
Chapter 1 Introduction
1.1 Executive Summary

Our project is called Autonomous Drones and for this project we are going to make two robots. Our goals for this project are for the two robots to work together intelligently to complete a maze faster than an individual robot would be able to. These robots are going to involve using a microcontroller, a ranger finder, IR sensor, XBee, and a base vehicle. The microcontroller and the code we must use to make it work are going to be pivotal to the project. The microcontroller must integrate all the other aspects of the project and make sure they work seamlessly. We are going to try to make the code a little simpler by using a base vehicle that can rotate in a 360° angle. This will help by making the code shorter, which will make the information execute faster, and by making it easier for the robot to retrace its steps. The laser range finders purpose in the project is to save time. It saves time by not only assessing each robots surroundings but by making the robot notice when it is in a dead end sooner. The XBee is used to transmit the information from one robot to another. This information will help the robots to in a way integrate their individual maps to get a full view of the maze they are in. The significance of this project is to advance the previous maze robot technology that is out there. Not only did we want a cost effective robot we wanted to make the whole process of an autonomous robot solving a maze more efficient and faster. That is why one of our goals for the project is that our two robots work together to solve the maze faster than an individual robot would. Some of the previous projects that have affected our project are the MightyMouse and Alice projects. The MightyMouse project was helpful because it was a small robot that was built to find a certain spot in the maze. The difference is that the MightyMouse project wants to find the middle of the maze while ours wants to complete it. The Alice project was also pivotal because it was a five year program that continuously advanced the technology of maze solving robots. This project not only won numerous competitions it made autonomous robots more cost effective so that it could be sold mainstream. All these projects can be used as a framework to help us complete the task we have set forth. The Autonomous Drones project will help to advance the technology of maze solving robots, which we feel is a pivotal part to being an engineer.

Chapter 2 Initial Technical Content

2.1 Project Significance

Our project is significant for many reasons. One reason our project is significant is because technology is a constantly evolving thing and we are adding to that fact. Also, it is significant because of the level of difficulty involved. Another reason our project is significant is because every project has many ways you can go about completing that task. All of these reasons prove why every project has some form of significance.
One reason our project is significant is because technology is a constantly evolving thing and we are adding to that fact. Everything we use today has a prototype that came before it. We have some previous projects that we can use as a reference such as the FPGA Autonomous Vehicle project. The difference between our project and the FPGA Autonomous Vehicle project is that instead of FPGA we are using a microcontroller. An example of a FPGA board is shown in Figure 1 and a microcontroller is shown in Figure 2 to show the vision differences in a microcontroller and a FPGA board.

[image: image71.png]

Figure 1 FPGA Board
[image: image2.jpg]

Figure 2 Microcontroller

 Also if no one attempted to build upon the technology that was already available a lot of things would be different in the world. Cell phones are the perfect example of constantly changing technology. Every year more phones are released that can do everything from check emails to operating different things in your home. Without this constant search for knowledge a lot of projects like ours would not be possible.
Also, it is significant because of the level of difficulty involved. The most difficult part of our project is to get the robots to communicate intelligently. They individually have to record and store information then they have to communicate the information to each other in order to solve the maze. One of the ways we are trying to make this problem easier is by using a base vehicle that can rotate 360 degrees. This would help make the code a little bit easier and give the robot less information to store. Every aspect of what parts we choose have a great impact on how difficult this project can be for us later on but the challenge is part of the reward when we do complete our project.
Another reason our project is significant is because every project has many ways you can go about completing that task. For our project there are many operating systems that can be used. The microcontroller we have chose to use helps with that because it can be used on a Windows or a Mac. Also, whether we used a microcontroller or a FPGA board has a lot to do with how we have to complete the project. It mostly affects the code that can be used and it is a pivotal part of our project. The great thing about innovation is that there are many ways to accomplish it. All of these reasons prove why every project has some form of significance. It is all about innovation.

2.2 Project Goals and Motivation
We have many goals and motivations for our project. We wanted a project that would not only challenge us to do something different but that would take some previous research to the next level of technological improvement. Our motivation for this project is to build two robots that work together to navigate a maze. This project has a high level of difficulty because the robots must communicate wirelessly and analyze information intelligently. We want two robots that are easy to use, preferably using a base vehicle that rotates at a 360 degree angle, and that can accurately use each other’s information to gain information on how to solve the maze. To accomplish this task we want to use a microcontroller and the code we use is going to be just as important as what microcontroller we use. The code has to be as efficient as possible because the amount of information that has to be stored definitely has an impact on the time it will take the robots to complete the maze. This is why we want to use a base vehicle that rotates 360 degrees because that makes the code a lot easier because 90 and 180 degree angles can be used. The robots should also be able to figure out where and how far the walls are from them and record which routes have been taken to learn the maze. This part of the project involves the microcontroller and the ultrasound laser range finder working in conjunction. This is another part of the project where the code is pivotal to the success of our project. The robots should communicate this information wirelessly to help solve the maze in the fastest manner possible. At this point in our project the choice of wireless protocol is quite important. We compared a wifi chip and Bluetooth chip but ended up using XBee and Pololu QTR- 1RC Reflectance Sensor to figure out how we wanted to go about this task. Also, we looked into a microcontroller with a Bluetooth chip already included, which would help with the integration process. All these options can work but the key is to figure out which one will make our project prone to fewer problems later on during the integration and testing process. Another goal is to make a collection of two robots that allows at least one robot to complete the maze in a timely fashion and in an intellectual way. This is one of the unique aspects of our project. Once the first robot completes the maze it relays the information to the other robots and they will confirm that the maze was completed in a timely fashion using the information stored from the first robot. We want it to seem as if each robot can see through the other robot’s eyes and as if they were working with one mind.
2.3 Specifications and Requirements

We have some high expectations for our project. Through our goals and motivation section you can see that we have put a lot of thought into what we want to accomplish with this project. Our motivation for this project is to build two robots that work together to navigate a maze. This project has a high level of difficulty because the robots must communicate wirelessly and analyze information intelligently. The point of being an engineer is to always leading the innovation of technology and with this project we are aiding in the endeavor. We all have different things we are adding individually to this project which includes a combination of software and hardware. We wanted to do something where we could use all our training. Our specifications and requirements are as follows:
· Two robots that communicate on a wireless connection

· The motor of the robots should have enough torque to move the weight of the entire system

· The microcontroller shall provide enough I/O ports to support the system

· The robot should be able to support the weight of all the components

· The base of the vehicle should be able to rotate 360°

· The code should execute immediately and the robots should not pause longer than 10s

· The robot should not be used in more than 2 inches of water

· The maze should be 10 x 10 or larger
· The robots should be able to navigate the maze in a max of 5 mins.

· Once the 1st robot completes the maze the other robot should confirm that the maze is completed in less than a minute
· Robots should be able to measure their distance from the wall to a degree of error not greater than 4 cm
· Robots should be able to store maze information and send it

· The robot should be able to identify dead ends in no more than 5s

· Robots should be able to analyze the sent information in less than two0s

· Each robot should cost less than $150 to construct

· The robot should go faster than 5 mph
· The power supply should produce a current of more than 2500 mA

The specifications and requirements above are tentative, as the project progresses we might adjust them. The adjustments will be based on hardware limitations and cost versus efficiency considerations. During the testing and integration process we will know more about what power supplies are needed to complete the project.

2.4 Project Milestones
Our project milestones are a tentative schedule for our project throughout the spring and fall semesters. It will be updated as we move forward with the project. The current project milestones are shown in Table 1:
	March 1st, 2010

	
Research on microcontroller(hardware) finished

	
Research on microcontroller(software) finished

	
Acquire test remote control or wired toy cars

	

	April 5th, 2010

	
Acquire Short-range Rangefinder

	
Design Maze Design

	
1st "Robot Autonomous Drone"

	

	April 21th, 2010

	
Group C meet to finalize the Senior Design I Documentation

	

	April 25th, 2010

	
Acquire Wireless chips & research

	

	April 26th, 2010

	
Senior Design I Documentation Due

	

	August two0th, 2010

	
Design software for "Autonomous Robot Drone"

	
Begin prototyping of Drones(Hardware)

	

	September 27th, 2010

	
Get one prototype drone to move

	

	October 11th, 2010

	Get one drone to navigate the maze

	

	October 25th, 2010

	Get 2 or two drones to navigate the maze simultaneously

	

	November 15th, 2010

	Get drones to communicate to each other via wireless chips

	
Test cooperative performance of drones in solving the maze

	

	December 3, 2010 at 5pm

	 Presentations

Table 1
2.5 Evaluation Criteria

The evaluation criteria for our project are defined as what we want the project to accomplish. When we start a project you have to set certain guidelines to gauge the success of your project. We have previously stated our goals and requirements so the evaluation is just the continuation of those sections. After discussing our areas of expertise and figuring out how we are going to integrate the robot as a whole our evaluation criteria is as follows:
· The base vehicle can support all the required components
· The two robots work together to complete a maze such as the one shown in Figure 1. Figure one shows a possible maze we want to solve for.
[image: image3.png]

Figure 2 Possible maze

· The two robots should solve the maze faster than an individual robot would
· The robots have enough battery life to support the task
· The robots communicate efficiently

· The maze is larger than or equal to 10 x 10
· All the components of each robot integrate complete into a working system
2.6 Design and Implementation Approach

As far as the design and implementation approach for the project, the group members had to come together to discuss robots on a different level then what was initially discussed between the members at the beginning of the semester. The basic design of the vehicle would be built around the parameters of cost, efficiency, speed, durability and application. The two main issues were the communication of the drones between themselves, and the microcontroller selection. Those two issues were basically addressed in one discussion where the microcontroller is integrated separately from a Bluetooth module, and the microcontroller that has a Bluetooth module built into it. For programming purposes the Bluetooth module integration into the microcontroller would simplify coding structure and complexity. Instead we used a XBee and the Pololu QTR- 1RC Reflectance Sensor because navigate was made easier.
Another discussion between the group members was about how the drones would navigate the maze as far as mechanical properties. From research done looking at past projects and such, there have mostly been analog turning units constructed which would resemble most cars which is obviously easier to implement from a mechanical approach because it’s just a replica of a modern day car or vehicle. For this particular project where drones will need to make sharp turns effectively, the drones would ideally want to be able to turn “on a dime”, that is that the drone can turn without going backwards or forwards and just staying in place and then proceeding forward as necessary. That approach can be implemented with placing wheels on opposite sides of the vehicle, and coding the vehicle necessary to have one wheel go forward and one go backward simultaneously. This is contrary to the normal forward motion where the wheels are going in the same direction and propelling the drone forward.

Chapter 3 Investigation on Existing System

3.1 History of the Robot/ Autonomous Vehicle
Autonomous vehicles/ robots are classified as any vehicle or robot that is run without human control. There are many things that were necessary to make it possible for autonomous vehicles to be a reality today. In 1788, James Watt invented a feedback- control system for steam engines even though it was not used in any vehicles until 1910(Encyclopedia). Then in 1945, Ralph Teetor who was a blind inventor and a mechanical engineer invented the modern cruise control. About 1two years later in 1958, the Chrysler Corporation Imperial was released and it used Teetor’s cruise control system. Teetor’s cruise control system calculated the speed from the drive shaft rotations and varied the throttle position with a solenoid. These inventions paved the way for the first actual implementation of an autonomous vehicle.

In 1977, Tsukuba Mechanical Engineering Lab in Japan created the first autonomous, intelligent (FAQ). It tracked white street markers and achieved speeds up to two0 kilometers per hour (FAQ).
Ernst Dickmanns and his research group at the University of Bundeewehr Munich continued the research in 1980 and built robot cars using saccadic vision, estimated approaches like Kalman filters, and parallel computers (Schmidhuber). This new technology increased the speed of known autonomous vehicles to 96 kilometers whichwas over a two00 percent improvement over the previous model.These research groups paved the way for large government funded projects dealing with autonomous vehicles.
The late 1980s and 1990s led to a significant increase in the interest in autonomous vehicles. From 1987 – 1995, the largest autonomous vehicleproject up to that date was funded by the European Commission. The pan-European Promethus project, better known as the EUREKA Prometheus Project, was meant to improve the flow and security of road traffic (Mines Paris Tech). The prototype vehicle was called PROLAB2 and it involved a CMM, whose mission was to elaborate the image processing algorithms for road tracking, lane segmentation and obstacle detection(EMP /CMM). In 1994, a project called VaMP and the VITA2 in Paris was also in its final stages. This project was orchestrated by the engineers from the University of the German Federal Armed Forces in Munich and Mervedes-Benz and they increased the speed of autonomous vehicles up to 1two0 kilometers per hour. They used dynamic vision to detect up to twelve other cars and avoid them as well as control the steering wheel, throttle, and brakes through a computerized command system that relied on real-time evaluation of image sequences (Chiafulio). In 1995, Mercedes-Benz continued to help propel the innovation of autonomous vehicles. Until this point throttle and brakes needed human intervention; this model exceeded speeds of 177 kilometer per hour and was able to complete its journey using 95 percent autonomous driving(Chiafulio). By this point Mercedes- Benz was no longer the leading innovator in the technology related to autonomous vehicles.
From 1996 – 2001, the altered LanicaThema was invented, which was a car created by the Italian ARGO Project that can follow painted white line marks in a highway (Alberto Broggi). They used stereoscopic vision algorithms to follow the path and sparked worldwide interest and research in the area, including the DARPA-funded “DEMO” projects that focused on vehicles able to navigate through off-road environments(Alberto Broggi). They provided the starting knowledge and experience of automotive robotics(Alberto Broggi). The DARPA’s challenge began in 2005, which is a course that has 29two5 GPS points and is 211 kilometer desert course. From 2007 – present led to sensor systems become more elegant and semi-autonomous features begin to hit the mainstream with manufacturers from Audi and Volvo, to GM and Mercedes incorporating features like collision avoidance, lane recognition, and driver attention assist into their new vehicle lines(Gingichashvili). All these people have helped the innovation of the technology needed for autonomous vehicles and robots.
3.2 Overview of Robotic Maze-Solving Projects

There are many previous robotic maze-solving projects that have come before our project and there are constant advances being made. One previous maze solving robot project was called MightyMouse, which was a robot made to find the center of a maze. Another project that can be used as a base for our project is called The Autonomous Miniature Robot Alice. The Robotix competition is one way that robotic maze-solving projects are showcased every year. There are many competitions that are done each year to show of the new technological advances in robotics. The Robotix competition is just one competition that is used for people to come together and compare their ideas. All of these things are important when it comes to our project and robotic maze- solving projects as a whole.
One previous maze solving robot project was called MightyMouse, which was a robot made to find the center of a maze.This project has a few different aspects or goals than our project but the main goal is still there. This project is using one mechanical mouse to find the center of a maze. Our project is using two robots working together to collectively complete a maze. Those are the subtle differences in the two projects but the framework of the projects is the same. The main goal is to program an autonomous robot/ vehicle to complete a task including a maze. This project is actually part of a competition called the Official Micromouse Competition that was established in 1987. One version of a MicroMouse project is shown in Figure 4 and it was invented by Ng BengKiat(Unknown).

[image: image4.jpg]

Figure 4. MicroMouse

In order to complete this competition there are a few goals that must be accomplished including the following list
a) Recognize walls and openings

b) Stay centered within each cell

c) Know position and bearing within the maze

d) Control the distance needed to travel

e) Make precise 45° and 90° turns

f) Perform mechanically

g) Navigate the maze intelligently

(Kelly Ridge). All of these requirements had to be met in order for the MightyMouse project to be successful. This is just one of the few projects that have been invented to solve the problem of autonomous robots solving mazes.
Another project that can be used as a base for our project is called The Autonomous Miniature Robot Alice.The Alice base modules evolved over 5 years and the most recent version was in 1999. The first version of Alice was invented in 1995 at the Swiss Federal Institute of Technology Zurich. The progression of the Alice prototypes can be shown in Figure 5 and the oldest version is in the bottom right of the picture (G. Caprari).
[image: image5.emf]
Figure 5 Evolution of prototypes
There have been 4 Alice prototypes invented. The first version was in 1995 in Zurich where the robot could follow a black line on white paper. The goal was to demonstrate the combination of watch motors with low power microcontroller in an autonomous integrated system (G. Caprari). The drawback of this version was that the robot slipped on smooth surfaces and the robot was hard to assemble. The second version was invented in 1997 at the Institute of Robotics. The objectives were to build the mini robot as flexible as possible, able to sense obstacles and receive wireless commands (G. Caprari). This was the prototype where bidirectional watch motors began to be used and they assured that the robots tires gripped to any surface. The third version of Alice was invented in 1998 at the Swiss Federal Institute of Technology Lausanne. This version focused on avoiding loose wires, implementing a new plastic frame, and bigger rubber tires to absorb the shocks. From this point on the Alice prototypes focused on reducing costs and prepare the robots to be sold mainstream. This prototype was so successful that it won the International Nagoya Maze Contest for autonomous systems in 1998. The last version of Alice was in 1999 by the K-Team. The purpose of this prototype focused on the poor traction of the previous prototypes by symmetrically mounting the wheels. Also, two batteries and a voltage regulator were added because the voltage shortage resulted in communication errors. This version was so successful it won the International Nagoya Maze Contest in 1999. Over hundred Alices have been made based on the last two prototypes because of the success of this project as a whole. Our project would not be possible if it was not for projects such as this that came before it. The competitions such as the International Nagoya Maze Contest also foster a perfect environment to test the technological advancements.
The Robotix competition is one way that robotic maze-solving projects are showcased every year. This competition is an annual robotics and programming event organized by the Indian Institute of TechnologyKharagpur. The Robotix competition includes mechanical robotics, autonomous robotics and programming. It began in 2001 and has gone on every year since. There are many subcategories in the two categories which are manual, autonomous and programming. All these do not impact our project directly but it does help with fostering of new ideas. Competition is the motivation for many things in the world. The whole concept of competition is the motivation that also inspired which country made it to space first and weapon advancements everywhere.
All the projects and competitions have made it possible to do what we are trying to do today. Our project is a combination of previous projects that have been successful. The MicroMouse and Alice projects were just a few projects that have come about over the years that are pushing the boundaries of what robots can do. The history of robotic maze solving projects is ongoing and will continue not only through our group but numerous engineers to follow.
Chapter 4 Research of a New Solution

4.1 Introduction

There are many options out there that we could use to complete our goals for this project. The hardest part of our project is going to be the integration of all the different parts of our project. The next problem we will have to solve is how to store and obtain the maze information from each robot and communicate that information to the other robots. There are some previous prototypes that have the general idea of what we want to accomplish our goal is just to extend those ideas. The great thing about technology is that there is always improvement to be made.
The hardest part of our project is going to be the integration of all the different parts of our project. Our project will need a microcontroller, a wireless protocol, a laser range finder, and a base vehicle. The most important decisions we will make is what products we want to use to satisfy these key elements. The products we choose can have a great impact on the success and level of difficulty of the project at hand. The integration of the wireless protocol, the microcontroller, and the laser range finder are pivotal. For the laser range finder we have decided to use the ultrasound version. We made this decision because this type of laser range finder is cost effective and it has some unique qualities that should make it easier to integrate with the microcontroller. Some of these qualities include the fact that this type of range finder can output in analog or digital. Also, for the microcontroller and wireless protocol we have many options to look into. The main microcontroller we are looking into is the ATmega (ArduinoDuemilanove) for its cost effectiveness, the way it interprets information, and for the fact that it is capable of running on multiple platforms and or operating systems. Even though this is a good option we might opt for a microcontroller that also includes the wireless protocol. These decisions will solve help to solve the hardest part of our project.
The next problem we will have to solve is how to store and obtain the maze information from each robot and communicate that information to the other robots. This is where the microcontroller and wireless protocol are most important. The ATmega (ArduinoDuemilanove) microcontroller is the best option as far as the single microcontrollers go. A FPGA board can be used too but the coding necessary would be greatly different and it might not integrate with the wireless protocol as well. Another option we are looking into is a microcontroller with a wireless protocol already integrated into it. One example of this is the JN5148 Wireless Microcontroller from Jennic. The right code is what brings all of this together and solves this problem.
There are some previous prototypes that have the general idea of what we want to accomplish our goal is just to extend those ideas. One version of this is the FPGA low cost autonomous vehicle. The difference is for our application we do not want to use FPGA because we are communicating with more than one robot and the wireless protocol is a vital part of that. The microcontroller is easier to integrate with a wireless protocol. Another difference is that this autonomous vehicle is just for one vehicle while we need two robots working in conjunction to intelligently solve the maze. Even though this prototype does not fully solve our problems it lays the groundwork for what we want to do. The great thing about technology is that there is always improvement to be made. As engineers it is our job to continuously find ways to make things better.
4.2 Range Finder

There are two different types of range finder that we could use for our project which are laser range finders and ultrasound range finders. The laser range finders provide a more detailed view of the surroundings but the extra detail comes at a greater cost. The ultrasound range finder is low cost and it is quite effective at verifying the distance of an object. The ranger finder used must be able to integrate with a microcontroller and also be light weight enough to be on a small scale autonomous robot. Both of these options could work but in all projects the main battle is between effectiveness and cost.
The laser range finders provide a more detailed view of the surroundings but the extra detail comes at a greater cost. The most common form of laser rangefinder operates on the time of flight principle by sending a laser pulse in a narrow beam towards the object and measuring the time taken by the pulse to be reflected off the target and returned to the sender (Wikipedia). The accuracy of the instrument is determined by the rise or fall time of the laser pulse and the speed of the receiver. One that uses very sharp laser pulses and has a very fast detector can range an object to within a few millimeters (Wikipedia). Accuracy up to a few millimeters would be useful for our project because in order to navigate the maze effectively the robot must be able to detect the maze to a certain degree of accuracy.
The ultrasound range finder is low cost and it is quite effective at verifying the distance of an object. The good thing about ultrasound range finders is because they can perform in low visibility. This range finder operates by using a pressure wave and then detecting its reflections off of any object. The good thing about this device is that the farther the distance the wider the observation space is.
The ranger finder used must be able to integrate with a microcontroller and also be light weight enough to be on a small scale autonomous robot. Overall we think the ultrasound range finder is the most effective due to basic economics. It is efficient for the specifications we have provided and it is also cost effective. They are also easy to use and they only need a small supply current. All of these factors are important for small autonomous robots.
4.3 Choosing the right vehicle

There is a myriad of possibilities when trying to decide on how the body of the autonomous robot should look and the correct size when travelling through the maze to accomplish its task. However the decision making process depends upon the stipulated condition and the final objectives of the machine. In some cases the needs or purpose of the machine require a certain type of wheel while in some cases the materials may be of greater important. Therefore in design the autonomous robot every area of mechanical design will be looked such as the material, motor, wheels and its navigational system.

4.3.1 Frame of vehicle

In considering the frame of the autonomous robot keen attention is place on the correct chassis of the robot and the type of material that will be used to make the frame. Building the robot from scratch is the main goal in this design process, therefore the frame of the chassis plays an important role, also the robot must be able to make right and left turns as well as turn a rounds. In taking all of these design ideas into consideration the autonomous robot frame can be made from various materials such as aluminum, carbon fiber, titanium, polycarbonate plastic, steel etc. Because we need the robot to be light weight and made of a rigid material the best option for such a material would be aluminum or plastic. Aluminum as well as plastic can be easily acquired in sheets of 3 x 3 centimeters at a cost of $9.85.

Comparison of a RC Car and a Built Car

In designing the autonomous robot at first it was decided to purchase a cheap but solid RC car hack it to install the other parts to make the autonomous robot, but after reading and doing a little research on the RC cars it was decided that building the autonomous from scratch would work out much better than the RC car. It was firstly decided to buy to purchase a buggy RC car. The cost of such a car was estimated to cost about $169.95.the advantage of that decision was the car would have come already made with motor, axle, servo and wheels all connected and just ready to move this would have given us one less thing to worry about, but after really comparing the autonomous to the RC the greatest disadvantage was there wasn’t enough room on the chassis to accommodated all the other hardware devices to be install. Therefore after careful consideration it was decided that building the was the better option

4.3.2 Motor

The motor that will be used in the robot will be a DC motor with the gearbox already attach this motor is mainly called a servo motor, which will make the robot have better control, be more efficient and stronger or a stepper motor. To find the correct motor a more precise look is needed.

Stepper Motor

According to the book Stepping motors and their microprocessor by Kenjo, Takashi a stepping motors can be viewed as electric motors without commutators. Typically, all windings in the motor are part of the stator, and the rotor is either a permanent magnet or, in the case of variable reluctance motors, a toothed block of some magnetically soft material. All of the commutation must be handled externally by the motor controller, and typically, the motors and controllers are designed so that the motor may be held in any fixed position as well as being rotated one way or the other. Most steppers, as they are also known, can be stepped at audio frequencies, allowing them to spin quite quickly, and with an appropriate controller, they may be started and stopped "on a dime" at controlled orientations.

For some applications, there is a choice between using servomotors and stepping motors. Both types of motors offer similar opportunities for precise positioning, but they differ in a number of ways. Servomotors require analog feedback control systems of some type. Typically, this involves a potentiometer to provide feedback about the rotor position, and some mix of circuitry to drive a current through the motor inversely proportional to the difference between the desired position and the current position.

In making a choice between steppers and servos, a number of issues must be considered; which of these will matter depends on the application. For example, the repeatability of positioning done with a stepping motor depends on the geometry of the motor rotor, while the repeatability of positioning done with a servomotor generally depends on the stability of the potentiometer and other analog components in the feedback circuit.

Stepping motors can be used in simple open-loop control systems; these are generally adequate for systems that operate at low accelerations with static loads, but closed loop control may be essential for high accelerations, particularly if they involve variable loads. If a stepper in an open-loop control system is over-torqued, all knowledge of rotor position is lost and the system must be reinitialized; servomotors are not subject to this problem.

Stepping motors come in two varieties, permanent magnet, variable reluctance and hybrid. Variable reluctance motors have two sometimes four windings with a common return, while permanent magnet motor usually have two independent windings, with or without center taps.
Permanent magnet stepper

According to the article Stepper motor on Wikipedia within a Permanent Magnet stepper a coil of wire (called the armature) is arranged in the magnetic field of a permanent magnet in such a way that it rotates when a current is passed through it. When a coil of wire is moving in a magnetic field a voltage is induced in the coil - so the current (which is caused by applying a voltage to the coil) causes the armature to rotate and so generate a voltage. It is the nature of cause and effect in physics that the effect tends to cancel the cause, so the induced voltage tends to cancel out the applied voltage.

The motor cross section shown in the Figure 7 is of a two0 degree per step permanent magnet Motor winding number 1 is distributed between the top and bottom stator pole, while motor winding number 2 is distributed between the left and right motor poles. The rotor is a permanent magnet with 6 poles, two south and two north, arranged around its circumference.

For higher angular resolutions, the rotor must have proportionally more poles. The two0 degree per step motor in the figure is one of the most common permanent magnet motor designs, although 15 and 7.5 degree per step motors are widely available. Permanent magnet motors with resolutions as good as 1.8 degrees per step are made.

As shown in figure 6, the current flowing from the center tap of winding 1 to terminal a causes the top stator pole to be a north pole whiles the bottom stator pole is a south pole. This attracts the rotor into the position shown. If the power to winding 1 is removed and winding 2 is energized, the rotor will turn two0 degrees, or one step

[image: image6.png]=]

o]

Figure 6
Variable reluctance stepper

Variable reluctance motors have a plain rotor and operate based on the principle of that minimum reluctance occurs with minimum gap, hence the rotor points are attracted towards the stator magnet poles.

If your motor has two windings, typically connected as shown in the schematic diagram, with one terminal common to all windings, it is most likely a variable reluctance stepping motor. In use, the common wire typically goes to the positive supply and the windings are energized in sequence.

The cross section shown in Figure 7 is of 360 degree per step variable reluctance motor. The rotor in this motor has 4 teeth and the stator has 6 poles, with each winding wrapped around two opposite poles. With winding number 1 energized, the rotor teeth marked X are attracted to this winding's poles. If the current through winding 1 is turned off and winding 2 is turned on, the rotor will rotate 360 degrees clockwise so that the poles marked Y line up with the poles marked 2.

[image: image7.png]10—0000—
20—0000—
30—Q000—

Foc

Figure 7
Hybrid stepper

Hybrid stepper motors are named because they use a combination of permanent magnet and variable reluctance techniques to achieve maximum power in a small package size.
Characteristics of a stepper motor

Found in the article Stepper motor on Wikipedia are a few characteristics of a stepper motor which is of importance if deciding to use this motor for the autonomous robot and these are listed as follows:

1. Stepper motors are constant power devices.

2. As motor speed increases, torque decreases (most motor when stationary exhibits maximum torque but torque is mostly important when motor is actually spinning.

3. The torque curve maybe extended by using current limiting drivers and increasing the driving voltage

4. Steppers have more vibration than any other type of motor, as the step tends to snap the rotor from one position to another very important because at certain speed the motor can actually change direction.

5. This vibration can become very bad at some speeds and can cause the motor to lose torque, therefore keen attention must be place on the torque of the motor

6. This problem can be lessen by speeding through the problem speeds range, physically damping the system, or by using a micro-stepper driver

7. Motors with a greater number of phases also exhibit smoother operation than those with fewer phases (this can also be achieved through the use of a micro stepping driver

Figure 8. stepper motor with cable

[image: image9.png]

Figure 9. STM2two Series Drive+Motor

Servo motor

The servo motor is defined in Dennis Clarks book “Building Robot Drive trains” as a DC motor attach to a gearbox that can bring the motor down to a 180:1 ratio, which means that the torque of the motor is increase by 180 times. The motors inside the DC servos are very small inside plastic cases, also inside are controllers that convert all the signals sent to the servo into shaft movement.

There are many different types of servos and they are all distinguished from each other by their rating with respect to the torque and the speed. Servos come with a torque ranging from 17 ounce-inches to 200 ounce-inches. Most servos come with a 4.8 V input voltage and a few more have a slight increase in voltage to 6V. Some DC voltages also have a 12 V input voltage which makes them much stronger for high demand than over a short period of time. According to Dennis Clarke there are two simple ways to implement the servo, these are unmodified for leg circulation and modified for continuous rotation. Both of these implementation are easy to wire and a favorite among robot hobbyist. They are both able to be size in order to fit custom applications needed by the user. A servo is said to be modified if the end-stop is removed, which would let the servo spin 180° freely, thus removing the rotational movement limiter and its sense to locate will create powerful gear head motor. To get the maximum no-load RPM in radians per second Dennis Clark used the following equation to get the data below.

The following equation was used to calculate the speed (a) at 60° and an input voltage of 4.8 V

[image: image10.png]o0 2mrads, 607 S0sec lrev
2 360 2 " Tmin 360

The torque in Newton-meters for the servo will be

[image: image11.png]hesx 0 AN 254om | Irev
X mches X T X 022500 X Lin 360

torque

In the above equation x is the torque of the 4.8 V servo in ounces-inches

[image: image12.png]b— emx 2om/secz _im
M X X 100em

= torque

The maximum power calculated will be

Pmax= ¼ P x ω = Power

The unmodified for leg circulation is used in order to lift robot legs and other pulling and pushing motions with this, the only thing needed are torque and speed given in the specification. The force done by this servo is done through a lever arm and the stronger a lever arm is made the less stress will be exerted on the end of the lever. Figure 10 is of a motor in full and as well as its assembly.

[image: image13.jpg]

Figure 10 Components of a servo motor reprinted with permission

To communicate the angle by which the servo should turn is by using the control wire to communicate the angle. The angle is determined by the duration of a pulse that is applied to the control wire which is called pulse coded modulation. The servo is expected to see a pulse every 20 millisecond (.02 seconds). The length of the pulse will determine how far the motor turns. A 1.5 millisecond, for example will make the motor turn to the 90° position (often called the neutral position). If the pulse is shorter than 1.5 millisecond, then the motor will turn the shaft closer to 0°. If the pulse is longer than 1.5 millisecond, the shaft turns closer to 180°. Below is a illustration of the describe example. As you can see in figure 11, the duration of the pulse dictates the angle of the output shaft (shown as the circles with the arrows).

[image: image14.jpg]s ig
A
HEI

1.50 ms: Neutral ‘
1.25 ms: 0 degrees '

1.75 ms: 180 degrees "

Figure 11 Illustration of a duration of pulse reprinted with permission

4.3.3 Wheels

In deciding wheels for the robot numerous scenarios have to be taken in consideration. Firstly what kind of traction is needed? If the vehicle will be tested on any rough surface then a semi-pneumatic rubber is eminent. If the robot is going tested on smooth surfaces with no obstacle then any kind of wheel can perform adequately. However if the setting is a combination of rough and smooth then the variable to be considered is huge. Another key thing to note is the wheel dimension and also the materials making the wheel such as rubber, foam, plastic etc. In addition, the tires must have very good treads to increase the friction. Some of the outdoors and indoors wheels can be seen in the following pictures in Table 1.The final decision for the wheels of the robot falls between either PC or foam high traction wheel for the robot platform.

	Picture
	Type
	Price

[image: image1.jpg]

 Foam High traction $11.95

[image: image47.png]

 Omni wheel Double set $59.60

[image: image15.jpg]

Rubber wheels $2.50

Table 1 Picture reprinted with permission from Robotshop

4.3.4 Navigational systems

The last mechanical step in designing the autonomous robot is the navigational system. Should the robot have Omni wheel, two wheels, two wheels, or four wheels system? To answer this question we will look into each one in more details.

Omni Wheel

According to the article Robotics/Types of robots/wheels found on Wikibook the Omni wheel is like many smaller wheels making up a larger one, the smaller ones have axis perpendicular to the axis of the core wheel. This allows the wheels to move in two directions, and the ability to move instantaneously in any direction. The disadvantage of using the Omni wheel is that they have poor efficiency because not all the wheels rotate in the same direction of movement which causes loss from friction and more complex to compute the angle of movement. Below in figure 12 is shown an Omni system.

[image: image16.png]

Figure 12 Omni steering system reprinted with permission

Two Wheel

The two wheel system is the hardest of all the wheeled types to be balance because it must keep moving to maintain itself upright. The center of gravity is kept below the axle, usually accomplished by mounting the batteries below the body type. The two wheel type can have their wheels placed parallel to each other, or one wheel in front of the other tandemly placed. For this robot to be balance the base must stay below its center of gravity. An example of such a steering system is given below in figure 1two.

Figure 13 Two wheel steering system reprinted with permission
Two Wheel systems
The two wheeled robot may be of two types differentially steered (two powered wheels with an additional free rotating wheel to keep the body in balance) or two wheels powered by a single source and a powered steering for the third wheel. This differentially steered system is mainly used in small robots because it gives great accuracy when fast turns are required. The disadvantage of this system is its presents multiple problems if used outdoors that have multiple obstacles. The second two wheel system is a great alternative if the platform is created to work under an indoor environment. In the case of both these two wheel system their center of gravity has to lay inside the triangle form by the wheels. If too heavy of a mass is mounted to the side of the free rotating wheel, the robot will tip over, and a figure of the differentially steered two wheels is shown below in figure 14.

[image: image18.png]= =

Motor Motor

;

Free Turning wheel

Figure 14 Differentially steered two wheeled vehicle reprinted with permission

This steering system is more stable than the two wheel version since its center of gravity has to remain in the rectangular formed by the four wheels instead of a triangle. The four wheel system has two powered wheels and two free rotating wheels for extra balance. This kind of steering is more like a car like steering which allows the robot to turn in the same way a car does. This is a far harder method to build to build but the advantage over the previous methods is that it only needs one motor and a servo for steering. The four wheel system done in different ways provides various scenarios depending on what the intended robot needs to do. The figure 15 gives an overview of how this system looks.

Figure 15 Two powered, two free rotating wheels reprinted with permission

After carefully considering all the options available in making the autonomous robot in designing the navigational system, making sure it will perform the task that it will be assigned to do it was concluded that the two wheel system would make the robot effective and efficient.
4.3.5 Speed of Vehicle

A basic autonomous robot would have power from the servo but for this autonomous robot to have enough speed to travel through the maze within a require time limit then the robot will need to have speed, therefore it would be necessary to hook up a high power motor driver/speed controller or commonly known as the H-bridge. The H-bridge would be connected to the receiver and attach to the motor and battery as well.

According to the article H-bridge found on wikipedia, H-bridge is the link between digital circuitry and mechanical action. An H-bridge is built with four switches (solid state or mechanical). When the switches S1 and S4 are closed then S2 and S3 are open, a positive voltage will be applied across the motor. By opening S1 and S4 switches and closing S2 and S3 switches the voltage is reversed, allowing reverse operation of the motor. The H-bridge arrangement is generally used to reverse the polarity of the motor, but can also be used to ‘brake’ the motor, where the motor comes to a sudden stop , as the motor’s terminal are shorted, or to let the motor ‘free run’ to a stop, as the motor is effectively disconnected from the circuit. These actions are depicted in figure 16.

Figure 16 H-bridge schematic reprinted with permission

	S1
	S2
	S3
	S4
	Results

	1
	0
	0
	1
	Motor moves right

	0
	1
	1
	0
	Motor moves left

	0
	0
	0
	0
	Motor free runs

	0
	1
	0
	1
	Motor brakes

	1
	0
	1
	0
	Motor brakes

Table 2 S1-S4 reference to the above diagram
Encoder
After hooking up the H-bridge to the motor to determine the wheel velocity/position an encoder is needed. According to the article Sensors-Robot encoder by Society of Robots an encoder is a sensor attached to a rotating objects (such as a wheel or motor) to measure rotation. In measuring rotation the autonomous will be able to determine displacement, velocity, acceleration or the angle of a rotating sensor.

A typical encoder uses optical sensors, a moving mechanical component, and a special reflector to provide a series of electrical pulses to the microcontroller. The sensor would be fixed on the robot, and the mechanical part (the encoder wheel) would rotate with the wheel.

The output of an encoder would be a square wave, therefore when its hook up to a digital counter or microcontroller the pulses can be counted. Encoders are necessary for making robot arms, and are very useful for acceleration control of heavier robots. They are also commonly used for maze navigation. Below are diagrams of two types of encoders found in figure 17, figure 18, and figure 19.

[image: image21.jpg]

 Figure 17 Slot Encoder

[image: image22.jpg]

Figure 18 Rotary encoder

[image: image23.jpg]

Figure 19 Linear Encoder

Disadvantages of an Encoder
There are several problems with using encoders for robot position control:

· Encoders gives inaccurate position feedback of your robot

· Encoders of a finite accuracy, this means your accuracy will be off by up to an entire +/- degrees.

· Keep ambient light such as sunlight out of the sensor or else it will read false clicks

· High resolution encoders for velocity control can take a lot of computational system time, so it is better to use a digital counter IC to count encoder clicks than to have your microcontroller count clicks

· On the encoder wheel, try coloring the black lines in different shades of grey so that the encoder can identify which angle it is at even after a reset. The robot would match the shade with the angle. Being careful that the sensor does not read a 'grey shade' when exactly between a black and white line.

Brakes of the robot

The autonomous robot is being design to travel through a maze and stopping when it has complete the task but how will it be able to stop after installer the H-bridge to give it more power and speed alongside the encoder, wells there bakes come into play.

According to the article how to build a robot on Society of Robots there are two different methods to go about stopping the robot. These methods are as follows

Controls Method

This method requires an encoder placed onto a rotating part of your DC motor. An algorithm will have to be written to determine the current velocity of the motor, and sends a reverse command to the H-bridge until the final velocity equals zero. This method can let robot balance motionless on a steep hill just by applying a reverse current to your motors.

Mechanical Method

The mechanical method is what is used on cars today. Basically something will be needed with very high friction and wear resistance, and then push it as strongly as possible to the wheel or axle. A servo actuated brake works well.
Electronic Method
This method is probably the least reliable, but the easiest to implement. The basic concept of this is that if the power and ground leads of your motor is shorted, the inductance created by motor in one direction will power the motor in the opposite direction. Although the motor will still rotate, it will greatly resist the rotation. No controls or sensors or any circuits overheating. The disadvantage is that the effect of braking is determined by the motor that is being used. Some motors brake better than others. The H-bridge schematic is shown in figure 20.

[image: image24.jpg]1o H-Bridge Vee

Switch High
For Breaking

To H-Bridge

Figure 20 Schematic diagram of an electric circuit reprinted with permission

4.4 Hardware

4.4.1 Microcontroller Selection/FPGA Discussion

One of the discussions from the group members in the Senior Design group was whether or not to utilize a Microcontroller, or to utilize an FPGA (Field Programmable Gate Array) in the project. In the classes that were taken i.e. EEL 4767 and EEL 4768(Computer System Design 1/Embedded Systems and Computer System Design 2/ Computer Architecture) and EEL twotwo42 (Digital Systems) the students programmed FPGA boards in the lab. Students were able to write Verilog code that programmed the devices to act as various examples of circuits discussed in class. At first it seemed like utilizing an FPGA would have been easier because that is something that the students have familiarized themselves with at least. After doing some research it turned out to be quite the contrary.

 An FPGA is a device that contains a large amount of logic gates that can be designed and programmed to do a specified job. A microcontroller is similar in nature to a small computer that does specific jobs that a bigger component needs to use to operate correctly. In general, FPGAs are more versatile then microcontrollers and can do more tasks simultaneously as well. In an FPGA gates can be altered and changed as necessary and can be programmed to do tasks. In a microcontroller the instruction set and circuitry are already predefined and can only be altered to a degree within the limitations of the programming field. Although FPGAs can be more flexible then microcontrollers, of course there are things that have to be taken into consideration like the fact that it consumes much more power. Overheating and other hazards need to be avoided in this project to prevent from further problems down the road that can delay the completion of the project as well. In order to have the FPGA function a certain way the user would have to write the code from scratch and convert it to machine code. For a microcontroller packages can be bought that are similar in specification to what the user is trying to accomplish, and then they can modify that and accomplish the same task much more quickly. FPGAs for the obvious reasons of more versatility and flexibility cost much more then microcontrollers. As college students it is desirable to create the devices necessary at minimal costs to perform the actions necessary. Low cost efficient devices are preferred more than any other.

In order to create and design a robot that navigates through a maze, there needs to be a device that controls the robot and executes based on command. A microcontroller is an integrated circuit chip that is design to perform specific actions that are a part of a bigger embedded system. It basically provides control of a system within a system that is designed by the user. Below is a list of choices that could be utilized in the project for flexibility purposes depending on if the microcontroller has a good implementation in the project. So if the group wanted to change devices they would be able to do so relatively simply. Below is a table (Table two) that shows the summary of each microcontroller board as far as price and flash memory size only.

	Board
	ArduinoDuemilanove Board
	Arduino Atmega1280 Board
	Arduino BT Board
	ArduinoFio Board

	Flash Memory
	16 or two2 KB Flash Memory
	128 KB Flash Memory
	16 KB Flash Memory
	two2 KB Flash Memory

	Price
	$two0
	$50
	$1two0
	$25

Table two
4.4.2 ArduinoDuemilanove

There are many choices of microcontrollers to utilize for robot projects. Looking online at various choices, it was tough to choose one. It was decided that a relatively simple development environment would be necessary to develop the more complex coding necessary to get the device to perform as necessary. The main choice of microcontroller is shown in figure 21 below.

[image: image25.jpg]o
NADBI5S € 3
o en s

[: s

(

Figure 21 USB Arduino Board (Reprinted permission pending from Arduino)

The microcontroller from ATmega (ArduinoDuemilanove) had one of the lower prices and had several accounts of previous project discussions so that as the group could draw from those to improve the project for the better. One of the key components to designing and developing is to have sufficient resources available to interpret information from. Another advantage of utilizing this specific microcontroller is that it is capable of running on multiple platforms and or operating systems. For the most part, microcontrollers systems can only be run on Windows platforms. The Arduino microcontroller can run on Windows or Mac or Linux operating systems. The programming environment for Arduino is simple and at the same time flexible enough for more experienced users or programmers. There are published source tools that can be integrated and modified to be more complex for the group to update. C++ libraries can be utilized, and the user can also update the AVR C programming language into code already written and program into the microcontroller itself. There are also published circuit designs that can be improved and modified by circuit designers of the group. The breadboard version can be built by the user to understand more about the board and to prevent from spending more money than necessary. Also, the USB board would be a better choice just for compatibility and convenience issues that could occur depending on the computer that it is hooked up to. Although that most computers may have serial ports, the USB allows it to be hooked up to a wider range of computers and allows for more workability.

Overall, the board has fourteen input/output pins, six analog inputs, USB connector, power jack, ICSP header, and a reset button.

Heres an overall summary of the specifications of the board itself as well as a figure (Figure 22) to illustrate:

	Microcontroller
	ATmega168

	Operating Voltage
	5V

	Input Voltage (recommended)
	7-12V

	Input Voltage (limits)
	6-20V

	Digital I/O Pins
	14 (of which 6 provide PWM output)

	Analog Input Pins
	6

	DC Current per I/O Pin
	40 mA

	DC Current for 3.3V Pin
	50 mA

	Flash Memory
	16 KB (ATmega168) or two2 KB (ATmegatwo28) of which 2 KB used by bootloader

	SRAM
	1 KB (ATmega168) or 2 KB (ATmegatwo28)

	EEPROM
	512 bytes (ATmega168) or 1 KB (ATmegatwo28)

[image: image26.emf]
Figure 22 ArduinoDuemilanove Schematic (Reprinted permission pending from Arduino)

As far as the power goes for this microcontroller it can be powered by USB or with an external power supply. A battery can be used, as well as an AC to DC converter or adapter. It can be plugged into the board’s power jack that is 2.1mm. The battery can be hooked up to the power connector in between the GND and VIN connectors on the board. The board is capable of operating between voltages of six up to twenty volts. The board can be unstable if the voltage is less than seven volts, and it can also overheat and damage the board if the voltage is more than twelve volts supplied as well. So it is ideal to keep the voltage within that five volt range. The power pins on the board are VIN, 5V, 3.3V, and GND. The VIN is only utilized when there is an external power source and the voltage can be accessed through this pin. The 5V is the basic power supply of the microcontroller. The 3.3V is used for the FTDI chip which has the maximum current draw of 50 mA. GND is of course the ground pins.

As far as the memory is concerned for the ATmega 168 has 16KB to store code in flash memory. The ATmega 328 has 32 KB which is pretty substantial for a microcontroller.

The fourteen pins on the board can be utilized as either an input or an output and use the following functions: pinMode(), digitalWrite(), and digitalRead(). Five volts are what all these functions operate off of. The pins can provide or take 40mA and have pull-up resistors ranging from twenty to fifty thousand ohms. Certain pins have functions that they do specific focused tasks as the following indicates.

· Serial: 0 (RX) and 1 (TX). Used to receive (RX) and transmit (TX) TTL serial data. These pins are connected to the corresponding pins of the FTDI USB-to-TTL Serial chip.

· External Interrupts: 2 and two. These pins can be configured to trigger an interrupt on a low value, a rising or falling edge, or a change in value.

· PWM: two, 5, 6, 9, 10, and 11. Provide 8-bit PWM output with the analogWrite() function.

· SPI: 10 (SS), 11 (MOSI), 12 (MISO), 1two (SCK). These pins support SPI communication, which, although provided by the underlying hardware, is not currently included in the Arduino language.

· LED: 1two. There is a built-in LED connected to digital pin 1two. When the pin is HIGH value, the LED is on, when the pin is LOW, it's off.

Also this microcontroller has six analog inputs that all have ten bits allocated for resolution which equates to 2^10 = 1024 values. The last couple of pins on the board have the following functionalities:

· AREF. Reference voltage for the analog inputs. Used with analogReference().

· Reset. Bring this line LOW to reset the microcontroller. Typically used to add a reset button to shields which block the one on the board.

4.4.3 ArduinoATmega 1280

Another microcontroller choice was the Arduino Mega Microcontroller shown below in Figure 23.
[image: image27.jpg]HADE IN

g

Arduino MEGA

| wuu.arduine.cc
U

POLER /—————NALOG IN

Figure 23 ArduinoATmega 1280 Microcontroller (Reprinted permission pending from Arduino)

This board is also manufactured from Arduino and is very similar to the Duemilanove Microcontroller, but has more than two times the amount of Digital I/O Pins. The Flash Memory is of much greater capacity as well which would help for programming purposes allowing for more data to be stored and allocated accordingly. With this greater capacity the group can create more efficient programs and data structures. Also, there are sixteen analog input pins as opposed to six. So if there are more signals we need to input into our microcontroller then the group can utilize this microcontroller but for now the default device will be the Duemilanove until further changes are updated throughout implementation of the project itself. Below is a listing of the board specifications themselves.

	Microcontroller
	ATmega1280

	Operating Voltage
	5V

	Input Voltage (recommended)
	7-12V

	Input Voltage (limits)
	6-20V

	Digital I/O Pins
	54 (of which 14 provide PWM output)

	Analog Input Pins
	16

	DC Current per I/O Pin
	40 mA

	DC Current for two.twoV Pin
	50 mA

	Flash Memory
	128 KB of which 4 KB used by bootloader

	SRAM
	8 KB

	EEPROM
	4 KB

	Clock Speed
	16 MHz

The voltages utilized are the exact same specification as for the Duemilanove device. The recommended voltages total will be from 7-12 V. specifically for the Memory of the ATmega 1280 it has 128 KB of flash memory. 4 KB of that memory is utilized for the bootloader of the device. The greater number of digital pins (54) can be used to the groups advantage as input or outputs and operate utilizing the pinMode(), digitalRead(), and digitalWrite() functions. The pins themselves can receive at most 40 mA of current and function at 5 volts a piece. The pins on the board have specialized functions and are as follows:

· Serial: 0 (RX) and 1 (TX); Serial 1: 19 (RX) and 18 (TX); Serial 2: 17 (RX) and 16 (TX); Serial two: 15 (RX) and 14 (TX). Used to receive (RX) and transmit (TX) TTL serial data. Pins 0 and 1 are also connected to the corresponding pins of the FTDI USB-to-TTL Serial chip.

· External Interrupts: 2 (interrupt 0), two (interrupt 1), 18 (interrupt 5), 19 (interrupt 4), 20 (interrupt two), and 21 (interrupt 2). These pins can be configured to trigger an interrupt on a low value, a rising or falling edge, or a change in value.

· PWM: 0 to 1two. Provide 8-bit PWM output with the analogWrite() function.

· SPI: 50 (MISO), 51 (MOSI), 52 (SCK), 5two (SS). These pins support SPI communication, which, although provided by the underlying hardware, is not currently included in the Arduino language. The SPI pins are also broken out on the ICSP header, which is physically compatible with the Duemilanove and Diecimila.

· LED: 1two. There is a built-in LED connected to digital pin 1two. When the pin is HIGH value, the LED is on, when the pin is LOW, it's off.

· I2C: 20 (SDA) and 21 (SCL). Support I2C (TWI) communication using the Wire library (documentation on the Wiring website). Note that these pins are not in the same location as the I2C pins on the Duemilanove or Diecimila.

There are 16 Digital input pins and similar to the Duemilanove board there are 2^10 bits (1024) allocated for resolution. The two special pins that are left on the board are as follows:

· AREF. Reference voltage for the analog inputs. Used with analogReference().

· Reset. Bring this line LOW to reset the microcontroller. Typically used to add a reset button to shields which block the one on the board.

As far as the communication goes for the Atmega1280 it can communicate with other microcontrollers that aren’t the same brand name as Arduino, can communicate with Arduino devices as well, and with computers themselves. The serial and or USB ports provide channels for the user to interface or implement software on the device as well. What is nice about the board is that it has LEDs specifically designed for when the board has data being transmitted from the computer to the microcontroller. There is some software called SoftwareSerial that allows communication to any of the microcontrollers’ digital pins from the serial port.

The ATmega1280 also supports I2C (TWI) and SPI communication. The Arduino software includes a Wire library to simplify use of the I2C bus. As previously described any arduino board has downloadable template C code that can be uploaded instantly. With this specific microcontroller it has a program called bootloader that allows the user to add new code without an outside programmer for hardware. The communication that the device loses is the STK500 protocol. Another way to program the microcontroller is to utilize the In-Circuit Serial Programming header that is in the references part of the Arduino website which can also be downloaded via internet. There is another great feature that this board has to offer. It has automatic software reset component to it that instead of pressing a physical button required the user can just hook up the microcontroller to a computer via serial or USB ports and reset the device through the software. Basically what happens is that the Reset line of the device has a control line that can be altered to take it off long enough to actually reset the device to default settings as needed. The software allows instant programming code to be uploaded to the chip by pressing a single button “Upload” which is very convenient.

The ATMega1280 can be connected to a computer that runs Mac OS X, Windows, or Linux. Every time that the device is hooked up to the computer it is automatically reset from the software. When a sketch is being interpreted by the board when it is connected or data is being transmitted, the software allows those tasks to be completed before sending any data at all to the device. This device also has something that can disable the automatic reset that occurs when the board is hooked up to the computer called a trace. The pin is called the RESET-EN. Soldering the pads to each other on their respective sides can enable it again after that. Another method of disabling the automatic reset when connecting to a computer is to connect a resistor of value 110 ohms from the 5V to the reset line.

This device has a feature called USB overcurrent protection which protects the computer’s USB ports from having too much current and from shorting. Users would think that the computers would already take this into consideration but for insurance purposes Arduino adds a fuse that provides extra protection. After 500 mA of current is put on the USB the fuse automatically breaks that connection so that the user can remove the short and or overload.

4.4.4 ARDUINO BT

Another microcontroller choice was the Arduino BT shown below in figure 24.
[image: image28.jpg]< &)

Fade in 1

A_mous 2
0 a5 L] o AR

Figure 24 Arduino BT Microcontroller (Reprinted permission pending from Arduino)

This microcontroller was designed specifically by Arduino to communicating wirelessly with an integrated Bluetooth Module. This device is most similar to the Arduino NG (NuovaGenerazione) which is another Arduino Board. One of the differences between the two boards is that it uses a DC to DC convertor. This gives the board the capability to run off of just 1.2 V of power and can have a maximum of 5.5 V. Those high voltages will destroy the board though so it is important to be careful about that. The power supply polarity is very important as well as if the user has the poles reversed (meaning the positive and negative terminals switched). So hooking this device up will need to be very precise. The Atmega 168 is mounted on this board and allows the user to have more space for sketches and allows a couple more analog inputs as well as PWM pins. The Bluetooth module of the device has a separate pin (pin 7) that can reset this specific module by itself. The specific module being utilized is the Bluegiga WT11 (iWrap version). This module can be manipulated by simple commands from the Serial port of the Atmega168 chip. Originally there is a program that is executed on each Arduino BT chip to name the chip and setup an original passcode. Those are set by default to ARDUINOBT and to 12345.
4.4.5 ARDUINO FIO

The last of the selection of microcontrollers is the ArduinoFio shown below in Figure 25.
[image: image29.jpg]

Figure 25 ArduinoFio (Reprinted permission pending from Arduino)
This microcontroller board has technical specifications of fourteen digital input/output pins, eight analog inputs, onboard resonator, reset button, as well as holes to mount pin headers if necessary. Lithium Polymer batterys can be connected and the board can charge over a USB interface which is very useful and helpful. This board was strictly designed for wireless capabilitiesTheArduinoFio is a microcontroller board based on the ATmegatwo28P (datasheet) runs at two.twoV and 8 MHz. It has 14 digital input/output pins (of which 6 can be used as PWM outputs), 8 analog inputs, an on-board resonator, a reset button, and holes for mounting pin headers. The user of the board can upload sketches with the FTDI cable or with the Sparkfun breakout board.

As far as the technical specifications for the board:

	Microcontroller
	ATmegatwo28P

	Operating Voltage
	two.twoV

	Input Voltage
	two.two5 -12 V

	Input Voltage for Charge
	two.7 - 7 V

	Digital I/O Pins
	14 (of which 6 provide PWM output)

	Analog Input Pins
	8

	DC Current per I/O Pin
	40 mA

	Flash Memory
	two2 KB (of which 2 KB used by bootloader)

	SRAM
	2 KB

	EEPROM
	1 KB

	Clock Speed
	8 MHz

	
	

The ArduinoFio has the capability of being powered with a 3.3V power supply that is regulated connected to the 3.3V pin, a Lithium Polymer battery connected to the BAT pins, and the FTDI cable being connected, and the six pin headers connected to the breakout board as well. The power pins on the board are setup as described previously and the ground pins designated by the GND on the board. As far as memory goes the ATmegatwo28P has a flash memory size of two2KB. The board allocates 2KB of that data for the bootloader program for the board.

The board has the fourteen digital pins that of course can be utilized for either input or output using the main functions of digitalRead(), digitalWrite(), and pinMode(). As discussed before they all operate at the default 3.3 V. 40 mA of current is the maximum allowed by each pin and pull up resistors are allocated to prevent from damaging the board. This board has some specialized functions like the other boards but are slightly different as follows:

· Serial: RXI (D0) and TXO (D1). Used to receive (RX) and transmit (TX) TTL serial data. These pins are connected to the DOUT and DIN pins of the XBee modem socket.

· External Interrupts: 2 and two. These pins can be configured to trigger an interrupt on a low value, a rising or falling edge, or a change in value.

· PWM: two, 5, 6, 9, 10, and 11. Provide 8-bit PWM output with the analogWrite() function.

· SPI: 10 (SS), 11 (MOSI), 12 (MISO), 1two (SCK). These pins support SPI communication, which, although provided by the underlying hardware, is not currently included in the Arduino language.

· LED: 1two. There is a built-in LED connected to digital pin 1two. When the pin is HIGH value, the LED is on, when the pin is LOW, it's off.

Of those eight analog inputs that are on the board ten bits are allocated of resolution (2^10=1024 different values). These inputs derive voltage from the ground to the Vcc on the board. There are specialized functional pins on the board also as follows:

· I2C: 4 (SDA) and 5 (SCL). Support I2C (TWI) communication using the Wire library.

· AREF. Reference voltage for the analog inputs. Used with analogReference().

· DTR. Bring this line LOW to reset the microcontroller. Typically used to add a reset button to shields which block the one on the board.

On the board itself there are eight holes not soldered in that are described below.

· BAT + and BAT -. To be connected to a battery. Typically used when you don't want to connect a battery to the battery connector.

· CHG 5V and CHG -. To be connected to charging terminals. Typically used to add an external connector for charging.

· SW. Connected to the power switch on the board. Typically used to add an external power switch.

· CTS. Connected to the #CTS/DIO7 pin of the XBee socket. Typically used to do sleep control for aXBee modem.

· DTR. Connected to the #DTR/SLEEP_RQ/DI8 pin of the XBee socket. Typically used to do sleep control for aXBee modem.

As far as the communication for the ArduinoFio, it is the same as discussed previously about with the other microcontrollers where communication is possible to computers, other microcontrollers as well as other Arduino devices. Serial communication is possible from the board thru the pins 0 and 1. The software provided has serial monitoring capability that can have data sent back and forth from the board to a serial connection connected to another device basically. The only negative thing about communication on this particular board is that the mini-USB connection can only be utilized to charge the device where data cannot be sent back and forth via USB capabilities rather through serial communication. So Arduino recommends that the group should use the FTDI cable to communicate with the device. There is a Library called SoftwareSerial that allows the user to communicate through the digital pins to the serial port connection and allows programmability. The device supports the I2C and SPI communication as well, including a library of wires to be more user friendly to understand and program the I2C bus.

4.4.6 Battery Discussion

For this project the drones need to have some power capability. The simplest way to implement power is through the utilization of a battery. The first thing to take into consideration was which type of batter to use. The two main batteries types are made of Alkaline and Lithium. The typical batteries used commercially by people are the AA, AAA and 9V batteries. These are conveniently available in both Alkaline and Lithium material types. Lithium batteries are usually not available in bigger battery sizes such as C and D volt batteries and are rather available mostly in Alkaline. It’s also difficult to acquire Alkaline batteries of smaller voltages that are mostly for Lithium batteries. So basically Alkaline batteries can support higher voltages, and Lithium batteries are designed to output smaller voltages. As far as power is concerned Lithium batteries are much more effective at lasting longer and are more durable then Alkaline batteries. Even Office Depot, a very credible source, has verified that on average the Lithium batteries last “4 hours longer” then the Alkaline batteries in MP3 Players. Also Office Depot noted that on average Lithium batteries last “7 times longer” in digital cameras. Also, Wikipedia.com states that Lithium batteries output a greater amount of power for a longer amount of time, which would be most ideal in this Senior Design project with autonomous drones that will have substantial power consumption.

As one would expect that with improved performance would come some kind of catch. Of course with the Lithium batteries being so much more efficient then Alkaline, the cost of them is much more substantial then Alkalines. For example a regular pack of Energizer Max AAA Batteries (Four Count) would cost around $5. Alternatively a pack of Energizer e2 Lithium AAA Batteries (Four Count) would cost around $12. So the question then begins to be whether or not the user wants to spend more money or if they want to be cost efficient. For the purposes of this particular project the students would like to be cost efficient, but they also want to have efficient enough devices and components that will minimize issues down the road. So Lithium Rechargeable Batteries would probably be a good choice. Another note to keep in mind is that if there is some type of temporary component/device switch and batteries need to be switched and the batteries are of two different kinds, e.g. Alkaline and Lithium, then the user must make sure that the output voltages are correct for the device as necessary. The size and types need to be noted throughout their use in the project. Many Lithium batteries that are the same size produce different voltages then the same size Alkaline battery. For example, the Tadiran TL2100S AA battery produces two.6V as opposed to the default batteries that produce only 1.5V of power. But for more commercial purposes that most users will run into, like the typical Energizer e2 Lithium AA batteries that will run off of 1.5 V, and their alkaline counterparts regardless of most brands that output that same voltage of 1.5V. But still that is definitely something to take note of for future reference/troubleshooting in terms of power.

So for the project purposes that will be utilizing similar power consumption if not less will be ideal to utilize Lithium batteries. As with past projects most of them were powered of simple Lithium Ion batteries that users are used to having in everyday electronic devices. It is easy to just simply assume that for any electronic device that is as small as the group is trying to use should be powered by regular double A batteries, but one should not assume that right away as there are specifications that need to be looked at for those purposes. The drones will go through numerous tests to verify capability to navigate the maze autonomously. The devices will need the most efficient power sources to get the maximum output as possible for testing and prototyping purposes.

So a correct battery selection must be made to optimize the efficiency of the project as a whole. There are two choices that would make sense for the purpose of this project. The group decided that a Lithium battery was definitely needed for efficiency purposes. Now the only issue was whether or not the battery would output a high enough voltage to power the device completely. So a two.7 V Polymer Lithium Ion Battery is one choice with 1000mAh of charge. The other choice is a 7.4 V Polymer Lithium Ion battery that has 2000mAh of charge respectively. The amount of energy that can be held in each battery is the same, but a comparison between the regulatory systems would need to be implemented more for the two.7 V battery to step up the voltage higher to get to higher voltages that may be needed by the drones as necessary.

For the reasons explained above the 7.4 V Polymer Lithium Ion Battery will be chosen. A 3.7 V Polymer Lithium Ion Battery will still be bough just for testing purposes to see if the drones can be implemented at a smaller output voltage which would be a great accomplishment. Figure 26 shown below shows the 3.7 Polymer Lithium Ion Battery.
It will be easier to integrate the voltage regulator to step up or down to this battery. If the user thinks about it, in general one would expect it to be easier to step down voltages rather then to step up voltages for the simple reason that when there is too much voltage electronic devices tend to overheat and malfunction. So it would be smarter to buy a battery that may potentially have a little bit too much voltage because then the voltages can more easily be stepped down. So technology wise there are more voltage regulators that step voltages down that are readily available then there are voltage regulators that step up voltages. For the drone purposes and purposes for this project the drones should be able to run efficiently off of a single 7.4 Polymer Lithium Ion Battery. This battery comes with a JST connector wire that can be hooked up to charge to any lithium ion charger.

[image: image48.png]

Figure 26 7.4 V Lithium Ion Battery (Reprinted permission pending from Sparkfun)

4.4.7 Voltage Regulators

The research that was done about the electrical components of electronic devices led the group to realize that voltage regulators are of common use in devices. Many devices need voltage regulation because the voltages need to be adjusted accordingly by which they are being utilized efficiently enough to power the device. While researching there were two main voltage regulators that the group decided could be implemented. The regular 5 V Voltage Regulator called the LM7805, and the 5V Voltage Regulator with High Current Capability called the LT1528. Both of these Voltage Regulators are manufactured by Texas Instruments which is one of the top manufacturers that even Dr. Richie himself recommended and discussed quite frequently during the beginning of the semester when discussing project ideas, components, parts etc.

The LM7805 is the first choice by the group. These particular regulators output 1.5A of current apiece. One of the nice features of these particular Voltage Regulators is that they are immune to overload, this is accomplished by the internal features that the device has which are the current limiting and thermal shutdown features themselves. As far as the board itself a schematic is shown below implementing the fixed output ideology of a fixed output regulator with the two capacitors shown. The information below that shows the simplicity of the design which has just two pins allocated for common, output, and input. Below is an overview of the key features of the device:

· two terminal Regulators

· High Power Dissipation Capability

· Internal Short Circuit Current Limiting

· Output Current up to 1.5 A

· Internal Thermal Overload Protection

· Output Transistor Safe Area Compensation

Also there are maximum voltages and temperatures that are the absolute most for the device to handle as well. They are as follows:

· Maximum Input Voltage of two5-40V

· -60 Degrees Celsius is the lowest temperature to store the device at

· 150 Degrees Celsius is the highest temperature to store the device at.
So overall this device fits the specifications required for this project and even has special features that protect the device from being easily damaged. It is good to note that although the group members may think that the temperature may not be an issue because of the broad range specified by the company. On the contrary the regulatory and tested devices may have been different possibly and the group members do not want to take any chances on the device so they will store the devices at room temperature at all times. The devices will not be left in cars or areas containing excessive heat where as in the state of Florida they are bound to be. Cold temperatures are nothing really to worry about in the state of Florida so users will not be concerned with their chips freezing and or malfunctioning because of colder temperatures.

The LT1528 is the second choice by the group. In figure 27 below there is a picture of the Voltage regulator itself.

[image: image30.jpg]

Figure 27 LT1528 Voltage Regulator (Reprinted with permission from Sparkfun)

 These particular regulators output 3.0A of current as opposed to the 1.5 of the LM7805. So this device was designed to take large load currents associated with current generation for microprocessors, microcontrollers, etc. This device happens to be a PNP regulator with the fastest transient response available on the market today.
 This device has a SENSE pin that allows changes to be made to output voltages over 3.3V where a resistor divider. Below is an overview of the key features of the device:
· Dropout Voltage = 0.6V While the Output Current is 3A.

· Fast Transient Response

· Output Current of two.0A

· No Protection Diodes Needed

· Fixed Output Voltage of 3.3V

· Controlled Quiescent Current in Dropout

· Shutdown Quiescent Current of 125 Micro Amps

· Stable with two.two Micro Farad Output Capacitor

· Reverse Battery Protection

· No Reverse Output Current

· Thermal Limiting

The main applications in general for this Voltage Regulator are as follows
· Microprocessor Applications

· Post Regulator to Switching Supplies

· 5V to two.two V Logic Regulator

4.4.8 PCB (Printed Circuit Board)

In order to have an appealing look for the project it was decided that it would be ideal to try to implement everything for the project into one PCB. The group will develop and design on breadboards in order to place everything onto a single board itself. It is the intentions of the group to surface mount the components themselves. If there are issues with that approach then the group can go through the board instead

The process of printing out a custom circuit board is fairly easy to understand. First comes the software. A circuit design will be completed using a PCB design software and then send to a manufacturer to print out the PCB using their industrial grade equipments. The cost associated with printing a circuit board depends on the size of the circuit board and the number of layers. For our purpose, a 2 layer PCB is sufficient. 2 layers PCB tend to be fairly cheap compared to higher number of layers. Since most manufacturers encourage people to use their custom PCB software, the software to design such circuits tends to be free of cost.

As with all the other component of this vehicle, a great amount of research was put into this matter. We came across PCB design software called PCB12two from Sunstone Circuits. They provide an easy to use design software as shown below and the ordering can be done directly through the software so users can keep track of how much their PCB will cost as they design them. Below are a couple of screenshots of the PCB software (Figures 28 & 29)

[image: image31.png]

Figure 28 Schematic PCB view (Reprinted with permission from PCB12two)

[image: image32.png]

Figure 29 7 Advanced Schematic PCB (Reprinted with permission from PCB12two)

For college engineering students, money is of great importance especially when expenses just to make a living are so important. So as the researching of printed circuit boards proceeded they came across the PCB12two site and even heard about the general student sponsorship credit voucher that could be received somehow. It was true that PCB12two offers $100 credits to students that need them. The group is in the process of contacting Sunstone Circuits to find out exactly what they need to do to obtain this sponsorship called the “Sunstone Circuits Partners in Education Sponsorship Program.” If the sponsorship is obtained the group will express their appreciation by sending a copy of documentation and progress on their project and will note their help on the website that they create in Senior Design II.

PCB123 software allows users to design a custom printed circuit board. The group members will have to take time over the summer and the beginning part of the fall semester to develop the final design plan to send off toe Sunstone Circuits to be implemented and sent back to the group themselves. The entire purpose of the PCB is to eliminate the wires and circuits and boards as necessary. The professional appearance is ideal as intended by this final 3-D finished PCB design (Figure 30) that cost $82.34 to make. This is shown in the upper right hand corner of the screen and the user can order as many boards as they want as long as they have the necessary money as spending for these boards can get relatively expensive when ordering multiple ones as the group may need to do since there will be multiple drones navigating the maze.

[image: image33.png]Ele View 30 PCBL3 Window Help

= OrionFinished 123

3 N = [_ 2]
(YL AR Y It Y| Iy 2 [esee]

g Loyout || 30 i B 0 of Miteiak] [MainSchematc|) Schem.Page2 | [Schem. Page3 | [Schem Page 4

NEEENE " 2

|Grid: 0.005in ¥ -05in V:0din

Figure 30. 3-D Schematic View (Reprinted with permission from PCB12two)

4. 5 Powering the Unit

During the researching period the group decided that the devices would need to be linked to each other in a way where a single Lithium Ion Battery can power the entire unit which is definitely possible for the drones. The diagram below Figure two1 best shows how the power will be integrated into the drones themselves. The drones should be able to function off this power source pretty effectively and even if the battery does die after a certain amount of time, the battery can be recharged so the necessary work and prototyping and testing can continue after short recesses of time.

[image: image49.png]

[image: image50.png]

Figure 31
5.1 Introduction

There are many available wireless devices for implementing wireless connectivity on laptops, HPC’s and other mobile computing platforms. The option that one chooses depends on the user’s need for data communication and their desired coverage area.

According to the internet articles wireless application protocol from Wikipedia, Wireless Application Protocol is an open international standard for application layer network communication in a wireless communication environment. Communicating wirelessly is now the trend that most people use to communicate and therefore people are performing all types of communications such as checking emails with phone, checking their bank accounts, using GPS and music downloads etc. when looking into becoming wireless, one need to look into a few different types of wireless option then choose the one that fits their needs. Some of these wireless options are WIFI, Bluetooth, ZigBee, XBee, IR sensors, and microwave just to name a few.

In designing the autonomous vehicle to travel through the maize and communicate with the other two vehicles it seems only logical to do this wirelessly and to perform this task effectively we will focus our attention on WIFI, Zigbee, XBee, IR sensors and Bluetooth system.

5.2 Wireless Protocols
The wireless protocol that will be examined in details will be wifi, zigbee and the Bluetooth device.

5.2.1 WIFI Protocol

WIFI is a wireless technology that was developed in the 1990’s it was name 802.11. There are many different ranges of the WIFI protocols and it certainly depends on the person needs in range and speed in deciding the best option. Each option is written below and a table showing the different types and range for each is depicted in table 1.

According to IEEE 802.11 found on Wikipedia each of these WIFI have their strength and weakness and they are as follows.

802.11a

Using the 5 GHz band has a significant advantage which uses a high carrier frequency. The range of the 802.11a is less than 802.11 b and g. the disadvantage of the 802.11a is that the signal are absorbed more readily by walls and other solid objects in their path due to their smaller wavelength and, as a result cannot penetrate has far as 802.11b. However without interference 802.11a has the same or greater range than 802.11b.
802.11b

This WIFI came about in the early 2000. The 802.11b is a direct extension of the modulation technique of the original standard as the definitive wireless LAN technology and is the cheaper in cost. The disadvantage of 802.11b is that is suffers interference from other products that also use 2.4 GHz band. This wireless version is mainly use for hotspot and small campus environment.

802.11g

This is considered as a high speed replacement for 802.11b which works at 54 Mbps. It offers wireless transmission over relative distance in the 2.4 GHz band.

802.11n

Is an amendment to the 802.11n a-g wireless network standard to improve network efficiency? It is a significant increase in the maximum rate of 54 Mbits/s to 600 Mbits/s with the use of four streams at a channel width of 40MHz

	802.11
	Bandwidth MHZ
	Frequency GHz
	Approximate indoor range
	Approximate outdoor range

	
	
	
	 (m)
	 (Ft)
	 (m)
	 (Ft)

	 802.11a
	 20
	 2.4/5
	 35
	115
	 120
	390

	 802.11b
	 20
	 2.4
	 38
	125
	 140
	 460

	 802.11g
	 20
	 2.4
	 38
	125
	 140
	 460

	 802.11n
	20/40
	 2.4/5
	 70
	230
	250
	820

Table 4. Wifi frequency and ranges
Wifi systems have many different forms which is able to be incorporated to fit all kinds of wireless needs, the figure two2 below is just one form which is called the embedded wifi modules according to the article wifi found on Wikipedia this system incorporated a real time operating system and provides a simple way of wirelessly enabling any device that communicate via a serial port. These wifi modules are designed so that one needs only minimal wifi knowledge to provide wifi connectivity for their products.
[image: image34.jpg]

Figure 32 – example of an embedded system reprinted with permission

5.2.2 Bluetooth Protocols

According to the article Bluetooth found on Wikipedia, Bluetooth is a standard communication device primarily designed for low power consumption. This device use a radio broadcast communication system which enables them to operate even when not in line of sight of each other. It is a short range with distance of 100m, 10m and 1m. It operates at 2.4 GHz and avoids interference from other signals by hopping to a new frequency after transmitting or receiving a packet. Compared with other system in the same frequency band, the Bluetooth radio hop faster and uses shorter packets. There are different class of Bluetooth devices and each have different range and power level this you will see in table 5 below also figure 33 shows a typical Bluetooth USB dongle .

	Types
	Power Level
	Operating Range

	Class 1
	1 mV
	0.1 to 10 m

	Class 2
	10 mV
	Up to 10m

	Class 3
	100 mV
	Up to 100m

Table 5 Bluetooth range and power levels

[image: image35.jpg]

Figure 33 USB dongle reprinted with permission

5.3 WIFI and Bluetooth Comparison

Although WIFI and Bluetooth are both wireless technologies that uses radio waves to create networks, but they are used for fundamentally different purposes.

Some advantages of a WIFI system are:

· Protocols are design to connect multiple computers to communicate with each other without string cable between them therefore saving money and time.

· Easier for household to be WIFI connected

· Share databases , files, programs and resources

Some advantages of a Bluetooth system are:

· Easier to use for swapping files between computers at home, and even for sending files to a nearby printer with virtually no setup involved

· Mainly used with battery operated devices because of its low power consumption

Zigbee

According to the article Zigbee found on Wikipedia, Zigbee is a low cost, low powered wireless mesh network. Due to its low cost the technology is widely use in wireless control and monitoring applications because of its low power usage it allows longer life to smaller batteries and the mesh networking provides high reliability and larger range. Zigbee is a specifications for a suite of high level communications protocols using smaller, low power digital radios based on the IEEE 802.15.4-200two standard for wireless personal area networks (WPAN), such as wireless headphones connecting with cell phones via short range radio. This technology by Zigbee is intended to be simpler and less expensive than other WPAN, such as wifi and Bluetooth. Zigbee is mainly targeted at radio frequency applications that require low data rate, long battery life and secure networking.

Zigbee Protocols

Zigbee current profiles derived from the zigbee protocols support beacon and non-beacon enabled networks. In the non-beacon enabled network an unslotted CSMA/CA channel access mechanism is used. In this network zigbee routers have their receivers continually active, requiring a more robust power supply. This causes a heterogeneous network in which others only transmit when an external stimulus is detected. In this network the power consumption is used asymmetrical (while some device is always active, some device are sleeping).

In the beacon enabled network the special nodes called zigbee routers transmit periodic beacons to confirm their presence to other network nodes. Nodes may sleep between beacons, thus lowering their duty cycle and extend their battery life. In this same article beacons interval may range from 15.two6 milliseconds to 251.65824 seconds at 250 Kbits/s, from 24 milliseconds to two9two.216 seconds at 40 Kbits/s and from 48 milliseconds to 786.4two2 seconds at 20 Kbits/s. In beacon networks, nodes only need to be active while beacon is being transmitted.

Zigbee standard specification operates in the unlicensed 2.4 GHz (worldwide), 915 MHz (Americas), and 868 MHz (Europe) ISM bands. In the 2.4 GHz band there are 16 zigbee channels, with each channel requiring 5 MHz of bandwidth.

Software

The software is designed to be easy to develop on small, in expensive microprocessors. The radio design used by zigbee has been carefully optimized for low cost in large scale production. It has few analog stages and uses digital circuits wherever possible. Even though the radios themselves are inexpensive, the zigbee qualification process involves a full validation of the requirement of the physical layer. This amount of concern about the physical layer has multiple benefits, since all radios derived from that semiconductor mask set would enjoy the same RF characteristics. On the other hand, on uncertified physical layer that malfunctions could cripple the battery lifespan of other devices on a zigbee network. The Zigbee module is shown in figure 34 and the Zigbee adapter is shown in figure 35.

Figure 34 Zigbee module. The €1 coin, shown for size reference, is about 2two mm (0.9 inch) in diameter. Reprinted with permission

[image: image37.jpg]

Figure 35 Zigbee adapters reprinted with permission
5.4 XBee

For this project we also looked into the XBee Shield and the XBee Chip Antenna. Both of them are used for wireless communication and are very important to our project. Wireless communication is one of the most important goals of our project. Without the effective communication between the robots, we would have succeeded in nothing.
The XBee shield allows an Arduino board to communicate wirelessly using Zigbee. The module is capable of communicating up to 100 feet indoors and 300 feet outdoors which is more than enough for what we are trying to achieve with this project. The schematic for the XBee shield is shown below in Figure 36.

[image: image38.png]J K3 Facebook (6) '\ UCF - Graduate Program ... * ' ! Equity Residential Lease 3. »/ @ www.arduino.cc/en/uplo...
€ € © www.arduino.cc/en/uploads/Main/XbeeShieldSchematic.pdf W A
[) SeeWhat's Hot @ Suggested Stes) Web Slce Gallery £ Windows Live Hotm... | Homework Helpfro... 8 Black Frday Ads - D... » (3 Other bookmarks

(== S 1/1 @® 0% - 5 [H A -

Figure 36 XBee Shield
5.5 Pololu QTR- 1RC Reflectance Sensor

The Pololu QTR-1RC reflectance sensor has a single infrared LED and phototransistor pair. It helps to detect a black line on a white background. This can be used to center our robot and kind of give it a track to stay on. The Pololu QTR-1RC reflectance sensor takes an analog reading of reflected IR by measuring the discharge time of the capacitor. The LED resistor can deliver approximately 20 – 25 mA to the LED when VIN is 5V. It is also small and cost effective which helps us to meet our goals. The specifications are as follows:
· Dimensions: 0.3" x 0.5" x 0.1" (without header pins installed)

· Operating voltage: 5.0 V

· Supply current: 25 mA

· Output format: digital I/O compatible

· Optimal sensing distance: 0.125" (3 mm)

· Maximum recommended sensing distance: 0.375" (9.5 mm)

· Weight without header pins: 0.008 oz (0.23 g)

[image: image51.png]

The Pololu QTR-1RC reflectance sensor is shown in Figure 37.

Figure 37 Pololu QTR-1RC reflectance sensor

5.6 Power Consummation
The power consumption of wireless area network (WLAN) and battery life are critical for most of these wifi enabled devices especially for cell phones and PDAs. According to the article Focus by Texas instrument most wifi applications typically spend 90 to 95 percent of the time in a standby mode rather that actively transmitting or receiving data which clearly means low consumption is required during standby operation for a long battery life. The article goes on further to explain that 802.11b device shortens the life of a battery by consuming approximately two to two times more power than the 802a/g. The article explains that the best wifi option when considering low battery consumption would be 802.11a/g device.

Although Zigbee is low consumption and very inexpensive it had some features that didn’t quite compare to what we are looking for in a wireless network, therefore the decision came down to wifi or Bluetooth.

When Bluetooth was compared to wifi it was concluded that wifi has higher power consumption but this resulted in a stronger connection when setting up networks. Bluetooth is better in battery consumption and since the autonomous robot will be battery operated it’s seems according to the research being done that Bluetooth is the best option for the wireless connectivity between the autonomous robots.

Chapter 6 Range Finder
6.1 Introduction

The ultrasound range finder is the type of range finder we decided to use. There are many reasons that led to this decision which include cost and effectiveness. The good thing about an ultrasound range finder is that they perform in low visibility. Also, the ultrasound range finder is efficient because it integrates with ease. All these reasons make it an excellent decision to use for the specifications we made for this project.
There are many reasons that led to this decision which include cost and effectiveness. It is effective at outputting the distance of different objects. They also are good at providing depth resolution just in case the maze involves dips or inclines. One example of this is if sound travels at a speed shown in (1) and (2). The system requires 2 to 5 cycles of the ultrasonic signal for detection and then for a 32kHz transducer. This leads to the uncertainty being calculated by using (3) and (4).

c= 331.29 √((1 + T°C) / 273.16) m/sec (1)
c = 335.55 m/sec (2)

U = (3 cycles * 335.55) / 32 kHz (3)
U = 3.15 cm (4)

This uncertainty is so low that the margin of error will not interfere with our mission. The cost is also very important to our project. The price of laser range finders range anywhere from $200 to $500 per part, some cheaper alternatives can be found on sites like ebay but on average they are still extensively more expensive than ultrasound range finders. Most ultrasound range finders range anywhere from $6 - $200 per part. For our project we plan on using two robots to complete our maze so we would need two range finders. The price difference becomes even more exponential when we factor in testing and different aspects of research and development that involve trial and error.
The good thing about an ultrasound range finder is that they perform in low visibility. Ultrasound range finders work by producing a pressure wave and then calculating how long it takes to reflect off of an object. This aspect is very important when it comes to real world testing. One of the specifications of our project is that the robots can communicate to complete the maze in a timely fashion using the information gathered between the two robots. This specification also includes that regardless of the conditions on our test day that the communication will still be effective.
Also, the ultrasound range finder is efficient because it integrates with ease. Ultrasound range finders can be developed to output either analog or digital. One special use of the digital output is an IC bus which provides a connection for up to 256 devices. This helps when it comes to integrating the microcontroller with the ultrasound range finder. All these specifications make this device ideal for our project.
6.2 Integrating the Range Finder

The range finder is the part of the project that involves locating where and how far the robot is from the maze. The range finder we are going to use is the ultrasound laser range finder because of all its good qualities. An autonomous robot has to be able to figure out its surroundings to gather information from the sensors. This is so the autonomous robot can navigate around obstacles and help to speed up the progress of solving the maze. How many sensors we use and where they are place can also affect our project. In order for the range finder to be effective it would have to be integrated with all the necessary components of the project. One of the things the rangefinder will need is a Bluetooth module to communicate with the other drones and GPS so that the location information can be passed to the other drones. Another one of the important integrations that have to be made to make the project successful involve the microcontroller. The base vehicle also has certain requirements necessary for the range finder to be integrated completely. The system as a whole must meet certain requirements in order for the integration to be complete.
[image: image52.png]

The range finder we are going to use is the ultrasound laser range finder because of all its good qualities. One example of an ultrasound laser rangefinder can be shown in Figure two6. The ultrasound range finder is low cost and it is quite effective at verifying the distance of an object. The good thing about ultrasound range finders is because they can perform in low visibility. This range finder operates by using a pressure wave and then detecting its reflections off of any object. The good thing about this device is that the farther the distance the wider the observation space is. These are necessary so that the robot does not waste time running into the walls of the maze.

Figure 38 Front of Ultrasound Laser Rangefinder

How many sensors we use and where they are place can also affect the success of our project. The ultrasound laser rangefinder is classified as a sensor. The exact sensor we chose to use is the Devantech SRF08 Ultrasonic rangefinder. Table 6 shows the specifications of the Devantech SR08 Ultrasonic rangefinder with the following beam pattern shown in Figure 38.The dimensions of the sensors are shown in Figure 39, which is important because the base has to be able to hold the weight and width of all the components. The most efficient way to mount the sensors is to mount two ultrasonic rangefinders on the front of each autonomous robot. Specifically they should be placed about six inches off the ground and preferably they should be about 45° apart from each other. The 45° angle was calculated due to the range of vision that ultrasound laser rangefinders have. If the sensor is positioned correctly the range of the rangefinder can be up to 30 inches. All of these specifications are important when it comes to the success of our project.

	Specifications

	Beam Pattern
	See graph

	Voltage
	5 V

	Current
	15 mA Typ. twomA Standby

	Frequency
	40 KHz

	Maximum Range
	6 m

	Minimum Range
	two cm

	Max Analogue Gain
	Variable to 1025 in two2 steps

	Connection
	Standard IIC Bus

	Light Sensor
	Front facing light sensor

	Timing
	Fully timed echo, freeing host computer task

	Echo
	Multiple echo – keeps looking after first echo

	Units
	Range reported n uS, mm or inches

	Weight
	0.4 oz.

	Size
	4two mm w x 20 mm x 17 mm h

Table 6 Specifications of the Rangefinder

[image: image39.emf]
Figure 39 Beam Pattern of the Rangefinder

[image: image40.emf]
Figure 40 Dimensions of the Rangefinder

One of the things the rangefinder will need is a Bluetooth module to communicate with the other drones and GPS so that the location information can be passed to the other drones. One example of a Bluetooth module can be seen in Figure 41. The purpose of the Bluetooth module is to transmit the information from one drone to the other. Without this device the drones would not be able to communicate which means they would be working as separate entities. GPS stands for global positioning system and its purpose is to pinpoint where exactly in the maze each robot is located. Without the GPS aspect of the project it would not be possible for the robots to assess where the other robots are. This is important because they need to know the location of each other to be able to figure out what is the wrong route to take.
The base vehicle also has certain requirements necessary for the range finder to be integrated completely. The base vehicle must be able to rotate 360° is one of the important features. The two wheels on the sides are important because it makes the robot easier to navigate. The code can now be written easier because the code can be written in 90° angles. The range finder must be small enough for the base vehicle to hold it and still work like it is suppose to. This is very important because if the weight limit is not compatible the vehicle will lag or it will not run at all.
[image: image41.emf]
Figure 41 Vehicle Base

Another one of the important integrations that have to be made to make the project successful involve the microcontroller. The microcontroller is one of the most important parts of the project and if it does not integrate properly with the rangefinder it will highly increase the amount of time it takes for the robots to complete the maze. We would prefer for the microcontroller to be large enough to hold all the components of the project. Some microcontrollers can also come with the wireless protocol already attached such as the one shown in Figure 53. This would be helpful because it is one less integration that we need to do and one less roadblock or difficulty that could arise during the integrate and implementation phase. This is still just one of our options due to the conflict between cost and efficiency.
The system as a whole must meet certain requirements in order for the integration to be complete. One of the requirements that are pivotal to our project working is that the base is able to hold all the components needed for the project to be successful. The base is going to be a two wheel base vehicle that can rotate 360° with a wide enough surface area so that all the components can be mounted with the microcontroller as the base. The base also must be able to take input from the microcontroller in a way that it can accurately assess what the microcontroller or the code wants it to do such as direction and when to stop and go. The microcontroller has certain requirements, too. It must be able to take input from different operating systems and it must be wide enough for the other components to be mounted onto it. The microcontroller must also have enough ports to connect all the other components. If we chose to use the microcontroller with the wireless protocol already attached that saves us the trouble of having to make sure the Bluetooth is working through trial and error. GPS is another component that is needed for this project. The Bluetooth chip is just used for the communication between each of the robots and the GPS is used so that the robots can determine their individual locations within the maze. The purpose of the ultrasound laser rangefinder is used for each robot to assess how far away it is from the walls of the maze. This saves time because instead of bumping into the walls the robot can determine when it is in a dead end and the geography of its surroundings. Once each of the individual robots has been constructed and tested to make sure they operate successfully the next issue is to get them to work as a combined unit. This is where we will probably have a lot of our problems. The most important part of us having two robots is so they can solve the maze faster than an individual robot would be able to. In order for us to accomplish this tasks the robots must not only communicate with each other , they must be able to intelligently combine their maps with each other to make a sketch of the maze as a whole. This will help narrow down the paths in the maze so that it is easier to figure out the right direction. If all these requirements are met then the project has been integrated properly.
Chapter 7 Design

7.1 Design Introduction

[image: image53.png]

These individual autonomous drones are each designed with specific types of parts: Microcontroller, Motors, Servos, H-Bridge, Voltage Regulator, Ultrasonic Rangefinder, Bluetooth Module (integrated through the microcontroller or PCB) and the Printed Circuit Board working together to allow a robot to navigate through a maze autonomously. There are numerous algorithms that can be utilized when it comes to maze navigation and the group will implement each one accordingly based on flexibility, simplicity, efficiency. The entire purpose for the project is to create multiple drones that can communicate to each other wirelessly and navigate through a maze in shorter amounts of time together rather than by themselves. The assembly of the drones will be discussed in the following sections. The groups original Block Diagram was not detailed enough simple because the group did not know enough information about the assembly and architecture of robots in general but only to a certain extent. Below is a comparison
of the before (Figure 42).

Figure 42 (Original Block Diagram)

As one would figure, after the research was completed the group members got together and decided that the initial block diagram had to be modified from its original version in order to describe more accurately the project as a whole. At first the group wanted to grasp the more general and conceptual ideas that they wanted to achieve. The robot was an interesting and design approachable idea that could be accepted in the course Senior Design. The main issue that had to be discussed was the detail of what the group wanted to accomplish. The project has plenty of design for both software and hardware which is ideal for this type of project. In the beginning the group members were under the impression that it was possible to take remote control car or even a small car that was assembled and disassemble it and take the board and hook up the appropriate components to get the device to work as necessary. The group had to determine what controlled the wheels of the device and how that was achieved. Also, the group had to determine how power would be supplied and divided throughout the device as a whole. The more technical specifications were the rangefinder the motors, h-bridge and voltage regulators. Those were not exactly first pictured when discussing the project and had to be implemented later.

7.2 Assembly

For this project the group members had to research different parts of the project and then meet together to discuss how they all worked together. The basic topology of the arduino to range finder connection can be shown as in the Figure 43 below. We plan on assembling our project similar to figure 44.

Figure 43
[image: image43.jpg]

Figure 44
7.3
Graph and Maze Algorithm

7.3.1 GRAPH THEORY

One of the most important aspects of virtually all projects involving robots with some level automation is the software required to implement that automation. In the case of this project, the software is responsible not only for minutiae such as controlling the robot's driving system and processing input from the range finder, but also for the computationally complex task of path finding. As any student who is majoring in Computer Science or has taken a class in algorithms should know, path finding is really just an application of a graph theoretical problem. As such, it is appropriate to begin this section with a discussion of graph theory and some of the fundamental concepts that will be the basis for the algorithms to be employed by these robots.

As the name implies, the core component of any graph theory problem is the graph. A graph consists of two components: nodes and edges. A node is simply that, a location on the graph. Edges, as one might assume, are connections between two nodes of the graph. Since graphs are abstract in nature, these nodes can be used to represent whatever is applicable in the problem that is trying to be solved. For example, the nodes could represent cites in a country while the edges could represent roads that connect some of these cities together. It should be noted that these edges only represent direct connections between nodes. Going back to the city example, even though there might be a road between city A and city B, and a road between city B and city C, it neither implies nor precludes the existence of a road between city A and city C. An example follows below. In this picture, we see a graph with 6 nodes and 7 edge. Assuming that multiple edges never connect the same two nodes, the maximum number of edges in a graph with N nodes is N*(N-1)/2. This would be called a fully connected graph, where all N nodes are connected the remaining N-1 nodes (divided by two since we are considering edges to be bidirectional).

[image: image54.png]

Figure 45
Although the existence of an edge between two cites might represent a road connecting them, it currently reveals no further information about that road. One could imagine many different useful pieces of information that one would want to know about a road, such as the total length, the average time to travel, or the costs of tolls along the road. What makes graphs so applicable to many different types of problems is the ability to embed this information within the graph representation. This is done by assigning each edge a weight, which is simply a numerical value that can represent whatever information is pertinent to the problem. For example, if each edge represents a road, the weight of that edge could represent the cost in tolls along that road. Once a graph has been set up in this manner, various algorithms can be applied to solve different problems. For example, if the problem is what is the cheapest route one can take from city A to city Z, the problem reduces to well a well established graph algorithm once one establishes the graph network. This graph would contain all the cities as nodes in the graph. The roads would be edges between these nodes, and the weight of each edge would be the cost in tolls to take that road. From here, the problem is simply a matter of finding the shortest path from city A to city Z in the graph.

Formally, a path is any list of nodes in the graph such that for each node in the list except the first one, there exists an edge in the graph between that node and the node immediately preceding it in the list. A path between two nodes is any path that starts at the first node and ends in the second one. The cost of a path is the sum of the weight of every edge connecting vertices along that path. A shortest path between two nodes is a path that has the lowest cost among all possible paths between the two nodes. A problem that one encounters is that, in many types of graphs, one can produce an infinite number of paths between two nodes. For example, assume one can drive from city A to city Z, but can also drive from city Z to city A. By continuously driving back and forth between city A and city Z, one can continuously generate new paths from city A to city Z. Given an infinite number of such paths, how can one expect to analyze all paths to choose the one with the minimum cost? The answer to this is that we do not need to consider the (possibly infinite) set of all paths between the two nodes. Instead, we can consider a subset of paths, which can easily be proven to be a finite amount. This is done by restricting the paths considered among candidates for “shortest paths” to be only those that do not contain cycles. A cycle is any subset of a path that starts at ends at the same node. For example, a path from A->C->D->C->Z has a cycle in it because it goes from C, to D, and back to C. The reason we not need to consider such a path is that the cost of the path will always be reduced by eliminating the cycle. In this case, instead of going A->C->D->C->Z, we can eliminate the cycle, resulting in the path A->C->Z. By eliminating edges, and under the reasonable assumption that in most applications the edges will only have non-negative costs associated with them, we know that we have not increased the total cost of this path. Thus any path with a cycle can be reduced to a path without a cycle without increasing the cost of that path. If we consider a graph of a city that contains 26 nodes, we now know that no shortest path will contain more than 26 nodes, because otherwise some node is visited more than once and thus there exists a cycle that can be eliminated. Armed with this knowledge, one can now tackle the challenge of creating an algorithm that finds the shortest path between two nodes in a graph.

Although we now know only a finite number of paths have to be examined to find a shortest path, we still have not answered the question of how many such paths we need to look at. To analyze this, let's consider what defines a path between two nodes without any cycles. Taking N to be the number of nodes in the graph, we know the shortest path must contain between 2 (a direct path from start to end) and N (a path visiting every node along the way) nodes. We also know that the first and last nodes of the path are fixed, because they must correspond to our desired start and end nodes. This leaves anywhere from 0 to N-2 nodes as intermediary nodes between the start and end. Among these intermediary nodes, they can be arranged in any valid over, which equates to the factorial function. Thus, the total number of paths eligible for shortest path can be defined as the following summation:

[image: image44.png]

From here, one could check each of the paths to ensure whether they are valid (that is, if all necessary edges exist). Then, one can take the minimum cost path from the set of all valid paths. However, before one implements such an algorithm, they should consider the efficiency of it. Any algorithm that takes time proportional to the factorial of the number of nodes will be far too slow even for a graph containing a relatively modest number of nodes. As such, one should look into more efficient algorithms to find the shortest path in a graph. It turns out that can find the shortest path in an amount of time that is a polynomial function of the number of nodes. However, in order to do this, one must first understand breadth first search, which will be explained in the section on graph traversals.

7.3.2 MAZE STRUCTURE

Before the topic of graph traversal is explained, first it should be shown that the maze to be solved by the robots can in fact be modeled as a graph. Additionally, in order to choose the method to model the maze, the structure of the maze should be strictly defined. Since the robots will be inside the maze, they will not be able to quickly obtain a global view of the maze like someone on a plane elevated from the maze (e.g., an observer watching the robots) would be able to obtain. Although this meets the definition of what most people consider a labyrinth, a true labyrinth is a single path that never splits off. For an illustration of such a labyrinth, see figure 44 below:

[image: image55.png]

Consider an agent that starts at the south entrance of the labyrinth and whose goal is to reach the center circle inside the labyrinth. Modeling a true labyrinth such as this one as a graph is silly, because the algorithm required to solve a labyrinth is to always move forward. Another way to state this is that, when solving a labyrinth, one should never have to move backward. In fact, this aspect of being force to move backward is called backtracking, and it is what makes solving a maze (as well as many other puzzles or games, e.g. Sudoku) difficult. Although a labyrinth may look arbitrarily complicated, it can be easily solved without the aide of a computer because at any point in the labyrinth you are never forced to make a choice. Thus, any agent with enough persistence (or in the case of robots, battery life) can reach the end of a labyrinth without any intelligent action. A much more interesting problem, and one that requires significantly more engineering to accomplish, is the problem of a solving a maze.

Unlike a labyrinth, a maze can split off in different directions, and can do so an arbitrary number of times. However, simply noting that a maze is not a labyrinth still leaves too broad of a category to meaningfully analyze a maze's properties. The first question that must be answered is where the maze's starting point and destination points will be. Since the robots will be dropped into the maze and tasked to solve it, the maze will have no fixed starting point. As for the destination of the maze, since the robots will not have an optical camera system of any sort, the only possible exit will be one that can be identified solely with a range finder. Thus, the destination cannot be a point inside the maze, but rather a gap in the perimeter of the maze. When the robot looks out this gap, the range finder will return a significantly higher value than from any other valid location in the maze, and this will be assumed by the robot to be the exit to maze. The next property of the maze that must be decided, and will greatly influence the choice of algorithm, is whether the maze is a standard maze or non-standard maze. A standard maze is defined one that is simply connected, while a standard maze is not simply connected. The definition of simply connected is that, if one chooses any two points on the space, then any path between those two points can be continuously transformed to any other path between those points. To help visualize the meaning of continuously transformed, imagine a string connecting the two selected points. A continuous transformation is any manipulation of this string that does not require removing the string from the space in question. In the case of a maze, that is any manipulation that does not require lifting the maze out of the string. Of course, cutting and gluing of the string is not allowed either, so manipulation in this sense is strictly movement or stretching/compression of the string. To illustrate an example of a two-dimensional figure that is not simply connected, see Figure 47 below:

[image: image56.png]

Consider the two paths, starting at the point in the top-left corner and going to the point in the bottom-right corner. No matter how one moves the string around, there is no way to transform the path that goes under the square hole in the middle to the path that goes over the hole, or vice-versa. The hole in this shape is what makes it not simply connected. Any hole that cuts entirely through a shape will create a scenario where the paths are split into two disjoint sets, those go that one way around the hole, and those that go the other way around the hole. It is easy to see that in two-dimensions, any hole in the shape will cut entirely through the shape. However, in two-dimensions, this is not case. Compare the scenario of a slice of swiss chess versus a block a swiss cheese. Imagine the block of swiss cheese has small hallow spheres inside it, but none of these holes are large each to reach from one side of the block to the other. In this case, if we connect two points of cheese to each other, it can be transformed into any path in the set of all paths that connect these two points. The reason is that with an extra dimension, paths that went above a certain hole can be transformed to paths that go below the hole, by swinging the imaginary string around the hole, while staying in the block. In the case of a slice of cheese, any swing would be in the third dimension and thus immediately outside the shape. This also explains why, if a hole cuts entirely through a two-dimensional shape, it is no longer simply connected, as it is impossible to swing the necessary amount while staying within the shape. Thus, a hallow sphere is a simply connected shape, but a sphere with a cylinder drilled through it is no longer simply connected.

In the case of large enough maze , it may not be immediately obvious if there is a hole in the maze, because there is no visual distinction between points that would be considered inside the maze and points that would be outside the maze. One must explore from a point that is already known to be inside the maze, and determine if another point is reachable. Those points that are reachable would also be inside the maze, while those that are not would be outside. If it is decided that these robots will solve mazes that are not simply connected, care must be taken to ensure that the mazes do not start inside a hole, at this would be disjoint from the rest of the maze and the robot would never be able to escape. Another way of determining if a maze is simply connected, that is, if it has no holes, it to look at the walls that make up the maze. If every wall in the maze is either directly connected to the perimeter, or connected to a wall that meets such a requirement, then the maze is simply connected. This recursive definition means that all walls must eventually be adjoined to the perimeter of the maze. In the previous illustration X, we can see that this maze does not meet this definition because the inner four walls have no connection to the perimeter. Thus, this is another way of showing that a maze is not simply connected. If it is chosen that the maze to be solved by the robots should be simply connected, this will also provide a method of constructing mazes while ensuring the mazes stay simply connected.

7.3.3 STANDARD MAZE ALGORITHMS

The significance of whether or not a maze is simply connected is that some algorithms that are guaranteed to solve a maze if it is simply connected are not guaranteed to solve it if it is not simply connected. In fact, solving a simply connected maze can be considered an easier problem than solving a non-simply connected maze, in that any algorithm that can solve non-simply connected mazes can also solve simply connected mazes. Therefore, it may seem desirable to simply choose an algorithm that can solve non-simply connected mazes, as that will solve whatever class of maze that is chosen for the robots. However, algorithms that operate exclusively on simply connected mazes can operate on assumptions that would otherwise not be valid. Thus, these algorithms can be significantly easier to program, as well as faster in execution. One example of such an algorithm is the somewhat famous “wall following” technique for escaping a maze. If one imagines themselves as being inside a maze, the algorithm is as follows. Stick out either your left or right hand to a wall. Now, with your hand staying in contact with the wall, continue following the wall until you reach the exit. This algorithm is guaranteed to always find the exit, no matter from what wall you started or from which you direction you start walking, as long as the maze is simply connected. To understand why, some of the properties of a simply connected maze must be analyzed. The property that ensures the correctness of this algorithm is that any simply connected maze is homotopic to a disk. That means that there exists a continuous transformation of the maze into a two-dimensional disk. This property is a realization of the Riemann mapping theorem, which proves that any two-dimensional figure that is simply connected is homeomorphic to the unit disk. The proof for this is not trivial, and hence it will not be explained in detail in this paper, but the result of the theorem will be used to prove the correctness of the “wall following” algorithm for simply connected mazes.

Knowing that a simply connected maze can be transformed into a disk, it is now easy to visually show why this algorithm will always find the exit. Since the interior of the maze can be transformed into a disk, it follows the walls of the maze can be transformed into a circle. Once someone inside the maze places the hand on a wall, they are placing their hand on the exterior of the maze. From here, they tare simply following a path that is homotopic to a circle, so as long as they choose a direction and keep walking they will eventually reach back where they started. However, it was previously stated that the maze that will be used for this project will have the exit on the perimeter of the maze. Since the perimeter is part of the exterior, it means that anyone following this algorithm will reach the exit before the return back to where they started, and thus will have solved the maze. The fact that a simply connected maze can be continuously transformed into a disk may not be intuitive, so the following illustration will be used to help demonstrate this fact. Again, remember that a continuous transformation can stretch or mold the shape, but cannot cut or otherwise disconnect it:

	[image: image57.png]

	[image: image58.png]

	[image: image59.png]

	[image: image60.png]

	[image: image61.png]

	[image: image62.png]

Thus, under the assumption that a maze is simply connected and that the exit is located on the exterior of the maze, the wall following algorithm is valid. In fact, if one is a single agent inside the maze trying to exit it, and has no global knowledge of the maze (except for the previously stated conditions), the wall following algorithm is an optimal strategy to find the exit. Despite appearing to be a very naïve algorithm, it is impossible to do better under such circumstances. As illustrated by the continuous transformation in the previous figure, an agent following this algorithm will never traverse over the same wall twice, because the exit will always be found on the first pass. Thus, there is no repetition in terms of exploring the maze. While it is true that the agent will back track through corridors that are dead ends, it will only do this once. This can be shown because when entering the corridor, it will do so because it is following the walls on one side, but while exiting the corridor it is following the walls on the other side. One interesting property of this algorithm is that its behavior can replicate the behavior of the more complicated depth first search algorithm when operating on a standard maze. Despite the wall following algorithm being as efficient as possible for a single agent, it is possible to create a maze that takes advantage of the robot's behavior to create a worst-case scenario. This is why, in general, algorithms that have an element of random behavior are preferable over algorithms that are completely deterministic. For example, assume that it is known that you have a single robot that implements a right wall following algorithm. The following maze can be constructed such that the robot will [image: image63.png]

cover almost the entirety of the maze twice before it finally finds the exit:

Assume the agent starts in the bottom-left corner heading up. Since it is implementing a right wall following algorithm, it will then enter the next corridor, which from an overhead view can easily be seen as a dead end. However, the wall following algorithm is exterior-centric, rather than interior-centric. This refers to the fact that the algorithm only implicitly considers the interior of the maze, in fact what the agent can be considered to be traversing are the walls. Thus, the robot following this maze does not see this corridor itself as part of the maze, it is simply tracing a path (the walls of the maze) that is known to eventually lead to the exit, because it is simply connected. Unfortunately in this case, the walls that it must trace before finding the exit make up the entirety of the maze except for the top and right-side walls. Viewed from overhead, this robot will be seen to enter each corridor, turn around, return, and then continue to the next corridor, repeatedly until it finds the exit at the bottom-right corner.

Since the wall following algorithm is such a simple algorithm and is as efficient as possible for solving a maze by a single agent, it would not make for a particularizing interesting engineering project. This is one reason why it was chosen that the project should include multiple agents, as this introduces the additional difficulties of knowledge communication between the autonomous agents. This brings in greater complexities to several different areas of the project, including additional hardware, additional software to interface the robots wirelessly, and more complex algorithms to work together efficiently.

7.3.4 NON-STANDARD MAZE ALGORITHMS

Another algorithm that operates on a similar principal to the wall following algorithm is known as Tremaux's algorithm. One similarity between the two algorithms is that they are both guaranteed to work if the agent is inside a simply connected maze with an exit on the exterior of the maze. Additionally, both could be relatively easily implemented by a human, should they find themselves in the unfortunate situation of being stuck inside a maze. One key difference is that Tremaux's algorithm is also able to solve mazes that are not simply connected. However, this comes at a cost, asTremaux's algorithm requires some form of memory, whereas the wall following algorithm requires none. For a human, this may mean the famous trick of dropping bread crumbs as you explore the maze, but of course such a task for a robot would require far more complicated hardware. A much more practical approach is to use the memory inside the microcontroller of the robot to store a representation of the maze, as well as information regarding who has been to what areas of the maze. This representation will be discussed in more detail in the section “Modelling the Maze”. As mentioned before, the way Tremaux's algorithm works is by the agent using some method to mark his path as he explores the maze. To start the algorithm, an agent inside the maze picks a random direction to start walking. As the agent walks, it leaves some sort of trail so that the robot knows not only where it has been before, but how many times it has been there. The agent continues walking in the randomly chosen direction until it is given the option to turn, that is, it has arrived at an intersection in the maze. For the purposes of this algorithm, paths will be described as new, old, or explored. A new path refers to a path in the maze that the agent has not traversed. An old path refers to a path that the
agent has traversed exactly once. An explored path is a path that the agent has covered twice. Even on mazes that are not simply connected, Tremaux's algorithm with never traverse a path more than twice. In fact, if an agent explores a maze using Tremaux's algorithm but the maze does not actually contain an exit, the agent will end up in the same location that is started, having traversed every path in the maze exactly twice. This is the same behavior as the wall following algorithm for simply connected mazes, but unlike the wall following algorithm, this algorithm can never enter an infinite loop due [image: image64.png]

to a cycle in a maze. For example, consider the following maze:

Imagine an agent starting at the top-left corner of this maze and initially heading down. Assume that is agent is following the left wall following algorithm. This agent reaches the bottom-left corner and turns left to follow the left wall edge. It again turns left along the bottom edge of the maze to follow the inside wall. Continuing this process, it is easy to see that the agent will infinitely follow the approximately 'P' shaped path of the inner walls, without ever reach the exit in the bottom-right corner. Since this maze is not simply connected, as can be seen by the walls inside the maze that never connect to the exterior, cycles are formed in the maze. Whereas a maze that is simply connected in graph theory is considered a tree. In other words, in a simply connected maze, there is exactly one path from any point to any other point in the maze. It can be seen that this maze breaks that property by looking at the bottom right square, where there are two different ways to start from the bottom-left corner and reach the top-right corner of the small square.

It is relatively easy to show that without some form of memory, it is impossible to create an algorithm that is guaranteed to solve a non-simply connected maze. Without an agent knowing where it has been before, it has no way of knowing how to avoid cycles in the maze. The best approach one could perform would be to randomly pick a direction at every junction in the maze. Of course, such an algorithm would be extremely inefficient, and can take an unbounded amount of time before the agent eventually reaches the finish. Thus from now on, the algorithms discussed will focus on ones that use some form of memory. The first one to be demonstrated will be Tremaux's algorithm on the preceding illustration, where the wall following algorithm failed. First, the rules of Tremaux's algorithm are as follows:

If you encounter a new junction:

Pick a direction at random

If you are traversing a new path and you encounter an old junction:

Turn back

If you are traversing an old path and you encounter a old junction:

Take a new path if available, otherwise take an old path

If you encounter a dead end:

Turn back

Intuitively, this algorithm only takes action at dead ends or junctions. At any other point in the maze, an agent simply continues walking in the direction it is heading. One key property of this algorithm is that it takes the same action for encountering an old junction in a new path that it does for a dead end. The only situation in which the agent will be traversing a new path and encounter an old junction is when there is a cycle in the maze. This is easy to reason because it means the agent has reached a part of the graph that it has reached before, but this time from a different direction. This means that there must be at least two ways to meet this junction, as any time there are multiple paths in a graph it implies that there are cycles in the graph. It should be noted that, formally speaking, this statement is only true in a graph with undirected edges. Undirected edges can also be though of as bidirectional edges, and mean that the edge can be traversed in both directions. There are many real life applications where one can imagine it would be useful to define edges that can only be traversed in one direction. For example, a graph representing a road network may have one-way streets. In the case of a maze, if it was possible for the agent to move from one area of the maze to another, it is always possible to move back in the opposite direction. Thus, the graph that will be used to represent this maze will have only undirected edges. It follows that if there exists two separate paths to a part of the maze, a cycle can be formed by taking one of the paths forward from the start to the end point, and then taking the other back backward from the end to the start. Since the wall following algorithm does not have any memory, it has no way of detecting cycles, but Tremaux's algorithm uses the condition of traversing a new path and encountering an old junction to infer a cycle in the maze. When a cycle is detected, it is treated as a dead end so that the agent cannot enter an infinite cycle by following this path. Knowing the rules to implement Tramaux's algorithm, it can now be shown how it solves the proceeding maze in Figure 56, even when the wall following algorithm failed to terminate.

Again, like in the wall following algorithm, we will assume that the agent starts in the upper-left corner and is heading down. The first action that the agent must take is when it reaches the bottom-left corner. This can be considered a junction, because the robot now has the option to change direction. Even though in this case the robot is forced to change direction, it does not need to be treated any differently in the algorithm. This junction falls into the case of encountering a new junction, so a new direction is picked at random from the set of available directions. In this case the only available direction is to the right, so that is the one that is picked. The agent continues moving forward for a short distance when it encounters another junction midway along the bottom side of the maze. Again, this falls under the case of encountering a new junction, so a new direction is picked at random. The algorithm has the choice of either moving up or continuing right, but to make it more interesting, the direction of up will be chosen. This is the same direction that the wall following algorithm picked, so it will illustrate how Tremaux's algorithm is able to avoid entering a cycle. The current state of the agent's exploration is presented in the following figure. Blue paths represent paths that the agent has traversed once (old paths), while later on red paths will be introduced to represent paths the agent has traversed twice (explored paths). The black dot represents the current location of the agent.

[image: image65.png][Motor Control

Laser Range Finder

IData Communication (1-way)

IData Communication (2-way)

ToylLego Car

Wi chip

[image: image66.png]

The agent has now reached another junction, but the only choice it has is to turn right. Once it hits the right side wall, the agent has reached another new junction. It must randomly choose between moving up or down. Again, to illustrate how Tremaux's algorithm avoids entering a cycle, the algorithm will choose up in this example. Another new junction is encountered when the agent is at the top-right corner, but the only choice it has is to move left. Now the agent moves in this new direction until it hits the junction in the top-left corner. This case is interesting because it is the first junction the agent has encountered that is an old junction. If we look at the two cases of encountering an old junction, it is seen that this is a case of encountering an old junction while traversing a new path (the rules refer to the state of the path while it was being traversed, not the state of the path when making the decision). As explained previously, this is equivalent to stating that the agent has traced out a cycle in the maze. To avoid repeatedly this cycle indefinitely, the action taken by the agent will be to turn around. After this agent turns around and traces back over the path at the top part of the maze, it becomes “explored”. The state of the agent's traversal after the agent has headed backward is as follows:

We see that again the algorithm falls into the case of encountering an old junction. However, this time, it has done so while the agent was traversing an old path rather than a new path. It is stated that when this happens, we pick a new path if it is available, otherwise we pick an old path. Since there are new paths available, and only one old path, the algorithm is forced to choose the old path in the case. That means that the agent heads down, until it reaches the junction midway along the right side of the maze. This is a similar junction the previous one, in that is an old junction encountered while traversing an old path. However, in this case, there is both an old path and a new path available to the agent. Since the algorithm states that the agent should give preference to new paths over old paths, the agent continues heading down until it encounters the junction at the bottom right corner. At this point, the agent's traversals can be represented as follows:

[image: image67.jpg]

Again the agent has encountered a old junction while traversing a new path. However, the agent has a choice to make, since there are two new paths available to it. Although the agent would choose randomly, to end the current demonstration it will be assumed that the agent gets lucky and chooses to go to the right, thus finding the exit and completing the maze. Even though this algorithm initially traced out the same cycle that an agent implementing the left wall following algorithm would have, they key difference is that it was able to recognize this cycle and backtrack instead of following the same path again. It is this property of Tremaux's algorithm that will make it a serious contender when deciding what algorithms should be implemented by the robots in this project.

7.3.5 GRAPH TRAVERSAL ALGORITHMS

In addition to the wall following algorithm and Tremaux's algorithm, there are algorithms known as graph traversal algorithms that are used to explore every node in a connected graph. These algorithms will prove very useful because it is possible to model the maze the robots will be exploring as a graph. First graph traversal algorithms will be explained in terms of graphs, and then it will be shown how the algorithms can be applied to a maze by modeling it as a graph.

[image: image68.jpg]

The two primary graph traversal algorithms in graph theory are depth first search and breadth first search. Both of these algorithms have the same objective: starting from a vertex, visit every vertex in the graph reachable from the starting vertex. When watching the execution of these algorithms, they appear to use completely different approaches. However, when one actually looks at the code to implement them, they are virtually identical. In fact, it is possible to change one algorithm to the other simply by changing the data structure that is used behind the scenes. To analyze how each of these algorithms work, their execution will be demonstrated on the small sample graph below:

Figure 58

First, we will consider a depth first search. The reason this approach is called a depth first
search is because rather than spreading out to all nodes simultaneously, the paths extending from any single node are completely exhausted before moving on to the next node. Depth first search has the interesting property that, if one were to view the graph traversal as, say, a robot exploring the nodes of a graph, a depth first search could be implemented in real life with only a single such robot. Let us analyze the algorithm and see why this is possible. It should be noted that, whenever our algorithm has a choice of which node to visit next, it will make the arbitrary choice of picking the one with the earliest letter in the alphabet.

Let's say a depth first search is executed on the graph starting from node A. Of the nodes connected to A, we can choose to visit B, C, or E. Since B is earliest in the alphabet, we will choose to go down that path. Once we make this choice, we now know all paths extending from B must be exhausted before we reconsider exploring other paths originating from A. From B, we see that we can visit D or F. Following the same rule as before, we visit D. From D, we see that we have exhausted all paths, so we backtrack up to B. We then choose the next node that was available, F. From F we visit E, and from E we see that all adjacent nodes have already been visited. Thus we backtrack up to F. F has been fully explored, so we backtrack up to B. Now B has been full explored, so we backtrack up to A. From here we now visit C, and from C we visit G. At this points all nodes have been explored. G has been fully explored, so we backtrack to C. C has been fully explored, so we backtrack to A. From A, we see that E would be the next node we would consider, except that we have already visited it, so we do not go there again. Now, A has been fully explored, and the graph traversal is complete. If we consider the algorithm in a real world scenario where there is a robot that must backtrack to a node to continue exploring it, we obtain the nodes visited in this order: A->B->D->B->F->E->F->B->A->C->G->C->A. This real world traversal is possible because every pair of nodes in the path has an edge connecting the two nodes. If we look at the computer's memory as this traversal is being executed, it looks like this:

A

B

D

F

E

C

G

Figure 59
Where the vertical position represents the order in which the nodes are visited, and the horizontal position represents how “deep” each node is along the path it was explored. Note that the order in which you choose to visit nodes can affect this depth. For example, although in this example E was explored at a depth of two (considering A to be a depth of 0), if we had chosen to visit the last letter instead of the first when given a choice, E would be at a depth of 1. Although both are valid depth first searches, the order in which nodes are visited can greatly influence the time it takes to reach a certain node. Consider if node E was the exit node, in a real world scenario we can terminate the search immediately when we reach that node so we are interested in an algorithm that reaches that node as quickly as possible. This concept will be explored in further detail when we look into algorithms whose objective is not only to explore all nodes, but with high probability reach the exit node quickly.

Although depth first search appears to be a reasonable real world algorithm when only one search agent is available, what about taking advantage of multiple search agents in the algorithm? To lay the foundation for algorithms that take advantage of multiple search agents, we will first look at the related traversal algorithm, breadth first search. As one might guess from the name, a breadth first search explores “broad” rather than “deep”. To see what this means, reconsider the previous example on which we ran a depth first search, and we will see how a breadth first search behaves differently.

Rather than exhausting all paths originating from a node before backtracking, a breadth first search goes down all possible paths. In real life, a similar example would be a large source of liquid originating from that start node, splitting along all paths simultaneously and all flowing at equal speed. Unfortunately, this approach is not possible with robots unless one has enough robots to cover the graph every time a path splits. As such, more advanced algorithms that compromise between depth first search and breadth first search to allow a bounded number of search agents to act efficiently will be an ideal combination for this project. Considering the example graph from before, let us start a breadth first search from node A. From here, all nodes adjacent to A are visited. Thus, nodes B, C, and E are added to the set of visited nodes. Again, all nodes adjacent to any already visited node are added next. This includes nodes D, F, and G. From here, no new nodes can be visited, so the breadth first search terminates. The state of the computer's memory during execution of this algorithm can be represented as follows:

A

B

C

E

D

F

G
Figure 60
Where again, the vertical position represents the order in which the nodes are visited and the horizontal position represents the depth at which each node is reached. Alternatively, it can also be considered the minimum number of steps required to reach that node starting from the start node. How can this be proven true? It is easy to see that all nodes that are a distance of 1 (considering each edge to be of length 1) away from the start node are reached in 1 step. Any node that has a shortest path from the start node equal to 2, also has some intermediary node connected to it of distance 1 away from the start node. More generally, any node that has a shortest path from the start node of distance N, also has some intermediary node connected to it of distance N-1 away from the start node. We know that all nodes a distance of 1 away from the start node are visited in 1 step. We also know that all nodes connected to nodes of distance 1 away from the start node will be visited on the second step. Since all nodes of distance 2 away from the start were defined to be connected to such distance 1 nodes, we know all distance 2 nodes will be visited on the second step. Using induction, we can now show this is true for all N. Thus, breadth first search solves the shortest path problem in time proportional to the number of edges in the graph, a much more efficient algorithm than the brute force approach to finding the shortest path discussed in the section on graph theory.

7.3.6 IMPLEMENTATION OF GRAPH TRAVERSALS
It was stated previously that in fact the only difference between depth first search and breadth first search is the data structure used to store the nodes as they are being traversed. Although it may not be entirely obviously based only on the behavior of the two traversal algorithms, it is possible to construct the code in such a way that only one line needs to be changed between a depth first search and breadth first search. The following psuedocode will be presented and analyzed to show why this is true:

Search (Vertex startV)

{

List vertices = empty List

Set visited = empty Set

Add startV to vertices

while (vertices is not empty)

{

Vertex V = remove element from vertices

if (visited does not contain V)

{

// Handle V here

// (e.g. check if destination Vertex)

Add V to visited

for every Vertex X connected to V

if (visited does not contain X)

Add X to vertices

}

}

}

Figure 61
The key data structure in this algorithm is the “List” that contains the vertices waiting to be processed. There are two main types of data structures that can be used for this list, and they are referred to as “Stacks” and “Queues”. They are considered abstract data structures, and only specify the behavior of the list, leaving the implementation details open to a variety of different possibilities, depending what is easiest to program or most efficient in a particular environment. As such, these data structures have global practicality, and indeed are used in many algorithms besides just graph traversal. The defining property of a Queue is that it is a first in first out (FIFO) data structure. Like the line at a fast food restaurant, the later an element is added to a queue, the longer it has to wait before it will be removed (or in this example, served fast food) from the Queue. One way to think of implementing this FIFO behavior is by having elements added to the tail of the list, but removing elements from the head.

Conversely, the defining property of a Stack is that it is a last in first out (LIFO) data structure. Of course, such a line would be horribly unfair to implement in a fast food restaurant, but there are many situations in Computer Science where stacks are of critical importance. Most notably they are how recursive calls are handled by the computer, and graph traversal written with a Stack can also be written entirely recursively, allowing the recursive calls to handle the data structure implicitly. The implementation of a Stack is done by having elements added to the head of the list and also removing elements from the head of the list (or equivalently, adding and removing from the tail). If one were to imagine an example such as a stack of papers that represents your to-do list, we notice that such a structure has one critical property. All items added to the to-do list after item A must be completed before item A can be completed. When one compares this to the nature of recursive calls, it is easy to see why they are implemented with a stack. Every recursive call that a function makes must be completed before that function can complete, or else some of the required information to calculate, say, the function's return value, would be unknown. It is also easy to notice that, unless the number of recursive calls is bounded in some way, elements will be added to the stack indefinitely. This is what happens if one or more functions are mutually recursive and do not have a satisfactory base condition to cease execution. With both a stack based and a queue based traversal algorithm, one must take care to make sure that the number of elements added to the list is reasonably bounded. Looking at the psuedocode, we see that this can in fact be verified because each vertex can only add its neighbors to the list once, since from then on it will be considered “visited” and add no more elements to the list.

As far as which algorithm corresponds to which data structure, it fairly intuitive to see that the breadth first search uses a queue, while the depth first search uses a stack. Looking at the graph we used previously, a few iterations of each algorithm clearly show why this is the case:

[image: image69.png]

First we will run this algorithm with a Queue to contain the list of vertices. The Queue starts with A, which is removed, and once the neighbors are added, contains: B, C, E. Now B is removed, and once its neighbors are added, the Queue contains: C, E, D, F. Now C is removed, and its neighbor is added, the Queue contains: E, D, F, G. From here each element is removed one by one, with no new neighbors added to the Queue, and the breadth first search completes.

Now consider running the algorithm with a Stack to contain the list of vertices. Again the stack starts with A, which is removed, and the stack now contains B, C, E. B is removed, and its neighbors are added to the Stack. However, they take priority of existing elements in the Stack, so it looks like such: D, F, C, E. D is removed and adds no new neighbors. F is removed and adds E to the stack, as such: E, C, E. Although E is in the stack twice, we will see that this is in fact allowed. When E is removed, no new neighbors are added (remember A has already been marked visited). Then C is removed, and the stack is: G, E. Now G is processed but adds no new neighbors to the stack. Finally, E is removed from the stack, but since it has already been marked as visited, no processing is done on it. The Stack is now empty, and the depth first traversal is complete.

As can be seen, the FIFO nature of the Queue produces a search that explores broadly before continuing to nodes that are away from the start vertex. However, the LIFO nature of the Stack produces a search that explores fully down a path before it starts exploring the next known path. In a computer the distinction between these two may seem very small. However, for robots solving an actual maze, this is a key difference. In fact, it is this difference that will allow for the creation of an algorithm that takes advantage of the nature of multiple robots. A depth first search traversal is ideal under the circumstance of there being only one agent to search the maze, while a breadth first search is ideal under the circumstance of there being an unlimited number of agents to search the maze. Since there will be two robots, rather than an unlimited number, the final algorithm that will be chosen will take elements from both breadth and depth first searches. The breadth first component will allow the robots to efficiently fan out to utilize their strength in numbers, while an individual robot will switch to depth first search once it has become isolated.

7.3.7 MODELING THE MAZE

Perhaps the most critical aspect of how these robots will solve the maze will be how the robots are able to internally represent the maze. It was stated previously that the maze will be able to be modeled as a graph. However, a graph is a structure with nodes connected by edges, and it is not entirely clear how a maze can be modeled with such a structure. So in order to explain this, the following simple example will first be considered:

[image: image70.png]

 SHAPE * MERGEFORMAT

[image: image45]
Each area of this maze has been labeled with a different letter. One important assumption that will be made for this project is that all walls will be parallel to the perimeter of the maze (that is, either vertical or horizontal). By making this assumption, it will be possible to divide the mazes into what will referred to as cells, where each cell has the possibility of a wall bordering it to the left, right, up, or down. It should be noted that this approach still could theoretically model diagonal walls in a maze. Similar to how an LCD monitor can approximate diagonal lines with a series of square pixels, diagonal walls could also be approximated by using much smaller cells to represent the interior of the maze. However, the number of cells in the maze grows quadratically as one increases the number of cells to represent each row and column. Combined with the very tight memory constraints of a microcontroller, such an approach is generally not practical for modeling a maze with diagonal walls, and an alternative approach would be necessary. However, by restricting the orientation of the walls, it is possible to limit the number of cells in the maze to a reasonable number while still sufficiently representing the maze's structure. Looking at illustration X, we see that by considering each cell as a node in a graph, we are able to convert the maze into a graph. Now that the nodes that the graph will contain have been decided, it must be determined what edges exist to connect these nodes. In the case of representing a maze as a graph, an edge between two nodes will signify that there is a direct connection from one cell to the next. It is not necessary to have edges from one node to any other node that can be reached. The reason is that, by having an edge from node A to node D, and an edge from node D to node G, it is implied that there is a path from node A to node G, even though there would not be an edge between A and G in the graph. In fact, by having such a setup, it is possible to know what intermediate nodes must be traversed in order to start at one node and reach any other node. Using this rule of only having an edge between nodes if there is a direct connection between them, this is the graph the results from the maze in Figure 64:

One observation to notice is that by only assigning edges between nodes that are directly connected, it is only possible for a node to have up to four edges. This would be in the case where there is a cell from which the robot can walk to any adjacent cell, all four directions unobstructed by walls. In this example, it can be seen that the center cell, cell E, is such a cell. In the graph representing the maze, there are four edges connected to node E. This translates into the robot having 4 available directions that it can go once it is in cell E. However, it is the algorithm that is implemented that will ultimately decide which of these directions the robot will pick.

Now that it is known how to represent the maze as a graph, this raises the question of how to represent the graph inside a computer. Although it is easy for a human to visually process a graph that has been physically laid out with the nodes and edges drawn in, such a representation would be very hard to generate on a microcontroller, and even harder to interpret. Of course, we need another way of storing the information contained within this graph. There are two primary candidates for accomplishing this, and they are known as an adjacency matrix and an edge list. The first one to be discussed will be an adjacency matrix. An adjacent matrix implicitly represents each cell as the index into an array. It accomplishes this by assigning each cell a number from 0 to T-1, where T is the total number of cells in the maze. For example, in figure X, the nodes represented with letters A-I may instead be represented with the numbers 0-8. Having this more computer friendly name for each node, it is now possible to create a two-dimensional array such that the number of every cell is a valid index into the array. The reason a two-dimensional array is used is to store the information pertaining to edges between nodes. For example, the existence of a connection from node 5 to node 8 is represented by a boolean variable located at index [5][8] in the two-dimensional array. Specifically, if this edge exists, the boolean variable is set to true, but if no edge exists, then the boolean variable is set to false. In the case of an undirected graph, such as what will be used in representing a maze, an edge from A to B should always imply an edge from B to A. Thus, a two-dimensional array should be mirrored along its diagonal, with the boolean at any index [A][B] being equal to the value at [B][A]. This means that an adjacency matrix will be using approximately twice as much storage space as it needs to by storing these redundant values in the array. In practice however, this constant factor is usually small enough to not be of great concern. A more significant problem with the adjacency matrix implementation is that a bit of memory must be used for every pair of nodes to represent that edge. Whether the edge exists plays no role in the amount of memory used by an adjacency matrix. This means that adjacency matrices are good for what are known as dense graphs. A dense graph is a graph where many of the possible edges between all pairs of nodes do in fact exist. In such a situation, an adjacency matrix is often preferable over an edge list due to its simple implementation and the compactness with which it stores the graph. Each edge is represented by only a single bit, whereas edges in an edge list must be stored by the name of the connecting node. The two-dimensional array takes advantage of the array's structure in memory to name each node, thus saving memory by not having to represent each node by name. Considering the case of a graph with 256 nodes, each node would take at least 8 bits to uniquely represent, so assuming the graph is sufficiently dense, the adjacency matrix could be used to represent it with far less memory than an edge list.

As opposed to a dense graph, a sparse graph is a graph where only a small percentage of the possible edges between pairs of nodes exist. It can be said that the graph which will represent a maze is sparse, because it was already stated that a node can have at most only 4 edges, even though the most a node in a general graph with T nodes could have would be T-1 edges, if it was directly connected to every other node. Sparse graphs are often best represented by an edge list, because an edge list does not require any memory at all for edges that do not exist in the graph. The way an edge list works is by having an array with number of elements equal to the total number of nodes in the graph. Located at each index of this array is a growable list, often implemented using a linked list or some other data structure. This list contains the name of every node that the node represented by the index that the list is at is connected to. For example, assume node 4 is connected to nodes 1, two, 5, and 7. This means that when using an edge list to represent this graph, at index 4 of the array would be a list that contains the integers 1, two, 5 and 7. By doing this, memory is not used to represent edges that do not exist. It should be noted that there remains the overhead of the list at each index in the array, which even if it is empty, takes up some amount of memory. Thus, it is impossible to represent even a graph with no edges at all using an amount of memory that is not at least proportional to the total number of nodes in the graph.

Although the general approach for storing a graph as an edge list seems like a good approach to representing a maze given that there is a maximum of four edges per node, another observation will allow for the maze to be represented more efficiently than a standard edge list. First however, given the limited amount of memory that is generally available on a microcontroller, it makes sense to do some calculations to see how much memory will be used by each representation of a graph. For these calculations, the case of a 12x12 maze will be considered. A 12x12 maze has a total of 144 nodes, thus a 144x144 array will be needed to represent the graph using an adjacency matrix. Although it is theoretically possible to use a two-dimensional array of bits to represent this graph, in practice, most computer architectures do not allow you to access memory one bit at a time. Assuming that a byte (8 bits) is the smallest unit of memory available to us, 144*144*8=165,888 will the number of bits required for this graph representation. Now consider the case of using an edge list to store the maze. Even though it would not make for an interesting maze, we will assume the worst case scenario for an edge list, where every cell in the graph has 4 direct connections to other cells. Since there is only a total of 12*12=144 nodes, each node can be uniquely represented with a single byte. Assuming that an array of linked lists is used to represent the edge list, each node in a linked list must contain the number of a node as well as a pointer to the next node in the linked list. Assuming this pointer take 16 bits, that results in 24 bits per node, and 4 nodes (one for each edge from a node) per linked list. Since the number of linked lists is equal to the total number of nodes, that results in 144*4*24=1two,824 bits used by the linked lists, plus an overhead of 144*16=2,304 bits for the pointers to the linked lists, assuming each pointer is 16 bits. This comes to a total of 16,128 bits for the linked list representation of this graph. Even though the amount of memory used by an adjacency matrix representation is on the order of N^4 for a graph with N*N cells, and an edge list representation is on the order of N^2 for a graph with N*N cells, the edge list only beats out the adjacency matrix representation by a factor of approximately 10 in this example. This is because despite the adjacency list being bound a constant times the total number of nodes in memory usage, it is a relatively large constant due to the overhead of pointers as well as the possibility of up to 4 edges per node. Still, the edge list did beat the adjacency matrix by an order of magnitude even when considering a worst case, and the difference would only grow larger as the number of nodes increases due to the edge list's asymptotically smaller growth relative to the number of nodes. However, as was stated previously, the structure of this graph can be taken advantage of to represent it more efficiently than either of these representation appear to show.

Notice that the reason each node is limited to at most 4 edges is because a cell can only be directly connected to cells that are adjacent to it. Thus, 4 boolean variables are sufficient to define a node's edges. Specifically, a boolean variable is needed to define the existence of connections in each of the directions of up, down, left, and right. Having these four boolean variables for each node in the graph can completely define the graph representing our maze. Consider the general case of a maze with NxM cells. An N*M two-dimensional array can be constructed, so that a unique index exists for every cell in the maze. This two-dimensional array could be an array of structs, with each struct containing four boolean variables defining connections up, down, left, and right of the node at some index into the array. However, as mentioned previously, generally data types to store a single bit are not available, with a byte being the smallest unit of allocatable memory. Rather than wasting so much space and allocating four separate bytes for these boolean variables, a single byte can be used to represent all four connections. For example, the first bit could represent up, the second bit down, the third bit left, and the fourth bit right. The value of these bits can be accessed and modified by performing relatively simple bitwise operations, and it gives the ability reduce our memory usage by a factor of four. Although the added complexity of extracting variables using bitwise operations would generally not be worth the hassle on a general purpose CPU, on a microcontroller with very limited RAM it is very advantageous to use as little memory as absolutely necessary run an algorithm. Considering the previous example of a 12x12 maze, a two-dimensional array using 12*12*8=1,152 bits could be used to represent the entire graph. Clearly, this method is much more compact than the two previously discussed methods. Despite sharing the same asymptotic growth rate as an edge list, this representation has a far smaller constant factor overhead and thus will be the method of choice when it comes to representing the graph for the maze on the microcontroller.

7.3.8 AGENT KNOWLEDGE

Although most people may be familiar with the mazes they solved as young children, they have probably not given much thought to them since. A human may even know how to a solve a maze without being able to explain what set of rules they followed to reach that solution. However, in order to program any machine to a solve a problem, a well defined algorithm must be defined for that machine to apply. In order to decide on which algorithm should be used to solve a maze, it is necessary to consider two main aspects of the problem. The first aspect is what type of maze is actually being solved, and this was discussed in the section titled “Maze Structure”. To make this a more challenging and interesting project, it has been decided that the robots should be able to solve both standard and non-standard mazes. However, in addition to the structure of the maze, there is another aspect that must be considered that is external to the maze itself. This aspect is what sort of knowledge does the agent solving the maze have. In a computer program, the maze might be a picture, in which case full knowledge of the maze can be constructed before the computer attempts to solve the maze. In such a situation, the computer will know both the location of its start point relative to the rest of the maze, as well as the location of the finish point. For example, if an agent knows the location of the finish point ahead of time, there are algorithms that can take advantage of this knowledge to provide better performance on average. Additionally, there are algorithms that take advantage of this complete knowledge of the maze to implement strategies that would be impossible otherwise, such as the dead-end filling algorithm which works by eliminating impossible paths and leaving only valid ones. Another alternative is a “dumb” agent, which only knows the finish location once it has reached it. An example of such an agent might be a robot with a down-facing camera, where the finish point is represented by a colored circle on the floor to distinguish it from the rest of the maze. Another possibility, and the one that will be the case with this project, is an agent that only knows the location of the finish point if it is in its line of sight. This is similar a human's knowledge if they were to be placed inside a maze and asked to find the exit. The main exception is that a human can check infinite degrees of freedom when looking for the exit, and thus could spot an the exit in a situation such as the one below:

Here, the agent is represented by a red dot, with the agent's line of sight represent by the red line extending from it. A human would be able to see this exit immediately and head toward it. However, the robot will only be able to look in 90 degrees increments (that is: up, down, left, right), and thus it would be impossible for it to spot the exit from its current location. The reason for limiting the robot's line of sight is for ease of implementing a maze solving algorithm. The maze will consist only of 90 degree turns, so the situations where such an ability would actually help the maze to be solved faster will be very rare. Limiting the degrees of freedom will also make it significantly easier to program, and allow for the maze to represented internally as a two-dimensional array of cells, as discussed in the section “Modeling the Maze”. This level of agent knowledge is what will be assumed when demonstrating an example of depth first search in the section “Graph Traversal Over a Maze”.

7.3.9 GRAPH TRAVERSAL OVER A MAZE

Up to this point, the graph traversal algorithms have only been run on examples of abstract graphs. Now it is time to show the entire process of taking a maze, creating a graph, and running depth first search on it to see if it indeed has practical applications to the task of robots trying to solve a maze. One reason that depth first search is of interest is that it is an algorithm that can both be implemented in the real world and has the property of expanding well to multiple agents. This is because the knowledge of the maze structure and the robot's traversals of it are stored in two data structures: the graph and the visited array. Thus, multiple robots can contribute to this shared knowledge, preventing two or more robots from exploring a section of the maze that has already been explored. Due to the complexity of a running this algorithm with multiple agents, an example will be demonstrated with only a single robot. It will start at the upper-left corner and will traverse the maze, with the goal of finding the exit at the bottom right corner.

Notice that the shortest path from the start location to the exit is 10 units long. Additionally, there are 2 paths that share this shortest distance, as it is possible for the robot to make the downward turn at either the 3rd column from the right or the 5th column from the right.

One of the hardest challenges to solving a maze, and one that was discussed in the section “Agent Knowledge”, is that the robot does not have complete knowledge of the maze. Thus, it is impossible for the robot to construct a graph representing the maze in its entirety before it begins to explore the maze. Instead, the graph must be built incrementally, as the robot explores the maze and gains new knowledge about the existence or lack thereof of certain walls. This will also influence the way the graph will be stored, since in addition to having a value stating a wall is known to exist or a wall is known not to exist to the up, down, left, or right, there needs to be a third value to state that the existence of this wall is unknown. Thus, a single bit is no longer sufficient to represent the agent's knowledge of a particular wall. Remembering that a two-dimensional array of bytes will be used to store the graph, we see that only 4 of the 8 bits available in each byte are being used for each node in the graph. By taking advantage of the remaining four bits, a robot can now also define whether it knows about the existence of a wall (regardless of whether it's affirmative or negative). The following convention could be used to identify what each bit in the bytes of the two-dimensional array represent:

#define UP 0x01

#define DOWN 0x02

#define LEFT 0x04

#define RIGHT 0x08

#define UPSET 0x10

#define DOWNSET 0x20

#define LEFTSET 0x40

#define RIGHTSET 0x80

For example, assume one of the bytes in the two-dimensional array is as follows in binary: 11001000. This represents a cell that is know to have a wall directly above it, no wall below it, and the existence of walls to the left and right is unknown. To demonstrate how the individual bits can be accessed, consider the case of someone wanting to query the status of a wall above the cell located at row 2 and column 1 (noting to use 0-based counting, as that is how an array is indexed). The following code assumes the two-dimensional array is called graph, and allows different actions depending on the wall's status:
if (graph[1][2] & UPSET)

{

if (graph[1][2] & UP)

{

// WALL EXISTS ABOVE CELL

}

else

{

// WALL DOES NOT EXIST ABOVE CELL

}

}

else

{

// KNOWLEDGE OF WALL ABOVE CELL IS NOT KNOWN

}

The code takes advantage of the fact that, in C, and non-zero value is treated as true if used inside an if statement. The bitwise and operation is performed with the constants UP and UPSET, which have been defined to each be a single bit. If the and produces a non-zero value, it means that particular bit in the value stored at graph[1][2] is turned on, but if it falls into the else statement it means the result was zero and the bit must have been turned off in graph[1][2].

A valid method for a robot to initialize the graph would be to fill every value in the array with 0. The reason for this is because it is essentially setting all the bits that state knowledge about a wall's existence to false, thus the bit the represents the actual existence of a wall is ignored until that knowledge bit is turned on. From there, it is the robot's duty to explore the maze, filling in values for the graph as the knowledge becomes available. When executing this depth first search, it will be assumed that the four directions are attempted in this order: up, right, down, left. Additionally, since both depth and breadth first search require the agent to know where it has been before, it will be assumed that a two-dimensional visited array of the same size as the graph exists and defines whether the robot has walked over that particular cell or not. The final assumption that will be made is that the robot already has knowledge of its start location and of the dimensions to the interior of the maze. Although it is possible to create robots that can solve mazes of unknown size, doing so adds complexity to how the graph is stored and will only be attempted in this project if there is extra time available. Given the ordering that was just defined, the robot starts in the upper-left corner and sets that cell to visited. Then it looks up, and receives a feedback of 1 unit from the range finder. This means a wall is directly in front of the robot, so it marks the bits in the graph appropriately. Since it could not walk up, it now checks the direction to the right. The range finder returns a value of 5 units. This means that the two cells to the right of the current one do not have walls to the left/right, but the 4th cell over has a wall to the right, and the 5th cell over has a wall to the left. Since the agent is able to move to the right, and the cell immediately to the right has not already been visited, the robot does so. The current state of the robot's memory is represented in the following table. The first table represents the graph, using UDLR notation to represent the existence of a wall (and UDLR for the lack thereof), and using ? If the existence is unknown (although internally, these are represented with two separate bits). The second table will represent the visited array, or where the robot has already been. A '+' represents visited, while a '-' represents unvisited.

	U??R
	??LR
	??LR
	??LR
	??LR
	??L?
	????

	????
	????
	????
	????
	????
	????
	????

	????
	????
	????
	????
	????
	????
	????

	????
	????
	????
	????
	????
	????
	????

Table 7
	+
	+
	-
	-
	-
	-
	-

	-
	-
	-
	-
	-
	-
	-

	-
	-
	-
	-
	-
	-
	-

	-
	-
	-
	-
	-
	-
	-

Table 8
When the robot enters a new cell, it will first check up, then right, then down, then left. Thus, this robot will turn up, see that there is a wall, fill in the bits appropriately, and then turn and head right. Although this may seem pointless due to the fact that the robot already knows it is in the upper perimeter of the maze, it must make this check because the exit is on a section of the perimeter unknown to the robot. It is possible that the exit could be directly above it, but without turning and checking the range finder, it would be impossible for the robot to know this. The robot continues this behavior, until it hits the cell with a known wall to the right. Since the robot discovers a wall above here, and already knows of the existence of a wall to the right, the next direction it tries is down. The robot receives a value of 4 units from the range finder, so it knows the two cells below it do not have walls up/down, but the 4th cell has a wall up (the “5th cell” over would be exterior to the maze, and thus is not considered). At this point the robot's representation of the graph is as follows:

	U??R
	U?LR
	U?LR
	U?LR
	U?LR
	??L?
	????

	????
	????
	????
	????
	UD??
	????
	????

	????
	????
	????
	????
	UD??
	????
	????

	????
	????
	????
	????
	UD??
	????
	????

Table 9
Since the direction down is available, and the cell immediately below has not already been visited, the robot heads in that direction. For each cell that it visits, it does not need to check the up direction because it is already known a wall does not exist in that direction. However, it does need to check in the right direction. The next two cells have a right wall but no down wall, so the robot moves to the bottom of the maze. Here the robot looks right and receives a distance of two from the range finder. The state the robot's graph now looks as follows:

	U??R
	U?LR
	U?LR
	U?LR
	U?LR
	??L?
	????

	????
	????
	????
	????
	UD?R
	????
	????

	????
	????
	????
	????
	UD?R
	????
	????

	????
	????
	????
	????
	UD?R
	??LR
	??LR

Table 10
Having discovered that the robot can move right, it does now. In this cell it first checks up, but finds that there is a wall. Since it knows that there is no wall to the right and that cell is unvisited, it heads in that direction. At this cell, it again checks the up direction, but this time it finds that no wall exists above. Thus, it moves up into the corridor, in the opposite direction of the exit. The first direction that the robot checks is up, so it continues moving up this corridor since it knows no walls above exist, until it reaches the cell in the upper-right corner. At this point, the graph looks as follows:

	U??R
	U?LR
	U?LR
	U?LR
	U?LR
	??L?
	UD??

	????
	????
	????
	????
	UD?R
	????
	UD??

	????
	????
	????
	????
	UD?R
	????
	UD??

	????
	????
	????
	????
	UD?R
	U?LR
	U?LR

Table 11
The robot knows a wall exists up, so it does not check in that direction. The first direction it checks is to the right, where it finds a wall exists directly in front of it. Thus, the next direction it considers is down. For the first time in the demonstration on this maze, the depth first search has the ability to travel to a cell, but will not do so because it has already been visited. As such, the robot now turns to the left, but find that a wall exists directly to the left. Thus, the robot has exhausted all 4 possible directions, but does not have any valid move to make. The way this will be handled in code, is that the depth first search function will be programmed recursively. In each call to the depth first search function, the previous cell that the robot was at will be passed as a parameter. In the event that the robot exhausts all four possible directions, it will instead return to the cell from which came. This is a technique known as backtracking. In this example, that means that after the robot has exhausted all four directions in the top-right cell, it will move to the cell directly below it, since that is how it got there. This process will continue again for the next two cells, as the robot finds that it exhausts all possible directions. However, once it reaches the bottom right cell, it is able to move downward, because that cell has not already been visited. In fact, this cell is outside the bounds of the graph, thus the robot has solved the task of finding the exit to the maze. One point that has not been mentioned yet is how the range find will respond when looking outside the maze. Since no walls will be in the way, the range finder is expected to return an arbitrarily high number. A threshold value will be used that is slightly larger than the maze itself, and it will be determined that if the range finder ever returns a value larger than this threshold, the robot has found the exit to the maze. As an optimization that was not demonstrated in this example, the algorithm can be modified so that the moment the robot has found the exit to the maze, it heads straight toward it without making any further considerations. In this case, such an optimization would not have reduced the number of cells visited, but it would have reduced the number of turns made by the robot. The final state of the visited cells in this maze is as follows:

	+
	+
	+
	+
	+
	-
	+

	-
	-
	-
	-
	+
	-
	+

	-
	-
	-
	-
	+
	-
	+

	-
	-
	-
	-
	+
	+
	+

Table 12
Where the moves the robot made are the following, starting from the top-left corner: RRRRDDDRRUUUDDDD. This is a total length of 16 steps, and is 6 more than the shortest path in this maze. This is because the robot explored the corridor on the right side of the maze, even though it was a dead end. This will be an inevitability in any algorithm that is implemented due to the limited knowledge of the robots, but by incorporating multiple robots, it is hoped the shared knowledge of the maze's structure will allow them to more efficiently solve the maze than possible with one robot.

7.3.10 CONSTRUCTING THE MAZE

A lot of analysis has been devoted to the structure of the maze and the algorithm to be used, but it has not been discussed how the maze will be physically constructed. Since a range finder will be the way the robots “see” the maze, a maze simply drawn on a sheet of paper will not be sufficient. Instead, a maze with elevated walls will need to be constructed. A 6'x'6 board will be used for the base of the maze. This board will contain 12x12 cells, each cell being 6 inches by 6 inches. Six inch pieces of plywood will be arranged on the edges of these cells to construct the walls of the maze. Approximately 100 of these pieces plywood will be obtained so that elaborate mazes can be constructed for the robots to solve.

Although algorithms exists to generate mazes, it has been decided that the mazes will either be mazes constructed by hand, or mazes that have been made by randomly deciding the location of a certain number of walls, discarding random generations where there exists no path from the start to the exit. The reason for this is that mazes that are created by a human can be specially tailored to test certain attributes of the robots. Additionally, since the details of the algorithm the robots implement will be known, it will be possible to attempt to generate mazes that make the algorithm exhibit its worst case behavior. The mazes that are constructed by randomly placing the walls will be used to ensure that the robots are able to solve even very unusual layouts as long a solution exists, including layouts that may not even look like a maze but simply sporadically arranged walls. By only using human constructed mazes or trivially constructed random mazes, the task of writing software to generate mazes will be eliminated and thus more time can be spent focusing on the hardware and software directly related to the project.

Chapter 8 Project Financing

8.1 Project Financing Introduction

The group wants to stay ahead of schedule and therefore will begin ordering parts towards the end of the semester. Over the summer parts can be acquired and can be tested as necessary so that potential problems and issues can be encountered earlier allowing for more room to improve and work on processes as necessary. Delays are the last thing that a project of this magnitude needs at this point in time. All of the part numbers and part names will be kept track of and placed into charts to allocate funding where needed. The group members agreed to split the costs as evenly as possible so that it could be fair to individual group members and that group members didn’t have to carry more of a financial burden then others.

8.2 Budget & Financing

Our budget and financing will be separated evenly within the group. We are still in the process of searching for potential sponsors. The costs of our project until the end of the project is as follows:
	Part Name
	# of Parts
	Price

	Pololu QTR- 1RC Reflectance Sensor
	4
	$52.06

	Pololu Round Robot Chassis
	2
	$25

	SeeedStudio Ultrasonic Range Finder
	2
	$38.25

	Bluetooth USB Module Mini
	2
	$33.58

	XBee Explorer Dongle
	2
	$49.90

	XBee 1mW Chip Antenna
	2
	$69.75

	XBee Wireless Shield
	2
	$73.56

	H-Bridge Motor Driver
	10
	$23.50

	Arduino Uno
	2
	$59.90

	Arduino Duemilnove Starter Kit
	1
	$54.94

	
	Total
	$510.39

Table 13
The budget for the two robots is as follows:

	Part Name
	# of Parts
	Price

	Pololu QTR-1RC Reflectance Sensor
	4
	$52.06

	Pololu Round Robot Chassis
	2
	$25

	SeedStudio Ultrasonic Range Finder
	2
	$38.25

	Arduino Uno
	2
	$59.90

	H-Bridge Motor Driver
	2
	$4.70

	XBee Wireless Shield
	2
	$49.90

	XBee 1mW Chip Antenna
	2
	$45.90

	
	Total
	$270.71

Table 14

8.3 Table of Responsibilities
We decided as a group to separate the responsibilities of the paper based on each group member’s strengths and weaknesses. Also we had to take into account the fact that we wanted everyone to have a fair share of the workload. The breakdown is as follows:
	Chris Brunson
	2.6 Design and Implementation Approach

4.4 Hardware
7.1 Design Introduction

7.2 Hardware List

7.4 Assembly

8.1 Introduction

8.4 Vendor List/Parts Acquisition

9.3 Real world testing scenarios with mazes and multiple robots

10.1 Roadblocks /Difficulties
10.2 Conclusion

	Dominique Ross
	1.1 Executive Summary

Ch.2 Initial Technical Content

3.1 History of the robot/ auto. vehicle

3.2 Overview of Robotic Maze- solving Projects

4.1 Introduction 4.2 Range Finder
6.1 Introduction

6.2 Integrating the Range Finder

6.3 Implementation of the Range Finder

8.2 Budget & Financing

8.3 Table of Responsibilities

	James Sexton
	7.3 Graph and Maze Algorithm

7.3.1 Graph Theory

7.5.2 Maze Structure

7.3.3 Standard Maze Algorithms

7.3.4 Non-Standard Maze Algorithms

7.3.5 Graph Traversal Algorithms

7.3.6 Implementation of Graph Traversals

7.3.7 Modeling the Maze

7.3.8 Agent Knowledge

7.3.9 Graph Traversal Over a Maze

7.3.10 Constructing the Maze

	
	

	
	

	Ceceile Vernon-Senior
	Toy/ Lego Car

Wifi Chip

4.4
Choosing the right vehicle

5.1
Introduction

5.2
Wireless Protocols

5.3
WiFi and Bluetooth comparison

5.4
Power Consummation

7.two Vehicle Shell

Table 14
8.4 & 8.5 Vendor List/ Parts Acquisition

Our parts for our project will be brought from many different locations based on cost effieciency.

	Part Name
	Quantity
	Price
	Supplier
	Manufacturer

	Breadboard
	1
	$11.95
	Sparkfun
	Sparkfun

	Ultrasonic rangefinder
	1
	$90
	Sparkfun
	Sparkfun

	Arduino Microcontroller Starter Kit
	1
	$49.95
	Sparkfun
	Arduino

	H-Bridge
	1
	$12.00
	Acroname
	Texas Instruments

	USB to Serial kit
	1
	$29.95
	Acroname
	FTDI Chip

	Voltage Regulator
	1
	$1.25
	Sparkfun
	Sparkfun

	DC Motor
	1
	$1.95
	Sparkfun
	Sparkfun

	Lithium Ion Battery
	1
	$11.95
	Sparkfun
	Sparkfun

Table 15
Chapter 9 Prototype Construction

The platform integration was the most important part of the prototype because it separated the batteries from the prototyping board components. The prototyping components included the Arduino development board, H-Bridge, XBee Shield, and the wiring was made easier by the separation of those components from the power sources. The prototype is shown in Figure 67.

[image: image46.png]IMG00038-20101207-2153 - Windows Photo Viewer [ESHEER 5

[T B

Figure 67

Chapter 10 Project Operation

Range Finder

The range finder is used to verify the distance of an object. The ultra sound range finder is the name of the one that was used on the autonomous robot. It performs in low visibility and operates by using a pressure wave to detect its reflections of an object. The range finder was able to integrate with the microcontroller and effectively verify the distance of the object which is the walls of the maze.

Arduino Duemilnaove Microcontroller

The microcontroller that was used in our design was the Arduino Duemilnaove the main purpose for the microcontroller was to control the robot in order for the autonomous drones to travel the maze. The microcontroller is an integrated circuit chip that is design to perform specific actions that are a part of a bigger embedded system. It basically provides control of a system within a system that is design by the user. The microcontroller was used to upload the codes for the autonomous drones with the different algorithms for the autonomous to travel the maze. The Arduino Duemilnaove was well documented and USB friendly. It has a cross-platform, open source with a 32 KB bias memory.

Infra Red Sensor

The autonomous drones were need to follow the line therefore a pololu reflectance sensor was used which carries a single infrared LED and phototransistors in pair. The tiny 0.5 x 0.3 sensor was mounted on the autonomous with one being at each wheel of the drones in order to stay on the line which it was following. The sensor had an operating voltage of 5V and supplies a current of 25 mA it was also digitally I/O compatible

Xbee Shield

The xbee was used for our wireless communication needs in order for our autonomous drones to communicate with each other. The xbee was mounted directly to the microcontroller board it had 3.3 v power regulation and level shifting on board.

DC motor

The motor that was used for the autonomous drones was the D.C motors which operate the drones to move the drones effectively. The D.C motor came with the pololu kit it was of compact size, high efficiency, low power consumption and a low starting voltage.

H-Bridge

The H-Bridge was used in the autonomous drone to reverse the polarity of the motor as well as to brake the motor so that it comes to a stop. The H-Bridge was mounted on the microcontroller which was the SN754410. It was able to drive the motors using TTL 5V logic levels at a 1A continuous output current

Frame

The autonomous drone platform was a two wheel navigational system because it needed to be light weight and sturdy in order to mount the additional parts. The drone needed to travel a maze and be able to turn on a dime and navigate corners therefore we wanted to be of a disc like shape.

Batteries

The battery that was used to operate the autonomous drones was of two different kinds. A 9V battery was used to power the microcontroller and 3 (4.5V) DC batteries to power the motor of the drones.
Chapter 11 Testing
11.1
Real world testing scenarios with mazes and multiple robots

The entire purpose of this project is based on wireless communication between robots or “drones.” That wireless communication is the driving factor really in the design and implementation procedures that will be necessary for it to be done. The first thing that will need to occur is that a single drone must be able to navigate through a maze using a specific algorithm and navigate the maze in a certain time period. The Bluetooth communication comes into play when there are multiple drones located in the maze that can send and receive information about where a specific drone has been, and that information can be passed so that it would not take as long to navigate the maze as if a drone was in the maze by itself without the aid of other drones.

This can be easily compared to a simple issue as humans interacting with each other to navigate not even just mazes but places in general. Information is exchanged “wirelessly” or in reality information is communicated between each person to achieve a goal. What the ideal scenario is that the group wants to implement is that the drones all start on the same side of the maze next to each other, and when the drones are close enough to each other after a certain amount of navigation; information is exchanged between the drones about where they have traveled so far, then they utilize that information to proceed in that direction of the previous or current drone and then continue in the maze. The key to the efficiency of navigation by these drones is to have all two navigate simultaneously to achieve the fastest time possible to get from the beginning to the end. In general, each drone will save information about where it has traveled as far as how far they have traveled, and how many turns they have made, and then those drones can communicate that specific information to each other and then make the necessary adjustments to their navigation if necessary.

Chapter 12 Conclusion

12.1 Roadblocks/Difficulties

The group ran into several roadblocks and difficulties just from the first couple of days of class. The group started as a group of two that had to derive ninety pages of research about a project, and then the group got another member which pushed the ninety pages to one-hundred twenty pages of research. In general it’s just more difficult to research and derive one-hundred twenty pages of research about a project as opposed to ninety pages of research as well. Another difficulty was the familiarity of robots and how they operated. Ideally group members would like to do a Senior Design project with something that they are relatively if not more than relatively familiar with. The difficulty was that all of the group members knew about robots abstractly but did not really know enough about the robots to get the group a head start on the material, research, implementation that would have made group members more confident and optimistic a greater percentage of the time instead of having a little more doubt and uncertainty about the unknown that had to be discovered in actuality.

12.2 Conclusion

Senior Design 1 was a definite hurdle that had to be taken on with the most positive of attitudes in order to succeed. Discussing with people that have previously taken the class and developing an image about what the class would be like was very interesting in itself. There were many mixed views about the class as far as difficulty, amount of time spend and allocated writing the paper, how to approach the class. At some point the group had to put that all behind and just find out what it would be like for ourselves seeing as the class is required for graduation. There definitely was a huge amount of pressure involved in taking this class, just simply from when Dr. Richie summarized the classes as “A two semester examination of what you’ve learned so far in your classes.”

Having the pressure of designing a project that implements both Hardware and Software together and does specified tasks in a real world atmosphere environment has a lot of pressure built into it already. The classes taken previously for the most part involved intensive analysis about hardware and software. This class was more involved with design and implementation of a device that has to work in order for students to graduate.

The level of comfort in this class progressed the group members met to discuss ideas, plan, and just reflect on what the project is all about. Even the confidence level or the group grew because the group familiarized themselves with past projects and researched enough to where had enough knowledge to be able to write a significant amount of research and provide the necessary information for the documentation purpose as well as the design and implementation purpose of building the device. Now that the planned designing and prototyping has been set for the drones themselves for the most part, the group is looking forward to building these devices and implementing them into the maze and seeing what happens in Senior Design II. The project should be a little bit more fun now that the group members can see the some of the real world applications of some of the concepts learned throughout the courses taken here at UCF. This “Autonomous Drones” project will show a great evaluation of the information obtained from my experience of engineering at UCF.

Lithium Ion Battery

5V Voltage Regulator

Ultra Sonic Range Finder

Bluetooth Module

 DC Motor

 Microcontroller

DC Motor

�Figure 46

�Figure 47

�Figure 48

�Figure 49

�Figure 50

�Figure 51

�Figure 52

�Figure 53

�Figure 54

�Figure 55

�Figure 55

�Figure 56

�Figure 57

�Figure 70

�Figure 62

A

B

C

D

E

F

G

H

I

�

Figure 63

B

C

A

D

F

E

I

G

H

Figure 64

�Figure 65

�Figure 66

~ 1 ~

~ 121 ~

_1348916476.pdf
+5U
~_[C5B
7
—12
= oon +5U
. GATE_CMD
POWER
GND GND +5U st [0 (O
ussucc T¥T 50 AN uccan | 25
3
7t 49 O
NDT2955 +5U 58 O
5 VIN IC4 5U s et
3 — MC33269D-5.0 =
- o~ 01 GND
By —3 ur uw P
- | PLIRIN Céiy €5 _L ADJ e5C7
100 1@@rI 1 I:L@@u S1 E*\' +5U
- ICSP N
o] 1o o2 o
A1 GND GND GND GND e 33 S
GND +oV 20 O
)
_RLS—:]—‘D
Arduino 2803 %2 ‘T csp—onD
C13 R1
I—rg@—‘n M Ok
1c1
+1 qp2 283 SRESET 1 resET (SCK>PB5 12
[6p
LusBucc +5U EEQESET‘ENﬁ osbpes |42
100 1c2 N Q2 18 1 y1AL2 (55)PB2 1;
n M8RXD = 16MHz (0C1>PB1
=4 20 1 ucesl ™D L S { xtAL1 acmese |12
4 5 M8TXD
100ne. C8 uccIo RXD
|—uccan [l 17 | occsg rrsw 2 AREF 21 28 I
(II res [ALICT o 2 AREF (ADCHPCS 28
D- 16 2 1 X3 GND AUCC (ADC4)PC4
7o usBOM DTR# £ > 22p N 22 | a6ND ADC3PC3 |26
D+ USBDP DSR# ADC2>PC2 |22
DCD# 2@ ‘3} Z 1 ucc (hDcpct 24
[
4 19 | preers RI# v [T 8 | &ND ocepcey |23
ol 13 T1o0 13
oS I oon > GPIO2 p (AIN1>PD?
92 27 | gscr o4 nl (AINBPDS |12
- aucc-ne <3 wx RX GND (TLOPD5 |11
1 28 | gsco s ¥) (T@PD4 g
GND e GPIOL =25 wx 1k (INT1>PD3
GPIOB H—=—"—"" 1 —1 4
, < (INTBYPD2 |
< oot o v RS 1k (TXD>PD1 g |
8 gsgg UCC3I-NC |- (RXD)PDO |
gg TEST GPIO3 % ATMEGAS
AGND SLEEP# |22
+5U M8RXD R8 1k
I FT232RL I |
T GND 1k
RS
R6 PUR MTXDRS

N |2 —
 E— > %
Y

OFRPNWACIAN

