate

Easy to operate -
Single PWM input

Predetermined,
reliable positioning

Cons Lack of position control
Require feedback or

precise tuning for
accurate positioning

Usually require driver
IC

Mechanical Design - Motors
Adafruit NEMA-17 Stepper Motor

● $14 per motor

● 1.8° Step size = 200 steps per

revolution

● Rated for 350mA at 12V

● Small, robust

Adafruit.com

Electrical Design - Motor Control
Motor Control Requirements:

● Bidirectional motion requires

bidirectional current (source/sink) ability

on all 4 wires

● Smooth operation requires precise coil

actuation and current control

42bots.com

Electrical Design - Motor Control
Solution: TI DRV8825 Stepper Motor

Driver

● 2.5A max current output

● Integrated H-bridge circuit for bidirectional

motion

● Isolates processor from harmful back-EMF

● Allows separate (12V) motor supply voltage

● Simple control scheme (enable, step,

direction)

Pololu.com

Electrical Design - Processor

MSP430G2553 MSP430F5529 MSP430F6659

ROM

16kB
128kB

512kB

RAM

500B
10kB

66kB

Serial

1 I2C, 1 UART
2 I2C, 2 UART

3 I2C, 6 UART

Extras

Temp Sensor
LCD & USB support

LCD & USB support

Power

230 μA/MHz 370 μA/MHz 404 μA/MHz

Price

$3
$8

$12

Electrical Design - Embedded System
● MSP430

● 6 Stepper Driver ICs

● Mini USB

● 12V DC input

● 16 GPIO (can be internally

mapped for serial

communication)

● JTAG, SBW

● 2 user switches & LEDs

● 12V, 5V and 3.3V Headers

Electrical Design - Embedded System

Stepper Motor Driver USB Mini

Electrical Design - PCB

Electrical Design - PCB

Image Sensing with Pixy Cam
Pixy is positioned to capture 6 tile

faces along a single edge of the cube

Bright LEDs ensure that lighting is

constant and stable during device

operation

Image Sensing with Pixy Cam
View From Pixy Cam

Detects 6 color signatures for

each color of the cube

Image Sensing with Pixy Cam

Image Sensing with Pixy Cam
● Detected colors are sent

to MSP430 over UART

connection

● Pixy use 50 frames per

second:

● 50 * 6 * 14 * 8 ⇒ 33600

baud or greater

● ⇒ use 57600 baud

Image Sensing with Pixy Cam

Image Sensing with Pixy Cam

Mapping the Cube
The orientation of each face of the cube.

We use the bytes found from the Image sensing to

determine the orientation of the cube.

The bytes taken in from the Pixy CMU5 cam are

the 4th byte, for the signature color, 6th and 7th,

for the X position, and the 8th and 9th, for the Y

position.

We determine from the position of our camera

that we should receive 6 blocks per frame.

Mapping the Cube cont.
After we receive all 30 bytes of code that make up

a frame we parse through it to determine the

positions of each significant color in the picture.

We start by putting all the signature colors in an

array of 0 to 5 corresponding with its X position

and Y position.

We then convert our X positions and Y positions

from hex to decimal to help us with their position

in the frame.

The top right cornor of the frame is considered to

be (0,0) in the X, Y plane.

As you travel along the axis of the frame, X and Y

becomes respectively larger the further away you

get.

We use this information to determine where the

blocks in the frame lay.

Mapping the Cube cont.
For the X coordinate given by the Pixy CMU5cam:

if(X[i] <100)

Left most frame

else if(X[i] > 200)

Right most frame

else

Middle frame

For the Y coordinate given by the Pixy CMU5cam:

if(Y[i] < 100)

Top half of cube

else

Bottom half

Mapping the Cube cont.

Using the pseudo code on the previous slide we

can determine the positions of the 6 different

blocks in each frame.

We then place the signature color in order from

the bottom left-most block across to the bottom

right-most block, and then return from top right-

most to the top left-most.

The frame above would read in as

(R, Y, W, B, O, G)

Mapping the Cube cont
Using this technique we can determine the

orientation of the entire cube from start to finish

by doing a specific set of movements.

After these movements we can then reset the cube

back to its original formation before the mapping

began allowing us to manipulate to solve for the

correct orientation.

There is 12 different frames needed to take into

visualize the entire cube from the position seen.

After each frame a specific set of moves is made to

get to the next frame.

Serial OutPut/Input
For our GUI to communicate with our robot we

had to establish a serial port connection and talk to

it to receive and send data.

Input:

We need to use the serial port input to receive the

data of each frame for our vision control.

We initialize the input command by sending a ‘!’ to

our msp430 to tell it we need to start receiving

camera information

Output:

We use the serial port output to send to our

msp430 which function we are doing and what

rotations need to be done by the robot.

send(‘!’)

Start camera input

send(‘2’)

Start rotation parsing

send(“FFRRDDLLUUBB”)

Sends our rotations

Math - Symmetries
Over 43 quintillion possibilities of the Rubik’s Cube!

8 corners with 8! ways they can be arranged and

seven corners that can be arranged independently

with the eighth being dependent on the preceding

seven

12 edges with 12!/2 ways they can be arranged.

Divided by two because of its dependency to be even

exactly when the corners are. And eleven of the edges

can be moved independently. These together make

the equation below:

8! x 3^7 x 12!/2 x 2^11 = 43,252,003,274,489,856,000

Math - Conjugations
Conjugate - binomial form by negating the second

term of the binomial (conjugate of x+y is x-y)

Many of the algorithms of Rubik’s Cube are derived

from conjugates

Using David Singmaster Notation for the faces (Front -

F, Left - L, Right - R, Up - U, Down - D, Back - B) and

add prime symbol ‘ to a letter to denote CCW move

Example: Attempting to only change the U face of a

solved cube R U R’ U’ will change 2 cubes that are not

on the U face as displayed in Figure 1

Therefor a move F is added before it to orient those

two cubes first then F’ added to the end making only

the U layer changed as displayed in Figure 2

Figure 1

Figure 2

CFOP (Speed Cubing)
● Minimum memory

requirements
● Simple to develop
● Less efficient with time
● Solves the cube in hundreds

of moves

Algorithm Options
Kociemba (God’s Algorithm)
● Abuses RAM
● Complex development (need

bluetooth and mobile app)
● More efficient with time
● Solves the cube in at most 20

moves

PC vs MSP430
Gave us GUI options to solve the cube

Not completely reliant on the vision working perfectly

Allowed for manual input of the cube

Gave us more power for a more efficient algorithm

Kociemba’s Algorithm

G1 is the first group and stores
look up tables (millions of them)
to find a solution for its state

G2 is the second group that stores
look up tables to find a solution
for its state

Both continually look for solutions
that don’t include each other

Kociemba Groups
G0 state is simply the initial state of the cube

G1 state looks for many symmetries

This speeds up the Iterative Deepening because you can search multiple things at once

G2 only uses a specific moveset to iterate through the rest of the cube

Iterative Deepening
Is the primary engine behind the algorithm

It tries all solution that takes 15 moves for G1 and 9 moves for G2

It tries all solutions that take 16 moves for G1 and solves 8 moves for G2

…

Until it tries all solutions that take 24 moves and solves 0 moves for G2

Pruning
Is the main way to handle the speed

The millions of tables saved takes a lot of time and memory

Turning a face only has three possible states CCW, Idle, CW

Only store cubes moves by mod 3 to account for there only being 3 statess

Solving String
After the cube is solved for the correct moves we save

make a string of every rotation needed to solve the

cube.

The string consist of the order of rotations each

considered to be clockwise unless they are followed by

an ‘ which then would result in a counterclockwise

rotation

Scramble
•Can’t take out the cube when it’s in our robot

•Need to scramble the cube after its solved

•Easier to just make a program that randomizes the cube

•We plan on using a random number generator to randomize the cube

GUI/Display
2D display of the cube

Buttons for actions of the cube

Text box to input the cube

Budget

Group Distribution

Structure Vision
Control

Algorithm GUI Electronics

Daniel

Corey

Tony

Primary Job Secondary Job

Trials and tribulations
● Pixy CMU5cam

○ Require high degree customization.

○ Better for object detection(motion tracking) than color orientation

○ Has issues with differentiating colors of close hues. (Red, Orange)(Yellow,

White)

○ Documentation is out of date

○ Pre-built libraries for Arduino and lego not much so for customization

Conclusion
● Robot consistently and accurately solves the cube in under 10 seconds

● Cube Visualization is promising and yields preliminary results

● Versatile microcontroller-oriented PCB design

Questions?

