Indoor People Tracking System – IPTS

Group 7:

Daniel DeFazio Brandon Tuero Matthew Rhodes

Goals

- Accurately track the location of personal and guests within a secure facility on graphical display
- Identify the current location within a facility with the push of a button
- Send a distress signal in case of emergency
- Receive the location of a person in distress
- Receive the location of a security breach

Indoor Positioning Challenges

- High cost
- Complex designs
- Building structures interfere with the signal
- Noise from outside sources
- Accuracy

System Specifications

- Minimum location accuracy of 5 ft in any direction
- Maximum tag read range of 500 ft
- Operation frequency 2.4 GHz

System Components

- Guest Tag: Carried around by person to be tracked
- Security Tag: Carried around by authorized personal
- Reader Mesh: Placed around the area where people need to be tracked
- Base Reader: Connected to the pc, receives data from reader nodes and sends it to the pc
- **PC GUI**: Process the tag data and display it on a map

System Layout

Guest Tag Overview

- Push-Button Identification
- Push-Button Distress Call
- Low-Battery Indication

Guest Tag: Room Identification

- External flash for audio files: SD Card
- Can not use FAT implementation
- Must use SPI

Memory	MSP 430G2	Needed for FAT
RAM	128 Bytes	1024 Bytes
FLASH	2048 Bytes	Several K-Bytes

Guest Tag: Room Identification

8-bit audio sample

SD Card Layout

- 8KHz.wav saved as raw text file
- Imaged to SD card starting at sector 0

Sector	Current Byte						
0	0	1	2		509	510	511
1	0	1	2		509	510	511
2	0	1	2		509	510	511

Guest Tag Room Identification

- Access always starts with sector 0
- Only sectors containing desired song go to output
- Each byte placed into the PWM duty cycle register until end of last sector

- Internal CLK --- 8MHz
- Sample Rate --- 8KHz
- PWM Reg Updt--8KHz
- ▶ WDT Interrupt --8KHz
- WDT Trigger--8M/512 = 15,625
- ▶ Routine updates audio every other interrupt, or 7,812.5 ≈ 8,000

SD Card Access

Playback Rate

Guest Tag Playing Raw Audio File

Program Flow

Distress Call

Guest Tag Layout

Security Tag Overview

- Carried by security personnel
- Viewable by the tracking software
- Will monitor the system for emergencies or security breaches
- LCD display will show where the situation is occurring
- Small buzzer will sound to notify of change of status

RF

- All tags and readers utilize Synapse RF Modules
- IEEE 802.15.4 Standard at 2.4 GHz
- System will use 2 different RF modules
 - RF100 PC6 with built in F antenna
 - RF100 PD6 with SMA connection for external antenna
- Code on the tag radio will transmit address of radio every 1 seconds

RF Engine Specifications

- RF 100 Modules have an outdoor LOS range of 3 miles and a 1000 foot indoor range
- 19 General Purpose I/O pins
- Small 33x33mm size
- Uses about 60 mA when transmitting, but has a low power sleep state of 1.6 µA

Microcontroller

	MSP430G2231
Package	14 Pin PDIP
I/O	10 GPIO
Voltage	1.8-3.6 V
Active Mode Current	300µA
Low Power Mode 4	0.8µA
Cost	FREE

MCU Program Flow

LCD Display

- Sparkfun 3.3V serial enabled LCD
- 16x2 character display
- Buzzer will sound for about 1 second to notify user
- 20mA current draw

Power

- L4931 3.3 V voltage regulator made by STMicroelectronics
- Output current of 250 mA
- Max current of security tag during testing of 110 mA
- Very low dropout voltage of 0.4 V

Battery

- Guest and security tag have Sparkfun 3.7 volt polymer lithium-ion battery
- > 2000 mAh capacity
- Lightweight at 36g
- Small size 0.25"x2.1"x2.1"

Battery Life = Capacity of Battery (mAh)/Consumption of Device(mA) * 0.7

Battery Life = Approximately 12 Hours

Battery

Battery	4 x AAA	7.2 V Li-ion
Capacity	~1000 mAh	2200 mAh
Cost	\$2.00	\$21.95
Life in hours	6	14

Battery Life = Capacity of Battery (mAh)/Consumption of Device(mA) * 0.7

Power/Low Battery Circuit

2 LEDs, green when unit is turned on, red when battery is low

$$3.3 V * \left(\frac{R2}{R1 + R2}\right) = 0.7 V$$

Low Battery Resistor Formula

Security Tag Schematic

Reader Nodes

- Each room will have a reader node
- Will simply consist of an RF module in a small case, 2 inches squared, powered by a DC wall adapter
- Nodes also contain a voltage regulator due to low quality wall adapter
- Constantly on, communicating information back to base unit

Base Unit

- Handles serial data to and from the GUI
- Serial to USB chip used for convenience
- Powered through the USB

Base Unit Program

Trilateration

Our Approach

- Each room will have at least one node
- Closest room with be determined by the largest signal strength
- After the room is determined, location within the room is found based on one of three methods
- Information is sent back to the tags based on the location

Variation In Signal Strength While Stationary

- Signal strength varies even when all components are stationary
- If this variance isn't dealt with, the movement would continue to jump around.
- Our solution is to establish a threshold that determines if the variation in signal strength is due to actual movement or not.

Signal Overwhelming an Adjacent Room

Room Change

Location Detection Methods

GUI Setup

Adding a Room

Running Mode

Division of Work

Name	Guest Tag	Security Tag	GUI	MCU Code	Radio Code
Daniel	Х			Х	
Brandon		Х		Х	
Matt			Х		Х

Budget

Part	Quantity	Cost	Extended Cost
Radio Module	10	\$30.00	\$300.00
Radio DEV Board	1	\$40.00	\$40.00
MCU	2	FREE	FREE
LCD Display	2	\$24.99	\$49.98
Discrete Comp.	Misc	Stock	Stock
Battery	2	\$16.95	\$33.90
РСВ	2	\$45.00	\$90.00
DC Wall Adapter	7	\$5.00	\$35.00
SD Card/Socket	1	\$7.90	\$7.90
Speaker	1	\$3.00	\$3.00
Buzzer	1	\$3.00	\$3.00
		TOTAL	\$562.78

Progress

Questions?

