
Self-Stabilizing Quad-Rotor
Helicopter

Jared Rought, Daniel Goodhew, John Sullivan
and Angel Rodriguez

Department of Electrical Engineering and
Computer Science, University of Central

Florida, Orlando, Florida, 32816

Abstract — Unmanned aerial vehicles are gaining in

popularity both as useful work tools and as entertaining toys.
This paper focuses on the design and construction of both
hardware and software for a quadruple rotor copter. The
copter is intended to be a lightweight, cost conscious design.
Software components include the stabilization loop,
communication among the microcontroller and the motors,
and communication with the iPhone controller.

Index Terms — Inertial Measurement Unit, Control
Theory, Directional Cosine Matrix

I. INTRODUCTION

 Unmanned Aerial Vehicles have played a crucial role
in modern warfare, reducing both cost and human liability.
This reduction in cost has been relative and does not offer
much for non-defense firms and the general public. The
aim of the project is to create a lightweight, low cost, easy
to use UAV for various applications. Such a device could
have applications in areas such as warfare reconnaissance
or for civilian uses such as for humanitarian aid, surveying
missions, or amusement purposes.

The quad-copter incorporates a medium to low power
usage design running off of battery power. Two batteries
are incorporated into the design, one low power and one
medium power, to maintain a clean source for the
electronic boards. The main drain to the power source is
from the motors necessary to lift the aircraft off the
ground and maintain stability. As with all aircraft, it is
essential to reduce weight; therefore, all components are
lightweight to accommodate for less power consuming
motors. The use of smaller motors allows for increased
flight time due to a reduction in power consumption. The
main frame of the quad-copter is constructed from
lightweight aluminum tubing and designed to provide the
largest possible stability to the aircraft.

In order to maximize the stability of the aircraft, an
Inertial Measurement Unit (IMU) is used to regulate and
compensate for aircraft movements. The IMU tracks
altitude, speed, position, direction and log the data. This

information is then used to stabilize the aircraft and
support other features of the craft.

The central controller is the interface for all of the
modules on the quad-copter. It is be capable of receiving
the data from the IMU and data sent from the user to
control the modules responsible for changing motor speed.
The central board, with the central processor mounted on
it, has pin headers so that the other modules can be
connected by wire to the central controller. Connecting the
modules in this manner allows for damaged modules to be
easily removed and replaced. This also allows for modules
to be upgraded or changed based on user preferences.

II. OVERVIEW OF ORIENTATION TRACKING

 There are many ways in which to derive the orientation
of the system, one of which is called a Directional Cosine
Matrix (DCM). The DCM presents a rotational matrix that
can be used to describe the attitude of the system being
analyzed [2]. Directional cosine matrices are used to
transform one reference frame to another [2]. In the case
of the helicopter, the reference frames are earth and the
aircraft. Directional cosines are essentially a
representation of a vector. For example, take a vector that
is present in the XY plane. The vector

!

! x can be
represented by directional cosines.

The most important aspect of the
directional cosine matrix is the data that
resides with in the matrix. The matrix is comprised of the
angle that is formed between the vector and the coordinate
axis [1]. Rotational matrices can then be used to
transform between two types of reference frames. Each
row of the rotational matrix presents the unit vector as
seen by the other reference frame, in the case the earths.
To transform a vector to the other reference frame you
must multiply that vector by the rotational matrix. Care
must be taken when using matrix multiplication due to the
fact that matrix multiplication is not commutative [1],
meaning…

€

ʹ′ y = R∗ y ≠ y ∗R
where...

R =

rXX rXY rXZ

rYX rYY rYZ

rZX rZY rZZ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

y =

yX

yY

yZ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

!

rx = cos "()
ry = cos #()

!

(1)

(2)

Each row of the rotational matrix describes the presents
the aircrafts rotational vector as seen by earth’s reference
frame [1]. The directional cosine representation for the
vector with regards to the earth’s reference frame, as seen
by each individual axis. For example, take the vector

!

! r .
This vector is comprised of a component in the X-axis,

It is important to note that the magnitude of the vector

!

! r is equal to 1. This vector is called a unit vector and is
the fundamental reason that you are able to multiply any
vector by the rotational matrix, to describe the
orientation[1]. Since the vector’s magnitude is only one,
the multiplication changes the orientation of the vector,
without modifying the magnitude.

The order of rotation is also important to describing the
orientation of a vector. Using the Euler angles (Φ, θ, and
ψ), an order of rotation must be selected. For example if
the order ZYX is followed for rotations corresponding to
ψ=45 θ=90 Φ=45, the following rotations result in a
vector pointing in an equal but opposite direction to a
rotation of Φ=45 θ=90 ψ=45. It is for this reason that the
standard order of rotations is taken to be XYZ, for all
calculations.

The rotational matrix can then be multiplied by the
ground reference vector to derive the aircrafts
orientation.[1] Conversely due to the orthogonality of the
ground matrix and the rotational matrix; the matrix created
by this multiplication can be multiplied by the inverse of
the rotational matrix to realize the ground reference
matrix.

The rotational matrix is updated by integrating the
kinematic equation that describes the rotation of the ridged
body being analyzed. The gyroscopes out put a voltage
that is proportional to the rate of rotation that is being
experienced by the aircraft.

The rate of rotation is equal to…

ω(t) = rate of rotation (gyro output)

This equation is then integrated to produce the following
equation.

The equation equates to the following numerical
integration that is preformed on each row of the rotational
matrix.

A generalized form yields…

III. DCM ALGORITHM REALIZATION

The directional cosine matrix is the approach that has been
chosen to represent the orientation of the helicopter. The
gyroscopes provide the rotational data for roll pitch and
yaw, while the accelerometers and the magnetometer
provide the reference vector that determines the error in
the gyro measurements. Figure 1 depicts the top-level
control loop that is implemented in code to stabilize the
helicopter.

Rotational Matrix
Calculation

Yaw Drift Correction

+- RMATRIX

PID Cont. error

RMATRIX

Accel

Mag

RMATRIX
UpdatedGyro

Accel

Mag

Fig. 1. Control loop that governs the orientation tracking
algorithm

A rotational matrix tracks the aircraft with respect to the
earth’s frame of reference. This matrix corresponds to the
variable Rmat and is initialized as follows…

Rmat =
1 0 0
0 1 0
0 0 1

!

"

#
#
#

$

%

&
&
&

This matrix is an identity matrix that sets up earth’s
reference frame for all subsequent measurements to be
derived from. Once this initial Rmat is created the code
progresses to update Rmat to the orientation information
derived from the accelerometer and the magnetometer.
This updated Rmat is the aircrafts initial heading while on
the ground. Each subsequent iteration of the rotational
matrix update is set equal to RmatOld, which provides a
reference to derive the rotational angles from the gyro
measurements.

Proper measurements are crucial to the success of the
IMU’s stabilization algorithm. In order to maintain the
integrity of measurements and calculations the group must
recognize the errors that can occur in the measurements
and calculations. Due to the numerical integration that is
utilized in the DCM algorithm errors tend to accumulate
in the rotational matrix calculation that can offset the
orthogonality of the XYZ identity vectors. To alleviate the
accumulation of errors the rotational matrix must be

!

dr(t)
dt

=" (t) # r(t) !

!

r(t) = r(0) + d"# (t) $ r(t)
where...
d" =%(t)dt

!

!

r(t + dt) = r(0)+ r(t) " d# !

(5)

(3)

(6)

(4)

periodically renormalized. Each axis is first separated into
a matrix as follows.

The matrix property of the dot product is utilized to
determine the error that may exist in the orthogonality
between the X and Y vectors. To be orthogonal the
product must be equal to zero and any deviation otherwise
is an error that has accumulated. Taking the X matrix and
the Y matrix presented previous, the dot product is
performed to derive the error. The error is then
apportioned to evenly to each vector and subsequently
subtracted from the vector to derive the orthogonal
updated version of the vector.

The updated X and Y matrices are now orthogonal and
can be used to calculate the orthogonal Z matrix. This is
done by taking the cross product of Xorthogonal and
Yorhtogonal, yielding Zorthogonal.

To complete the renormalization process the each of the
vectors must be verified to have a magnitude of one. In
order to find the scaling factor that is necessary to adjust
each row vector, several properties of matrices must be
identified.

The cross product is then subtracted from three (the
number of vectors) and subsequently multiplied by ½, thus
yielding a orthogonal matrix who’s vector have
magnitudes of one.
 The rotational matrix calculation is derived from the
rotational rates that are measured by the tri-axial
gyroscope. One gyroscope measures roll, pitch and yaw,
the ITG-3200. The measurements that are recorded by the
gyroscope correspond to rotational rates that are
experienced by the aircraft in relation to a given axis. The
angle of rotation, with respects to the gyro measurements
can be made by relating measurements over a specified
time period, T.

! =" *T

This relation is then used to track the change in the
aircrafts reference frame in relation to the earth’s by
continuously updating the rotational matrix

Proper measurements are crucial to the success of the

IMU’s stabilization algorithm. In order to maintain the
integrity of measurements and calculations the group must
recognize the errors that can occur in the measurements
and calculations. Due to the numerical integration that is
utilized in the DCM algorithm errors tend to accumulate
in the rotational matrix calculation that can offset the
orthogonality of the XYZ identity vectors. To alleviate the
accumulation of errors the rotational matrix must be
periodically renormalized.

The electronic gyroscopes that are being used in this
project are susceptible to drift in the measured values. The
drift is also compounded by the errors that can accumulate
in due to the fact that the numerical integration is
approximation, albeit a rather acceptable one. To alleviate
the accumulation of errors in the gyro’s measurements and
subsequently the rotational matrix the group must perform
some sort of drift correction. The chosen method is to
utilize a separate reference vector that is determined by
alternative measurement technology to the gyroscope. An
accelerometer is used to generate a reference measurement
to compensate for the roll and pitch drift.

To achieve the correction that is necessary the group
realized the properties of the accelerometer.
Accelerometers measure gravitation that is experienced by
a device plus the acceleration. To create the reference
vector we exploit the gravity measurements that are taken
by the accelerometer. From these measurements the group
can take the cross product with the estimated gyro
measurements, the rotational matrix. The cross product of
two vectors yields a magnitude that is proportional to the
sine of the angle that is formed between the vectors. It also
produces a direction that is perpendicular to both vectors.

Equally important to the proper operation of the IMU is
the compensation of the yaw drift that can accumulate in
the gyro measurements. A magnetometer was chosen as
the sensor of choice to generate the yaw reference matrix.
In particular a triple axis magnetometer is necessary to be
able to correctly derive the matrix. The magnetometer
produces a heading measurement that is completely

!

RmatUpdate = RmatOld "Rmat
where...

Rmat =

1 #d$y d$z
d$x 1 #d$z
#d$x d$y 1

%

&

'
'
'

(

)

*
*
*

!

(11)

!

X =

rxx
rxy
rxz

"

$
$
$

%

&

'
'
'

!

Y =

ryx
ryy
ryz

"

$
$
$

%

&

'
'
'

!

Xorthoginal = X "
error
2

X

Yorthoginal =Y "
error
2

Y

!

where...
error = X •Y = XTY

!

Zorthogonal = Xorthogonal "Yorthogonal !

!

X • X = X = xx
2 + xy

2 + xz
2 !

(7)

(8)

(9)

(10)

(12)

independent of the gyroscope measurements. This
measurement is then compared with the rotation
experienced by the Z axis of the rotation matrix, thus
allowing us to derive the associated error that is present.

A PI controller is responsible incorporating the
necessary compensation to correct for the error present
between the reference vectors and the rotational matrix’s
previous calculation. The Proportional, Integral controller
was chosen over the Proportional, Integral and Derivative
controller because of the simplicity of code and use of
resources on the microcontroller. The derivative term
would be much more difficult to implement on the
microcontroller, both in use of resources and coding the
algorithm. The controller is utilized to minimize the error
that is present between the two values. Once the vectors
have been sent through the PI controller, they are then fed
back to the rotational matrix update algorithm.

Fig. 2. PI controller necessary for mitigating gyro drift

IV. MOTOR CONTROL LOOP

A Proportional Integral Derivative controller is used to
compensate the motors to stabilized the aircraft. This is
accomplished through pulse width modulation. The
rotations per minute are controlled by the pulse width of
this signal, ranging from 1ms to 2ms. The PID controller
provides the means to update these values to achieve the
desired movements. In addition the PID controller allows
for compensation for difference in motors. This attribute is
achieved by using the integral term. The integral term
accumulates when the aircraft is persistently maintaining a
position that is not the desired value. During this condition
the pulse width continuously accumulates until the desired
value is reached. Equally importaint, especially for quad
copters, is the derivative term. The derivative term allows
for the quick movements that are necessary to provide
timely stabilization.
A major component of the PID controller is the associated
weights that are necessary to achieve the desired response
of the system the corresponding equations for the PID are
presented below. We achieve the necessary gains through

testing each axis of the aircraft and observing the response
of the system for various weights.

errorP = error*Kp
errorI = previouserror + error

errorD =
derror
dt

*Kd

V. MICROCONTROLLER

 The microcontroller is one of the most important
components of the quad-copter and there is no way that
the quad-copter can even be flown steadily without it. It is
responsible for taking in all the data that the other modules
output and then processing the data in the DCM algorithm
into signals that are then sent into a software PID
controller. Some of the signals are used to control the
flight characteristics of the quad-copter. The other signals
meanwhile are the output information on the status of the
quad-copter. It must also complete all the tasks it is
required to do in 20 ms for proper motor operation, which
means the microcontroller has to be fairly fast. The
microcontroller needs 4 ADC channels to convert the
accelerometer and ultrasonic rangefinder, it needs to be
capable of outputting four PWM signals to control the
motors and I2C and UART to communicate with various
other modules.
 The microcontroller that was chosen was the
STM32F103CBT6 produced by STMicroelectronics. The
STM32 is based on the ARM Cortex-M3 processing core
which is a 32-bit architecture microcontroller. The ARM
architecture is one of the most used architectures in the
mobile device market so there where a lot of resources
available to help develop the firmware required for the
project.
 The STM32 variant chosen can run at 72 MHz. The
STM32F103CBT6 has two 12-bit ADCs that can convert
any of 10 available channels. The STM32 also has 4 16-
bit timers that each have 4 output channels. This means
that with one timer all 4 motors in the quad-copter can be
controlled. The STM32 has 2 USARTs, 2 SPIs, 2 I2C, and
a USB as its communication ports. This specific variant of
the STM32 also has 128 KB of on board flash memory for
storing the quad-copter firmware. There is also 20 KB of
on board SRAM to store data into. A great feature that the
STM32 has that most microcontrollers do not possess, is
its 7 channel DMA. This feature is being used to reduce
the amount of processing the STM32 has to do by sending
the data from outside modules directly to the embedded
memory on the STM32.

(13)
)

(14)

!

CorrectedTotal = PitchRollCorrection +YawCorrection
" error =" I +" p

!

VI. FIRMWARE DEVELOPMENT

 The development board that is being used for this project
is the Olimex STM32-H103. The board is very small and
has two extension ports on the bottom side to allow access
to the STM32 pins. The board uses a JTAG interface
located on the top of the board to allow the STM32 to be
debugged and programmed. Power is delivered to the
board through a USB cable connected between the
development board and a PC. The board is very small and
has dimensions of 2.4” x 1.3".
 In order to use the development board a JTAG
programmer cable has to be used. The JTAG programmer
chosen for the development board was the ARM-USB-
TINY which is also made by Olimex Ltd. The JTAG
programmer allows the development board to be
connected to a computer for programming and debugging.
The reason the USB-TINY JTAG programmer was chosen
was because it could be connected to a computer via USB
port. This feature was needed because the group does not
have a computer that has the serial and parallel ports that
other JTAG programmers use.
 The actual firmware was written and compiled with a free
development environment supplied by Olimex. It is
composed of the Eclipse IDE, GNU C compiler, and
OpenOCD. The Eclipse IDE is an open source project
manager and is where the C code for the project was
written. The GNU C compiler is what converts the C code
into instructions that the STM32 can execute. The GNU C
compiler is not as efficient in optimizing C code to
assembler as the C compilers available on commercial
development environments but it has to be used because
the commercial compilers have to be licensed, while the
GNU C compiler costs nothing to use. The OpenOCD is
open source software that is used for two functions. The
first function is to write the firmware for the project to the
STM32. The other function of the OpenOCD software is
to debug the firmware while it is running on the STM32.
OpenOCD was used as the firmware writer and debugger
because it is the only software of this kind fully supported
by the JTAG programmer. All the individual software
parts above are integrated into the Eclipse IDE so all the
parts of firmware development are accessed from within
Eclipse.
 The firmware for the STM32 was coded in the C
programming language because it is the programming
language the group members are most familiar with, it is
the programming language used by most ARM Cortex-M3
development tools, and it takes less time to make a
program than using assembler. The Eclipse IDE was used
to write the source code for the STM32 firmware. The
source code written on Eclipse was then compiled by the
GNU C compiler. Then OpenOCD was used to allow
communication between the development board and the
computer through the JTAG programmer and is what
writes the firmware onto the STM32 flash memory and

allows the communication required for the firmware to be
debugged while running on the development board.
STMicroelectronics has created a C library that is freely
available that makes configuration of the STM32 simpler.
This library is called the STM32 standard peripheral
library and is intended to cut development time. The
standard peripheral library cuts the development time of
the firmware because the library provides all the
functions, structures, and prototypes necessary to initialize
and command any peripheral on the STM32, so that the
functionality of this library did not have to be developed
by the group. Since the group is composed of novices
when it comes to programming for microcontrollers, other
people’s source code was examined to help with the
writing of the subroutines for several components of the
quad-copter firmware.
 The STM32 standard peripheral library was used to aid in
the writing of the subroutines that initialize and control the
STM32 and its peripherals. The library documentation
provided the instructions of how to use the various library
files to setup the various peripherals and features on the
STM32. The only problem with this library is that the
documentation is not as thorough as it can be causing
issues like confusing definitions of functions and variables
and trouble finding out what arguments need to be passed
into the various functions. If the library was not used as an
aid in programming, the programmer would then have to
setup the STM32 by knowing the memory address of the
various peripheral configuration and data registers and set
the corresponding option bits in them. This method is very
tedious and can take months to complete because the
programmer has to keep searching through the STM32
reference manual for things like the memory addresses of
the various registers and which bits in the registers
configure the feature that is needed. Then which bits in the
registers control which functions have to be looked up and
finally, what the bits have to be set to also has to be
looked up.

VII. CONTROL BOARD

For the design of the control board the idea was to place
the STM32 and IMU components toward the middle of
the top layer of the control board PCB, all connectors and
switches were placed toward the out side portion of the
control board, and all the small simple components like
capacitors and LEDs were placed in between. For the
components that connect to the control board like the
motor ESC’s and the wi-fi, connectors placed on the
outside perimeter of the control board were used. Any
small component that is difficult to place and route on the
top layer was moved to the bottom layer. The empty areas
of the bottom layer were covered with a ground plane to
provide easy access for the ground pins of all the ICs
through vias. The board is powered by two 3.3V
regulators, one for digital components the other for analog

ones. The ground plane is divided into two areas one is for
digital components and the other for analog in order to
reduce noise. The connector for the control board power
source is in the middle of a side of the control board. A
pull switch is used to power the control board on or off.
The pull switch is placed somewhere on the control board
where it does not interfere with other components and is
easily accessible by hand. An LED was placed on the
control board that will light up when the board is powered.
A 20-pin ribbon cable connector was placed on the control
board for a JTAG interface so that the STM32 on the
control board can be programmed and tested.
 The control board was designed in Eagle and
manufactured at a group member’s employer Intersil to
save on costs.

VIII. VEHICLE BODY DESIGN

The quad-copter prototype is a lightweight design of
less than 900 grams. By reducing the weight, the size of
the motors needed to lift the craft is reduced. Thus, less
power is consumed by the smaller motors and the flight
time of the aircraft increases.

The central part of the body consists of four circular
aluminum tubes held together at 90 degree angles by a
polyvinyl chloride (PVC) four-way connector and
fastened using #4 1 and ½ inch bolts. Four plastic legs are
attached to the ends of the arms to form the landing base.
The printed control board (PCB) is mounted directly onto
the frame by bolting the board legs to the arms on one side
and the board on the other. The motors are mounted onto
a “C” shaped bracket using #0 ¼ inch bolts and the
brackets are in turn bolted to the arms with the #4 bolts.
The motor is positioned on the arm such that the
propellers do not extend past the end of the arm to protect
from potential damage to people or the equipment. The
electronic speed controllers (ESCs) are connected to the
motors using standard male to female bullet connectors
and 18 gauge wires. The ESCs and wires are placed
inside the respective arm tubing and exit the PVC
connector through a hole drilled in the center, directly
underneath the PCB. Three brackets and two strips of
hook and loop fasteners are underneath the PVC connector
and serve to hold the larger battery in place. The smaller
battery is attached with hook and loop fasteners to the
bottom of larger battery. The completed quad-copter is 25
inches in width, 25 inches in length and 5 inches in height.
A list of parts with the associated weights is given in table
1.

The lightweight aluminum tubes are chosen for the
vehicle chassis because of the great strength to weight
ratio. Aluminum has a tensile strength of 600 MPa while
maintaining a low density of 2700 kg/m3. The plus shape
of the body provides stability as well as increasing the

ease of navigation. Each pair of arms corresponds to an
axis on the inertial measurement unit (IMU). The
batteries are placed under the center of the chassis to keep
a low center of gravity and maintain uniform weight
across the copter to promote stability. The motors are
placed equidistant from the center at a distance that
promotes fast system response while remaining stable.
This distance was found through trial and error. The
ESCs and wires run through the tubes to prevent damage
in the case of a crash.

IX. MOTOR SELECTION AND DESIGN

By keeping the weight to a minimum, the size of the
motors needed to lift the craft is reduced. The motors
selected for the project are 1300 kv brushless outrunners
made by Hextronik. The motors are more efficient than
brushed motors, but require a constant signal from the
ESCs and are more expensive to purchase. They are also
less likely to be damaged in the event of a crash as
outrunner motors have the rotor on the outside of the
windings. The motors provide up to 400 grams of thrust
each at maximum speed with propellers 8 inches in
diameter and a 3.8 inch slow flyer pitch. Maximum
current draw for each motor with the above mentioned
load is near 7.5 amps. The propeller size was chosen
specifically because experimental data revealed them to
produce the most thrust for the current levels desired by
the group. Regular propellers are placed on one axis, and
counter-rotating propellers are used on the other axis to
counteract the angular momentum of each with the other.
The ESCs for the motors are rated up to 10 amps and
control the amount of current delivered to the motors.
They also are used to change the direction of motion of

TABLE I
COMPONENT WEIGHTS

Item Weight (g)
PVC Connector 22
Tubular Arm 35
#4 Bolt and Nut 5 (x12)
#0 Bolt and Nut 1 (x8)
Landing Base Leg 8.5 (x4)
Bracket 10 (x6)
Motor 24 (x4)
Propeller 8 (x4)
ESC 10 (x4)
Bullet Connector 0.8 (x20)
PCB 40
Large Battery 322
Small Battery 35
Wire 5 (x10)
Total 852

the motors so that the propellers rotate in the correct
direction. The ESCs allow current to flow based on the
signal received from the microcontroller. Each speed
controller receives a 50 Hz signal with a pulse lasting
anywhere from 1 to 2 milliseconds. The pulse width
modulated signal (PWM) conveys full throttle when at 2
ms and decreases to no throttle at 1 ms. The control loop
adjusts the duty cycle for each ESC throughout the flight
of the quad-copter to ensure a stable flight.

X. POWER SELECTION AND DESIGN

The quad-copter is powered by two lithium polymer
batteries. The larger of the two is a 4400 mAh 11.1V
battery that is used to power the motors, ESCs, and battery
sensor. Due to the large current draw from the motors, the
larger battery is the limiting factor for the flight time of
the aircraft. The battery lasts approximately 8 minutes
when the motors are at full throttle and under load. The
battery sensor alerts the user that the motors are about to
lose power and helps ensure the battery is not drained
below the minimum 3 volts required to maintain the
battery’s integrity. The smaller battery is a 610 mAh 7.4V
battery that powers all the components of the control
board. Current draw for the components is listed in table

2. Both batteries are charged fully before extensive flights
to minimize problems caused by power loss.

All components on the board use 3.3V; thus, the PCB is
equipped with two TLV1117-33 linear voltage regulators.
One regulator provides power to the analog side of the
microcontroller and the completely analog accelerometer,
while the other regulator provides the power for the digital
part of the microcontroller and the totally digital
magnetometer and gyroscope. The ground planes are also
separate for the digital and analog portions of the system.

The separation of the digital and analog portions decreases
the potential noise that can otherwise interfere between the
two types of devices. The two batteries are used for the
similar reason of avoiding noise among components, but
also to avoid the excess heat and power loss of dropping
the 11.1V battery down to 3.3V.

Lithium polymer batteries are used due to their high
energy density of approximately 90 to 120 Wh/kg and fast
charge times [3]. Disadvantages present themselves in the
form of high cost and potential danger of combustion.
The batteries comprise almost half of the weight of the
quad-copter, and it is therefore important to keep the
batteries very close to the center of the vehicle.

XI. IPHONE CONTROLLER

The application on the IPhone is the main control
method to control the quad-copter. The IPhone app has
two main screens, one controls the copter and the other
give details of the current status of the quad-copter. The
sliders on the left and right hand side of the screen tells the
control the copters left, right, forward and backward
movements. The slider on the bottom of the screen
controls the height of copter. These messages are sent over
an 802.11G protocol from the IPhone on over the
Transceiver that is on the quad-copter. The messages for
the left and right sliders had a default format of XX.XX
where each “X” represents a value from 0 to 9 and had a
max value of 99.99.

To control the height of the copter there is a slider on
the bottom of the screen that adjusts the height to the
user’s specification. Unlike the sliders that control the side
to side and forwards and backwards movement, this slider
will not move back to a central position. Instead this slider
will stay wherever the user has last moved the slider to.
Upon start up of the copter, the copter will move to a
height of 5ft and the slider will accurately portray this as
the copter begins to rise. The quad-copter has a safety
feature in it to not allow the user to bring it all the way too
close to the ground by use of the slider. To monitor the
height of the quad-copter we use an ultrasonic sensor that
monitors the height. The maximum height for the copter to
accurately fly within control of the ultrasonic sensor is of
10 feet. This slider also has a default format of XX.XX
which would give the user too precise of a control that
would not be useful for the quad-copter. To give it a better
feel for the height slider, the group divides the slider level
by 5 giving 20 equal levels of unit to use to control the
height. Each level represents a half of foot giving a range
from 6 inches all the way up to 10 feet.

The packets that are sent to the quad-copter from the
IPhone are strings that have 3 characters. The packets
have one of three different leading characters either “L”,

TABLE II
CURRENT CONSUMPTION

Part Current from
4400 mAh Li-Po

Current from
610 mAh Li-Po

Hextronik Motor 7.5 A (x4) 0
ESC 2.4 mA (x4) 0
Battery Monitor 3 mA 0
Cortex M3
Processor

0 36 mA

Wi-Fi Transceiver 0 180 mA
Ultrasonic Sensor 0 2.1 mA
IDG500 0 7 mA
ADXL335 0 350 uA
HMC5843 0 9 mA
3.3V Regulator 0 150 mA
Total 30.0126 A 384.45 mA

“R”, or “H” representing which slider was moved and by
how much. The characters following one of those
characters will be a number from -10 to 10, besides the
bottom the slider which is from 0 to 20.

BIOGRAPHY

Angel Rodriguez is a
graduating senior in the
Electrical Engineering degree
program at UCF. His current
area of interest and
responsibilities in the project
involved microcontroller
development. After

graduation Angel will be seeking employment in the
engineering industry.

Daniel Goodhew is a senior
student of the electrical
engineering department at the
University of Central Florida.
He is currently working at
Intersil as an applications
engineer intern and plans to

continue working at Intersil full time in January 2011.

John Sullivan is currently a
graduating senior in
Computer Engineering at the
University of Central Florida.
He is interested in
applications programing and
plans to pursue a job in

industry upon graduation.

Jared Rought is currently a
senior at the University of
Central Florida and will
graduate in December 2010
with his Bachelor’s of Science
in Electrical Engineering. He
currently holds an internship

at Lockheed Martin Missiles and Fire Control as an
Electrical Engineering Intern. Upon graduation he plans to
continue his studies by pursuing a Masters of Science in
Electrical Engineering with a concentration in Micro-
Systems and Nano-Systems.

ACKNOWLEDGEMENT

The authors wish to acknowledge the assistance and
support of Dr. Richie, Intersil, the group’s significant
others’, and fellow students.

REFERENCES
[1] Premerlani, William, and Paul Bizard. Directional Cosine

Matrix IMU: Theory. Tech. DIY Drone, 17 May 2009.
Web. 15 June 2010.
<http://diydrones.com/profiles/blogs/dcm-imu-theory-first-
draft?id=705844%3ABlogPost%3A77893&page=6#comme
nts>.

[2] "Direction Cosine Matrix." PlanetPhysics. 25 Aug. 2005.
Web. 15 June 2010.
<http://planetphysics.org/encyclopedia/DirectionCosineMat
rix.html>.

[3] Buchmann, Isidor. "What's the Best Battery?" Welcome to
Battery University. Cadex, Nov. 2006. Web. July-Aug.
2010. <http://www.batteryuniversity.com/partone-3.htm>.

