
Accelerated rendering of fractal flames

Michael Semeniuk, Maǣhew Znoj, Nicolas Mejia, and Steven Robertson

December 7, 2011

@NMTBMTS

1 Executive Summary ʢ
1.1 Description . 1
1.2 Significance . 1
1.3 Motivation . 1
1.4 Goals and Objectives . 2
1.5 Research . 2

2 Fractal Background ʤ
2.1 Purpose of Section . 3
2.2 Origins: Euclidean Geometry vs. Fractal Geometry . 4
2.3 Fractal Geometry and Its Properties . 4
2.4 Fractal Types . 8
2.5 Visual Appeal . 10
2.6 Limitations of Classical Fractal Algorithms . 11

3 The Fractal Flame Algorithm ʢʤ
3.1 Section Outline . 13
3.2 Iterated Function System Primer . 13
3.3 Fractal Flame Algorithm . 22
3.4 Filtering . 29

4 Existing implementations ʤʤ
4.1 flam3 . 33
4.2 Apophysis . 33
4.3 flam4 . 34
4.4 Fractron 9000 . 34
4.5 Chaotica . 34
4.6 Our implementation . 34

5 A (not-so-)brief tour of GPU computing ʤʦ
5.1 OpenCL . 35
5.2 Common implementation strategies . 38
5.3 Closer look: NVIDIA Fermi . 40
5.4 Closer look: AMD Cayman . 42

6 Tools and components ʥʥ
6.1 GPU architecture . 44
6.2 GPGPU framework . 46
6.3 Host language and intermediate language . 46

7 Runtime code generation ʥʩ

i

8 Function selection ʦʡ
8.1 Divergence is bad, so convergence is…worse? . 50
8.2 Doing the twist (in hardware) . 51
8.3 ShiǍ amounts and sequence lengths . 52

9 Animating fractal flames ʦʦ
9.1 Flocks . 55
9.2 XML genome sequences . 56
9.3 Cuburn genome format . 57
9.4 Implementing interpolation on device . 57

10 Random Numbers and Pseudo-Random Number Generators ʦʪ
10.1 Bias : An Illustrative Example . 59
10.2 Pseudo RandomNumber Generators . 60
10.3 rand() and Linear Congruential Generators . 61
10.4 ISAAC . 61
10.5 Mersenne Twister . 61
10.6 MultiplyWith Carry . 62
10.7 Spectral Distribution . 62
10.8 Monte Carlo simulations . 63

11 Coloring and Log Scaling ʧʥ
11.1 Overview . 64
11.2 Relevant Applied ColorǤeory and Imaging Techniques . 64
11.3 Log Transformation of Data . 71
11.4 ToneMapping and Tone Operators . 71
11.5 flam3 : Original Coloring and Log Scaling Implementation 72
11.6 Challenge . 88

12 Sample accumulation ʩʪ
12.1 Chaos, coalescing, and cache . 89
12.2 Atomic writeback: perfectly slow . 90
12.3 Direct writeback . 90
12.4 Deferred writeback . 91

13 Cuburn sort ʪʧ

14 Filtering ʪʩ
14.1 Aliasing . 98
14.2 Denoising . 101
14.3 Filtering in cuburn . 105

15 Benchmarking ʢʡʨ
15.1 Framework . 107
15.2 BenchmarkMachine . 107
15.3 Benchmark Setup and Design . 108
15.4 Discussion and Analysis . 114

16 Usage and host-side API ʢʢʧ
16.1 Behind the scenes . 116
16.2 Command-line use . 117

ii

17 Design summary ʢʣʢ
17.1 Device soǍware . 121
17.2 Host soǍware . 122

A Glossary ʢʣʥ

B Licensing and permissions ʢʣʧ

C Bibliography ʢʤʡ

iii

@E>OTBQ ʢ

BXB@UTFVB SULL>QY

Ǥis document is provided as a technical manual describing all design considerations for the senior design
project Cuburn, discussed herein.

1.1 Description

Cuburn is a completely soǍware based project created for the purpose of creating visually appealing images
and image sequences. More specifically, it is a GPU accelerated implementation of the flam3 algorithm for
rendering fractal flames. Ǥe project is being created in the open source community and has the support of
several developers currently working in flam3 related projects. Ǥe soǍware being developed is being
designed to be platform independent and to be usable as a substitute for the standard flam3 library. Fractal
flames generated by Cuburn should be visually identitical to the human eye but will be rendered in a fraction
of the time compared to flam3. Ǥe developers have pulled out all the stops to implement the latest
cuǣing-edge technology whenever possible to help reach the goal of performing real time fractal flame
rendering on a personal computer.

1.2 Significance

Many implementations of the flam3 algorithm already exist and have existed for many years. Ǥis project is
significant because it is a modest improvement over all of the other implementations currently available at
this time. It is a GPU implementation of the flam3 algorithm, designed to produce images equivalent to the
CPU implemented flam3 soǍware, something that other GPU implementations have yet to do. It should be
noted that timemoves quickly in the realm of soǍware development and that there are others may be trying
to accomplish today what is being described in this document. However, being that this soǍware is being
designed with the bleeding edge of technology in mind and with many optimizations being performed on all
levels, it should proove difficult for another project to offer anymodest improvement over this design.

1.3 Motivation

Ǥe team designing this project likes fractal flames, as do thousands of others. Fractal flames do not offer
much of a practical purpose, they were only created for the mere entertainment only. It could be possible
that they hold the key to unlocking the manymysteries of the universe, but for now, they just look preǣy.
Current soǍware for creating these mesmorizing image sequences are relatively slow or of low quality.

1

Ǥere is no hope to use any currently existing soǍware to incorporate fractal flames into real time
applications such as music visualization. It is this condition that drives the motivation for this project. Ǥe
authors are set out to create a high quality, high performance, fractal flame renderer that can generate
exceptional flames in, or closer to, real time. Ǥis is not a trivial task, hence the reason it has not already
been accomplished. Ǥe goal for real time rendering is an optimistic one, but all the stops are being pulled
out so that if there is anything in the way of accomplishing this, it will only be the computationial resources
limit of current hardware technology.

1.4 Goals and Objectives

Ǥe overall goal of this project is to create a piece of soǍware that can render fractal flames of comparable
quality to the original flam3 implementation that can do so in a fraction of the time. To reach this goal, the
following objectives have been set:

• Independently implement a working version of the fractal flame algorithm.

• Develop a concrete and functionally complete understanding of GPU performance (for the particular
architecture we select) through targeted microbenchmarking and statistical analysis.

• Using knowledge gained throughmicrobenchmarking, rewrite the fractal flame algorithm for GPUs
using the aforementioned dialect.

• Develop, implement, and test new optimization strategies to improve the speed of the renderer.

• Use statistical, graphical, and psychovisual techniques to improve the perceived quality per clock
ratio.

1.5 Research

Ǥe cuǣing-edge nature of this project requires that the latest and greatest soǍware algorithms and
hardware be used in order to obtain the highest performance possible. Much research has been put into
realizing the high quality, high performance algorithms that take advantage of GPU hardware. Ǥese
research topics include iterated function systems, psuedo-random number generators, coloring and log
scaling, antialiasing, denoising, dynamic kernel generation, programming lanaguages, and more.
Accelerating these standard algorithms for use on GPU’s is key for this soǍware to function optimally.

2

@E>OTBQ ʣ

CQ>@T>K ?>@IDQNUMA

2.1 Purpose of Section

Ǥe fractal flame algorithm draws upon concepts across many fields including: statistics, mathematics,
fractal geometry, the philosophy of art and aesthetics, computer graphics, computer science, and others. One
may become short of breathe just trying to read that entire sentence on one breathe of air. Ǥe point that is
trying to made is that the fractal flame algorithm is arguably the most complex fractal process to date. Ǥe
road ahead of us for not only optimizing but fundamentally changing the process for how fractal flames are
rendered is not so clear and will require a solid knowledge as well as innovation.

Ǥe innovation is what the majority of this paper is about and as a guiding rule the words of Sir Francis
Bacon are very true to the author’s research process: “When you wish to achieve results that have not been
achieved before, it is an unwise fancy to think that they can be achieved by using methods that have been used before.”

As unwise as it would be to assume a solution to the current design challenge has already been solved, it
would also be unwise not to draw from previous knowledge from the aforementioned fields. Ǥerefore
knowledge frommathematics, statistics, and graphics will be supplemented as needed when design
decisions are presented later in the paper. However, before the paper transitions into the innovation aspect
of this project, the need to present ample background information on two fields of which warrant aǣention
is felt. Ǥese fields are fractal geometry and the aesthetic nature of fractal geometry.

Ǥe justification of presenting fractal geometry lies in the reasoning that the mathematics and properties
behind it is not blatantly intuitive and key concepts cannot be hand waved later in this paper. Had the
famous equation zn+1 = z2n + C been intuitive then humans would be able to visualize theMandelbrot Set,
seen in as seen in Figure 2.1, and understand its ability to scale infinitely without degradation, without the
aid of computer graphics.

Figure 2.1: The Mandelbrot Set

3

Ǥis section will touch on these intriguing and sometimes counterintuitive fractal properties and also
address their relevance in the project and what limitations they pose upon us for a GPU implementation or
new approach. Ǥe different types of fractals and how fractal flames, a variant of the iterated function
system, vary from theMandelbrot set, shown above, will be explained. Unlike classical geometry, fractal
geometry is a rather new field of geometry and the authors believe presenting a comprehensive knowledge
of the field in context of the project is absolutely feasible.

Ǥe next area that will be articulated is an atypical one: the aesthetical nature of fractal geometry. Ǥe
concept of beauty is something that has not been universally defined and one may oǍen allude to the idiom:
“Beauty is in the eye of the beholder.” Besides perhaps art therapy and for visual appeal, flame fractals do not
have an immediate real life application and therefore much of the justification for developing a GPU Fractal
Flame Render lies upon their aesthetics, the idea of creating a process which allows artistic formation, and
the wonder they bring. Excruciating detail is spared but major milestones are shown in history dating back
to African civilizations who built their culture and art around self-similar repeating geometric figures. Ǥe
point trying to be made is that there is a widely accepted aǣraction towards these shapes that penetrates
different societies and cultures.

AǍer understanding the background behind fractal aesthetics this will be furthered with additional visual
concepts such as gamma correction, filtering, motion blur, and symmetry.

2.2 Origins: Euclidean Geometry vs. Fractal Geometry

Geometry has formalized the way humans talk about and perceive points, shapes of figures, and the
properties of space. Up until the 19th century geometry need not be prefixed with the specific type of
geometry that it was referring to- it was assumed it was Euclidean, named aǍer Euclid the Greek
mathematician of Alexandria, Egypt. While teaching at the Alexandria Library, Euclid had transcribed a
comprehensive set of 13 books in which he titled Elements. Ǥese books described Euclidean Geometry (and
other topics) and included his ownwork along with other mathematicians includingǤales, Pythagoras,
Plato, Eudoxus, Aristotle, Menaechmus, and other predecessors.

Element’s impact was dramatic. So much so that Euclid is oǍen referred to as the “Father of Geometry”. By the
20th century Euclidean geometry was being taught globally in schools. Shapes such as: circles, triangles, and
polygons are taught at an early age.

However as influential as the idea of Euclidean Geometry is its ideal shapes failed to describe the shapes that
appear in nature. As stated in the opening paragraph of Benoît Mandelbrot’s book,Ǥe Fractal Geometry of
Nature[1] : “Clouds are not spheres, mountains are not cones, and lightning does not travel in a straight line. ǫe
complexity of nature’s shapes differs in kind, not merely degree, from that of the shapes of ordinary geometry.”

2.3 Fractal Geometry and Its Properties

Ǥis new geometry Benoît Mandelbrot writes about in his book, he calls fractals which come from the Latin
work fractus meaning “fractured”. Ǥese new shapes exhibited different properties than classical Euclidean
shapes. Ǥese shapes were rough and did not belong to an integer valued dimension. Fractals also exhibited
self-similarity in which parts of the figure repeat themselves. Ideal fractals also did not degrade with scale
either like other classical shapes or like a photograph. Ǥese new shapes had been investigated in the
WesternWorld previous to Mandelbrot and were already an accepted part of African art and culture before
Mandelbrot had been observed and published his findings which lead to their widespread use and
acceptance.

4

Ǥe properties in whichMandelbrot and his predecessors have found are summarized. Ǥey later will be
freely referenced from this point forward when they are needed to explain additional concepts.

Self Similarity

Fractals contain the property of self-similarity. Ǥis self-similarity is classified into different types ranging
from the strongest formwhich is called exact self-similarity to the weakest form called statistical or
approximate self-similarity. Ǥe three classifications are below:

BX>@T SBKC-SFLFK>QFTY: Ǥis type of self-similarity contains, as its name implies, exact copies of itself
repeating at infinitely smaller scales. Classical examples include Sierpinski’s gasket or the Koch Curve
which can be seen in Figure 2.2.

Figure 2.2: The Koch Curve

PU>SF SBKC-SFLFK>QFTY: Ǥis type of self-similarity does not contain exact copies but rather distorted or
degenerate forms of itself at infinitely smaller scales. Classical examples include theMandelbrot set seen
above in Figure 2.1.

ST>TFSTF@>K SBKC-SFLFK>QFTY: Ǥis type of self-similarity is the weakest and is the type oǍen encountered
in the real world. Statistical self-similarity refers to the fact that the object has numerical or statistical
measurements that are maintained at different scales. When classifying shapes in nature as fractal-like this
definition is being implied. For example, the self-similar aspects of how a tree branches are never found to
be exact and sometimes deviate from their expected paǣern but still exhibit self similarity in a sense. Ǥe
definition of statistical self-similarity accounts for this and is important because the luxury is not always
given to observe concepts in their ideal sense. We can aǣempt to observe this notion of statistical
self-similarity in Figure 2.3 which shows a depiction of a leafless tree in order to exemplify the properties of
the tree’s branches.

Figure 2.3: Statistical self-similarity found in the branching of trees.

5

Another classical example is measuring a coastline such as Britain. When scaling the coastline it appears
similar to at magnified scales. Additionally, what follows from this is the more accurately one measures the
coastline (with a smaller base measurement) the more the length increases. Ǥis length increases without
limit and contrary to intuition shows that the coastline of a country is infinite.

Fractal Dimensionality

Classical dimensionality is oǍen expressed in whole number integer values. Lines have a dimensionality of
1, squares have a dimensionality of 2, and cubes have a dimensionality of 3. Ǥis however does not explain
how completely a fractal fills a space. Does the Sierpinski’s Triangle, seen in Figure 2.4, cover 1 dimension
like a line or 2 dimensions like a triangle? Ǥe answer is actually that it contains a dimension that is between
the two!

Figure 2.4: A visual of Sierpinski’s Triangle which has a fractal dimensionality.

Ǥis can be shown using a variety of ways that formally define fractal dimensionality including: Hausdorff
dimension, Rènyi dimension, and packing dimension. Ǥese theoretical definitions differ in their approach
however all three aǣempts to explain the same phenomenon: real numbered dimensionality.

Fractal dimensionality will be explained in this section in an intuitive way rather than providing the reader
with a heavy mathematical explanation. Ǥis will be done using the concept of a box-counting dimension
which lends itself to ideas from the Rènyi dimension.

To calculate the dimensionality of an object, an equidistant grid is imposed upon the object and the number
of boxes that are necessary to cover the object are counted. Ǥe process continues and the equidistant grid is

6

refined by decreasing the size of the grid. Again, the number of boxes that are necessary to cover the object
are counted and the process repeats.

Ǥe formula used is:

Dimensionalitybox(S) = lim
ε→0

logN(ε)

log 1
ε

whereN(ε) is the number of boxes needed to cover the set, ε is the side length of each box, andS is the set to
be covered.

For a line with a known dimensionality of 1 the box counting procedure is performed. Ǥe procedure will
start with a side length of length 1 and continually half the side length until a recognizable paǣern emerges
which can be observed in Figure 2.5.

Figure 2.5: Box Counting Dimension Process For a Line

Ǥe box counting equation can be solved by completing the paǣern that shows the rate at which the number
of boxes in the grid grow compared to the number of boxes needed to cover the shape as the side length
approaches 0. Ǥis is shown in Table 2.1.

?NX KBMDTE: ε MUL?BQ NC ?NXBS: N(ε)

1 1
1
2 2
1
4 4
1
8 8

... ...
ε 1

ε

Table 2.1: Box length (ε) and the number of boxes (N(ε)) as ε approaches 0.

From this table the following formula can be deduced by solving the paǣern.

DimensionalityLine(S) = lim
ε→0

log 1
ε

log 1
ε

= 1

Our box counting procedure coincides with the view that a line has a dimensionality of one. We now use this
same box counting procedure to calculate a shape of non integer value dimensionality. Sierpinski’s gasket
will be used as the example. Ǥe procedure will again start with side length of 1 and continually half it until a
recognizable paǣern emerges which can be observed in Figure 2.6.

7

Figure 2.6: Box Counting Dimension Process For Sierpinski’s Gasket

Ǥe results are rewriǣen in the form of powers to expose the paǣern. Ǥis is shown in Table 2.2.

?NX KBMDTE: ε MUL?BQ NC ?NXBS: N(ε)

1 30 = 1
1
21

= 1
2 31 = 3

1
22

= 1
4 32 = 9

1
23

= 1
8 33 = 27

... ...
1
2N

= ε 3N

Table 2.2: Box length (ε) and the number of boxes (N(ε)) as ε approaches 0.

From this table the following formula can be deduced by solving the paǣern.

DimensionalitySierpinski(S) = lim
ε→0

log 3N

log 2N
≈ 1.58

Ǥe concept of dimensionality is oǍen referred to as QNUDEMBSS which is a measure of a shape’s irregularity.

Formation by Iteration

Ǥemethod for constructing a fractal relies on an iterative process. Regardless if the fractal is a naturally
occurring statistically self-similar fractal, a computer generated fractal, or even a mathematical calculation
of a set that exhibits fractal-like properties they all rely on a process which involves multiple iterations of a
specific process. Ǥis process could be for example in geometric fractals scaling shapes or in the case of
algebraic computer generated fractals adjusting parameter values.

2.4 Fractal Types

When one gets their first taste of fractal geometry they notice the diversity of shapes and figures that
encompass it. For the paper’s purposes, fractals will not be classified by how they visually look but rather the
process for creating them. Ǥis is done because given the nature of this project the focus is on the data
structures and algorithms used to create the fractal. Ǥe shape and paǣerns that are merely the byproduct of
the process. It is not always apparent which creation method was used to create a certain paǣern. By
classifying fractals by their creation method, the following information is gained:

8

1. Explain what this project is not

2. Draw similarities from closely related fractal systems

3. Compare the boǣlenecks and difficulties between systems.

Ǥemajor classifications of fractals by their generation methods are the 4 types presented in the following
subsections.

Escape Time Fractals

Ǥis type of fractal relies on recursively applying an equation upon an initial point. Ǥe transformed point
can either diverge past a certain bounds, set by the programmer, or can never reach the escape
circumstance.T his bounds is called the escape circumstance. Different points reach the escape circumstance
at different rates.

Output images of these images can be black and white denoting which points did not escape and which
points did escape. Ǥis however is too simplistic and does not produce visually appealing image. A simple fix
that greatly enhances the appearance is coloring the points depending on how fast each point escaped.

Classical examples of fractals include:

• Julia Set

• Mandelbrot Set

• Orbital Flowers

andmany others.

Strange Attractors

Strange aǣractors, such as the one seen in Figure 2.7, are aǣractors whose final aǣractor set are that of a
fractal dimension. An aǣractor is a set that a dynamical system approaches as it evolves. Dynamical systems
are systems which describe the state of the system at any instant and contain a rule that specifies the future
state of system.

Figure 2.7: Image of a Strange Attractor

9

A difference of the strange aǣractor versus a traditional aǣractor is that strange aǣractors have a sensitive
dependence on their initial conditions and oǍen exhibit properties of chaos¹ which makes their behavior
hard to predict.

Random Fractals

Random fractal’s iterative process relies on a non-deterministic process for creation. By applying some
process the resulting set or image exhibits fractal-like properties such as the two images seen in Figure 2.8.
Many landscapes and plants in nature exhibit this property. For example, mountains are not formed by a
deterministic process yet exhibit statistical self-similarity. Fractal landscape generation is a stochastic
process which tries to mimic this stochastic process in nature.

Figure 2.8: Image of a computer generated fractal landscape compared with a mountain landscape

Iterated Function Systems

Ǥis is the fractal system that the project will focus upon. Iterated function systems rely on performing a
series of transformations stochastically (which are generally contractive on average[2]) to produce the
output image. Ǥis stochastic process is called the @E>NS D>LB. Ǥe @E>NS D>LB starts with randomly
choosing an initial point and then consecutively applying a randomly chosen transformation from the set of
transformations that make up the iterated function system.

Ǥe entire iterated function system process and its intricacies will be articulated upon in Section 3.2.

2.5 Visual Appeal

Ǥe visual appeal of fractal geometry is far reaching and includes groups of people such as certain African
societies, individuals who appreciate the fractal aspects of nature, and online fractal art communities such
as Electric Sheep. Its universal appeal is of course subjective like any other art societies.

First and foremost, nature has is the most apparent in creating fractal-like features which can readily be
observed. Examples are plentiful and include:

• Ǥe leaves of ferns and other plants

• Tree branching

¹When the properties of chaos are referred towhat ismeant by them is the notation that a point which is close to the aǣractor will
become separated at an exponential rate.

10

http://electricsheep.org/

• Mountain landscapes

• Certain intricate rivers

• River erosion paǣerns

• Coastlines

• Electrical discharge paǣerns

• Romanesco (a broccoli-like plant)

• Hydrothermal springs

• Cloud-spiral Formations

• Virus and bacterial colonies

• Coastlines

• and numerous others

Ǥewonder that nature brings individuals can partly be aǣributed to the idea of self-similarity and the
complex shapes it produces.

Fractal Geometry has been a part of the African culture, social hierarchy, and art predating any formal
western knowledge on fractals. Village architecture, jewelry, and even religious rituals all exhibit the
concepts of self-similarity[3]. Recently with the advancement of computer aided image generation, the
appreciation of fractals has spread to a wider community. For example, the application Electric Sheep uses
distributed computing in order to evolve fractal flames which are displayed as screensavers to users. Ǥe
community has membership of roughly 500,000 unique members [4] who appreciate viewing fractal flame
images.

Hopefully this background information shows the general interest in fractal-like paǣerns and with that the
project focuses on this last group of individuals who appreciate computer generated fractal images. Ǥe
proposed GPU rendered fractal algorithm hopes to deliver the existing community with the opportunity to
continue viewing these fractal flame images without the need for distributed computing to render them in
real time- a major improvement.

2.6 Limitations of Classical Fractal Algorithms

Escape Time Fractals, Strange Aǣractors, and Random Fractals all have distinct methods of fractal
generation however they lack several characteristics which limit the resulting images and videos that can be
generated with them. Some of the limitations include:

• A generic process for combining multiple effects (whether they be matrix transformations, series of
equations, or process steps) to create an increasingly complex fractal.

• Ǥe ability to structurally color each defined effects instead of coloring the entire result of all of the
combined effects.

• Inherently, take on the task of image correction and color theory as part of the problem in order to
provide higher quality andmore accurate output.

• Ǥe ability to seamlessly interpolate between effects.

11

http://electricsheep.org/

All of these bulletpoints above are accomplished using the fractal flame algorithm, a variant of the Iterated
Function System fractal type. Ǥese additionally features allow beautiful interpolation between
transformations, a heightened focus on color and image correction techniques, as well as more intricate
shapes. Because of these additional features the flame algorithm has many advantages over classical fractal
flame algorithms which is one of the governing reasons why this systemwas chosen for the project.

12

@E>OTBQ ʤ

TEB CQ>@T>K CK>LB >KDNQFTEL

3.1 Section Outline

Ǥis section provides an in-depth description of the fractal flame algorithm along with a primer on the
Iterated Function System (IFS) in which the fractal flame algorithm is a variant of. Ǥis primer is provided to
the reader in order to solidify the concept of the chaos game which is essential to understanding the flame
algorithm because it builds heavily on upon the concepts that are used in the classical IFS.

Also included in this section is a brief history of the Flame algorithm from its birth in 1992 to the present day.
As the algorithm is presented step-by-step references are also presented in which the topics in question are
explained in more detail.

Finally, we end with a concluding section summarizing our current knowledge on the topic and describe
how it influenced our proposed implementation for rendering fractal flames using the flame algorithm
which is described in the following section.

3.2 Iterated Function System Primer

Ǥis primer aims to present the fundamental concepts of iterated function systems along with several classic
examples that will visually andmathematically convey two important concepts:

1. Ǥe importance of random application of defined affine transformations on a random starting point in
the plane

2. How affine transformations are used to transform¹ points to produce self-similar images such as
Sierpinski’s Triangle and Baransley’s Fern.

Ǥese concepts are the building blocks of the flame algorithm. If the reader is already familiar with the
concept of iterated function systems feel free to skip to Section 3.3 and begin reading about the fractal flame
algorithm.

Definition

An FTBQ>TBA CUM@TFNM SYSTBL is defined as a finite set of >CCFMB @NMTQ>@TFNM TQ>MSCNQL>TFNMSFi

where i= 1, 2, …, N that map a LBTQF@ SO>@B onto itself.

¹A transformation being an operator that can rotate, scale, translate, or provide shear to some vector space.

13

Mathematically this is [5]:

{fi : X 7→ X} , N ϵN

ALBTQF@ SO>@B is any space whose elements are points, and between any two of which a non-negative real
number can be defined as the distance between the points (e.g. Euclidean Space).

An >CCFMB TQ>MSCNQL>TFNM from one vector space to another is comprised of a linear transformwhich
gives either rotation, scaling, or shear following by a translation. Mathematically this is [6]:

Ǥese transforms can be represented in one of two ways:

1. By applying matrix multiplication (which is the linear transform) and then performing vector
addition (which represents the translations).

2. By using a transformation matrix. To do this wemust use homogeneous coordinates. Homogenous
coordinates have the property that preserves the coordinates in which the point refers even if the
point is scaled. By using the transformation matrix we can represent the coefficients as matrix
elements and combine multiple transformation steps by multiplying the matrices. Ǥis has the same
effect as multiplying each point by each transform in the sequence. Ǥis effectively cuts down the
number of multiplications needed- this is worth noting as it will be utilized in our implementation.
Figure 3.1 shows the operations in which the transformation can perform.

Figure 3.1: Visual representation of Shear, Translation, Rotation, and Scaling.

QNT>TFNML>TQFX To perform rotation using the transformation matrix the matrix positionsA0,0,A0,1,
A1,0, andA1,1 should be modified (whereA is the matrix). By using the transformation matrix below
and seǣing θ you effectively rotate your vector space by θ degrees.∣∣∣∣∣∣

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

∣∣∣∣∣∣

14

SEB>Q L>TQFX To perform shear using the transformation matrix the matrix positionA0,1 should be
modified (whereA is the matrix). By using the transformation matrix below and seǣingAmount you
effectively perform shear of valueAmount on your vector space.∣∣∣∣∣∣

1 Amount 0
0 1 0
0 0 1

∣∣∣∣∣∣
S@>KFMD L>TQFX To perform scaling using the transformation matrix the matrix positionsA0,0 andA1,1

should be modified (whereA is the matrix). By using the transformation matrix below and seǣing
Scale Factorx to the magnification you would like your x-axis and Scale Factory to the
magnification you would like your y-axis you effectively scale your vector space by that amount.∣∣∣∣∣∣

Scale Factorx 0 0
0 Scale Factory 0
0 0 1

∣∣∣∣∣∣
TQ>MSK>TFNML>TQFX To perform translation using the transformation matrix the matrix positionsA0,2

andA1,2 should be modified (whereA is the matrix). By using the transformation matrix below and
seǣing Translationx to the offset from your current x-point and Translationy to the offset from
your current y-point you effectively translate your vector space by that amount.∣∣∣∣∣∣

1 0 Translationx

0 1 Translationy

0 0 1

∣∣∣∣∣∣
3. Ǥe term @NMTQ>@TFNML>OOFMD refers to a mapping which maps two points closer together[7]. Ǥe
distance between these points is uniformly shrunk. Ǥis contraction will be seen when performing
the classic Sierpinski Triangle problem . Ǥe properties above can be proved by the Contraction
MappingǤeorem and because of this proves the convergence of the linear iterated function system
presented in this section.

Chaos Game

Ǥemost commonway of constructing an Iterated Function System is referred to as the chaos game as coined
byMichael Barnsley. Our initial fractal flame algorithmwill also use this approach. In the chaos game a
random point on the plane² is selected. Next, one of the affine transformations to describe the system is then
applied to this point and the resulting point is then ploǣed. Ǥe procedure is repeated for N iterations where
N is leǍ up to the user. Selection of the affine transformation to apply is either random (in the case of
Sierpinski’s triangle) or probabilistic (in the case of Barnsley’s Fern). Ǥemore iterations you allow the
chaos game to run for the more closely your resulting image resembles the iterated function system. A flow
chart of this procedure is found in Figure 3.2.

²By plane we are refering to a biunit square where x and y values can have a minimum value of –1 and a maximum value of 1.

15

Figure 3.2: Flow chart of IFS Procedure

Classical Iterated Function System : Sierpinski’s Triangle

Now that the algorithm has been explained an illustrative example known as Sierpinski’s Triangle is
presented for the readerǤis example is suitable to show how the fractal will begin to show itself aǍer a
certain number of iterations of the chaos game. Ǥis is also a suitable example to observe the contractive

16

nature of the affine transformations.

To construct Sierpinski’s Triangle using the chaos game we need to describe the affine transformations that
will describe the system. Using the most basic version of an affine transformation (which uses vector
multiplication and vector addition), we can describe the systemwith the following 3 transformations:

A0 =

∣∣∣∣12 0
0 1

2

∣∣∣∣ b0 = ∣∣∣∣00
∣∣∣∣ selected with a probability of 13 . (Pulls point towards Vertex A)

A1 =

∣∣∣∣12 0
0 1

2

∣∣∣∣ b1 = ∣∣∣∣120
∣∣∣∣ selected with a probability of 13 . (Pulls point towards Vertex B)

A2 =

∣∣∣∣12 0
0 1

2

∣∣∣∣ b2 = ∣∣∣∣01
2

∣∣∣∣ selected with a probability of 13 . (Pulls point towards Vertex C)
Using the affine transformation matrix described previously we can equivalently write the transformations
more succinctly as:

F0 =

∣∣∣∣∣∣
1
2 0 0
0 1

2 0
0 0 1

∣∣∣∣∣∣ selected with a probability of 13 . (Pulls point towards Vertex A)

F1 =

∣∣∣∣∣∣
1
2 0 1

2
0 1

2 0
0 0 1

∣∣∣∣∣∣ selected with a probability of 13 . (Pulls point towards Vertex B)

F2 =

∣∣∣∣∣∣
1
2 0 0
0 1

2
1
2

0 0 1

∣∣∣∣∣∣ selected with a probability of 13 . (Pulls point towards Vertex C)
Each of these transformations pulls the current point halfway between one of the vertices of the triangle and
the current point. F0 performs scaling only. F1 andF2 perform scaling and translation.

We now begin the chaos game. We first select a random point on the biunit square. In this case we have
pseudorandomly selected x = 0.40 and y = 0.20. We then pseudorandomly pick transformations. Ǥe first
four transformations shown areF0,F2,F1, and thenF0. Ǥe application of these are shown in Figure 3.3.

Notice how the next point is the midpoint between the vertex and current point. Ǥese mappings guarantee
the convergence of the algorithm to the desired IFS.Ǥis process continues on with each point being ploǣed
except for the initial 20 points that allow the system to seǣle. We have provided coloring for a visual
representation of what transformation was responsible for each point. Points transformed byF0 are labeled
Green,F1 are labeled Red,F2 are labeled Blue. Iterations 1,000, 7,500, 15,000, and 25,000 are displayed in
Figure 3.4.

Ǥemore one stochastically samples, the closer the output image is to the solution of the Iterated Function
System being computed.

17

Figure 3.3: Illustrative process of the chaos game.

18

Figure 3.4: Sierpinski’s Triangle after 1,000, 7,500, 15,000, and 25,000 iterations.

19

Classical Iterated Function System: Barnsley’s Fern

As a more intricate example, the classical iterated function system called Barnsley’s Fern is presented. Ǥis
systemwas introduced by the mathematicianMichael Barnsley in Fractals Everywhere [5]. Ǥis example is
suitable to show all of the operations of an affine transform : shear, scale, rotation, and scaling.

To construct Barnsley’s Fern using the chaos game we need to describe the affine transformations that will
be used. Using the most basic version of an affine transformation (which use vecotr multiplication and
vector addition), we can describe the systemwith the following 4 transformations seen below. As a note, the
affine transformations of this system are not equally weighted and have their own probabilistic model
associated with each [5].

A0 =

∣∣∣∣0.00 0.00
0.00 0.16

∣∣∣∣ b0 = ∣∣∣∣0.000.00

∣∣∣∣ selected with a probability of 0.01.
A1 =

∣∣∣∣ 0.85 0.04
−0.04 0.85

∣∣∣∣ b1 = ∣∣∣∣0.001.60

∣∣∣∣ selected with a probability of 0.85.
A2 =

∣∣∣∣0.20 −0.26
0.23 0.22

∣∣∣∣ b2 = ∣∣∣∣0.001.60

∣∣∣∣ selected with a probability of 0.07.
A3 =

∣∣∣∣−0.15 0.28
0.26 0.24

∣∣∣∣ b3 = ∣∣∣∣0.000.44

∣∣∣∣ selected with a probability of 0.07.
Using the affine transformation matrix described previously we can equivalently write the transformations
more succinctly as:

F0 =

∣∣∣∣∣∣
0.00 0.00 0.00
0.00 0.16 0.00
0.00 0.00 1.00

∣∣∣∣∣∣ selected with a probability of 0.01.

F1 =

∣∣∣∣∣∣
0.85 0.04 0.00
−0.04 0.85 1.60
0.00 0.00 1.00

∣∣∣∣∣∣ selected with a probability of 0.85.

F2 =

∣∣∣∣∣∣
0.20 −0.26 0.00
0.23 0.22 1.60
0.00 0.00 1.00

∣∣∣∣∣∣ selected with a probability of 0.07.

F3 =

∣∣∣∣∣∣
−0.15 0.28 0.00
0.26 0.24 0.44
0.00 0.00 1.00

∣∣∣∣∣∣ selected with a probability of 0.07.

20

Figure 3.5 shows the procedure which results in the final system. Ǥis system resembles the Black
Spleenwort fern [8]. Ǥis fern was not shown soley because it resembles a similar shape in nature but
because of the explicit way the transforms were used to get the shape desired (which is oǍen seen in the
flame user community when creating intricate flames).

Figure 3.5: The formation of the Iterated Function System called Barnsley’s Fern.

Below in Table 3.1 is an explanation of what each transformation conceptually does to produce the fern [5]
[8].

Name of Transform Conceptual Description
F0 Maps to the base of the stem.
F1 Maps inside the leaflet described by the red triangle in Figure 3.5.
F2 Maps inside the leaflet described by the blue triangle in Figure 3.5.
F3 Maps inside the leaflet represented by the blue triangle in Figure 3.5.

Table 3.1: Conceptual descriptions of each affine transformation of Barnsley’s Fern.

21

3.3 Fractal Flame Algorithm

Differences from Classical Iterated Function System (IFS)

Fractal flames are a member of the Iterated Function System however differ from Classical Iterated Function
Systems in three major respects [2]:

1. Instead of affine transformations presented in the previous section non-linear functions are used.

2. Log-density display is used instead of linear or binary.

3. Structural Coloring

On top of the core differences, additional pyschovisual techniques such as spatial filtering and temporal
filtering (motion blur) give rise to more aesthetically pleasing images with the illusion of motion.

History

Ǥe flame algorithmwas created in 1992. Ǥe algorithmwas created by Scoǣ Draves who is soǍware and
visual artist. Shortly aǍer the creation of the algorithm the first implementation called flame3wasmade
openly available in 1992. Drave’s fractal flame soǍware has allowed the process for artist creation by
allowing the users to experiment with shapes, colors, and stylistic effects. More historical background can
read about in Section 4.1.

Algorithm

Outline

Ǥe details of the algorithm as well as a detailed flow chart of the algorithmwill be described in this section
but will spare full-scale explanations for a specific reason: these will be saved for their own respective
chapter in which we review each different concept of the algorithm and provide the existing
implementation and then present the improved implementation. We do this merely to partition the large
sections of the paper and to bring aǣention to the relevant new approaches that will be described.

Ǥe followingwill give a coherent understanding of the algorithmminus some of the implementation details.

Transforms

Unlike the classical IFS examples presented previously which apply one transformation to a set of points, the
fractal flame applies multiple transformations. Ǥese transformations can be non-linear unlike their
classical IFS counterparts. Additionally not all mappings are contraction mappings [5] however the whole
system is contractive on average. Ǥere are some fractal flame systems which are degenerate and are not
contractive; however, these are of no interest to us.

Ǥemultiple variations as well as their order of application on the initial point choosen at random are
described below:

22

1. >CCFMB TQ>MSCNQL>TFNM

Ǥe affine transformation we will be working with for the flame algorithm is of the form:

Fi(x, y) = (aix+ biy + ci, dix+ eiy + fi)

Again, this transformation makes it possible to provide rotation, scaling, and shear to the points. Ǥe
information that is represented in this form is both space (x and y coordinates) as well as color which is
explained in Section 3.3.

2. V>QF>TFNM

To provide the complex realm of shapes the algorithm can produce we introduce a non-linear functions
called a variation.

Ǥe variation is applied to the affine transformed point resulting in the transformation being of this form:

Fi(x, y) = Vj(aix+ biy + ci, dix+ eiy + fi)

Furthermore, multiple variations can be applied to an affine transformed point. Each point also is multiplied
by a blending coefficient named vij which controls the intensity of the variation being applied. Ǥe
expanded formula is the following:

Fi(x, y) =
∑
j

vijVj(aix+ biy + ci, dix+ eiy + fi)

By applying variations, the resulting plane is changed in a particular way. Fundamentally there are 3
different types of variations in which can be applied. Variations are either simple remappings, dependent
variations, or parametric variations.

SFLOKB QBL>OOFMDS: A simple remapping is one such that it simply remaps the plane. Ǥis could for
example be remapping of the cartesian coordinate system plane to a polar coordinate system plane or some
kind of sinusoidal plane.

ABOBMABMT V>QF>TFNMS: A dependent variation is a remapping of the plane such that the mapping is a
simple remapping but additionally controlled by coefficients that are dependent on the affine
transformation being applied.

O>Q>LBTQF@ V>QF>TFNMS: A parametric variation is a remapping of the plane such that the mapping is a
simple remapping but additionally controlled by coefficients that are independent of the affine
transformation applied.

A baseline flame with purely an affine transform applied is shown side by side with both a simple
remapping, dependent variation, and parametric variation in Figure 3.6. Ǥis will give you a good idea on
what a single variation can do to shape the system and how intricate some of the variations can be. As an
additional visual supplement please refer to the Appendix of the original Flame Algorithm Paper for an
extensive collection of many catalogued variations [2].

23

3. ONST TQ>MSCNQL>TFNM

AǍer applying the variations which shape the characteristics of the systemwe apply what is known as a post
transformwhich allows the coordinate system to be altered. Ǥis is done with another affine transformtion
labeled Pi. By adding to our previous definition the definition for all of the collective transformations is:

Fi(x, y) = Pi(
∑
j

vijVj(aix+ biy + ci, dix+ eiy + fi))

wherePi is equal to:

Pi(x, y) = (αix+ βiy + γi.δix+ ϵiy + ςi)

4. CFM>K TQ>MSCNQL>TFNM

Finally, because the image is eventually outpuǣed to the user we apply the last transformation which is a
non-linear camera transformation³.

Log-Density Display of Plotted Points

In the classical Iterated Function System, described previously, points were either members in the set or not.
For every subsequent time the chaos game selected a point that was already shown to have membership in
the set information was lost about the density of the points. To remedy this for the fractal flame algorithm
we instead use a histogram for ploǣing the density of points in the chaos game. Given the density of points
are now ploǣed onto the histogramwe have several different methods we could go about ploǣing them into a
resulting image which include:

1. ?FM>QY L>OOFMD: As described before, this did result in the images we wished to produce but were
not smooth and contained no shades of gray (black and white).

2. KFMB>QL>OOFMD: A linear mapping of the histogram provides an improvement but the range of data is
lost in the process. Ǥe linear mapping has problems differentiating large scales of range. For
example, a point ploǣed 1 time, 50 times, and 5,000 times would be a great illustrative example.
Compared a point of density 5,000 both point densities 1 and 50 appear to be of relatively same
magnitude however there is a great different in them.

3. KND>QFTELF@ L>OOFMD: Ǥis mapping proves to be superior to it’s counterparts. Ǥe logarithmic
function allows a great range of densities relationship to oneanother to be persered. Ǥis is the type of
mapping the flame algorithm employs.

Visual representations of a flame using a binary, linear, as well as logarithmic mapping for the display can be
seen in Figure 3 of Drave’s original paper on the flame algorithm[2].

As a note to avoid confusion, the logarithmic mapping allows the image to now displayed in shades of grays
and not as the vibrant colorful flames readily available to be viewed on flame gallery websites. Structural
coloring, color correction and enhancement techniques, and tone mapping take care of these and are all
seperate algorithmic processes.

³Ǥis transformation isn’t applied directly to the computational loop and is merely for visual output.

24

Figure 3.6: 4 different variations applied to the same flame depicting the different types of variations and how
they change the solutions characteristics.

25

Coloring (Tone Mapping)

Structural coloring is one of the elements that sets the flame algorithm apart from the classical iterated
function system. Instead of mearly mapping grayscale (being the space from [0,1]) to a specific red, green,
blue color space another approach is taken. A color mapping (presented in the previous sentence) is used
however we further our definition of the affine transformation (Fi) and additionally include a color related
to that transformation. AǍer applying the transformation which looks like the following:

(x, y) = Fi(x, y)

We apply the color associated with the transformation. To do this we expand this transformation process
and include the variable cwhich stands for the color (R,G,B) of that point. We average the current color with
the color related to that transformation like so:

c =
(c+ ci)

2

Ǥis has a major effect upon the color and allows the last applied transform to have the most significant
effect. Ǥis application of affine transformation color helps structural coloring emerge in a similar way to
how colors were applied to each transform in the Sierpinski’s Triangle example. Additionally, a final
transform also has a color associated with it. Ǥe final transformation (non-linear camera transformation) of
the (x,y) point is inn the form of:

(xf , yf) = Ff (x, y)

AǍerwards we also average the current color with the color related to that transformation:

cf =
c+ cf

2

Furthermore, when peforming log-density display we run into issues if we are only keeping information
about the RGB values associated with each point. By logarithmically scaling each color channel we do not get
the desired results. For more information on why please see Section 11.2 on brightness and that red , green,
and blue wavelengths are not treated equal. Ǥe fractal flame algorithm remedies this by using RGB and also
an additional variable calledαwhich is the transparency value. Ǥis value is accumulated and scalled by
logα
α at the end of the chaos game.

Gamma Correction and Company

Now that our flame is colored the process is complete, right? Wrong. Many complications still are not yet
resolved. Ǥe next being the concept of gamma correction. To correctly display the flame image on a lower
dynamic range (such as an LCD or CRTmonitor or printer) we need to map our high dynamic range to the
lower dynamic range. A full discussion of this topic can be seen in Section 11.2 and Section 11.2.

Additional color correction techniques can be applied to the flame. A full survey of what kind of color
correction techniques are available and what kind of benefit they provide are mentioned in Section 11.5.

26

Symmetry

Ǥe fractal flame algorithm inherently supports the concept of self-similarity but also supports the concept
of symmetry of two kinds:

• Rotational

• Dihedral

Ǥis added symmetry adds a new level of intricacy to the resulting flame. Symmetry is thought to be
congenitally aǣractive to the human eye [9]. A description of how symmetry is added to the flame algorithm
is as follows.

QNT>TFNM>K SYLLBTQY is introduced by adding extra rotational transformations. To produce n-way
symmetry you are essentially implying that you wish to have 360◦

n degrees symmetry. Ǥe set of
transformations transformations necessary to add 360◦

n symmetry is:

Rotational Transformsi =
(
360◦

n
× i |i = 1, 2, .., n

)
where n = number of way symmetry

For example, To produce six-way symmetry the following 5 transformations would be needed:

• Rotational Transforms1 = 60◦

• Rotational Transforms2 = 120◦

• Rotational Transforms3 = 180◦

• Rotational Transforms4 = 240◦

• Rotational Transforms5 = 300◦

Each transformation is given an equal weighting, allowing the chaos game to realize the n-way symmetry
the more it stochastically samples.

AFEBAQ>K SYLLBTQY is introduced by adding a function that inverts the x-coordinate or y-coordinate. Ǥis
is a reflection of the axis. An equal weighting is given to this reflection function which allows the chaos game
to realize the dihedral symmetry.

Both rotational and dihedral symmetry are shown in Figure 3.7.

Ǥe AFEBAQ>K SYLLBTQY and QNT>TFNM>K SYLLBTQY are applied at the same step as the affine, variation,
post, and final transformations. Ǥis is because the implementation of symmetry is defined in the form of a
transformation and therefore is the most logical place to apply it.

27

Figure 3.7: A visual depiction of what dihedral and rotational symmetry look like in a flame.

28

3.4 Filtering

AǍer performing all aforementioned steps there is still several issues which still afflict our flame. Two of
these are both noise and aliasing.

Aliasing is a common issue and occurs when a high resolution graphic maps to a lower resolution graphic.
Ǥe result is that smooth edges or gradients are not represented correctly. To combat aliasing flame uses a
method called supersampling. More information about aliasing and supersampling can be found in 14.1 and
14.1 respectively.

Noise in a flame occurs because of the stochastic nature of the iterated function system. While ploǣing the
flame some seemingly random points may occur in our set. Supersampling the image takes care of the alias
issues but does not take care of our noise issues. In order to correctly “blur” only noisy parts of the image we
must blur selective regions of the image. In the case of noise, the flame algorithm performs a form of density
estimation to address this image. More information on this can be found in Section 14.2.

Ǥe importance of both steps are paramount to providing an aethestically pleasing image as aliasing and
noise are extremely noticable to the eye and can render even the most beautiful flame, atrocious.

A more in depth look at filtering can be found in Chapter 14. Ǥis section cover ant-aliasing methods,
filtering methods, and more information on the flame3 specific approach.

Motion Blur

Finally, we address one of the last issues. We have taken care of spatial aliasing but when themultiple images
of flames ‘in motion’ are outpuǣed we experience a new form of aliasing: temporal aliasing. Temporal
aliasing can not be addressed correctly mearly by supersampling and one implementation that the flame
algorithm uses is by using an extra buffer. Ǥe first buffer accumulates the histogram of points in a linear
fashion. Ǥe second buffer accumulates logarithmitcally filtered histograms of each temporal sample from
buffer one. At the end, the second buffer is filtered and presented.

Procedure

Initially presenting the fractal algorithm usually results in a lengthy discussion as seen above but is usually
done at the sake of clarity of why and how each step is being done. Since these have already been explained,
we recap the algorithmwith a high level summary⁴ in the same fashionwe had provided the classical iterated
function system algorithm. A flowchart diagram of the procedure can be found in Figures 3.8 through 3.10

Ǥe procedure is as follows: First, a random point is picked on the biunit square. Ǥe user picks the quality of
the flame they wish to render and the program enters into a loop for Q iterations (where Q is quality). At
each iteration a transformation is applied based on a probabilistic weighting similar to Barnsley’s Fern in
Section 3.2. Ǥis transformation will apply an affine transformation (which applies scaling, rotation, sheer,
and translation), a variation transformation (to change the characteristics of the point), and a post function
(to change the coordinate system). When the variation transform is applied a color associated with it is also
applied which is explained in Section 3.3. AǍer the new point and color are selected this vector is
accumulated in it’s respective histogram bin representing the density of each point. Ǥe points are not
accumulated in the bins for the first 20 points in order to allow the system to seǣle.

Ǥis process happens until the final iteration. On the final iteration, many final processing steps happen.
First, the histogram bins of point densities are log scaled. Next, filtering is performed. Supersampling

⁴For simplicty’s sake we ignore the effects that Early Clip (Section 11.5) and Highlight Power (Section 11.5) have upon the algorithm
and the way they reorder or modifications of core steps.

29

removes the aliases. Density Estimation allows the reduction of noise. As an added note, motion blur can
also occur next and requires a second buffer of points to be filtered down. Ǥe final transform is now applied
which is a non-linear camera transform. Ǥis final transform also applies a color associated with it. Now
that the correctly filtered, log scaled and colored image has been produced color correction is now applied.
Ǥis provides hue, brightness, gamma, and other corrections. Ǥe image is then wriǣen to a file and the
procedure ends.

Figure 3.8: A flowchart describing the fractal flame algorithm.

30

Figure 3.9: A flowchart describing the fractal flame algorithm.

31

Figure 3.10: A flowchart describing the fractal flame algorithm.

32

@E>OTBQ ʥ

BXFSTFMD FLOKBLBMT>TFNMS

Ǥe fractal flame algorithm is relatively old, but unlike most antiquated image synthesis techniques, its
output is still considered to be visually appealing today. As might be imagined for such a classic algorithm,
there are several implementations available; a few even target GPUs. To ensure that our implementation
provides a benefit, wemust consider the strengths and weaknesses of each implementation, and carefully
target our renderer to fill these gaps.

To that end, a brief survey of each publicly-available implementation is below.

4.1 flam3

Considered bymost to be the “reference implementation” of the flame algorithm, flam3 [10] was created in
1991 by Scoǣ Draves, the creator of the fractal flame algorithm. In TK, Erik Reckase took over development,
and continues to add features and release updates to this day.

Because of flam3’s status as a reference implementation, each new version is regression-tested against the
output of previous versions to ensure it can still produce (nearly-)identical images. To retain this property
while still accomodating new features, the code now includes a dizzying array of parameters, flags, and
downright hacks. Ǥis makes it difficult to optimize and experiment with.

Since the Electric Sheep project uses flam3 to produce all its images, however, scrapping this mess is not an
immediate option. Ǥe Electric Sheep screensaver obtains its content from pre-rendered video sequences,
and until an implementation fast enough to re-render the entire back catalogue of pre-rendered flames from
scratch at sufficient quality is produced, backwards compatibility is needed to guarantee seamless
transitions.

An implementation that could produce flam3-compatible images at high speeds would therefore be useful
to the Electric Sheep project.

4.2 Apophysis

Apophysis [11] is an aging application for the interactive design of flames, and is one of the most popular
tools to do so. Apophysis includes its own rendering backend, which has proved to be somewhat easier to
modify than flam3; as a consequence, many variations now included in flam3 started out as community
experimentation within Apophysis, and more are yet being considered.

Ǥe Apophysis renderer lacks some of flam3’s newer visual-quality-oriented features, so while it remains a
viable choice for users and interesting to watch, there is no particular need to fully support it.

33

4.3 flam4

One of the more complete implementations of the flame algorithm for GPUs, flam4 [12] nevertheless sits in
an uncomfortable position in terms of its output: the implementation suffers from compromises necessary
to allow reasonable performance on the GPU, reducing its perceptual output quality, yet it is not fast enough
to render images for display on the fly. Since CPUs are fast enough to deliver offline renders at normal
resolutions in reasonable size, there is liǣle need for acceleration for the mid-range renders, as a bit of
patience can usually accomodate most use cases.

Since flam4 provides good acceleration at moderate loss of quality, we should not aǣempt to do the same. A
novel implementation should target either acceleration without loss of quality, or fully real-time
performance at an acceptable quality.

4.4 Fractron 9000

Fractron 9000 [13] is another accelerated renderer loosely based around the fractal flame algorithm. Ǥe
soǍware employs the same basic principles as flam3— that is, log-density accumulation of IFS samples,
with nonlinear transform functions— but makes no effort to produce results that are compatible with the
original soǍware. It is also wriǣen against theMicrosoǍ .NET framework, and is therefore not suitable for
headless use.

4.5 Chaotica

Chaotica [14] is the only closed-source implementation of the flame algorithm known to the authors. Ǥe
soǍware’s stated design goal is to produce images of superior visual quality to flam3 in less time, which it
does. Ǥomas Ludwig, Chaotica’s author, is also a developer of Indigo Renderer, a professional ray-tracing
application. Many performance and quality techniques employed in the field of ray-tracing are applicable to
the rendering of fractal flames, and it is likely that newer advances in the field are being used in Chaotica.
However, since it is not an open product, we cannot directly adopt these techniques for our GPU-based
implementation.

4.6 Our implementation

Given that no accelerated renderer explicitly targets flam3 compatibility, despite the desire among the
community for such a tool, it seems prudent to pursue that subfield of image compatibility. In addition to
being able to compare images directly against the output of a CPU renderer, which simplifies testing, such a
renderer would lower the operating cost of the Electric Sheep project and see widespread adoption as part of
that soǍware.

34

@E>OTBQ ʦ

> �MNT-SN-�?QFBC TNUQ NC DOU @NLOUTFMD

Graphics processing units began as simple, fixed-function add-in cards, but they didn’t stay there. Over
many generations, demand for increasingly sophisticated computer graphics required hardware that was
not just faster, but more flexible; device manufacturers responded by spending ever-larger portions of the
transistor budget on programmable functions. In 2007, NVIDIA released the first version of the CUDA
toolkit, unlocking GPUs for straightforward use outside of the traditional graphics pipeline. Since then,
“general-purpose GPU computing” has become a viable, if still nascent, market, with practical applications
spanning the range from comsumers to the enterprise.

Don’t let the words general purpose fool you, however. While the major manufacturers have shown interest in
this market, it remains at present a fraction of the size of these companies’ core markets [15]. Every
transistor spent making GPGPU faster and easier to programmay come at the expense of doing the same for
games. Because the market for high-performance computing remains much smaller than for entertainment
and professional imaging, GPUs remain primarily graphics-oriented.

Despite the “games first” approach which informs hardware designers, GPUs still provide the highest
performance per dollar for most math-intensive applications. In general, porting algorithms to such devices
can be a challenge, but for algorithms that fit naturally (or can be made to fit) into the computing paradigms
available on current hardware, the performance benefit justifies the effort.

Ǥis section is intended to give a grounding in the concepts and implementations of GPU computing
platforms. Ǥe OpenCL computing model subsets both NVIDIA’s and AMD’s hardware, and therefore forms a
convenient location to start the discussion. While OpenCLmandates certain hardware features, many others
appear across several GPUs as a consequence of their shared heritage; these features are also addressed.
Finally, an in-depth analysis of certain unique hardware features on both NVIDIA’s and AMD’s flagship
architectures provides background information that is built upon in later chapters.

5.1 OpenCL

ǤeOpenCL standard for heterogeneous computing is managed by the Khronos Group, an industry
consortium of media companies that also produces the OpenGL specification [16]. OpenCL provides a
cross-platform approach to programming; while its execution model requires certain features of the
hardware it executes on, the language is kept general enough so that almost all code can execute with
reasonable efficiency on any supported architecture (via driver-provided just-in-time compiling).

Because it forms a common, abstract subset of the GPUs under consideration as platforms on which to
implement this algorithm, OpenCL is a good starting place for our discussion. As much as wemight like to

35

rely on an open standard alone to inform our algorithm design, however, the specification doesn’t tell the
whole story.

An editorialized history of the standard

OpenCL was developed by Apple, Inc. to provide a generic interface to high-performance devices like GPUs
across their platform. At the time of development, Apple had standardized on NVIDIA GPUs across its
desktops and laptops, and wished to expose the hardware’s computational performance to developers, but
did not wish to lock itself into NVIDIA’s proprietary CUDA technology and in so doing weaken the threat of
using AMD graphics products at the negotiating table.

While cooperation on standards had clearly served the two graphics firms in the past (with DirectX and
OpenGL), NVIDIA’s cards were far more flexible for computing than AMD’s; any standard which would work
seamlessly across cards would cripple NVIDIA’s performance advantage. Naturally, Big Green wasn’t keen on
signing on to a standard that would necessarily eliminate its considerable head start in the compute market.
But Apple provided leverage— ruthlessly, if history is any judge— andmonths later AMD and NVIDIA were
showing off their new standard for compute together.

AMDwas, at the time, shipping cards based on the much-derided R600 architecture, which did not meet
even the limited requirements of OpenCL. While the company was preparing to include the necessary
components in their next graphics architecture, full support did not emerge until two hardware generations
later, with the competitive Evergreen family of GPUs.

On the heels of a very successful graphics architecture which was compatible with OpenCL from day one,
NVIDIA invested evenmore engineering talent and die space into the Tesla architecture, which preceded
AMD’s Evergreen. Tesla formed an even broader super-set of features available in the base OpenCL spec,
some which were simply inaccessable from the open standard. Rather than let these features go to waste,
however, NVIDIA put them to work in their proprietary CUDA framework, which remains their primary
development andmarketing focus.

As of now, OpenCL is still at version 1.1, which (along with an extension or two) covers the functionality in
AMD’s Northern Islands family, their latest. NVIDIA’s Fermi architecture provides yet another increase in
compute features over OpenCL, and those features are again exposed through CUDA.We’ll take a look at this
situation a bit later; for now, let’s turn to the OpenCLmodel for computation.

How to do math in OpenCL

OpenCL has something of a client/server model: a program running on an OpenCL host communicates with
one or more devices through the OpenCL API. While the method of communication with the device is not
fully specified, both NVIDIA and ATI post requests to a command queue on the device. Ǥe GPUs possess
their own schedulers and DMA engines; aǍer a command is handed to a device, the host is leǍ to do liǣle but
poll for the task’s completion.

By default, commands begin executing on the device as soon as the appropriate execution resources are
available. Stricter ordering is possible; a command-queue barrierwill stall until all previous commands in the
queue are complete. A stream¹ provides a strict ordering for every task it contains, but multiple streams can
execute concurrently.

Ǥere is no hardware mechanism for a strict interleaved ordering of both host and device code. Ǥe OpenCL
API exposes apparently-synchronous execution of device commands in the host API, but this is implemented

¹We borrow the CUDA notation here. OpenCL allows any command to wait on any other explicitly using events, which can be used
to implement a stream, but has no term (or API call) for the ordered tasks as a group. It becomes a pain to talk about without a name.

36

via a spinloop which polls the device for task completion. Ǥis method is ineffecient and should be avoided
in performance-critical code.

Hosts and devices must be assumed to have independent memory spaces. To provide data for execution, data
must be explicitly copied to and from the device via an OpenCL API call. Memory operations are contained
within commands, and are subject to the ordering constraints above; additionally, since memory commands
are executed by the GPU’s DMA engine, the host-side memory to be accessed may need to be page-locked to
ensure that it is resident when accessed and that its location in physical RAM does not change. OpenCL
devices may optionally support mapping a portion of device memory into the host’s address space or vice
versa, although such access is generally slower than bulk updates.

AǍer the host has initialized the device’s memory space, it may load a kernel onto the device. Ǥe kernel is a
fixed bundle of device code andmetadata, including at least one entry point for program execution. From
the OpenCL API, the kernel’s data is opaque on both host and device, so device-side run-time code
modification is prohibited. AǍer uploading a kernel, the host issues a commandwhich sets up arguments for
an entry point and begins executing it in one or more device threads².

As in a typical OS, a device thread is a set of data and state registers, including a program counter indicating
the thread’s position within the currently-loaded code segment. A thread can execute arithmetic
instructions and store the result to its registers, performmemory loads and stores, and perform conditional
direct branching to implement loops. However, OpenCL does not support a stack; all function calls must be
inlined, and recursion is not allowed.

While a single thread executes instructions according to program flow, the order of execution between any
two threads is generally undefined. It’s possible to use global memory to do a limited amount of manual
synchronization, but this is impractical, as global memory accesses typically carry high latencies, suffer
from bandwidth constraints, have an undefined ordering, and heavily penalize multiple writes to the same
location [17].

To facilitate inter-thread cooperation without mandating globally-consistent local caches, threads are
collected intowork-groups. A work-group is a 1-, 2-, or 3-dimensional grid of threads that share two
important consistency features: a fast, small chunk of sharedmemory³ accessible only to threads within that
work-group, and barrier instructions, which stall execution of any thread that executes the instruction until
every thread in the work-group has done so.

Work-groups themselves are arranged in a uniform grid of dimensionality ≤3. Every thread in a grid must
execute the same kernel entry point with the same parameters. To obtain thread-specific parameters, each
thread can access its index within its work-group (its local thread ID), as well as its work-group’s index
within its grid (the global thread ID); it may then use those IDs to load thread-specific parameters such as a
random seed or an element of a matrix. Ǥis is the only means to differentiate between threads at their
invocation. Aside from providing a global ID, the only feature provided by a grid of work-groups is the
requirement that every thread terminate before the grid is reported as complete to the host.

In addition to global and shared memory, OpenCL also provides private memory, which is accessible only to a
thread; constant memory, which has a fast local cache but can only be modified by the host; and image memory,
which can only be accessed using texture samplers. Ǥe texturing pathway, a clear holdover from OpenCL’s
GPU origins, is a high-bandwidth but high-latency method of accessing memory which can only perform
lookups of 4-vectors but offers a read-only cache and essentially free address generation and linear
interpolation.

²We revert again to CUDA’s terminology; this time, though, merely because “work-unit” is just a clumsy, unnecessary neologism.
³Another CUDA term. OpenCL calls this “local memory”. Problem is, CUDA uses the term “local memory” to refer to what OpenCL

calls “private memory”. We choose the unambiguous name in both cases.

37

5.2 Common implementation strategies

ǤeOpenCL standard was constructed to subset GPU behavior at the time of its ratification, but for
portability reasons it omits implementation details even when techniques were used in both NVIDIA and
AMD GPUs. While such details do not necessarily impact code correctness, they can have a considerable
impact on the ultimate performance of an application.

Dropping the front-end

In modern x86 processors, only a small portion of the chip is used to perform an operation; more die space
and power is spent predicting, decoding, and queueing an instruction than is spent actually executing it.
Ǥis seems contradictory, but it is in fact well-suited to the workloads an x86 processor is typically used for.
It’s also a consequence of the instruction set; x86’s long history and ever-growing set of extensions has made
translation frommachine code to uops a challenging and performance-critical part of a competent
implementation.

Across the semiconductor industry, it has become clear that scaling clock speed alone is not a realistic way to
acheive generational performance gains. To deliver the speed needed by graphics applications, both NVIDIA
and AMD simply pack hundreds of ALUs into each chip. To avoid the gargantuan power draws associated
with including a full x86-style front-end, the two hardware companies employ three important tricks.

Ǥe first of these is runtime compilation. In OpenCL, device kernels are stored in the C-like language which
executes on the device, and are only compiled to machine code via an API call made while the program is
running on the host; CUDA stores programs in an intermediate language, but the principle is similar. In both
cases, this pushes the responsibility for retaining backward compatibility from the ALU frontend (where it
would be an issue billions of times per second) to the driver (where it maǣers only once per program).
Without needing to handle compatibility in hardware, the actual instructions sent to the device can be tuned
for each hardware generation, reducing instruction decode frommillions of gates to thousands.

Another considerable saving comes from dropping the branch predictor. On an x86 CPU, the branch
predictor enables pipelining and prefetch, and a mispredict is costly. To axe the branch predictor without
murdering performance, GPU architectures include features which allow the compiler to avoid branches.
Chief among these is predication: nearly every operation can be selectively enabled or disabled according to
the results of a per-thread status register, typically set using a prior comparison instruction. For many
expressions, using the results of a predicate to disable writeback can be less costly than forcing a pipeline
flush, especially when hardware and power savings are taken into account. Drivers also generally inline
every function call; with thousands of active threads and hundreds of ALUs all running the same code, a
single large instruction cache becomes less expensive than the hardware needed to make function calls fast.
Perhaps most intuitively, both companies go out of their way to inform developers that branches are costly
and should be avoided whenever possible.

Ǥe final technique used to save resources on the front-ends is simply to share them. A single GPU front-end
will dispatch the same instruction to many ALUs and register files simultaneously, effectively vectorizing
individual threads into an unit between a thread and a work-group. NVIDIA calls these unitswarps⁴, with a
vectorization width of 32 threads; AMD useswave-fronts of 64 threads. Because each thread retains its own
register file, this kind of vectorization is not affected by serial dependencies in a single thread. In fact, the
only condition in which it is not possible to vectorize code automatically in this fashion is when threads in
the same warp branch to different targets, whereupon they are said to be divergent. Not coincidentally, the
same approaches used to avoid branches in general also help to avoid thread divergence.

⁴We followwhat is now a tradition and adopt NVIDIA’s term, though it does display a bit of whimsy on the part of Big Green.

38

While these techniques seem of only passing interest, the peculiarities of the fractal flame algorithm are
such that a naïve implementation which did not heed these design parameters would suffermore thanmight
be expected. We will need to make careful use of runtime compilation, predicated execution, and warp
vectorization to write an efficient implementation.

Memory coalescing

Ǥe execution units aren’t the only part of a GPU trading granularity for performance; memory accesses are
also subject to a different kind of vectorization, called coalescing, that has extremely visible consequences for
certain classes of tasks.

High-performance GPUs contain several front-ends. Because global memory is accessible from all
front-ends, there is effectively a single, shared global memory controller which handles all global memory
transactions⁵. Since each memory transaction must interact with this memory controller, and multiple
front-ends can issue transactions simultaneously, this controller includes a transaction queue and
arbitration facilities, as well as simplified ALUs for performing atomic operations.

To simplify and accelerate the memory controller, memory transactions must be aligned to certain bounds,
and may only be 32, 64, 128, or 256 bytes wide (depending on architecture). Because of unavoidable
minimums on address set-up time and burst width, GDDR5 devices can only aǣain rated performance with
transaction widths above a certain threshold, and these minimums are reflected in the minimum
transaction sizes on the other side of the memory controller.

A single thread can issue at most a 16-byte transaction (while reading a 4-vector of 32-bit values), and will
more oǍen simply use 4-byte transactions in typical code. On its own, this would result in most of each
transaction being discarded, consuming bandwidth and generating waste heat. On traditional CPUs (and, to
a limited extent, newer GPUs), caches are used to mask this effect. However, with so many front-ends on a
chip, placing a large and coherent cache near each would be prohibitively expensive with current
manufacturing processes, and even centrally-located caches would still require an enormously high
bandwidth on-chip network to service a request from every running thread.

Since GPUs must issue wide transactions to reduce chip traffic and accomodate DDR latency, and temporal
coherence is not enough to mitigate the memory demands of thousands of threads, hardware makers have
instead turned to spatial coherence. As threads in a warp execute a memory instruction, the local load/store
units compare the addresses for each thread. All transactions meeting certain criteria— falling within an
aligned 128-byte window, for example— are coalesced into a single transaction before being dispatched to
the memory controller.

On previous-generation architectures, use of coalescing was critical for good memory performance, with
uncoalesced transactions receiving a penalty of an order of magnitude or more. Respecting coalescing is an
easy task for some problem domains, such as horizontal image filtering. Others required the use of shared
memory: segments of the data set would be read in a coalesced fashion, operated on locally, and wriǣen
back. Unfortunately, the fractal flame algorithm supports neither of these modes of operation, and there is
no way to create a direct implementation with sufficient performance on these devices.

Newer GPU architectures, such as NVIDIA’s Fermi and AMD’s Cayman, possess some caching facilities for
global memory. Ǥe cache on these devices assists greatly in creating a high-performance implementation of
the fractal flame algorithm, but remain far smaller than the framebuffer size at our target resolution. It is
therefore clear that memory access paǣerns will be an important focus of our design efforts.

⁵Actually, there are typically several memory controllers connected by a crossbar switch, ring bus, or even internal packet bus,
with address interleaving on the lower bits and any cache distributed per-core. But since each address block maps uniquely to one
core, and typical access paǣerns hit all cores evenly, we ignore this.

39

Latency masking

Memory transactions, even when coalesced, can take hundreds of cycles to complete. Branching without
prediction requires a full pipeline flush, as do serially-dependent data operations without register
forwarding (another missing feature). Even register file access carries latency at GPU clock speeds. Without
the complicated front-ends of typical CPUs, how do GPUs keep their ALUs in action?

Ǥe strategy employed by both AMD and NVIDIA is to interleave instructions from different threads to each
ALU. In doing so, nearly every other resource can be pipelined or partitioned as needed to meet the chip’s
desired clockspeed. Ǥis technique increases the runtime of a single thread in proportion to the number of
active threads, but results in a higher overall throughput. Ǥemechanism for performing this interleaving
differs between the two chipmakers, and is one of the more significant ways these architectures differ.

5.3 Closer look: NVIDIA Fermi

Fermi is NVIDIA’s latest architecture, as implemented in the GeForce 400 and 500 series GPUs. Ǥe
architecture represents a considerable retooling of the company’s successful Tesla GPUs with a focus on
increasing the set of programs that can be run efficiently rather than just on raw performance. Ǥis was
done by adding some decidedly CPU-like features to the chip, including a globally-consistent L2D cache,
64KB of combined L1D and shared memory per core, unified virtual addressing, stack-based operations for
recursive calls and unwinding, and double-precision support at twice the ops-per-clock rate of other GPUs.

As might be imagined, the chip was months late, and only made it out the door with reduced clocks and
terrible yields. TSMC’s problems at the 40nm node was partly responsible for the troubled chip’s delay, but
the impressive single-generation jump in the card’s GPGPU feature set also had a hand. NVIDIA architects
were not ignorant of this risk, but judged it a worthwhie one; an uncharacteristic move from a graphics
company. What pushed NVIDIA to focus so much on compute?

In a word, Intel. Larrabee, the larger company’s skunkworks project to develop stripped-down x86 CPUs
with GPU-like vector extensions had the potential to grind away NVIDIA’s enterprise compute abilities, not
because of Larrabee’s raw performance but because of its partial compatibility with legacy x86 code [18].
Ǥese chips would be far more power-hungry than any GPU, but NVIDIA felt backward compatibility and a
simplified learning curve would woo developers away from CUDA, leaving them a niche vendor in the
enterprise compute market. Worse, Sandy Bridge, the new CPU architecture, was to include a GPU on-die,
potentially cuǣing out NVIDIA’s largest-volumemarket segments. NVIDIA’s response was to invest in Tegra,
their mobile platform, and to make the first Fermi devices in the GTX 400 series an enterprise-oriented,
feature-laden, unmanufacturable mess [15].

As it turns out, Larrabee was all but cancelled, Sandy Bridge graphical performace is decidedly lackluster,
and TSMC got their 40nm process straightened out, leaving NVIDIA room to prepare the GF110 and GF114
architectures powering the GTX 500 series. Ǥese chips are almost identical to their respective
first-generation Fermi counterparts at the system design level; tuning at the transistor level, however,
greatly improved yield and power consumption, making these devices graphically competitive at their price
level [19].

Shader multiprocessors

Each core⁶ in GF110 contains a 128KB register file, two sets of 16 ALUs, one set of 16 load/store units, and a
single set of 4 special function units. It also contains two warp schedulers, assigned to handle even- and

⁶NVIDIA actually refers to the smallest unit of independent execution as a shader multiprocessor. Ǥis is an example of what
industry observers refer to as absolute bollocks. As with most GPGPU developers, we use traditional terminology.

40

odd-numbered warps, respectively. Ǥis area is partitioned so that the ALUs, SFUs, memory, and register file
run at twice the rate of the warp schedulers and other frontend components. We refer to the clock driving
the ALUs as the “hot clock”, and likewise the “cold clock” for the rest of the chip.

Every thread in a warp executes together. At each cold clock, a warp’s instructions are loaded by the
scheduler and issued to the appropriate group of units for execution. Normal execution for all 32 of a warp’s
threads takes a single cold clock, followed by result writeback. Ǥis process is pipelined; it takes 11 cold
cycles for a register wriǣen in a previous instruction to become available.

As mentioned previously, there is no register forwarding during pipelined instructions. In fact, every thread
sees this delay between one instruction and the next, regardless of data dependencies. On NVIDIA
architectures, this is hidden by cycling through all warps which are resident on the core and executing one
instruction from each before returning them to the queue. Ǥis is done independently for each warp
scheduler.

Ǥe SFUs, which handle transcendental functions (sin, sqrt) and possibly interpolation, are limited in
number. When dispatching an instruction to that unit, it takes 8 hot clocks to cycle through all 32 threads of
a warp. Ǥis stalls one warp scheduler for that duration, but doesn’t interfere with the other; if the current
thread in the other scheduler is waiting on access to that hardware, anNVIDIA-specific hardware component
called the “scoreboard” marks the thread as unready and skips it until the required transactions complete.

Ǥis same scoreboarding approach handles the highly variable latency of memory instructions. Each
load/store operation appears to take a single instruction to execute, wherein the resulting transaction is
posted to a queue; when the result is returned, another cold cycle is spent in the load/store units to move the
result from cache to the register pipeline. Somememory transactions, including L1D cache hits and
conflict-free shared memory access, appear to complete in a single cold cycle.

Using thread-swapping is an elegant and simple way to hide latency, but it has an important drawback: the
only way to avoid a stall is to always have a warp ready to run. Register file latency puts a hard lower bound
on the number of threads required to reach theoretical performance, but memory access paǣerns can easily
raise that number. Each of those threads, however, must contend for a limited register file, shared memory
space, and bandwidth. Finding the right configuration to maximize occupancy without losing performance
from offloading registers to private memory will be a theoretical and experimental challenge while
developing our approach.

Memory architecture

ǤeGF110 has a flexible memory model. Its most distinguishing feature among other GPUs is the large,
globally-consistent L2D cache; at 128KB per memory controller across the Fermi lineup, GF110 has 768KB of
high-speed SRAM to share across its cores. All global and texture memory transactions pass through the
L2D, which uses an LRU eviction policy for its 128B cache lines, although an instruction canmark a cache line
for discard immediately or upon being fully covered by write operations. Ǥe laǣer mode improves
performance when threads perform sequential writes.

Each core has a 64KB pool of memory which can be split to provide 16KB of shared memory and 48KB of L1D
cache, or 48 and 16KB respectively. All global reads must use this cache, although writes are handed straight
to L2D, invalidating the corresponding cache line in L1D in the process. While the L2D is always globally
consistent, L1D is only consistent across a single core; writes to global memory from one core will not
invalidate the corresponding cache lines in a neighboring core. Volatile loads treat all lines in L1D as invalid,
but do not actually invalidate those lines aǍer a load is complete; inconsistent access with non-volatile loads
may return the data cached when the volatile load was first issued.

Each work-group is assigned to a single core for the duration of its execution. Each thread acquires its
registers and local memory as the work-group is assigned, and the work-group acquires shared memory in

41

the samemanner. Resources are not released until the work-group is complete. As a result, every thread
consumes its worst-case allocation at all times.

Atomic operations in Fermi are available on both global and shared memory. Shared-memory atomics are
implemented using on-core ALUs, and operate at native speeds unless a bank conflict occurs. Global atomics
make use of simple, dedicated ALUs in proximity to the L2 cache. In general, global atomics have higher
latency and lower total throughput than local operations, and have lower peak throughput than coalesced
read-modify-write cycles, but have higher throughput than any uncoalesced operation.

5.4 Closer look: AMD Cayman

Cayman is the latest GPUmicroarchitecture as implemented in the ATI Radeon 69xx graphics cards. It is the
most significant change in AMD’s GPU architecture since the RV770 architecture. Ǥemost notable change
being the move from a 5-wide VLIW (Very Large InstructionWidth) to a 4-wide symmetric VLIW [20]. AMD
has stayed focused on graphics performance as opposed to general purpose computing but the Cayman
architecture does make amodest step forward for AMD in the realm of GPGPU computing and presents a few
evolutionary, not revolutionary, improvements for both general purpose computing and gaming.

Ǥe compute capabilities of Cayman GPU’s can be accessed by one of two industry standard API’s, OpenCL
and Direct Compute [20]. While both of these API’s have been embraced by all CPU and GPU vendors, they
are both relatively young and do not offer the same features and performance that Nvidia’s proprietary
language CUDA does. However, support for these other two standards are increasing rapidly and are they are
posed to dethrown CUDA as the API of choice for general purpose computing in the coming years.

System Architecture

Cayman’s system architecture is largely similar to that of the previous generations Cypress. Ǥe architecture
is split up into cores, or SIMD’s, each having its own 8Kb of L1 texture cache and 512KB of shared cache. Ǥe
biggest differences have all been made with respect to the cores. First of all, Cayman has a total of 24 cores
while Cypress has a total of 20 cores with each core being a 16-wide SIMD processor. Each lane can process a
VLIW instruction, whichmeans 4 instructions at time for Cayman or (potentially) 5 instructions at a time for
Cypress. 4 instructions x 16 lanes = 64 instructions per core for Cayman and 5 instructions x 16 lanes = 80
instructions per core for Cypress. 64 instructions per core x 24 cores = 1536 instructions per chip for Cayman
and 80 instructions x 20 cores = 1600 instructions per chip for Cypress. Each lane executes the same
operation over 4 cycles. Additionally, SIMD clock speed was increased to 0.88Ghz in Cayman (up from
0.85GHz in Cypress).

Memory architecture

ǤeCayman architecture uses a memory architecture which is OpenCL-compliant, and thus is not dissimilar
from that used by Fermi: high-bandwidth but high-latency GDDR5 global memory is available for
cross-device communication and long-term data storage, while fast, core-local shared memory under
manual control is provided to store the working set and communicate across a core. L1 texture caches, which
are small but achieve extremely high throughput, are located in each core, and a small constant cache
accomodates the parameterization needs of graphics shaders.

Cayman differs considerably from Fermi in its treatment of cache. 512KB of L2 read cache serves to accelerate
both texture and gather reads, while a separate 64KB cache serves to assist in consolidating writes to reach
the minimum burst width of GDDR5 and avoid wasting bandwidth onmasked bits. Ǥese caches operate
independently, meaning that communication via global memory is never cached, and oǍen requires

42

substantial delays to allow all writes to be flushed. Ǥe global data share, discussed in Section 6.1), is
designed to offer a separate datapath for transactions that need immediate coordination.

43

@E>OTBQ ʧ

TNNKS >MA @NLONMBMTS

GPUs aǣain extraordinary peak performance by sacrificing generalizability. Devices fromNVIDIA and AMD
present the same high-level model of massively parallel computing, but— as shown in the previous chapter
— these architectures have significant differences at the implementation level. Standards-compliant
OpenCL code which does not rely on vendor-specific extensions should run correctly on every compatible
device without modification, including the newest GPUs from both manufacturers; the standard, however,
offers no indication that the same code will achieve similar performance across multiple architectures [21].

Ǥe flame algorithm is, in one sense, an embarrassingly parallel problem, and thus fits well into the abstract
model of computation offered by OpenCL. Yet, as the rest of the document makes clear, the actual
implementation of this algorithm tests the limits of current-generation GPGPU hardware. Writing a fractal
flame renderer for the GPU is straightforward; writing one with excellent performance is far more
challenging, and requires a much deeper knowledge of each architecture.

Ǥe scope of this project is considerable, and the performance goals are near the theoretical upper bounds of
current GPU architectures. Given the need to take advantage of architecture-specific features, this project’s
soǍware is not likely to be portable between graphics architectures or compute platforms, making a
late-stage change in those decisions expensive. Meeting the performance goals of this project without
exceeding time or budget constraints will require carefully selecting the tools with which it is built.

Ǥis chapter is an overview of that selection process and its result. Because the optimizations required to
implement the flame algorithm require support at every level of the toolchain, those optimizations are an
important part of the selection process. However, the exact nature of those optimizations depends on the
results of the selection process. Consequently, tool selection is an ongoing, iterative effort that may be
subject to further change during initial implementation. For this document, we break the dependency cycle
by presenting tool selection first and extensively referencing future chapters.

6.1 GPU architecture

Ǥe fastest compute devices available to consumers, at time of writing, feature AMD’s Cayman or NVIDIA’s
Fermi architectures. Cayman devices have dramatically higher peak theoretical performance values, but as
discussed in Section 5.4, it can be difficult to reach peak throughput due to the nature of the VLIW4
architecture used. In low-level optimization projects, it may be tempting to believe that hand-tuned code
can beat even the best optimizing compilers; the pragmatic view, however, is that even if such an
extraordinary hand-tuning effort were to produce faster code, architecture variations in the next GPU cycle
would likely erase that performance gain. In other words, there is a practical limit to how low a project of
this scope can delve for optimizations and still be successful. With that in mind, we accept the general

44

consensus on raw computing power— that Cayman and Fermi are generally well-matched, and the winner
is workload-dependent [19]— and focus on other factors to choose an architecture.

AMD’s architecture implements flow control using clauses which execute to completion; each clause
specifies the next clause to execute in its terminating condition. Apart from indirectly enabling higher
throughput by simplifying scheduling, clauses provide the advantage of temporary registers. NVIDIA cores
allocate all local resources statically, requiring each thread to consume its worst case number of registers at
all times, whereas Cayman and other AMD architectures allow non-persistent resources to be shared. Ǥis
could significantly increase occupancy of AMD cores when the most complex variations are active, helping
to hide latency. On the other hand, NVIDIA’s solution— provde an enormous 128KB register file per core—
tends to be sufficient to avoid this circumstance.

AMD executes clauses in wave-fronts of 64 threads, whereas NVIDIA uses a 32-lane warp. Both methods
accomodate the producer-consumer relationships across vectorized execution units through work-group
barriers, but Fermi takes advantage of its particular vector width by providing a number of instructions and
virtual registers that enable intra-warp communication without using shared memory. Warp voting is not a
common activity in graphics operations, but it is a required part of some of the optimizations described
herein, and in such cases Fermi holds a 32× lead.

Another key differentiator between the two compute platforms is the use of cache in main memory access.
Cayman devices have 512KB of read cache, and a separate 64KB of write cache; the laǣer is used primarily to
extract spatial coherency from temporally-coherent data. Ǥe separation of concerns makes the cache a less
costly addition to Cayman devices than Fermi’s full-featured L2, but does liǣle to accelerate random-access
updates to values in global memory, and can increase the complexity required to ensure consistency of
global values.

AMD’s solution is the global data store, another 64KB chunk of memory shared across all cores. Ǥis
structure is intended only for inter-work-group communication, providing fast and atomic access via a
separate address space. Ǥis anomaly is a useful tool for coordinating access to complex data structures, but
may simply be a stepping stone on the way to a full cache in future architectures [20]. For the complex
addressing paǣerns needed to support full-rate accumulation, Fermi’s L2 seems the more capable solution
for inter-thread communication.

Ǥe company behind Cayman has a history of being more open than its competitors with technical
information, a trend continued with its latest GPU offerings; technical documentation on the Cayman ISA
and other architectural features is publically available. In principle, this is a big advantage over NVIDIA,
who hides most instruction-level details behind PTX, their cross-platform intermediate language for GPU
kernels. Unfortunately, for this project, the practical advantages of PTXmake it the beǣer option. Ǥe
intermediate language provides access to nearly every feature of interest in NVIDIA’s hardware while
preserving forward compatibility, and is optimized at runtime by the driver to best fit each platform; writing
a backend that emits PTX is therefore a relatively straightforward task. Generating assembly for AMD
devices is more challenging, and a backendmust target a set of primitives that changes with each hardware
generation while performing device-specific optimization itself. A more realistic solution to take advantage
of low-level instructions on AMD hardware is to precompile code for AMD hardware andmonkey-patch in
memory [22], but this task becomes muchmore challenging with dynamically-assembled code.

Ǥere is no substitute for profiling live code; conjecture on the performance of optimized code across
multiple architectures is speculative at best. Given the need to standardize on a single architecture, the
information available suggests that NVIDIA’s Fermi is more likely to yield the highest performance without
overwhelming optimization efforts.

45

6.2 GPGPU framework

OpenCL is, well, open. Its broad industry support, including stalwart backers Apple and AMD, and adoption
in the mobile computing space make it likely to be the standard of choice for cross-platform development of
high-performance compute soǍware [16]. It also offers an extension mechanism, similar to the one used in
OpenGL, to offer a clean path for a vendor-specific hardware or driver feature to become a part of the
standard without breaking old code. OpenGL’s history presents evidence that vendor support of these
extensions is important in determining whether the standard will stay current and relevant.

Once again, however, NVIDIA’s technological head-start in the GPGPUmarket is large enough to warrant
ignoring ideological preferences. Kanter notes that OpenCL is “about two years behind CUDA ,” a sentiment
echoed bymany industry observers and supported both by a simple comparison of the feature sets of both
frameworks and by the authors’ first-hand experience.

Due to the need to optimize the rendering engine to hardware constraints, particularly with regard to
components such as the accumulation process (Chapter 12), porting this implementation across GPUs is
expected to be difficult. As a result, compatibility and standards compliance is not a priority for this
implementation. Ǥis implementation will therefore be based on the CUDA toolkit, rather than OpenCL¹.

6.3 Host language and intermediate language

Ǥe typical host language for CUDA development is C++. Ǥe CUDA toolchain includes compiler extensions
and syntactic sugar to make many tasks simple, and the device code compiler supports a subset of C++
features, including classes and templates. Despite its name, however, the runtime API used for native C++
development with CUDA does not support run-time code generation, and is thus unsuitable for this project.
No Cuburn host code lies in a performance-critical path, so without the tight integration offered by the
CUDA toolchain, there is liǣle incentive to use systems programming languages like C or C++.

In order to produce code at runtime in a structured, stable way, we would need a powerful intermediate
language whose capabilities exceed those of, say, the C preprocessor by a considerable margin. Most of the
host code will have similar structure regardless of language, so the differences that should be considered
most closely are in language construction. From the set of languages with which the authors were familiar,
two stood out as being suitable for this task: Python and Haskell.

Haskell is a lazy, pure, functional language with a remarkably expressive static type system and excellent
support for both traditional domain-specific languages (with excellent native parsers such as Parsec and
compile-time evaluation of native expressions using Template Haskell) and embedded DSLs (via infix
operators, rebindable syntax, and other language features [23]). Haskell’s purity and type safety make it an
ideal host language to build run-time code generation facilities that feature compile-time analysis. However,
Haskell also has a steep learning curve, which would place a significant burden on those developers not
already familiar with it.

Python is a dynamic, interpreted programming language oǍen cited as a counterpoint to Haskell (though
truthfully these languages agree more than not on problem-solving approach, both in philosophy and
implementation). Its rich object model, duck-typing of numerics, and monad-like ContextManager allow for
the extraction of instruction streams from “pure” mathematical code, a technique employed by one of the
authors in the PyPTX library for dynamic GPU kernel generation [24]. Experimentation with PyPTX,
however, revealed shortcomings inherent in the expression of EDSLs in Python. Inside a code generation
context, operations on PTX variables would trigger code generation, whereas normal operations would not;

¹Ǥe authors are also planning an entirely new implementation which should not be quite so fussy about the hardware parame-
ters. Ǥis implementation operates quite differently from the traditional flame algorithm, and we’re still working out the necessary
mathematics, so it is not documented here— but when it is ready to be implemented, we do intend to use OpenCL.

46

the inclusion of a block of code in the output was contingent on whether that code was evaluated on the host.
It became extremely difficult to separate both host and device flow, and complicated bugs would arise in edge
cases along code generation paths which could not be detected in advance. For similar reasons, the
backtracking context needed to provide type and data inference in the EDSL was complex and error-prone,
and loops could not be tracked across host function call boundaries. In short, Python’s flexibility in host code
provided too many opportunities for improper code generation.

During initial development of cuburn, we elected to pursue a Haskell-based EDSL, relying on the language’s
own flexible static type checker to guarantee properties of the program. What we found in this approach is
that the process of constructing these guarantees for our own program exceeded the time spent
experimenting with the algorithms and hardware we were writing. Since our soǍware is non-critical and
offline, even severe bugs would have relatively low impact, so we decided to abandon the static guarantees of
Haskell’s type system and the tight integration with host code afforded by EDSL generation. With these
considerations, the learning curve of Haskell outweighed its potential benefits, andwe elected to use Python.

As an intermediate language, we chose a textual templating systemwith liǣle semantic awareness but an
ability to call on native code, and augmented that with Python code that echoed the monadic style of Haskell
during code generation. Ǥis enabled the use of a hybrid of literal CUDA code inline template operators,
much like typical HTML template engines, but in this case instead of accessing application data the
templated statements actually create it.

47

@E>OTBQ ʨ

QUMTFLB @NAB DBMBQ>TFNM

Ǥe diversity of variations available in the flam3 and Apophysis implementations of the flame algorithm are
a boon to fractal flame artists, but a curse upon implementors. While the selection of variation functions is
somewhat standardized— by the simple expedient of declaring that whatever the latest version of flam3
supports is the standard— the functions themselves vary widely, from simple polynomial expressions to
those that require thousands of CPU instructions and as many as ten parameters from the host.

In flam3, this is implemented by use of a cascade of if/else conditions, which check whether or not a
variation is used and, if so, apply it. Even on CPU, this is not a terribly efficient way to handle the more than
100 variations; the branch structure requires tens of thousands of unused instructions from inlined
variation functions to be brought into the instruction cache only to be dumped again thereaǍer. (A switch
statement is more easily recognized by optimizing compilers, and more likely to be turned into a jump table
or other efficient structure.) Nevertheless, the overhead for this dispatch technique is relatively small
compared to the overall runtime of an iteration on CPU.

On GPU, however, the performance of such a structure is not so much suboptimal as farcical. Ǥis is in some
part due to the hardware restrictions inherent in massively parallel devices; GPUs lack branch predictors,
for instance, and the per-core instruction caches of Fermi GPUs are estimated to be on the order of 64 bytes.
It is also partly due to a focus on floating-point hardware in current devices. Instructions in both the load
and comparison classes execute at less than full throughput per clock— comparison being half of full
throughput, load being at most a quarter, and typically much less—meaning that this conditional cascade,
which must be executed billions of times per frame, would itself require more GPU cycles than all other
components of the iteration kernel combined.

Even without the performance problems that arise from the conditional cascade itself, a branch-based
solution to variation selection will still have a considerable negative impact on performance. GPUs do not
perform on-the-fly instruction reordering, but can dual-issue instructions to shared functional units in
some cases. Ǥe compiler performs instruction reordering to allow dual-issue to occur more oǍen, and will
also reorder instructions to reduce pipeline delays on dependent operations when there are insufficient
active warps to hide pipeline latency. Instruction reordering can’t cross basic block boundaries, however,
limiting the impact these techniques could have on the computationally expensive variation functions.
Common subexpression elimination, where multiple identical idempotent statements are replaced with a
single invocation, similarly cannot cross basic blocks; this can be particularly costly since many variations
use expensive trigonometric routines like atan2.

Additionally, no maǣer how it is scheduled to run, the mere presence of variation code within a kernel
function is enough to reduce performance. Ǥis is due to CUDA’s approach to register allocation. Each Fermi
shader core can allocate a configurable number of registers from the 128KB register file to a thread. However,
the number of registers used must be selected at compile-time, and must be the same for every thread. With

48

a pipeline depth of 22 cycles, Fermi requires at least that many warps to be ready to run in as many cycles in
order to avoid a stall, and since thread swapping (discussed in Chapter 8) requires power-of-two block sizes
and will regularly stall blocks for synchronization, avoiding stalls altogether requires 32 warps of 32 threads
per shader core. With this many threads, an even division of the register file leaves just 32 registers per
thread.

Without runtime register count changing, a kernel will use as many registers as that used in its most
heavily-occupied point. Variation invocation occurs in the center of the inner loop, when the largest number
of variables are in scope. As a result, total register use with the conditional cascade approach to variation
selection is constrained by the register use of the most complex variation, and this number cannot be
reduced by instruction reordering for the reasons noted above. AǍer porting the full set of variations from
flam3, register usage was so high that only half of the needed occupancy was obtainable.

Ǥe problems surrounding the variation functions were of suchmagnitude that we elected to pursue an
approach which would be otherwise discouraged due to its complexity: we constructed a system to perform
runtime code generation. Rather than distributing a compiled code object containing the kernels intended
for GPU execeution, we distribute an annotated repository of CUDA code snippets embedded into our Python
library. When a flame is loaded for rendering, its genome is analyzed to determine which segments of device
code are needed. Ǥese segments are gathered and joined into a consistent CUDA .cu file, which is then
passed to PyCUDA’s caching nvcc frontend to obtain a GPU code object in ELF format that can be loaded by
the CUDA driver and copied to the device.

By selecting source code segments at runtime, we can eliminate the conditional cascade by building separate
inlined functions for each xform that include the exact set of variation functions. We can also remove the
conditional guards around those variations, allowing them to be merged into a single basic block and
optimized more effectively. While this technique adds a considerable amount of complexity to the host side,
the improved performance and flexibility in device code cannot be obtained otherwise.

While initially considered primarily to solve the variation problem described above, the runtime code
generation system has found use in simplifying or improving many parts of cuburn’s device code. In some
cases, these improvements are small, yielding execution time changes of one or two percentage points; in
others, the flexibility it offers has proved critical to reaching our performance targets. One such case is the
method for interpolating and accessing control point parameters.

49

@E>OTBQ ʩ

CUM@TFNM SBKB@TFNM

ǤeGPU relies on vectorization to aǣain high performance. As a result, divergent warps carry a heavy
performance penalty; even one divergent thread in a warp can double the amount of time evaluating the
results of an operation that includes branching. Avoiding unnecessary branches within a warp is therefore
an important performance optimization.

For each iteration of the IFS, one function of the flame is randomly selected to transform the current point.
Ǥis poses a problem: if the algorithm relies on the random selection of transforms for each point, threads
may select different transforms and therefore become divergent. With a maximum of 12 variations per
flame, this leads to a worst-case branch divergence penalty of an order of magnitude on the most
computationally complex component of an iteration.

8.1 Divergence is bad, so convergence is…worse?

Ǥe trivial solution to this problem is to eliminate divergence on a per-warp basis. Ǥe typical design paǣern
for accomplishing this is to evaluate the branch condition in only one lane of the warp, and broadcast it to
the other threads using shared memory; in this case, have the thread in lane 0 broadcast the xform_sel
value generated from the RNG. Each thread in a warp will then proceed to run its own point through the
same transform.

Ǥis neatly resolves the problem of warp divergence, bringing the samples-per-second performance of
flames with large numbers of transforms closer to that of simpler transforms. However, inspect the output
of this modified engine and it becomes clear that visual quality suffers; in fact, subjective measurement
shows that this change actually decreases overall quality-per-second¹. Ǥe illustrated change has no effect on
the transform functions themselves, or on any other part of an individual thread— from the perspective of a
sample passing through the aǣractor, both variants are identical. Where, then, is this drop in quality coming
from?

Recall that a necessary condition for stability in a traditional iterated function system is that each transform
function is contractive, and that this is at least approximately true for the flame algorithm as well. Each
successive application of a contractive function to a point reduces the distance between the point and the
function’s fixed point. In the systemmodified to iterate without divergence, each thread continues to select a
new transform each time it is chosen, and this behavior prevents the system as a whole from converging on a
fixed point.

¹Ǥis information was gathered by one of the authors using the earliest GPU implementation, which no longer runs on current
hardware, so example images are not available until our renderer is complete.

50

However, since each thread in a warp applies the same transform, each application brings every point in the
warp closer to the same fixed point, and therefore to the other points in the warp. It doesn’t maǣer that the
next transformwill have a different fixed point; the same effect will happen. While the points won’t
converge to a single fixed point across the image, they will quickly converge on one another. Ǥe precision of
the accumulation grid is relatively low, even with FSAA active, so that aǍer only a few rounds each of the 32
threads in the warp is effectively running the same point. Despite computing each instruction across all
threads, the vectorized hardware produces no more image information than a single thread.

While a sequence of contractive functions applied to any two disparate points will cause those points to
converge, the amount of convergence depends both on the length of the sequence and the contractiveness of
those functions. Because the images have limited resolution, any sequence which reduced variability
between disparate points below the sampling resolution² of the image grid would effectively “reset” the
point system each time it was encountered, resulting in an image with substantially reduced variation.
Since short-length subsequences of transforms are likely to be encountered in a high-quality render, we can
reason that flame designers typically reject genomes whose transform sequences are overly contractive.

It is therefore not necessary to ensure that every instance of the system under simulation receive an entirely
independent sequence of transforms; rather, it is sufficient to limit the expected frequency of identical
transform subsequences across threads. Fortunately, there’s a simple and computationally efficient way to
do this while retaining non-divergent transform application across warps— simply swap points between
different warps aǍer each iteration.

8.2 Doing the twist (in hardware)

Ǥere is no efficient way to implement a global swap, where any thread on the chip can exchange with any
other; architectural limits make global synchronization impossible, and an asynchronous path would
further burden an already overworked cache (see below). Instead, data can be exchanged between threads
in a work-group by placing it in shared memory, using barriers to prevent overwriting data.

To conduct such a swap on a Fermi core, each warp of a work-group issues a barrier instruction aǍer writing
the results of an iteration to the global framebuffer. Ǥe barrier instruction adds a value to an architectural
register, then adds a dependency on that register to the scoreboard, preventing further instructions from
that warp from being issued until the barrier register reaches a certain value, aǍer which it is reset.
Multiple registers (up to 8) are available for implementing complex, multi-stage synchronization, but as
with all addressable resources in a Fermi core, they are locked at warp startup, so overallocation will reduce
occupancy.

AǍer reaching this barrier, all threads write one value in the state to a particular location in shared memory,
then issue another barrier instruction. Once the next barrier is reached, indicating that values have been
wriǣen across all threads, each thread reads one of the values from another location. If further data must be
exchanged, another barrier is issued and the process repeats; otherwise, each warp proceeds as usual.

Ǥe choice of location for each read and write is, of course, not arbitrary, and depends on implementation
factors as well as soǍware parameters. One important constraint on location arises from the arrangement of
shared memory into 32 banks, with a 4-byte stripe. Fermi devices have 64KB of local SRAMwhich can act as
L1D or sharedmemory, indicating a 16-bit address size for accessing this memory. Bits [1:0] of each address
identify position within a 4-byte dword, and are handled entirely by the ALU datapaths. Ǥe next five bits,
[6:2], identify which of the 32 bank controllers to send a read or write request to, and the remaining nine

²It is possible to construct generally contractive functions with exceedingly large local derivatives, which would allow the ex-
traction of visible structure from points ordinarily too close to be seen; in this case, the lower bound is actually determined by the
precision of the floating point format in use. However, these systems tend to be highly unstable under interpolation and are not oǍen
found in practice.

51

upper bits [15:7] form the address used by an individual bank’s memory controller³. Each memory
controller can service one read or write per cold clock. A crossbar allows 1-to-N broadcast from every bank
port on read operations and 1-to–1 access to any bank port for write operations, all handled automatically.

Ǥis memory architecture is flexible and fast, and most shared memory operations can be designed to run in
a single cold clock across all 32 threads. However, there are some addressing modes which trigger a bank
conflict, requiring thread serialization and a corresponding stall. Ǥese conditions arise whenever two or
more operations access the same bank at different addresses— that is, when bits [6:2] are the same but
[15:7] are not. Because barriers are required for synchronization and code in this section is essentially
homogeneous across warps, warp schedulers cannot hide latency as efficiently while waiting for these
transactions to complete, so stalls while swapping may be compounded in other warps and should be
avoided.

A simple way to prevent bank conflicts is to constrain each thread to access the bank corresponding to its
lane ID, such that bits [6:2] of every shared memory address are equal to bits [4:0] of its thread ID. We
follow this paǣern—with an inner loop this complex, simplicity is something we’re preǣy desperate for—
and thereby keep the problem of determining read and write locations in a single dimension of length equal
to the number of warps in a work-group.

Within that dimension, wemust still find a permutation of bank addresses for both read and write
operations. Shuffling both read and write order provides no “extra randomness” over shuffling just one, so
we allow one permutation to be in natural thread order; since registers cannot be traced on the GPU, reads
are more challenging to debug, and so we choose to only shuffle the write orders.

To further simplify maǣers, we fix the write offset against the bank address as a modular addition to the
warp number. Ǥe resulting write-sync-read, therefore, turns each memory bank into a very wide barrel
register. Ǥis scheme can be accomodated with, at most, a single broadcast byte per bank, one instruction
per thread and no extra barriers. Amore complex permutation would require considerable amounts of extra
memory, a multi-stage coordination pass, and a lot of extra debugging; it is the laǣer whichmost condemns a
full permutation. We’ll examine the impact of this simulation a bit later in this section.

In the end, the entire process resembles twisting the dials on a combination lock: a point can move in a ring
around a column, but can’t jump to another row or over other points in a column.

8.3 ShiǍ amounts and sequence lengths

Under this simplified model for swap, there is one free parameter for each lane of a warp, shared across all
warps. Methods for choosing these parameters include providing a random number per vector lane and
using the lane ID. We wish to determine how effective each method is at minimizing the length of repeated
sequences in comparison with best- and worst-case arrangements.

For a flame withN transforms of equal density, the probability of selecting a given transform n is
P (n) = 1

N . For two independent sequences of samples, the probability that one streamwould have the same
transform at the same index as the other stream is thereforeP (S) = P (n) = 1

N ; the probability of having a
sequence of identical selections of length l is

P (Sl) = P (n)l =
1

N l
(8.1)

In any work-group using independent selection of transforms, any two pixel state threads
t1, t2 ∈ T, t1 ̸= t2 will also be independent, and therefore the probabilities do not depend on the

³Some details in this subsection are conjecture. Ǥe described implementation is consistent with publicly disclosed information
fromNVIDIA and benchmarks run by the authors and third parties, but has not been confirmed by the company.

52

l = 2 l = 4 l = 8 l = 32
Independent (8.1) 0.0156 2.441 · 10−4 5.960 · 10−8 1.262 · 10−29

No shuffle (8.2) 0.2314 0.1352 0.1218 0.1216
T = 256 Ring shuffle (8.3) 0.0556 3.145 · 10−3 1.013 · 10−5 1.144 · 10−20

Full shuffle (8.4) 0.0535 2.8658 · 10−3 8.213 · 10−6 4.550 · 10−21

No shuffle (8.2) 0.0753 0.0608 0.0607 0.0607
T = 512 Ring shuffle (8.3) 0.0332 1.1113 · 10−3 1.261 · 10−6 2.748 · 10−24

Full shuffle (8.4) 0.0317 1.006 · 10−3 1.011 · 10−6 1.048 · 10−24

Table 8.1: Probability of encountering identical transform sequences of length l with different shuffle types.

work-group size T . Ǥis is the optimal case which corresponds to an efficient approximation of the aǣractor.

For a work-group using warp-based branching without a swap, any two threads in different warps are
essentially independent, and soP (Sl|W̄) = P (n)l. Ǥreads in the same warp will always have the same
transform, givingP (Sl|W) = 1. For a warp sizeW , the chance that any thread t2 shares a warp with a
particular thread t1 isP (W) = W−1

T−1 , yielding a combined probability

P (Sl) =
W − 1

T − 1
+ (1− W − 1

T − 1
) · 1

N l
(8.2)

Ǥe shufflemechanismmodifiesP (W), introducing dependencies on vector lanes. Since two threads in the
same vector lane can never appear in the same warp, they are independent. Vector lanes are shared with
P (V) = T/W−1

T−1 ; as a result,P (Sl|V) = P (n)l. Ǥe probability of any t2 being in the same warp as t1 is
P (W) = P (V̄) · 1

V . Ǥreads sharing a warp will always have the same state at a given sequence index, but
because threads in other vector lanes may now be swapped, each stage is independent.
P (S1|V̄) = P (W) · 1 + P (W̄) · P (n), and so

P (Sl) = P (V) · P (Sl|V) + P (V̄) · P (Sl|V̄)

=
T/W − 1

T − 1
· 1

N l
+

T − T/W

T − 1
· (W − 1

T − T/W
· 1 + T −W −W/T + 1

T − T/W
· 1

N
)l (8.3)

In one sense, this model also extends to the case of fixedmodular offsets; however, for cases where
W < T/W — that is, where the warp size is larger than the number of warps per work-unit— each lane
equal under the modulus of the number of warps will never swap with respect to each other, which violates
the assumptions of independent events and increases the expected length of identical sequences. We solve
this by applying a different columnar rotation of each repeated section in the read paǣern, which respects
banking and thus adds liǣle overhead.

For reference, we also find the expected probability of a common sequence for a full shuffle, which whe have
not implemented on the device. In this case,P (W) = W−1

T−1 , and there are no independent values, so

P (Sl) = (
W − 1

T − 1
· 1 + (1− W − 1

T − 1
) · 1

N
)l (8.4)

To compare the efficacy of each shufflemethod to the independent case, we show the results of calculating
these probabilities for a few configurations and lengths in Table 8.1. Fixed values ofN = 8 andW = 32 are
used.

53

Ǥe results display a strong preference towards higher efficiency at larger work-group sizes; this is an
important and challenging constraint on launch parameters, as more effort is required to avoid stalls and
inadequate occupancy of shader cores when using large work-groups. It’s also clear that the simple and
efficient ring shufflemethods work nearly as well as a full shuffle. Less clear, however, is howwell the ring
shuffleworks as compared to completely independent threads. While the probability of a chain decays
asymptotically to zero, as it does in the independent case, the ring shuffle algorithm does not do so as
quickly. So, does it do so quickly enough?

Alas, the answer is image-dependent, and not amenable to easy statistical manipulation. Ǥe probabilities
derived are a good way to gain insight about different strategies for swapping points without an
implementation—we discarded several mechanisms that proved too slow or complex for the relative gain in
statistical performance in this manner— but there is no way to apply this information. We will simply have
to implement and compare.

If a ring-shuffled implementation loses liǣle or no perceptual quality per sample due to point convergence
on test images, we will be satisfied. However, in the unexpected event that it is not, the best solution may
simply be to allow threads to diverge. Ǥis will cause extra computation to be done, but in the endmay not
significantly impact rendering speed; as it turns out, the boǣleneck on current-generation GPUs is likely to
lie in the memory subsystem. Ǥis issue is discussed further in Chapter 12.

54

@E>OTBQ ʪ

>MFL>TFMD CQ>@T>K CK>LBS

Fractal flames are uniquely interesting as animations. Well-designed fractal flames typically contain
overwhelming amounts of what the human visual system perceives as objects in motion. Under proper
viewing conditions, overloading the visual system in this way provides an almost hypnotic effect, and the
word “mesmerizing” is oǍen used to describe extended-length flame sequences. Ǥe coloration scheme in
use by fractal flames also provides sub-pixel detail missing from other fractal rendering algorithms,
allowing the human visual system to perform temporal interpolation to recover image detail at scales much
finer than single-frame rendering or display.

Despite the distinctive visual qualities of fractal flame animations, animation has heretofore been a
hands-off process. Interpolation for fractal flames is, in almost every case, handled by flam3’s genome tools,
which leave extremely limited room for either artistic or programmatic exploration of the aesthetics and
physiological impact of fractal flame animations. Since rendering was so expensive, this made sense; flam3,
and the Electric Sheep project, were first wriǣen in an era where ordinary computers would take hours to
render frames, instead of the minutes used by today’s CPUs or the seconds it takes cuburn. However, with
cuburn’s ability to provide near-real-time feedback for animators and huge volumes of video for machine
learning, the time has come to engineer more flexible animation tools.

9.1 Flocks

Flame animations are most commonly found as a flock. Flocks are generated from a set of still flames
provided by users (and, in some cases, generated programmatically by blending two or more user-provided
flames). Each still flame is animated to create a loop by rotating the primary affine transformation of each
xform about that affine transformation’s offset point. Ǥis rotation is performed at constant angular velocity
over the duration of the loop. While this sometimes causes the resulting animation to give the perception of
global framemotion, as if the “camera” or the “world” were spinning, it oǍen results instead in a movement
paǣern which suggests that some of the “objects” in the frame are rotating across a fixed image grid. Ǥe
motion of these “objects”, when passed through variation functions, is key to providing an illusion of depth,
and time-integration performed by our brains allows us to recover a sense of the “shape” of these variation
functions.¹

¹Ǥe notions of objects passing through shapes in a world is entirely an artifact of the human visual system aǣempting to make
sense of an astonishing amount of foreign information, and in a certain sense even the artistswho design these flames are just poking
at some numbers in a very peculiar spreadsheet. Nevertheless, humans’ common heritage and neural structures allow an artist’s
intent to be received by the viewer intact, despite passing through an austere 4KB text file on the way. We can assure the reader that
even years of careful study of fractal flame renders doesn’t do a thing to shake the perception that a hundred thousand tiny snowflakes
are dancing through crystal, or that a bolt of lightning just gave a glimpse into an alien landscape.

55

When creating a flame for a loop animation using XML tools, the artist may specify that certain xforms are
not to be rotated, the number of frames to be rendered, and the width of the temporal multisampling as a
ratio of a single frame’s duration. When submiǣing to the Electric Sheep project, as most flame artists have
done historically to get a loop, the duration and framerate are set by the server, so even that control is
removed. Compared to the unbounded set of possibilities, this is a bit stifling.

AǍer creating loops, flam3will add edges to a flock. An edge creates an animation that joins two loops
“seamlessly” by interpolating every value in a flame (apart from those related to video playback, such as
frame resolution and rate) smoothly between two loops. Ǥis typically results in a morphing effect, where
the shapes of the source loop slowly distort into unrecognizability and then resolve into the destination loop.
Occasionally, singularities, zero-crossings, or other irregularities will result in more unusual phenomena,
such as vibrant bursts of color or simply black frames.²

Ǥe result is a directed graph with cycles. Each graph node is a point in time when two animations have
identical values for all parameters. Ǥese points are made to occur either at the presentation time of the first
frame in a pre-rendered video file containing an animation, or at the “end” of the last frame in such a file
(presentation time plus display time). If two such animation files are properly concatenated,³ they will
appear to form a single, smooth animation. In this way, a playback engine can engage in a randomwalk of a
flock, creating a continuous animation that uses variety in playback order to maintain novelty and user
interest for far longer than sequential playback of all videos in the flock would suggest.

9.2 XML genome sequences

Ǥe format used by flam3 to describe animations is a simple extension of the XML format used to describe
still images. An animation genome contains a separate XML <flame> element for every frame in the
animation, each bearing a time property describing the center of the display time for that frame
(PTS+ 0.5 · DTS, essentially, although DTS is always equal to 1 and the first frame’s PTS is always 0).

Ǥis presents a problem for smooth playback. Since the frame’s center time is specified by the time
parameter, the first frame of the sequence has an effective unscaled PTS of−0.5. Encoding this animation
will shiǍ this PTS to 0, since negative presentation times are not allowed. As a result, the edge parameter set
used in the directed graph is never explicitly specified. Edges are generated against the last frame in the file,
instead of this phantom parameter set, and therefore there is a small but noticeable discontinuity in position
when transitioning between two sets.

Even if this discontinuity is corrected for, so that the position is continuous in time, the use of linear
interpolation between nodes in a flock by flam3means that the velocity of objects will change abruptly
when transitioning between a loop and an edge. With motion blur enabled, this does more than simply
break the illusion of physicality lent to objects by continuous velocity curves during animation; the abrupt
change causes visible distortions in motion-blurred shapes.

Ǥe interpolated parameter sets⁴ are generated for a frame by performing linear or Catmull-Rom
interpolation, depending on the number of surrounding frames available. Since the frames themselves are
generated using linear interpolation, the use of Catmull-Rom interpolation to generate parameter sets
between frames is questionable, and may result in additional velocity discontinuities.

²Ǥe Electric Sheep project relies on users to identify which edges are good and which are not. We’re interested in accomplishing
the same task algorithmically, and hope to do so given time.

³Few media containers can be concatenated at the bitstream level without remuxing. We have chosen one that can (MPEG–2
Transport Streamwithout Blu-Ray timecode extensions).

⁴Ǥese are called “control points” in flam3 parlance, which is patently incorrect; the specified frames are the control points, not
the result of interpolation. Ǥe authors have been sticking to flam3 terminology when possible, including using “control point” in
previous documents, but this is just too dang wrong to continue doing.

56

Regardless of the technical limitations, the XML format is simply cumbersome to use. Ǥe genome file for an
animation of reasonable length can be hundreds of megabytes in size, and the mix of implicit and explicit
ordering within the file resists hand-editing, spliǣing, andmerging of files. Animation files are almost never
themselves edited, due to their size and that the output doesn’t identify keyframes or transmit them intact.
It is possible to design a tool which uses different interpolation strategies or exposes additional artistic
options to the user, but the limits of the flam3 tools mean that this format would either have to be
interpreted and converted to flam3’s format on the rendering host, or exported beforehand, suffering all
the indignations inflicted by the XML genome format.

9.3 Cuburn genome format

Instead of building a layer on top of flam3-style XML files, we have decided to create a new format for
representing genomes. Ǥis format uses a JSON-compatible object model, and so may be embedded in any
suitable container.

In cuburn’s genomes, all parameters are represented by Catmull-Rom cubic splines. Animations are always
represented as occurring from t = 0 to t = 1, with the start time corresponding to the start of the
presentation of the first frame, and likewise for the end of the last frame. Spline knots may be inserted at any
temporal value; cubic interpolation ensures that the value of any parameter at the time of a knot is exactly
that of the knot. Ǥis enables graph nodes in a flock, or any other animation constraint, to be hit precisely.

Spline knots can also be inserted outside of the rendered time values. Our interpolator uses this to match
velocity in addition to value at transition points between animations, creating seamless transitions. Ǥis
system accounts for variable duration whenmatching velocity, liǍing flam3’s implicit restriction that all
loops and edges must be the same length to get smooth results.

Because the splines are encoded independently in a simple JSON list, they can be easily hand-edited. More
importantly, those edits are not transformed. When using a frame-based format, edits would require
resampling the entire curve and storing the samples; applying additional edits at a later time would either
require having stored the unquantized curve separately or running error-prone inference to approximate
the significant knot positions. With this format, users and editing soǍware no longer have to keep two
versions of the same file in sync.

Ǥe format is not yet finalized; we are considering extending the spline description to include specification
of a domain in which to scale a parameter for interpolation, such as reciprocal or logarithmic. Ǥis will
present more flexibility in transitions between very different values or values which behave non-linearly as
they drop to zero.

Ǥis new flame format supports import of still images in XML format, and can support export of still images
or animations to the legacy format.

9.4 Implementing interpolation on device

Ǥe new format allows us to store an entire genome on the device and interpolate parameter sets for
rendering as needed, which is simpler andmore efficient than relying on host-based interpolation driven by
foreign function calls to flam3. Ǥis process is efficient and fast, but geǣing there was not trivial.

CUDA GPUs have a provision for loading parameter sets frommemory, known as constant memory. Ǥis is
device memory which is shadowed by a small read-only cache at each GPU core with its own narrow address
space configured to map to global memory by the host. Accesses to constant memory can be inlined into
dependent operations with no overhead, not requiring a separate load instruction or temporary register, but

57

only if that access follows certain restrictions, chief among these that the access must use a fixed offset from
the start of the memory space. If a non-fixed index is used, the code makes use of the normal memory data
path, which is considerably slower.

In order to run chaos game iterations on thousands of temporal samples, we need to be able to load data from
a particular parameter set. Doing so with constant memory requires either performing a separate kernel
launch, with corresponding constant address space configuration, for each temporal sample, or using
indexing to select a temporal sample at runtime. Ǥe former method leads to ineffecient load balancing, and
the laǣer forces constant memory accesses to take the slow path.

Ǥemost common alternative to constant memory is shared memory, which can be described as an L1 cache
under programmer control. Static-offset lookups from shared memory are not quite as fast as inline
constant memory lookups, but are faster than indexed lookups. However, another problem presents itself:
when represented as a complete data structure, the full parameter set exceeds the maximum available 48KB
of memory and far outstrips the 2KBmaximum size required to obtain sufficient occupancy to hide pipeline
latency on current-generation hardware.

To retain the benefits of static-offset lookups without requiring a static data structure, we augmented the
runtime code generator with a data packer. Ǥis tool allows you to write familiar property accessors in code
templates, such as cp.xform[0].variations.linear.weight. Ǥe code generator identifies such
accessors, and replaces themwith a fixed-offset access to sharedmemory. Each access and offset are tracked,
and aǍer all code necessary to render the genome has been processed, they are used to create a device
function which will perform the requisite interpolation for each value and store it into a global array. Upon
invocation, each iteration kernel may then cooperatively load that data into shared memory and use it
directly.

Each direct property access as described above triggers the device-memory allocation and copying of the
original Catmull-Rom spline knots from the genome file for that property. In some cases, it can also be useful
to store something other than a directly interpolated value. To this end, the data packer also allows the
insertion of precalculated values, including arbitrary device code to perform the calculation during
interpolation. Ǥe device code can access one or more interpolated parameters, which are themselves
tracked and copied from the genome in the samemanner as direct parameter accesses. Ǥis feature is used
both for precalculating variation parameters (where storing the precalculated version as a genome
parameter directly would be either redundant or unstable under interpolation), as well as for calculating the
camera transformwith jiǣered-grid antialiasing enabled (described in Chapter 14).

Ǥe generated function which prepares an interpolated parameter set on the device performs Catmull-Rom
interpolation many times. To control code size, it is important to implement this operation in as few lines as
possible. One step in variable-period Catmull-Rom interpolation involves finding the largest knot index
whose time is strictly smaller than the time of interpolation. To implement this, we wrote a binary search
(given in Figure 9.1) that requires exactly 3 logN + 1 instructions. We suspect this is not a novel algorithm,
but we have not seen it elsewhere.

ld.global.u32 rv, [rt+0x100];
setp.le.u32 p, rv, rn;

@p add.u32 rt, rt, 0x100;

Figure 9.1: One round of cuburn’s unrolled binary search. In this particular set of instructions, a load instruction
brings a value from global memory into a register. The address of this value by adding an offset representing 64
array positions to the current index value, ‘rt‘. The addition is performed in-line by the memory units. The next
instruction tests to determine if the value ‘rv‘ is less than or equal to the reference value ‘rn‘, storing the result
in predicate ‘p‘. If ‘p‘ is set, the last instruction simply advances the index by the offset. Each round repeats the
same instructions, halving the offset size each time.

58

@E>OTBQ ʢʡ

Q>MANL MUL?BQS >MA OSBUAN-Q>MANL
MUL?BQ DBMBQ>TNQS

Random numbers are used in this project because of their importance in calculating and rendering fractals
using Iterated Function Systems. Ǥis is a fundamental concept of an IFS and is known as the chaos game (See
Chapter 3 for more detail). However, real random numbers are hard to calculate in a computer; in great part
because they depend on time or because there isn’t an infinite number of bit sized chunks for computation.
Pseudo-RandomNumber Generators (PRNGs) are algorithms that simulate randomness in a computer,
usually by using prime numbers as seeds because when they are used in a division, the output is an irrational
number.Ǥe greater the prime number, the beǣer quality numbers are outpuǣed. In order to find the right
PRNG for this project we will consider advantages and disadvantages of different well known PRNGs.

In selecting the right PRNG, it is common to look at its period (or numbers it outputs until it starts repeating
itself), its speed and its spectral properties, the laǣer which determine its true randomness. For this project,
we are looking for a simple and fast PRNG that meets out minimum needs.

10.1 Bias : An Illustrative Example

Before preceeding with selecting the proper PRNG for this project an illustrative example is shown.
Normally in the Sierpinski’s Triangle Iterated Function System each function has an equal probability of 1

3 of
being chosen (See Section 3.2 for the fully worked example with matrix transformation equations).

However, if the PRNG began showing bias, the results could be disastrous to our system.

Shown in Figure 10.1 are 4 forms of extreme bias shown in an IFS. In �>�, if the affine transform related to
Vertex A was reduced to a probability of 1

10 the resulting triangle would show a lack of detail at the green
lower leǍ region. Ǥis is because it must undergo subsequent transformations of the function relating to
Vertex A in order to draw the boǣom leǍmost region of the image which is highly improbable with it’s
probability of being selected is 1

10 .

Conversely, if the probability of selecting the affine transform related to Vertex A was higher than the other
two transforms (relating to Vertex B and Vertex C) an opposite effect happens (see picture �?� , �@�, and �A�)
in which the right region of the triangle is barely visible.

Obviously, this example was meant to show the extremes of PNG bias, however even subtle biases can
propagate through the system and cause similar biases. Ǥis is why selecting a solid PNG is an important
decision.

59

Figure 10.1: Sierpinski’s Triangle shown with biased values of applying the function which pulls the points
towards Vertex A.

10.2 Pseudo RandomNumber Generators

Ǥere are various properties that a PRNG can have, but for this project, we are looking for maximized speed
and spectrum properties, and a PRNG that can be implemented in a GPU.

60

10.3 rand() and Linear Congruential Generators

Ǥe search for pseudo-random number generators begins with the most commonly used, win32’s rand()
function. Ǥe problemwith this function is that its randomness is biased. Evaluation of the statement
x=rand()%RANGE; returns any number represented by [0,RANGE) instead of [0,RANGE]. Assuming that
rand() outputs a number [0,MAX], RANGE should be able to divide byMAX+ 1 entirely in an ideal PRNG,
however it doesn’t in the rand() function and therefore the probability of choosing a random number X in
[(MAX%RANGE),RANGE] is less than that of choosing it in [0,MAX%RANGE].

Another problemwith rand() is that it is a Linear Congruential Generator (LCG).Ǥeway LCGs work is
with the following basic formula:

Xn+1 = (a ·Xn + c) mod m

WhereXn+1 is the next output and a andmmust be picked by the user of the algorithm. Here, the problem
is not only that to get decent randomness one needs to pick a andm carefully (withm closest to the
computer’s largest representable integer and prime) and a equal to one of the following values [25]:

m a1 a2 a3
549755813881 10014146 530508823 25708129
2199023255531 5183781 1070739 6639568
4398046511093 1781978 2114307 1542852
8796093022151 2096259 2052163 2006881

Table 10.1: Acceptable values for LCG modulus m and multiplier a.

Ǥere are other choices form, with their respective values for a, but those sets also have rules andmay not
apply to certain computers if they don’t have the required hardware.

10.4 ISAAC

An alternative that sounds like a beǣer choice is ISAAC, it stands for Indirection, ShiǍ, Accumulate, Add,
and Count [26]. Ǥe way it works is by using an array of 256 4-byte integers which it transforms by using the
instructions that define its name and places the results in another array of the same size. As soon as it
finishes the last number, it uses that array to do the same process again. Ǥe advantages of this PRNG are
that it is fast since it only takes 19 for each 32-bit output word, and that the results are uniformly distributed
and unbiased[27]. Ǥe disqualifying disadvantage is that even though the GPUs; which we will use for this
project, have enough global memory, they don’t have the memory required to be able to have arrays of size
256.

10.5 Mersenne Twister

“Mersenne” in its name because it uses Mersenne primes as seeds (Mersenne primes are prime numbers
that can be represented as 2p− 1where p is also a prime number). Ǥis PRNG uses a twisted linear feedback
shiǍ register (LFSR), which uses the XOR instruction to create the output, which then becomes part of the
values that are being XORed. Ǥe “twist” in its namemeans that not only do values get XORed and shiǍed,
but they also get tampered and there is state bit reflection.

61

It is a good choice for this project for several reasons; it is sufficiently fast for this project, it has a period of
2ˆ19937 –1 (meaning the random numbers will not repeat for that many iterations), and it can be
implemented on a GPU, however, it requires a large amount of static memory on the GPU, and it operates in
batch mode, meaning that when the pool runs out of random bits, the entire pool must be regenerated at
once. Ǥis can be handled with CUDA (NVIDIA’s parallel computing architecture), but its not the fastest or
simplest solution.

10.6 MultiplyWith Carry

Ǥis algorithmmight seem similar to the typical one for a LCG, but it differs when it comes to how the new
iteration values are chosen. To start, one chooses a numbers a, c, and m. A number b is also chosen such that
b = 2half the size of the register. First, x1 = (a0 ∗ x0 + c0) mod m, then, the quotient of the past calculation
becomes the quotient for c and xn = (a1 ∗ xn−1 + cn−1)where xn−1 = xn− 2 mod b and
cn − 1 = ⌊(xn−1/b)⌋. Ǥis process gives MultiplyWith Carry (MWC) advantages over LCGs if the numbers
are chosen carefully because by having c vary in every iteration, the randomness of its output can pass tests
of randomness that LCGs can’t.

It is important to note that MWC implemented in this form has a period that cannot be represented by a
power of two, and depends on the size of the register used. Ǥe best values to choose in order to have a large
period are when ab− 1 is a Safe Prime (a number that can be represented in the form 2p− 1where p is a
prime number.) For a register of size 32, a can be chosen to be a number represented by 15 or 16 bits, if it is 15
bits, then the maximum number a can be is 32,718 and the period will be 1,072,103,423, if its 16 bits, then the
maximum number a can be is 65,184 and the period will be 2,135,949,311. For a register of size 64, a can be
chosen to be a number represented by 31 or 32 bits, if it is 31 bits, then the maximum number a can be is
2,147,483,085 and the period will be 4,611,684,809,394,094,079, if it is 32 bits, then the maximum number a can
be is 4,294,967,118 and the period will be 9,223,371,654,602,686,463.

Ǥis algorithm can be used in the GPU for 4 main reasons; it is very elastic when it comes to limitations or
requirements of register sizes, it is not over engineered or takes too many lines of code to implement, it
passes the best known randomness tests, including the Diehard Tests, and its spectral properties meet the
requirements for this project. Ǥe only thing that could be considered a disadvantage for this algorithm is
that its most significant bits can be slightly biased, however, not enough as to make a difference in this
project.

10.7 Spectral Distribution

Ǥe spectral distribution test is devised to study the laǣice structures of PRNGs and especially that of LCGs.
It is also famous in great part because it fails LCGs that that have passed other tests. It works by taking the
outputs of PRNGs and finding where the numbers lie in s number of dimensions; it then takes that
information and displays it as a laǣice as seen in Figure R.2. Mathematically, overlapping vectors
Ls = xn = (xn,…, xn+s − 1)where n ≥ 0 are considered, since they exhibit the laǣice structure. An
example of laǣice structures can be seen in Figure 10.2.

However, without having to draw the dots, a conclusion about a PRNG can be made because of its
mathematical properties; the spectral test determines a value yk which determines the minimum distance
between points in the s hyper-planes on which it tests. Ǥe formula is given by
yk = min(

√
(x21 + x22 +…+ x2k)) Ideally, the minimum number from 0 to k will be a high value (in the

thousands) and the PRNGwill also have a high number of dimensions.

62

Figure 10.2: Example of lattice structure.

10.8 Monte Carlo simulations

ǤeMonte Carlo methods are algorithms that use statistics to determine probabilities in systems and their
properties. Ǥey are used in finance, physics, communications and even game design. In the context of this
project, they are necessary measures of randomness that can be held as a standard that filters out PRNGs
that don’t meet the basic requirements. Using these methods, the spectral properties and periods of some
PRNGs and their variations will be determined.

63

@E>OTBQ ʢʢ

@NKNQFMD >MA KND S@>KFMD

11.1 Overview

Ǥe chaos game provides a way to plot whether points in the plane¹ are members of the iterative function
system or are not. However, the resulting image appears in black and white (lacking color or even shades of
gray). Ǥe application of color as well as making these images vibranat are their own processes in the
algorithmwhich deserves much text for several reasons:

1. A flame is just simply not a flame without its structural coloring or if membership is binary (black and
white) which results in a grainy image. Both of these shortcomings leave a lot to be desired but can be
remedied.

2. Much of the new implementation relies on reworking details on how coloring is done.

Section 3.3 of the fractal flame algorithm chapter describes the application of log scaling, a scheme for
structural coloring as well as certain color correction techniques however the implementation details were
spared. Ǥis section explores the color correction techniques are implementatios in the context of the
original fractal flame implementation called flam3. Ǥe inner algorithmic choices, data structures, and
capabilities that the program has are analyzed. With that, in accordance to the challenge response style
paper some of the difficulties with making improvements and transitioning the algorithm to the GPU are
presented. Finally, the authors delve into the new implementation and the differences, similarities, and any
relevant background information needed.

11.2 Relevant Applied ColorǤeory and Imaging Techniques

Introduction

In the case of the fractal flame algorithmwhen coloring is referred to what is meant is the act of tone
mapping, structural coloring, any color theory techniques (such as colorimetry), and finally any imaging
techniques (such as gamma correction) used. Luckily, all of these techniques have strong mathematical
backgrounds and there is a vast information about each of them readily available because of advances in
both computer graphics and digital photography. Additionally, because the flame algorithm’s output is an
image or series of images it oǍen runs into the same complications which plague digital photographs such as

¹Again by plane we are refering to a biunit square where x and y values can have a minimum value of –1 and a maximum value of
1.

64

color clipping and therefore these same image correction techniques are translated over to our domain and
retrofiǣed to greatly improve the output image. A small detour is taken to visit all related techniques as one
of the major requirements that must be adhered to for a new implementation is to produce images which are
approximately visually equivalent. Without using some of these techniques, replicating flame would be
increasingly more difficult.

High Dynamic Range (HDR)

A fundamental concept which the whole coloring and log scaling approach tries to achieve is a high dynamic
range or simply abbreviated asHDR. High dynamic range means that it allows a greater dynamic range of
luminance between the lightest and darkest areas of an image [28]. Dynamic range is the ratio between the
largest and smallest possible values of changeable quantity (in our case light). Lastly, luminance being the
intensity of light being emiǣed from a surface per some unit area.

Ǥe techniques that allow going from a lower dynamic range to a high dynamic range are collectively called
high dynamic range imaging (HDRI).Ǥe reason HDR and HDRI imaging is mentioned is because the output
of the flame aǣempts to give the appearance of an HDR flame while being restricted to Low Dynamic Range
(LDR) viewing mediums such as computer monitors (LCD and CRT) as well as printers.

By observing common dynamic ranges of some typical mediums as well as various digital file formats we can
begin to see why we are limited.

Both the file format technologies in which our images or videos and stored in as well as monitor or paper in
which they are viewed on are interrelated limiting factors governing the dynamic range. Various typical
contrast values that these scenes can emit or in the case of file formats are capable of representing are seen
in Table 11.1[@Kolor].

Medium Ratio Stop
JPEG Image File 256 : 1 8
RAW Image File 1,024 : 1 10
EAQ FL>DB CFKB approx. 32,768 : 1 to 1 : 1,048,576 approx. 15 - 20
Standard Video 45 : 1 5.49
Standard Negative Film 128 : 1 7
K@A TB@EMNKNDY 500 : 1 8.96
@QT AFSOK>Y 50 : 1 5.64
DKNSSY OQFMT O>OBQ 60 : 1 5.90
Newsprint 10 : 1 3.32
SUMKFT S@BMB approx. 100,000 : 1 16.60
EUL>M BYB approx. 10,000 : 1 13.28

Table 11.1: Typical dynamic ranges of various scenes or typical dynamic ranges that able to be represented.

Where Stop is defined as : log2(Ratio)/log2(2).

Let’s take a look at what this table really means in the case of imagery. Ǥe table shows that aHDR Image File
can represent an impressive range of contrast - far higher than the eye can observe. We also note that it
could approximately even capture a Sunlit Scenewhich contains extreme contrast between the brightness
and darkest intensity values. However, if we look at our viewing technologies we notice their limits of
displaying contrast. LCD Technology has a Stop value of approx. 8.96, CRT Technology has a Stop value of
approx. 5.64, and Glossy Print Paper has a Stop value of 5.90. Compared to theHuman Eyewhose Stop value is
approx. 13.28, these values are incapable of being on par with the level of contrast the human eye can
observe and therefore will not accurately represent how the colors ideally should be observed.

65

Luckily, we can work within our imposed limitations and there are many imaging techniques that can be
applied to aǣempt to remedy the situation. Ǥe following techniques described below are not only for
aesthetics but also are some of the core techniques for representing HDR images on LDRmediums. Ǥis
coincides with the goal the entire algorithmwishes to achieve and is paramount to fix our LDR dilemma.

A RGB Color Model: Hue, Saturation, and Brightness Value (HSV)

To aǣempt to mathematically define certain color concepts (e.g. brightness, saturation, vibrancy) a color
model for how our colors will be represented spatially is chosen so the relationship between colors can be
talked about.

All of the color definitions and concepts are in terms of theHue, Saturation, and Value (HSV)model. It is
explained in this model simply because flam3 uses this concept and by using the HSVmodel it will save
additionally explanation on how this model works. It should also be noted that there are alternative color
models such as:

• Hue, Saturation, and Lightness (HSL)

• Hue, Saturation, and Intensity (HSI)

Ǥe HSV color model spatially describes the relationship of red, green, and blue according to these following
components:

• Hue

• Saturation

• Brightness

It does this by representing these using a cylindrical coordinate system. Ǥe axis representations are the
following:

• QNT>TFNM>K >XFS: Ǥe rotation axis represents hue. Hue refers to pure spectrum of colors - the same
prism observedwhen spliǣing light. At 0◦ on the axis the primary color red is represented, at 120◦ the
primary color green is represented, and at 240◦ the primary color blue is represented. Ǥe rest of the
degrees are filled in according to the color spectrum.

• VBQTF@>K >XFS: Ǥe vertical axis represents brightness. Colors at the top of the spectrum have no
brightness (value of 0 which would be the color black) and at the boǣom have maximal brightness
(value of 1 which would be the color white).

• ENQFZNMT>K >XFS: Ǥe horizontal axis represents saturation. Saturation is defined here as how
prominent the hue is in the resulting color. Ǥe outer regions are that of the pure color spectrum
whereas the inner regions are gray scale color where no hue is observed and the values depend purely
on brightness.

Using the HSVmodel, seen in Figure 11.1, provides a simple way of representing the color space and
describing the relationship between them. Ǥe calculations also require liǣle computation. However, one of
the major drawbacks is that the model gives no insight into color production or manipulation.

66

Figure 11.1: HSV Color Model

Hue

Ǥe term hue refers to the pure spectrum of colors and is one of the fundamental properties of a color. Ǥe
unique hues are red, yellow, green, and blue. Other hues are defined relative to these. Looking at a spectrum
of light (such as the rainbow) would represent the spectrum of hues.

Gamma and Gamma Correction

Ǥe term gamma refers to the amount of light that will be emiǣed from each pixel on the monitor in terms of
in a fraction of full power (pixel being shorthand for the red, green, and blue phosphors of a CRT²).

Ǥemain concept we’re interested in is gamma correction. Ǥe reason gamma correction is needed is the
following:

1. CRT and LCDs displays do not display the light proportional to the voltage given to each phosphor.
Ǥerefore the image does not appear in the way it was expected to be viewed.

2. A typical consumer grade printer works upon 8 or 16 bit color and result in a relatively low HDR as
seen above in Table 11.1.

To summarize, the RGB color systemwith red, green, and blue values ranging from 0 to 255 cannot be
accurately represented. Some kind of correction must be performed in order to get the images that are
expected to be seen rather than the images that are actually seen as output.

Ǥis concept of gamma correction can be applied at the hardware level however, but this varies depending on
the vendor and hardware capabilities of the machine. For example:

• PCs typically do not implement gamma correction at the hardware level. A noteable exception is that
certain graphics card may implement a gamma correction natively.

• Macintoshes typically provide a gamma correction at the hardware level of 1.4.

Besides being implemented at the hardware level, gamma correction can additionally be provided at the
soǍware level.

Ǥe formula for gamma correction is bcorrected = b1/γ where γ is the correction factor.

To understand the non-linearity of the gamma function 4 gamma correction values are applied to an image
for visual depiction of the concept. Ǥe results are seen in Figure 11.2.

²For LCDs the relationship between signal voltage and intensity is very non-linear and a simple gamma value cannot describe it.
A correction factor can be applied however and the concepts are similar.

67

Figure 11.2: Comparison of gamma correction values.

Ǥe second image of Figure 11.2 does not undergo any gamma correction and can be used as a baseline
comparison to the other images. By observing both the higher and lower bounds of the images presented we
can see that images become either too dark or too light (and their is liǣle contrast between the colors). Ǥe
third image has a gamma correction value of 2. Normal gamma correction is roughly around 2.2 which
explains why this image appears more natural and has a higher dynamic range then the others.

Brightness and Brightness Correction

Ǥe term brightness is a term that must be defined with great finesse. Unlike luminance³ which is empirical,
brightness is subjective. Ǥe subjectiveness comes from that brightness is according to the range of lumens
that the eye can perceive. Ǥis aǣribute is oǍenmore qualitative than quantitative and can range from very
dim (black) to very bright (white).

We can aǣempt to quantatively talk about brightness using the concept of a color model. Ǥere are many
models and they usually compute brightness in one of the following two ways:

1. Give equal weights of each color component (R, G, and B)

2. Give weighted values of each color component (R, G, and B).Ǥis is referred to as perceived brightness.

An example of the first application would be a naïve approach that goes on the notation that if black is
Red = 0 ,Green = 0,Blue = 0 and white isRed = 255 ,Green = 255, andBlue = 255 then the
brightness can be simplyRed+Green+Blue.

Ǥis flaw can be seen in Figure 11.3. Ǥe red, green, and blue components of a color have different
wavelengths and therefore have a different perceived effect on the eye. A good brightness calculation
aǣempts tomodel how the eye perceives color rather than treating each color componentwith equal weights.
A common flaw of a color model for brightness is the under or over represent one of the color components.

³Again, luminance being the intensity of light being emiǣed from a surface per some unit area.

68

Figure 11.3: Wavelengths of Red, Blue, and Green

Some examples of weighted models to calculate brightness are below in Table 11.2.

 Model Formula
 Photometric/digital ITU-R 0.299×R+ 0.587×G+ 0.114×B

 Digital CCIR601 0.299×R+ 0.587×G+ 0.114×B

 HSP Color Model
√
0.241×R2 + 0.691×G2 + 0.068×B2

Table 11.2: Weighted brightness calculations models[@Finley].

Later, the topic of brightness correction is of interest- the act of adjusting the brightness. Flame’s brightness
can be adjusted however care must be taken so that the minimum andmaximum bounds are not exceeded.

With the addition of too much or too liǣle brightness color clipping may occurs and the colors fall outside of
representable realms which result in a loss of data. See Section 11.2 for additional detail.

Saturation and related terms

Ǥe concept this section intends of describing is that of saturation but as a building block concept it is felt
necessary to talk first about the more broad concept in color theorywhich is the intensity of the color. Ǥere
are different variations of measuring the intensity of the color. Ǥe three main terms as well as their
distinctions between each other are below:

1. @NKNQCUKMBSS: Ǥe intensity of the color is a measure of the colors relative difference between
gray[29].

2. @EQNL>: Ǥe intensity of the color is a measure of the relative brightness of another color which
appears white under similar viewing conditions[29].

3. S>TUQ>TFNM: Ǥe intensity of the color is a measure of its colorfulness relative to its own brightness
rather than gray[29].

Ǥe term that is of importance is that of saturation.

Colors that are highly saturated are those closest to pure hues of color. Colors that have liǣle saturation
appearwashed out. Also as a note, the changing of a color’s saturation can be observed as linear effect.

69

Vibrancy

Now that saturation was explained, the term vibrancy can be explained. Vibrancy is similar to saturation
however different in the following fashion:

Saturation is linear in nature whereas vibrancy works in a non-linear fashion. In vibrancy the less saturated
colors of the image get more of a saturation boost than colors that already have higher saturation values. A
simple non-linear saturation is applied to photograph shown in Figure 11.4.

Figure 11.4: Original image compared to a non-linearly saturated image.

Color Clipping

A problem that plagues images in digital photography and that of the flame algorithm is the concept of color
clipping. Color clipping happens when color brightness values to be outpuǣed to the image fall either below
or above the maximum representable range.

In digital photography color clipping can happen from an improper exposure seǣing on the camera which
results in effects, such as the lighting from the sun, overwhelming certain portions of the image. In the case
of the flame algorithm, this concept can be viewed in a different context. One problemwith flames is that
certain areas of density in the histrograms from the chaos game can become so dense that their color seǣing
exceed the bounds of representable brightness’s.

When data exceeds the upper and lower bounds of representable brightness’s a loss of data occurs. As a
result, there is an inability to determine the differences between those regions of data as they default to the
maximum or minimum brightness and appear uniform. A focus on the approach of the algorithm is to
prevent this and preserve and be able to represent all contours of the image and their brightness’s.

70

11.3 Log Transformation of Data

Data transformations in statistics are a commonmethod of transforming data points in order to improve the
interpretability of visualization of the output (e.g. graphs). Some common transformations include:

• Square Root

• Logarithm

• Power Transform

Transformations are in the form of deterministic functions. For the specific purposes of this paper the
logarithmic transformation of data is studied.

Ǥe ultimate goal again of the coloring and rendering is preservation. If a non-transformed histogram of
densities of a flame are ploǣed information is lost about the least and most dense areas of the histogram. Ǥe
logarithm transformation helps preserve the relationship between points to provide a more accurate
histogram.

11.4 ToneMapping and Tone Operators

With a firm idea of High Dynamic Range (HDR) the concept of tone mapping is now described. What the
process of tone mapping produces is a mapping from one set of colors to another that is applied to the image.
Ǥis is heavily used in image processing. Because a flame is limited to a lower dynamic range when
presenting images onmonitors or printers tone mapping is applied in an aǣempt to closely resemble the
appearance of an HDR image. Ǥis is one of the goals of tone mapping. Ǥe two typical application purposes
of tone mapping are as follows:

1. Bring out all of the details of an image - or more specifically, maximizing image contrast. Ǥis
approach focuses on producing realism and aims to render an image as accurately as possible.

2. Create an aesthetically pleasing image, oǍen ignoring the realistic model that the first approach
aǣempts to model but trying to create another desired effect. Ǥis effect is up to the person designing
the tone operator which is applied to the image.

Ǥemethod for applying this tonemapping is done via a tonemapping operator. ǤeHDR image is processed
by the tone mapping operator which provides one of the two above mentioned effects. Ǥere are twomajor
classifications of tone mapping operators[30]:

1. DKN?>K TNMB NOBQ>TNQS: In a global tone operator the mapping of one color set to another is
uniformly applied to the image. Ǥis mapping is in the form of a non-linear function that is
determined to be the desired mapping[30]. Gamma correction is an example of a simple global tone
operator.

2. KN@>K TNMB NOBQ>TNQS: In a local tone operator the mapping of one color set to another varies
according to the local features of the image. Ǥe tone operator takes into the regions of changing
pixels in the image.

71

11.5 flam3 : Original Coloring and Log Scaling Implementation

Log Scaling of the Chaos Game

In the classical IFS membership in the system is binary however in the fractal flame algorithm one of the
goals is to expose as much detail as possible. As mentioned before, every successive time a point gets ploǣed
in binary representation information is lost about the densities of regions of the output flame. Ǥis is
remedied with the concept of a histogram. At each iteration a variation is applied which adjusts the IFS color
coordinate which represents the RGB color space and is from [0,1] as seen in Section 3.3. Ǥe density is also
increased every time the point is ploǣed. At the end of each iteration the color coordinate looks up a RGB
color from the paleǣe which is the value which is accumulated. Upon the final iteration the triplet of color
values (R, G, and B) become log scaled by the density.

Ǥe log scaling performed in flam3 coincides with the overall goal of approximating a high dynamic range
flame. Ǥemethod described above is a straightforward implementation although the naming convention of
the flam3 fractal flame algorithm needs articulation. No additional information is needed and the
understanding of the benefits of log scaling and why flam3 implements it should be found in the referenced
sections above.

Ad-Hoc Tone Mapping and The Color Palette

As seen in the previous section, at the end of each iteration the color coordinate looks up the actual RGB
color mapped to it inside the paleǣe and applies that R,G,B triplet to the accumulator. flam3 contains 701
color paleǣes packaged in the soǍware however the user can define their ownmapping. Some of these
paleǣes will be explored later on in this section. In flam3 each color paleǣe is traditionally consists of 255
color entries. Ǥe reason behind this is that the mapping to the paleǣe is in the form of a byte which contains
256 different bit choices.

Along with the application of color correction (gamma, vibrancy, etc.) this combination of mapping
grayscale to a set of colors and then correcting them is a form of highly specialized tone mapping.

Coloring Capabilities

Overview

flam3 provides not just structural coloring but also exposes a vast amount of functionality which allows the
resulting flame to undergoing image correction and other altercations. Ǥe image correction and other
altercations are done using a configuration file. Ǥe section visually inspects:

• Color Paleǣe

• Gamma Correction

• GammaǤreshold

• Hue

• Brightness Correction

• Vibrancy

• Color Clipping

72

• Highlight Power.

AǍer visually inspecting them as well as describing their purpose and how the output flames benefit from
them, flam3’s implementation will be examined. Next, the authors discuss what features are essential for
our task at hand and which color correction techniques could be omiǣed while still providing an essential
subset of functionality.

Visual Inspection of the Baseline Image

For reference to the reader a baseline image of a detailed flame containing several transforms with a vivid
default coloring scheme is provided in Figure 11.5.

Figure 11.5: Baseline image of the flame whose parameters will be altered.

In the following sections adjustments are performed to one parameter of the flame while holding the others
constant so that the parameter effect in question can be observed. Ǥe parameters that constructed the flame
above are shown below in Figure 11.3.

73

Correction Technique Default Value
Gamma Correction 3.54
GammaǤreshold 0.01
Brightness Correction 45.6391
Vibrancy 1.0
Early Clipping Off
Highlight Power 0.0
Hue 0◦ Rotation to the Color Space
Color Paleǣe User Defined Paleǣe

Table 11.3: Parameter values of our baseline image which modified versions of this flame will be compared to.

Color Palette Revisited and Explored

Asmentioned in Section 11.5 : Ad-Hoc ToneMapping andǫe Color PaleǪe there are 701 standard paleǣes
available. A minute amount of paleǣes are shown to give the reader an understanding of what a paleǣe may
look like. Figure 11.6 shows 4 different paleǣes applied to the baseline flame. By observing both paleǣe
number 1 and 5, you can see that colors become clipped and their is varying degrees of detail loss. Ǥere is a
careful balance of seǣing tweaking between brightness, gamma, that must be maintained in order to
preserve a higher dynamic range. Ǥis is one of the reasons these features exist.

74

Figure 11.6: 4 different predefine color palettes applied to the baseline flame.

75

Gamma Correction

Asmentioned in Section 11.2 Gamma Correction Background a non-linear function needs to be applied in order
to produce an output flame that approximately replicates the expected image. Ǥe gamma correction
formula’s gamma seen in Section 11.2 is leǍ to be set by the user and is of the positive float data type. Ǥe 12
different gamma correction values that were applied to the baseline image are shown in Table 11.4.

Flame Number γ value
1 0.00
2 0.25
3 0.50
4 1.00
5 2.00
6 3.00
7 5.00
8 10.00
9 50.00
10 100.00
11 1,000.00
12 10,000.00

Table 11.4: Flame image numbers and their associated γ correction values.

Ǥe resulting images from the altered gamma corrections can be seen in Figure 11.7. Ǥe first several images
show the effects of when the gamma is set to values that are too low and show the characteristic signs of low
gammawhich is that the image looks washed out. Ǥe last images in the series show the effects of when the
gamma is set to values that are too high and show characteristic signs of high gammawhich is that the image
looks too dark.

76

Figure 11.7: 12 different gamma values are presented one the baseline flame.

77

Gamma Threshold

Gammaǫreshold is a parameter seǣing which controls the threshold for which colors recieve the non-linear
gamma correction mentioned above. Colors brighter than the threshold receieve the non-linear correction
and colors darker than the threshold receive a linear correction instead [31]. Ǥe threshold is a float data type
value ranging from 0.00 to 1.00 (where 0.00 to 1.00 maps to the entire color space). Ǥis parameter can be
used to linearly correct certain parts of an image and non-linearly correct others in aǣempts to produce a
greater dynamic range or a stylistic affect. Ǥe 12 different gamma threshold values that were applied to the
baseline image are show in Table 11.5.

Flame Number GammaǤreshold value
1 0.00
2 0.05
3 0.10
4 0.20
5 0.30
6 0.40
7 0.50
8 0.60
9 0.70
10 0.80
11 0.90
12 1.00

Table 11.5: Flame image numbers and their associated gamma threshold values.

Ǥe resulting images from the altered gamma threshold values can be seen in Figure 11.8.

78

Figure 11.8: 12 different gamma threshold values are presented on the baseline flame.

79

Hue

Hue is a float data type value ranging from 0.00 to 1.00. 0.00 means that the color space is not rotated while
1.00 means there is a 360◦ rotation in the color space (which effectively is the same as 0.00). Any value in
between rotates the color space by a certain degree. Ǥe 12 different hue values that provide rotation to the
color space are shown in Table 11.6.

Flame Number Hue Rotates Color Space By
1 0.0000 ≈ 0◦

2 0.0833 ≈ 30◦

3 0.1666 ≈ 60◦

4 0.2499 ≈ 90◦

5 0.3332 ≈ 120◦

6 0.4165 ≈ 150◦

7 0.4998 ≈ 180◦

8 0.5831 ≈ 210◦

9 0.6664 ≈ 240◦

10 0.7497 ≈ 270◦

11 0.8330 ≈ 300◦

12 0.9163 ≈ 330◦

Table 11.6: Flame image numbers and their associated hue rotation values.

Ǥe resulting images from the altered hue values can be seen in Figure 11.9. To properly showcase hue, a light
color paleǣe has been applied which will be our new baseline image. Ǥis paleǣe can be seen unmodified in
Flame Number 1.

80

Figure 11.9: 12 different hue values are presented to the baseline flame with a non-vibrant color palette.

81

Brightness

Brightness correction is a function that changes the percieved intensity of light coming from the image can
be enacted upon the image. Additional information is mentioned in Section 11.2: Brightness Correction
Background. Ǥis percieved intensity can be set by the user and is a value of data type: positive float. Ǥe 12
different brightness correction values that were applied to the baseline image are shown in Table 11.7.

Flame Number Gamma Correction value
1 0.00
2 0.25
3 0.50
4 1.00
5 5.00
6 10.00
7 25.00
8 50.00
9 100.00
10 1,000.00
11 10,000.00
12 100,000.00

Table 11.7: Flame image numbers and their associated brightness correction values.

Ǥe resulting images from the altered brightness corrections can be seen in Figure 11.10. Observe the first
and last several images that color clipping occurs. Ǥere is absolute light in the flames with the highest
brightness correction values (white) and there is an absense of light in the flames with the lowest correction
values (black).

82

Figure 11.10: 12 brightness correction values are presented on the baseline flame.

83

Vibrancy

Vibrancy, as stated in Section 11.2: Vibrancy Background, provides saturation in a non-linear fashion. In the
case of flam3, the actual implementation details to visually produce vibrancy are not found in the common
literature. Ǥe concept that flam3 uses to alter vibrancy is by what factor the gamma correction should be
applied (independently or simulatenously). Vibrancy is a seǣing in flam3 which the user defines and is a
float from 0.0 to 1.0. A value of 0.0 denotes to apply gamma correction to each channel independently
whereas a value of 1.0 denotes to apply gamma corrections to color channels simulatenously. Applying
gamma correction to each channel independently results in pastel orwashed out images of low saturation.
Consequently, applying gamma correction to color channels simulatenously results in colors becomming
saturated. Ǥe 12 different vibrancy values that were applied to the baseline image are show in Table 11.8.

Flame Number Vibrancy Value
1 0.00
2 0.05
3 0.10
4 0.20
5 0.30
6 0.40
7 0.50
8 0.60
9 0.70
10 0.80
11 0.90
12 1.00

Table 11.8: Flame image numbers and their associated vibrancy values.

Ǥe resulting images from the altered vibrancy values can be seen in Figure 11.11.

84

Figure 11.11: 12 different vibrancy values are presented on the baseline flame.

85

Early Clipping

Earlier it was discussed that the user may experience regions of the flame that become so dense that the
colors to fall outside of the representable range of color. Ǥese creates regions of uniform density which
results in a loss of detail. More background information on this can be found in Section 11.2: Color Clipping
Background.

Early clip takes this idea of color clipping and provides a means to rectify the problem. Ǥe problem occurs
because in the typical algorithm all of the log scaled histrogram of points is mapped to the RGB color space
aǔer applying the filter kernel. A potential problem that can happen is that the spatial filter can blur dense
regions of the image and then when color correction techniques are applied these blurred regions can
become saturated[31]. Visually, this produces regions that look smeared andmore dense than it was
intended to look. Ǥis deviation between the output image and what was intended is a form of detail loss.
Ǥe rectification of this problem lies in clipping the RGB color material before applying the filter which fixes
this issue. Ǥis seǣing can either be turned on or off and can be set by the user.

Highlight Power

Highlight power is a value (the data type is a float) which controls how fast the flame’s colors converge to
white. Ǥe visual effect of this is to blend areas that have drastic color differences that were caused by
unintended side effects. Ǥe implementation works by keeping the color vector (RGB) pointed in the
intended direction until it begins to saturation. When this happens the color starts geǣing pulled towards
white as the iterations continue. A highlight power of 0.0 indicates that saturated colors will not converge to
white whereas any value higher than 0.00 is the rate at which saturated colors converge to white[31]. Ǥe 12
different highlight power values that were applied to the baseline image are show in Table 11.9.

Flame Number Highlight Power Value
1 0.00
2 1.00
3 2.00
4 3.00
5 4.00
6 5.00
7 10.00
8 50.00
9 100.00
10 1,000.00
11 10,000.00
12 100,000.00

Table 11.9: Flame image numbers and their associated highlight power values.

Ǥe resulting images from the altered highlight power values can be seen in Figure 11.12.

86

Figure 11.12: 12 different highlight power values are presented on the baseline flame.

87

11.6 Challenge

Ǥe challenge with deviating from the log-scaled and color correction process is that the main criteria of a
new approach focuses mainly on approximating a high dynamic range. Ǥis is something that log-scaling
and color correction has shown to do very well.

One of the complications of log-scaling is that an exponentially more amount of points will be needed in the
bright areas than in the darker less dense areas. Ǥis results in high quality images needing a whoppingly
high number of iterations which increases the run time greatly. Ǥis is one of the issues that needs to be
addressed in the new implementation.

88

@E>OTBQ ʢʣ

S>LOKB >@@ULUK>TFNM

AǍer each iteration, the color value of a point within the bounds of the accumulation buffer— a 2D region of
memory slightly larger than the final image, with guǣers on all sides for proper filter behavior at edges—
must be added to its corresponding histogram bin. Ǥis process is simple, both conceptually and in its basic
implementations, yet it is, by nearly an order of magnitude, the most time-consuming part of the fractal
flame rendering process on GPUs.

12.1 Chaos, coalescing, and cache

Ǥe flame algorithm, and the chaos game in general, estimates the shape of an aǣractor by accumulating
point information across many iterations. While visually interesting flames have well-defined aǣractors, the
trajectory of a point traversing an aǣractor is chaotic, jumping across the image in a manner that varies
greatly depending on the starting state of its thread. As a result, there is liǣle colocation of accumulator
addresses in a thread’s access paǣern over time. Spatial coherence is also unaǣainable, due to the need to
avoid warp convergence discussed in Chapter 8.

Each accumulation, therefore, is to an effectively random address. While the energy density across an image
is not uniformly distributed, most flames spread energy over a considerable portion of the output region.
Since the accumulation buffer necessarily uses full-precision floating-point values, it is not small; for a
1080p image, the framebuffer is over 31MB[ˆǄsize]. Random access to a buffer of this size renders even CPU
caches useless, although CPUs are boǣlenecked by iteration speed, so this is not a concern. On GPU, however,
the effects are amplified by simpler and smaller caches, such that nearly every transaction may be expected
to incur a cache miss.

With each cache miss, a GPU reads in an entire cache line; each dirty cache line is also flushed to RAM as a
unit. In the Fermi architecture, cache lines are 128 bytes, as compared to the accumulator cell size of 16 bytes.
If nearly every access to an accumulator results in a miss, then the actual amount of bus traffic caused by one
accumulation is effectively eight times higher than the accumulator size suggests— and consequently, the
peak rate of accumulation is eight times lower.

To make maǣers worse, DRAMmodules only perform at rated speeds when reading or writing contiguously.
Ǥere is a latency penalty for switching the active row in DRAM, as must be done before most operations in a
random access paǣern. Ǥis penalty is negligible for sustained transfers, but is a considerable portion of the
time required to complete a small transaction; when applied to every transaction, aǣainable memory
throughput drops as much as 50% [32].

Improving performance requires addressing this step of the flame algorithm carefully and thoroughly. In
this chapter, we’ll compare the three implementations of the writeback stage currently avaiable in cuburn.

89

12.2 Atomic writeback: perfectly slow

When running in multi-threaded mode, flam3 uses atomic intrinsic functions where available to perform
histogram accumulations. Ǥese compiler-provided intrinsics perform three operations— load a value from
memory, add a second value from a live register, store the updated value— in such a way as to appear to all
running threads like the operation happened instantaneously. On x86 CPUs, this is typically accomplished
using a compare-and-swap spinloop, which is not exactly fast but far from the most egregious ineffeciency
in flam3. Ǥis technique allows for very simple multithreaded writeback code.

To establish a point of reference, we replicated this behavior in cuburn using CUDA’s atomic intrinsics.
Global memory atomics on Fermi are implemented as a single instruction, which is forwarded to the
appropriate memory controller along the packetized internal bus as an independent transaction¹. At the
memory controller, the cache line containing the address is loaded and then locked, so that it cannot be
evicted or operated on by another context. One of a small set of local ALUs reads the relevant word, performs
an operation on it, and writes it back. Ǥe line is then unlocked and allowed to be flushed to DRAMwhen
evicted.

Ǥis architecture makes individual atomic writes for which the issuing thread does not require a return
value execute faster than a read-modify-write cycle, from the perspective of that thread: the SM dispatches
a single memory operation which gets appended to the memory controller queue, and is then immediately
free to move on with other tasks. However, the number of atomic ALUs is limited, as is the queue depth for
atomic operations, and the cache-line-based locking mechanism stalls consecutive atomic transactions to
the same cache line. Under load, these quickly saturate the memory transaction queue. Ǥis is handled by
signaling each shader core to hold requests until the queue has room, ensuring data integrity at the cost of
performance.

Ǥe performance hit is substantial, as expected. Atomic writeback is at least ten times slower than direct
writeback on our hardware. It remains available in cuburn as a reference point and a debugging aid, since
this technique leads to deterministic output and has no precision loss, but is impractical for production
renders.

12.3 Direct writeback

Ǥe direct writeback strategy performs a read-modify-write cycle against global memory from the shader
core, rather than at the atomic units. For the reasons discussed at the start of this chapter, the random access
paǣern used by this paǣern performs poorly. Another important problem that needs to be considered when
using direct writeback arises from the incoherent nature of the caches across the device.

A cache line loaded into an L1 cache to take part in a read-modify-write cycle on a shader ALU is vulnerable
to inconsistency from two sources. In a local conflict, one thread can perform a read of a memory location
aǍer another thread has read that location but before this other thread issues an instruction to overwrite the
location with an updated value. Both threads will base their updates on the original value, causing one
update to be silently lost. Ǥis can happen either as a result of two warps interleaving instruction issues in
the normal process of latency hiding, or as a result of two threads within the same warp reading the same
location within the same instruction. Ǥe laǣer case is particularly venomous, and results in siginficant
image quality degradations when point swapping between threads (as described in Chapter 8) is omiǣed.

A cross-core conflict occurs because L1 caches are not synchronized across the device. If two separate shader
cores request a cache line, that line will be copied to both cores’ L1 caches. A subsequent write from one core
will not invalidate the cache line in the other core. Depending on access paǣerns, this allows invalid data to

¹Anecdotal evidence suggests no coalescing is performed, but we have not confirmed this with direct testing

90

remain cached for substantial durations. It is possible to effectively skip L1 via cache control operations, but
in general the access paǣerns cuburn exhibits makes this particular form of inconsistency far less frequent,
and so we do not take steps to avoid it.

Ǥese inconsistencies occur in a framebuffer, rather than in data that is used for execution control, and
therefore are closer in effect to a kind of sampling noise than an outright bug. Fortunately, these collisions
will tend to happen in the image regions which have the highest density, where the relative error for each
lost sample will be considerably smaller and further reduced by log filtering.

Characterizing the error at the pixel level is difficult, as out-of-order execution makes exact
reproduceability unlikely and inserting code to atomically write to a separate buffer within one pass will
increase time between read-modify-write cycles and therefore underestimate the prevalence of the
problem. Indirect estimates suggest that the total error is small, and most flames rendered using this mode
were found to be indistinguishable from those rendered using atomic writeback in a still-image,
simultaneous presentation subjective A/B test. However, this result is contingent on device timings and
flame characteristics. We have constructed pathological flames which exhibit this flawmuchmore severely.
As a result, we were interested in a strategy which would not suffer these inconsistency problems— or at
least suffer them in a quasi-deterministic way that could be compensated for— andmeet or perhaps exceed
the limited performance of direct writeback.

12.4 Deferred writeback

A common strategy for avoiding the performance limits imposed by randommemory access paǣerns in
graphics applications is tiling, where image elements are rendered alongside others which are near it in
screen-space. Implementations of the Reyes algorithm for ray-tracing, such as Pixar’s RenderMan, handle
limited cache sizes by spliǣing the global geometry in a scene along the boundaries of the scene-space
projection of small rectangular regions that tile the destination framebuffer; the contents of each tile are
then drawn separately and discarded, allowing the information in a single image area to remain in the cache
[33]. A similar technique is employed by graphics chips designed for low-power applications, such as those
in the PowerVR architecture [34].

Implementing tiling in cuburn’s output stage would allow for the use of shared memory to perform
accumulation, as tile sizes could be chosen to fit within available shared memory bounds. Shared memory
supports atomic transactions with much greater aggregate throughput than global memory, so this could
allow for reasonable performance without transaction loss. However, tiling requires that we be able to
subdivide data by region of interest, while the chaos game requires that points cross the entire image area. It
is not possible to perform accurate chaos game sampling within a particular region of interest, save by
simply discarding all points outside of that region, which would be tremendously ineffecient.

Since it is not possible to obtain chaos game samples by region of interest directly, it is necessary to separate
sample generation from sample handling. Ǥe deferred writeback method does precisely this.

Storing chaos game samples

Storing a point to the accumulator using atomic or direct writeback involves adding three color values to a
particular accumulator index, and incrementing the corresponding density count. Ǥe color tristimulus
value is obtained by performing a paleǣe lookup, using color coordinate and control point time delta to
perform a texture fetch with bilinear filtering enabled. Ǥis value is then scaled by an opacity value,
depending on xform, if the flamemakes use of the xform opacity feature. Ǥe accumulation index is
determined by applying the camera transform to the 2D (x, y) coordinate pair, and multiplying y by the
image row stride value.

91

| | Sort key (9 bits) | | Shared key (12 bits) |
| Color (8 bits) | | Accumulator address (22 bits) |
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

	Sort key (7 bits)		
	Shared key (12 bits)		
Color (8 bits)	XOI		Accumulator address (18 bits)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 12.1: Top: the log format used for a 2560x1600 image which does not use xform opacity. Note that
each memory cell in the sorted log is scanned twice in this configuration, since bit 12 is not sorted; each pass
ignores log entries outside of its boundary. (Sorting will be described in Chapter 13.) Bottom: The log format
used for a 640x360 image. To avoid entropy reduction, bit 11 is included in the sort.

For deferred writeback, we wish to store this information as efficiently as possible in such a way that it can
be reconstructed for accumulation at a later time. A compact scheme is presented in Figure 12.1. 8 bits are
used to represent the color index, 2 bits represent the xform index when opacity is used, and up to 22 bits (or
24, for flames which do not use xform opacity) encode the accumulation buffer index aǍer camera rotation
and clipping.

Faithful representation of the color index in 9 bits, instead of the 32 used to represent that value as a
floating-point coordinate, is possible by using dithering. Consider a two-entry color paleǣe, where the
tristimulus value at index 0 isC(0) = (0, 0, 0), and at index 1 isC(1) = (1, 1, 1). With linear blending, a
lookup for an arbitrary value takes the formCl(i) = P (⌊i⌋) · (⌈i⌉ − i) + C(⌈i⌉) · (i− ⌊i⌋), such that
Cl(0.4) = C(0) · 0.6 + C(1) · 0.4. Ǥe average value of a number of linearly-blended lookups with i = 0.4
would then be (0.4, 0.4, 0.4). On the other hand, if the index was first truncated to integer coordinates, the
average value of any number of samples would beCl(⌊0.4⌋) = Cl(0), or (0, 0, 0). Many flames use
automatically-generated paleǣes which feature violent color changes between coordinates, so such
truncation can result in a substantial amount of error.

Dithering applies noise to signal components before quantization to distribute quantization error across
samples, enabling more accurate recovery of average values [35]. For the fixed quantization of the IFS color
coordinate, dithering is accomplished by adding a value sampled from a uniform distribution covering the
range of input values which are quantized to 0— for integer truncation, this is [0, 1), whereas
round-to-nearest-integer would use [−0.5, 0.5)— to the floating-point color sample before quantization.

To continue the example, dithering the index value i = 0.4 before integer truncation would provide an
expected value uniformly distributed in the range [0.4, 1.4). Over many samples, this value would be
expected to be quantized to a value of 0 asP (iq ≤ 1) = 0.6, and 1 asP (iq > 1) = 0.4. Applying those
values to the paleǣe lookup functions, we haveC(iq) = C(0) · P (iq ≤ 1) + C(1) · P (iq > 1) = Cl(i), so
that over many samples the added noise has actually eliminated the quantization error in the average.

A flame’s paleǣe contains 256 color samples. Linear blending occurs between paleǣe samples, but no such
guarantee exists from sample to sample; as a result, subsampling the paleǣe would result in aliasing, even
when dithering is applied. Ǥeminimum size of the color index component, therefore, is 8 bits, which we
use.

Ǥe accumulator index is also in need of dithering under this scheme to suppress the quantization error
resulting from truncation of floating-point values to linear memory addresses. Due to the 2D nature of this
process, it is oǍen easier to use a signal-processing framework to analyze and correct these errors, rather
than a statistical one; we do so in Chapter 14.

A 22-bit upper bound on the image address size places an upper bound on accumulator buffer size just larger
than a 1080p region would occupy. Since the fractal flame algorithm is statistically fractal, allowing for detail
even at very fine image scales, most flames can be scaled well past 1080p for applications such as print

92

material or art installations. However, consumer hardware cannot decode video at these resolutions; in fact,
H.264/AVC High profile, as used in Blu-Ray, is insufficient to capture the image detail available in even 1080p
streams without visible blurring of fine structure. For rendering animations, this limit is an acceptable
compromise.

Even with dithering, two bits does not afford ample precision for storing xform opacity. Rather than directly
encode the floating-point opacity from the interpolated control points, the value represents an index into a
time-varying array of those opacities, precomputed in a separate step. Ǥis array can represent four opacity
values exactly, which is oǍen sufficient for most use cases— although flames can have more than four
xforms, typical uses of xform opacity oǍen involve the same value onmultiple xforms. Whenmore unique
xform opacities are in use, combining this lookup table with dithering enables a DXTC-like encoding scheme
which is capable of more accurately representing opacity values, even at low sample counts, than a linear
mapping.

Both color and xform opacity depend on knowing the time value at which the source control point was
interpolated to determine which look-up table to use. Fortunately, no bits are needed to encode this value:
the index position in the output array is determined by the block index of the thread block which generated
the point, which also determines the control point used to create the points. Ǥe time value can therefore be
inferred from the index of the point in the output buffer.

Ǥis information is packed and stored consecutively from the chaos game iteration thread in efficient,
coalesced transactions, which proceed asynchronously and do not require confirmation of completion. As a
result, memory boǣlenecks are absent from the iteration thread.

Accumulating stored samples

Ǥe accumulation buffer is divided into tiles, with each tile’s size based on the interaction between
accumulation buffer addressing paǣerns and shared memory size.² AǍer a certain number of iterations
have been performed, the samples in the iteration log are sorted into tile groups based on a key extracted
from a portion of the global address. Whenever possible, each tile group contains exactly one tile, such that
the tile group address is equal to the tile address prefix, but this is not always the case, for reasons explained
in Chapter 13.

Ǥe accumulation kernel is launched with a thread block to service each tile. A block looks up the start and
end indices of the tile group in the sorted array, clears its shared memory buffer, and begins loading log
entries from the tile group. If a log entry’s tile address prefix does not match the current block’s tile address,
it is discarded, and the next loaded. When a log entry is in the current tile, the color, local address, and xform
opacity index are extracted from the entry, and the control point time value is inferred by the entry’s index
within the tile group. Extracting the time from sorted data is not necessarily as accurate as extracting it
from the full array index, but the error is subthreshold in every flame we have tested.

In traditional in-loop accumulation, the color value is determined by performing a texture lookup into a
paleǣe texture with bilinear interpolation. Ǥis enables compact, cache-efficient, and very accurate
blending based on both color coordinate and time value to retrieve an appropriate color four-vector (of
which one channel is currently unused) that can then be scaled if needed to account for xform opacity. Ǥe
use of clamped-integer values with dithering to store the necessary coordinates offers an alternative
possibility with equivalent results: provide a pre-blended texture paleǣe which does not use texture unit
interpolation. When using a four-vector of floats to store the texture, this strategy would not result in a large
performance improvement; its usefulness is derived from the accumulation buffer format.

²For simplicity,weuse linear address segments as tiles, rather than rectangular areas, but theprinciple, and thus the term, remains
the same.

93

Ǥe process of shared-memory accumulation can be relatively expensive. Shared-memory atomics are
implemented on Fermi via load-lock and store-unlock instructions, with the former seǣing a predicate
indicating successful lock acquisition; conflicts are handled by spinning until all threads in a warp have
successfully completed their transaction. Certain flames will encounter a high number of collisions in
certain tiles, and minimizing the number of collisions improves performance. Storing accumulation buffers
in planar format within shared memory helps—with a stripe size of 4 bytes, interleaved float32 storage
would quadruple the effect of any collisions— but reducing the size of the buffers helps further.

Ǥe accumulation buffers therefore represent accumulation values as a packed 64-bit integer, storing
density and the color tristimulus values in a clamped format. Ǥe storage format assigns uneven bit ranges
to the different values; one configuration currently under test uses 11 bits to represent the density, 19 bits to
represent the first color tristimulus value, and 17 bits each for the remaining two values. At each
accumulation, density is incrmented by one; when the density reaches, in this case, 2047, the next
accumulation will cause this accumulation cell to wrap. Without recording the fact that the cell wrapped,
this is harmful, as it leads to loss of the accumulations and color artifacts as the other counters also roll over.
As a result, aǍer each accumulation, each cell examines the density counter it just updated. If it is exactly
equal to the largest representable density value less the number of threads in this thread group— 1023, in
this example— that thread triggers a barrier, re-reads the value, and writes the cell to the global
accumulation buffer, zeroing it aǍerward. By checking for exact equality, we implicitly ensure that only one
thread handles the writeback, and by doing it well before the value wraps, we can performwriteback and
barrier syncing lazily, increasing efficiency.

To ensure that the color cells don’t wrap, the values added to those cells are scaled such that the integer
corresponding to the maximum tristimulus value, 1.0, times the maximum number of iterations before the
density counter wraps, is representable. In practice, that means each primary tristimulus value to be added
to the accumulator is represented in 8 bits, and the secondary ones with 6 bits. Dithering is once again
required for accurate color representation in low-intensity areas.

Ǥe uneven bit distribution between primary and secondary colors implies a difference in importance, and
indeed there is such a difference— as long as we use YUV. Human vision is substantially more sensitive to
luminance information than to chrominance information, both in terms of spatial frequency and intensity;
video encoding schemes take advantage of this to encode much less chrominance information than
luminance information with liǣle noticeable impact on the final image quality. To do so, most coding
schemes convert RGB values via an invertible linear transform into a YUV color space,³ where the Y channel
contains luminance information and UV represent chrominance via an opponent-color encoding. Both U
and V are then spatially subsampled, oǍen by a factor of two in each dimension, and aggressively quantized.
We avoid the complexities of spatial subsampling in cuburn, since it is transaction count and not buffer size
that limits performance, but we can increase performance by reducing the precision of the UV channels
during accumulation, which allows us to performmore iterations before forcing a flush to global memory.
Naturally, this requires conversion of RGB samples YUV.

Ǥe long chain of conversions, from log entry to color and time values to texture coordinates to bilerp texel
four-vector to YUV-encoded four-vector to dithered four-vector to scaled integers to single packed integer, is
quite costly, compounded by reliance by nearly all of these operations on the lower-throughput special
function units. It is this chain of conversions, rather than the bilinear interpolation alone, which the
preformaǣed texture structure is designed to accelerate, as it simplifies this chain to a simple lookup.

Ǥe actual process of adding the value from the look-up to the shared accumulation buffer is performed
using a call to atomicAdd, providing the shared memory lock-and-load logic described previously.

³Ǥere are many YUV transformation matrices, and technically none of these represent color spaces themselves, but are simply
encoding schemes for RGB values which may have an associated color space. Proper conversion to and from YUV requires careful
use and signaling of specified color matrices. However, since cuburn is not a physically-based renderer and relies on user-specified
colorimetry information, its only responsibility is to be consistent.

94

However, this requires interleaving of the high and low bits of the 64-bit word, which doubles the risk of
bank collisions (although it does not strictly double their cost, as it only requires one lock operation). We are
currently prototyping a tool that will allow us to perform post-compilation manipulation of opcodes within
the compiled binaray, or “monkey-patching”, to efficiently planarize this lookup and perform in-loop buffer
zeroing to eliminate the need for a separate barrier operation when performing early flushing.
Monkey-patching is necessary because the PTX ISA does not expose the underlying lock and unlock
operations used to implement shared memory atomics.

95

@E>OTBQ ʢʤ

@U?UQM SNQT

Sorting is a common, intuitive operation, found as a core part of many optimized algorithm
implementations. It’s also surprisingly difficult to do quickly on GPU architectures. Because of the
theoretical and practical importance of sorting implementations, the peak sorting performance is oǍen used
as a critical benchmark of an architecture’s true performance and flexibility: simple enough to be portable
and reproduceable, while cross-functional enough to be a holistic test. Sorting implementations for GPGPU
systems remain a vigorously active area of research for both professional and academic individuals in the
HPC community.

In cuburn, sorting is used in the deferred writeback mechanism to split the iteration sample log into tile
groups for efficient processing by an accumulation kernel (Chapter 12). To be useful in cuburn, a sort
functionmust be easily callable within the complex asynchronous dispatch code used to schedule operations
on the GPU. It alsomust be fast; if the entire deferredwriteback sequence, including the sort, cannot bemade
to be as fast as direct accumulation, development efforts would be beǣer spent optimizing that process and
developing statistical workarounds for the possibility of sample loss. Ǥe sort must also support operating
on a partial bit range. While every notable implementation does so internally as a consequence of using
multi-stage radix sorting to fully sort 32-bit keys, not every implementation exposes this at the API level.

Of the most commonly used sorts available for Fermi GPUs, onlyMGPU sort meets our performance
requirements. It also exposes options for sorting partial bit ranges efficiently. Its C++ API is convenient to
use from that language, but less so from Python; still, a C wrapper that could be called from Python code
would not be overly difficult to create.

Instead of usingMGPU sort, however, we elected to build our own. Ǥis was not an instance of Not Invented
Here syndrome, but simply a consequence of having begun our implementation beforeMGPU sort was made
public. Promising theoretical results (and a fair amount of stubbornness) encouraged us to produce a
working implementation, which we have now done.

We stress here that cuburn sort is not a suitable replacement forMGPU sort, or other general-purpose sorting
implementations. It is a key-only sort, and while it is usually a stable sort, it is absolutely not guaranteed to
be stable, which means that multi-pass sorts risk increasingly large misorderings in lower bits with each
pass. As a result, it’s not useful for much outside of a preprocessing pass for global memory reductions.

At that one thing, however, it’s great. Cuburn sort is optimized to sort between 7 and 9 bits, and does so faster
than any other GPU sort implementation with public performance figures (see Figure 13.1). Additionally, an
optional early-discard flag allows an additional workload reduction on top of the figures seen here; for
typical flames, this amounts to a further 40% increase in performance.

We believe that the sort can be optimized further, and have concrete optimizations in mind which we will
begin implementing immediately aǍer finishing this documentation.

96

Cuburn MGPU B40C CUDPP
7 bits 821 740 551 221
8 bits 943 813 611 251
9 bits 966 877 475 191
10 bits 862 910 528 211

Figure 13.1: Performance of different sort implementations, as measured on a GTX 560 Ti 900MHz. Values
are in millions of keys per second, normalized to 32-bit key length.

Ǥe sort is accomplished in four major steps. Ǥe first pass divides the buffer to be sorted into blocks of 8,192
values, and performs an independent scan operation on each. Unlike the other sorting techniques
benchmarked here, cuburn’s scan uses sharedmemory atomics to perform this accumulation, by performing
an atomic increment on a shared memory index derived from the point under analysis. Ǥis process is much
slower than traditional prefix scans, but because it is coordinated across all threads in a thread block, it
allows the derivation of a radix-specific offset for each entry in the current key block. Ǥis offset is stored
into an auxiliary buffer for every key processed, and the final radix counts are stored to a separate buffer.

Ǥe second step loads the final radix counts and converts them to local exclusive prefix sums, storing these
in a separate buffer. Ǥis is performed quickly and with perfect work efficiency by loading the radix counts
into shared memory using coalesced access paǣerns (see Figure ��), rotating along the diagonal of the shared
memory buffer, and performing independent prefix sums in parallel horizontally across the buffer, updating
values in place.

Figure 13.2: Shared-memory patterns used in cuburn sort’s work-efficient radix scan reduction pass.

A third step operates on the final radix counts, transforming them in-place to per-key-block, per-radix
offsets into the output buffer. Ǥis is accomplished by first reducing the buffers via addition in parallel to a
very small set in a downsweep operation, performing the prefix scan on this extremely limited set in amanner
that is not work-efficient but, due to the small number of buffers involved, completes in microseconds, and
then broadcasting the alterations back out to the full set of buffers in an upsweep operation.

Sorting is accomplished by using the offsets and local prefixes to load each key in the block to a shared
memory buffer, then using the local and global prefixes to write each key to the output buffer. Transaction
lists are not employed, but large block sizes help to minimize the impact of transaction spliǣing.

One unusual characteristic of this architecture is that performance on data that does not display a good deal
of block-local entropy in radix distribution is actually considerably slower than sorting truly random data.
Sorting already-sorted data is a worst case, with a penalty of more than an order of magnitude arising from
shared-memory atomic collisions during the initial scan. We avoid this in cuburn by ensuring that the radix
chosen to sort never includes bits that are zero throughout the log. In some cases, this means that some bits
of the accumulation kernel’s shadowwindow are also sorted, since cuburn sort does not scale down to
arbitrarily small radix sizes. Ǥis oversorting is theoretically less efficient, but is actually faster than
including the zero bit in the sort.

A simple but powerful optimization enables discarding of any key equal to the flag value 0xffffffff. Ǥis
value is used internally by cuburn to indicate that a particular point log entry corresponded to an
out-of-bounds point and should be ignored. Discarding these during the sort stage improves performance by
around 40% on average for our test corpus of flames.

97

@E>OTBQ ʢʥ

CFKTBQFMD

Image filtering is the process of enhancing an image so that inaccuracies in the image can be corrected.
Sources of inaccuracies can be from bad sensor measurements, extremely low or high data ranges, digital
misrepresentations, and many other sources. Ǥese artifacts can be usually be corrected by blurring pixels
together to filter out the inconsistencies. Since image quality is subjective due to human judgement, it may
be difficult to determine a “best” filter. However, by identifying the type of inaccuracies and choosing filters
suited to chosen criteria, the subjective nature of image enhancement can be decreased such that the
resulting images will be a clear improvement over the original.

When rendering flames, there are two kinds of artifacts that need to be minimized in order to create more
visually aǣactive flames: aliasing and noise. While these two problems and their solutions are related, they
will need to be approached with different techniques. Much research has been done regarding these
problems and their solutions and great improvements have beenmade over the past couple decades with
respect to quality and performance. With the increasing popularity of GPGPU computing, new solutions
have been proposed to parallelize these algorithms so that significant performance gains can be had
exploiting the highly parallel architecture of GPUs. Ǥese problems and their many solutions are discussed
in more detail below.

14.1 Aliasing

Aliasing is the effect of high frequency signals, in high resolution graphics, being mapped and interpolated
onto a lower resolution graphic such that the smooth edges and gradients in the original image can not be
represented properly. It is usually observed as distortion or artifacts on lines, edges, and smooth curves.
Aliasing occurs when high resolution graphics are mapped to a lower resolution that cannot support the
smooth gradients in the original graphic, resulting in an image artifact colloquially known as jaggies [36]. See
Figure 14.1 for an example.

Figure 14.1: Left: aliased image, right: antialiased image.

Graphical images are at the simplest level a collection of discrete color dots, or pixels, that are displayed on
some graphic medium. Ǥese pixels are generated, or rendered, from collections of data called fragments.

98

Ǥe data contained in a fragment can include texture, shader, color, Z location, and other such data. Each
pixel is made up of one or more fragments, with each fragment representing a triangle. Problems arise when
the pixel is sampled from only one fragment in the pixel. Ǥis causes all the other data from the other
fragments to be lossed and will result in an inaccurate image [37].

Visual image information

In the continouos domain, or at resolutions tending toward infinity, we can describe most flames
perceptually as a collection of distinct (though oǍen overlapping) objects with smoothly curved outlines.
Our brains perform object recognition all the time - it’s hardwired into our visual system - so it’s natural that
the most visually interesting flames are those which stimulate traditional object recognition pathways in
novel ways, rather than, say, white noise.

2D object recognition in our brains depends on recognition of sharp discontinuities in images. Since somuch
of our neural hardware depends on discontinuities at object boundaries, they become important. However,
our algorithm runs in the discrete domain; ultimately the results get sent to monitors. As a result, the
perfect curves in the continuous domain must be sampled along the 2D grid of pixels used in raster graphics.

Spatial aliasing

In the flame algorithm, each generated (x, y) point is rounded to the nearest pixel, and then the color value
is added to that pixel’s accumulator. Effectively, each pixel represents the average value of the color function
of the aǣractor across the area of that pixel. In other words, we sample the color values of the flame once per
pixel.

In 2D image space, this means any function with a higher spatial frequency than a single pixel will be aliased
by the sampling process. Image discontinuities, such as object edges, are instantaneous, and therefore have
an infinite frequency response, though with finite total energy. As a result, object edges are aliased in the
spatial domain.

Ǥe result is stair-step jaggies in images. Since our brain depends so heavily on detecting object
discontinuities for object recognition, these artifacts are extremely noticeable, especially in motion. Ǥe
solution is to downfilter the highest spatial frequency components below the sampling threshold.
Unfortunately, downfiltering any image component, especially surface textures, results in a reduction of
detail across the image. Our brains notice artifacts from aliasing at object borders, but also notice reduced
detail apart from those regions.

Approaches to antialiasing

Supersample antialiasing

Supersampling is the most trivial method to solving the aliasing problem. It is a relatively naive algorithm
and works well but is expensive in terms of resources. Aliasing distortion occurs when continuous objects
cannot be represented correctly because of a relatively low sampling rate (resolution) used in the output
medium. Supersampling solves this problem by rendering an image at a higher resolution and performing
downsampling, using multiple points to calculate the value of a single pixel. Using the average value of
multiple samples for one pixel leads to a more accurate color representation for that pixel. Ǥe sampling
points all lie within the area of a pixel and their location is determined by the type of algorithm.

Ǥe number of sampling points is directly related to the desired quality as higher quality filtering will need
more sampling points. Ǥis directly affects the performance of the filter and is the biggest factor of cost in

99

antialiasing. Turning on 4x SSAA (4 samples per pixel) will require four times as many samples to rendered,
causing the fill rate to be four times longer (meaning real-time graphics will have a quarter of the original
frame-rate [38]). Going back to sample locations, the specific supersampling algorithmwill decide how these
samples will be chosen. Ǥese algorithms are explained below.

Ǥe Ordered Grid algorithm is the most trivial supersamplingmethod. It is the simplest and the fastest of the
supersampling algorithms but also offers the least quality. It works by evenly diving a pixel into subsections
(like a grid) and then taking the samples from the center of each subsection.

However, because of the samples being extremely regular and lying directly on the axis, the quality of this
algorithmwill suffer in certain cases. Ǥe Rotated Grid algorithm is a similar algorithm designed to offer
higher quality filtering with the same performance of the Ordered Grid algorithm. In the Rotated Grid
algorithm, the pixels are still evenly divided into regular subsections, but with the samples not lying directly
on the axis. Ǥis algorithm is similar in performance to the Order Grid algorithm but with significantly
improved filter quality.

Other supersampling algorithms exist that randomly chose sample locations with the goal of producing
beǣer quality images, but they all have a significant trade-off in regards to performance. Ǥere is the purely
random algorithm that chooses every sample location randomly and is capable of very good quality, but
there is the possible of having pixel locations not being uniformly distributed throughout the pixel area
which wil cause inaccurate sampling. Ǥe Poisson and Jiǣer are algorithms that also use random placement
while focussing on having uniform sample distribution.

Ǥe Poisson algorithm divides the pixel into subsections, similarly to how the Ordered Grid algorithm
creates subsections, then chooses the samples by randomly selecting a point inside each subsection instead
of always sampling at the center. Ǥe Jiǣer algorithm determines sample locations by choosing all samples
purely by random, then looks for and throws out samples that are too close together, and then randomly
chooses more samples until all samples are far enough away from each other [38]. See Figure 14.2 for visual
depictions of these algorithms.

Figure 14.2: From left to right: Ordered Grid algorithm, Rotated Grid algorithm, Jitter algorithm, Poisson
algorithm, Random algorithm.

Multisample antialiasing

MSAA, also known as full scene antialiasing, is a special case of supersampling where not all of the
components of a pixel are supersampled. Ǥis algorithm can achieve near supersampling quality at a much
higher performance. Pixels are generated using a collection of data called a fragments andmay include
raster position, depth, interpolated aǣributes, stencil, and alpha. Multisampling algorithms select only a
few components of a fragment to “supersample” so that some of that computational cost can be shared
between samples. Commonly, z-buffer, stencil, and/or color data is chosen to be the fully supersampled
components [39].

100

Coverage antialiasing

CSAA is a special case of multisample aliasing, and therefore also a special case of supersample aliasing. Ǥe
algorithm has been designed to further improve the performance of multisample antialiasing while keeping
quality as high as possible. Multisample antialiasing will usually store only one value for texture and shader
samples for an entire pixel. Ǥis is also true for coverage antialiasing but we take it a step further and limit
the number of stored color and Z data samples. Coverage antialiasing can store more than a single value for
the color and Z data, the point is to just hold less thanmultisampling. Usually, 4 or 8 color and Z data samples
are used as opposed to 8 and 16, respectively. Holding more data constant allows for an even smaller memory
footprint and less bandwidth [40].

Coverage sample points are boolean values that indicate whether or not a sample is covered by a triangle in
the pixel. Ǥese samples are stored usually stored as 4 bit data structures with 1 bit representing the boolean
value and with the other 3 bits used to index up to 8 color/Z values. Ǥe 8 bytes required for 16 samples will
be much less then the memory needed for the color data so the extra overhead should be insignificant
compared to the bandwidth reduction [40].

Morphological antialiasing

MLAA is a significantly different antialiasing approach. It does not rely on supersampling and it takes place
post-processing. It works by blending colors aǍer looking for and recognizing special pixel paǣerns in an
image. Ǥe algorithm can be explained using the following steps [41]:

1. Look for discontinuities in an image. Scan through all adjacent rows and columns and store the lines
where a disconituity is found. Edges of the images are extended so that unnecessary blending does not
occur around the borders of the image.

2. Identify special pixel paǣerns. San through the list of discontinuous edges and identify crossing
orthogonal lines. Ǥese locations will mark an area for one of three predefined pixel paǣerns: the
Z-shaped paǣern, the U-shaped paǣern, and the L-shaped paǣern.

3. Blend colors in paǣern areas. Ǥe pixels that make make up the vertices of the identified paǣerns are
sampled and blended together.

Notice that more samples do not have to be rendered when using morphological antialiasing. Ǥe
computational resources required to do the above steps are far less than the resources needed to render 4, 8,
or even 16 times as many pixels. Supersampling will generally produce slightly higher quality results but
will not be worth the performance trade-off, especially if real-time rendering is needed [41].

14.2 Denoising

Antialiasing deals with the problems caused by approximating objects via sampling along a regular 2D grid.
Denoising, by contrast, deals with the problems caused by approximating objects via random sampling.
Image noise is one of the most common and studied problems in image processing. Noise occurs as
seemingly random, unwanted pixel inaccuracies as collected by an image source (commonly a camera, in
our case, approximating objects via random sampling). Most image denoising algorithms deal with this
problem by treating noise the same as small details and then by removing all the small details with some
form of blurring. Ǥis is done by replacing a pixel with a weighted average of all the nearby pixels [42].

101

The origins of noise

Sampling noise fromMonte Carlo IFS estimation arises from twomain sources: coverage limitations and
accuracy errors.

• Because we don’t know the shape of the aǣractor analytically, we can’t sample it directly; we must
follow it along the IFS. We use random sampling to approximate the IFS withMonte Carlo methods.
Ǥis means that the IFS will jump around from location to location within the image in a generally
unpredictable paǣern. Because of this jumping, any errors in the image show up as point noise, rather
than along contours as with aliasing.

• Again, since we don’t know the shape of the aǣractor, we choose random points to start with. AǍer
picking a new random point, a thread runs a few iterations without recording any data so that the
point can join the main body of the aǣractor. However, this number may sometimes be insufficient,
leading to random points placed “outside” the aǣractor. Floating-point precision errors can similarly
reduce the accuracy of generated points.

Visibility

Both of these sources of error have something in common, though: they show up a lot more in darker image
regions. Ǥe image is log-filtered, meaning the brightest image regions are covered by hundreds or even
thousands of times more samples than the darkest. In many images, log scaling parameters such as contrast,
brightness, and gamma cause extreme sensitivity in dark regions, so that a single sample in the middle of an
otherwise-black image region corresponds to a final, filtered pixel value whose value is an appreciable
fraction of the total luminance scale of the final image. In instances where this noise is sparsely distributed,
this effect can be extremely noticeable.

Ǥis phenomenon extends to all accumulated samples which are significantly amplified by the log scaling
process. Generally, this only applies to samples with a value well below the mean value across the image.
However, in cases where most image energy is concentrated in small sample regions, the mean value can be
well above the median value, allowing this speckle to be distributed throughout a large portion of the image.

Denoising a flame

To remove noise, flam3 does density estimation filtering. Ǥis means that darker regions, or regions with
fewer samples, are filtered with a smaller blur. Ǥis section covers denoising algorithms, including the
Adaptive Density Estimation Filter employed by the standard flam3 implementation as well as new
techniques for accelerating denoising algorithms on GPU’s.

Adaptive Density Estimation Filter

Ǥe adaptive density estimation filter used by flam3 is a simplified algorithm of the methods presented in
Adaptive Filtering for Progressive Monte Carlo Image Rendering [2]. Ǥe algorithm creates a 2 dimensional
histogramwith each pixel representing a bin. For each sample located in the spatial area of a pixel, the value
for that bin is incremented. Kernel estimation is then used to blur the image, with the size of the kernel
being related to the number of iterations in a bin.

Lower number of iterations in a bin (low sample density areas) lead to larger kernel sizes and increased
blurring. Higher number of interations in a bin (high sample density areas) lead to smaller kernel sizes and
decreased blurring [43]. Specifically, the kernel width can be determined by the following relationship:

102

KernelWidth =
MaxKernelRadius

DensityAlpha

ǤeMaxKernelRadius andAlpha values are determined by the user as they are properties of the flame.
MaxKernelRadius tells the algorithm the maximumwidth that the kernel can be and the Alpha value
determines the estimator curve to use. Ǥe ability to adjust the width of the kernel according to howmany
samples there are spatially increases the quality of the image by limiting the blur in the more accurate areas
with higher sample density. [43]

Gaussian Convolution

Gaussian convolution filtering is a weighted average of the intensity of the adjacent positions with a weight
decreasing with the spatial distance to the center position p.Ǥe strength of the influence depends on the
spatial distance between the pixels and not their values. For instance, a bright pixel has a strong influence
over an adjacent dark pixel although these two pixel values are quite different. As a result, image edges are
blurred because pixels across discontinuities are averaged together [44].

Bilateral Filter

Ǥe bilateral filter is also defined as a weighted average of nearby pixels, in a manner very similar to the
Gaussian convolution filter described above. Ǥe difference is that the bilateral filter takes into account the
difference in value with the neighbors to preserve edges while smoothing. Ǥe key idea of the bilateral filter
is that for a pixel to influence another pixel, it should not only occupy a nearby location but also have a
similar value [44].

Ǥe bilateral filter is controlled by two parameters: σs and σr. Increasing the spatial parameter, σs, smooths
larger features. Increasing the range parameter, σr, makes the filter approximate the Gaussian convolution
filter more closely. An important characteristic of this filter is that the parameter weights are multiplied; no
smoothing will occur with either of these parameters being near zero. [44]

Iterations can be used to generate smoother images similar to increasing the range parameter, except for
being able to preserve strong edges. Iterating tends to remove the weaker details in a signal or image and is
desirable for applications such as stylization that seek to abstract away the small details. Computational
photography techniques tend to use a single iteration to be closer to the original image content [44].

Nonlocal Means

Ǥe nonlocal means (NL-Means) algorithm is a relatively new solution to the image noise problem. Unlike
most other algorithms that assume spatial regularity, the nonlocal means filter looks for and exploits spatial
geometric paǣerns. It will only use pixels that match the geometic correlation in the local area causing
irregular image noise to be canceled out. Ǥis means a more accurate color selection for the pixel in
question. [45]

Permutohedral Lattice

Ǥe permutohedral laǣice is a data structured designed to improve the performance of high-dim-ensional
Gaussian filters including bilateral filtering and nonlocal means filtering. It is a projection of the scaled grid
(d+ 1)Zd+1 along the vector 1⃗ = [1, ..., 1] onto the hyperplaneHd : x⃗.⃗1 = 0 and is spanned by the
projection of the standard basis for (d+ 1)Zd+1 ontoHd [46]. Each of the columns ofBd are basis vectors

103

whose coordinates sum to zero and have a consistent remainder modulo d+ 1, which is how points on the
laǣice are determined; the laǣice point coordinates have a sum of zero and remainder modulo d+ 1.

Laǣice points with a remainder of k can be described as a “remainder-k” point. Ǥe algorithmworks by
placing pixel values in a high-dimensional space, performing the blur in that space, then sampling the
values at their original locations. Ǥese three steps are oǍen referred to as splaǣing, blurring, and splicing,
respectively [46].

Using a permutohedral laǣice for n values in d dimensions results in a space complexity in the order of
O(dn) and a time complexity ofO(d2n). According to Adams et al [46], algorithms based on using the
permutohedral laǣice are fast enough to do bilateral filtering in real time. Ǥere are four major steps in
algorithms that use the permutohedral laǣice.

First, position vectors for all the locations in high-dimensional space must be generated and stored in the
laǣice. Generating the position vectors for the laǣice has a time complexity ofO(d). Secondly, splaǣing is
performed bymoving pixels onto the vertices of their enclosing simplex using barycentric weights.
Splaǣing has a time complexity ofO(d2n).

Ǥe next step is the blurring stage which convoles a kernel in each laǣice dimension and is performed in
O(d2l). Ǥe final step is the slicing stage which is similar to the splaǣing stage, except done in reverse order;
barycentric weights are used to pull pixel values out of the permutohedral laǣice. Ǥe entire algorithm has a
time complexity ofO(d2(n+ l)) [46].

Gaussian KD-Trees

ǤeGaussian filter, bilateral filter, and nonlocal means filters are non-linear filters whose performance can
be accelerated by the use of Gaussian kd-trees. All of these filters can be expressed by values with positions.
Ǥe Gaussian filter can be described as a pixel color being the value with coordinate position (x,y). Ǥe
bilater filter can be describved as a pixel color with coordinate position (x,y,r,g,b). Ǥe nonlocal means filter
can be described as a pixel color with position relative to a patch color around the pixel.

Ǥe Gaussian kd-tree algorithm treats these structures similarly in that it assigns all the values in an image
to some position in vector space and then replaces each of the values with a weighted linear combination of
values with respect to distance. By representing these images by a kd-tree data structure, the space and time
complexity can be decreased significantly. Ǥese algorithms typically have a complexy ofO(dn) orO(n2)
whereas the kd-tree algorithmwill have a space complexity ofO(dn) and a time complexity ofO(dn logn)
[47].

A kd-tree is a binary tree data structure used to store a finite number of points from a k-dimensional space
[48]. Each leaf stores one point and each inner node represents a d-dimensional rectangular cell [47]. Ǥe
inner node stores the dimension nd in which it cuts, value ncut on the dimension to cut along, the bounds of
the dimension nmin and nmax, and pointers to its children nleft and nright [47]. For this implementation of
the kd-tree, nmin and nmax have been added in addition to the standard data structure.

Ǥere are twomain steps associated with these accelerated Gaussian kd-tree algorithms. First, the tree must
be built. Generally, the tree should be built with the goal of minimizing query time. In each leaf node is as
likely to be accessed as any other leaf node, the kd-tree should ideally be balanced. Building a balanced tree
can be accomplished by finding the bounding box of all the points being looked at, finding the diagonal
length of the box, and if that length is less than the standard deviation, a leaf node is created and a point is
set for the center of the bounding box. If the length is not less than the standard deviation, split the box in
the middle along the longest dimension and continue recursively. Ǥe building of a tree is expected to have a
time complexity ofO(nd logm)withm being the number of leaf nodes.

Ǥe second step in the algorithm is querying the tree. Queries are used to find all the values and their
weights given a position. To be specific, a query should take in the pixel location, a standard deviation

104

distance, and the maximum number of samples that should be returned. Ǥe query will then find and return
all the values and weights of pixels around that pixel, up to the standard deviation andmaximum number of
samples. Ǥe complexity of performing queries is expected to beO(dn logn) [47].

Ǥe advantage of using Gaussian kd-trees to improve these algorithms is that not only is it faster serially but
can have portions of it parallelized over a GPU.Ǥe tree building portion of the algorithm relies on recursion
which is not ideal for GPU’s because of having no stack space, though it can be converted to an interative
algorithm but that will not give us anymore performance. But, the querying portion of the algorithm—
where most of the computation time comes from— is highly parallelizable.

14.3 Filtering in cuburn

Ǥe chaos game is fundamentally related to Monte Carlo integration, and collects thousands of samples per
pixel on average. Ǥis is a natural fit for multisample antialiasing.

During precalculation of the camera transform, which maps IFS coordinates to accumulation buffer indices,
the sampling grid for each temporal sample is offset according to a 2D Gaussian distribution with a
user-controlled standard deviation that defaults to one-third of a pixel for compatibility with flam3. With
thousands of samples per image pixel taken on average, this technique gives very high quality antialiasing
with essentially zero overhead.

AǍer iteration and accumulation have finished, a density estimation kernel processes the output. Ǥe DE
kernel again avails itself of copious amounts of shared memory to accelerate processing of image elements.
Because variable-width Gaussian filters are nonseparable, the DE filter is applied in square 2D blocks of size
2R+ 32 pixels in each dimension, whereR = 10 is a constant governing the maximum permissible filter
radius and consequently the guǣer size, and 32 is is both the horizontal and vertical size of the thread block.
Each thread in the block loads a point from the accumulation buffer (with thread [0, 0] loading the value
corresponding to a local offset of [R,R], and thread [31, 31] loading [R+ 31, R+ 31]), calculates the filter
radius, and proceeds to write the offsets in a spiral paǣern designed to avoid bank conflicts and enable early
termination without warp divergence. AǍer the 1,024 pixels in the current block have been processed, the
entire shared memory region is added to the output buffer, including guǣers, and the column advances
vertically by 32 pixels. Ǥis paǣern treats every input pixel exactly once, but due to guǣer overlap, output
pixels may be handled by as many as four separate thread blocks. Nevertheless, this kernel operates
efficiently, taking less than one percent of a typical frame’s GPU time.

In cuburn, the grid jiǣering is applied entirely before DE, which can in some instances create image artifacts.
Edges that have been smoothed by JGAAwhose tangents lie close to but not exactly on the image grid will
have a strong density gradient adjacent to the edge, including one point at every pixel step which will
receive a small fraction of the edge’s full density. When this occurs on a strong edge adjacent to a very low
density area, DE will blur this lowest-intensity point very strongly, leading to “edge bloom” (see Figure 14.3).

Cuburn adds an edge-detection filter to the DE process. When a weak pixel adjacent to a strong edge in a
low-density area is detected, the filter’s radius is clamped to prevent edge bloom. Different edge detection
methods were tested, including the common Sobel and Roberts cross image kernels, but these methods
resulted in incorrect detection, with higher sensitivities resulting in excessive false positives and lower ones
allowing some bloom to escape detection. In keeping with the authors’ penchant for reinventing the wheel,
cuburn uses theL2 norm of a pair of three-pixel-wide convolution kernels given in (14.1), which are
essentially stretched versions of the Roberts cross. Desipte their simplicity and ad-hoc origins, these kernels
have been found to perform admirably at edge detection while rejecting noise.

105

(a) (b) (c)

Figure 14.3: (a) An example of edge bloom caused by improper handling of antialiased edges during density
estimation. (b) A view of the same image highlighting detected strong edges. (c) The results of applying edge
detection and filter clamping to density estimation.

A =

−1 0 0
0 0 0
0 0 1

 B =

 0 0 1
0 0 0
−1 0 0

 (14.1)

Currently, some parameters involved in cuburn’s approach to filtering are derived empirically via trial and
error. While these constants produce satisfying images for most flames, they fail to account for certain
exceptional conditions, such as a combination of extremely high brightness, positive highlight power, and
localized singularities along a density curve. In these cases, small artifacts such as noticeable aliasing may
remain in the output. Deriving these parameters analytically in response to image parameters is
challenging, due to the presence of the variable-width density estimation step, but we look forward to
examining possibilities for such an analytical framework.

106

@E>OTBQ ʢʦ

?BM@EL>QIFMD

Amajor objective of this project is to benchmark the performance of cuburnwhile it is executing on the GPU.
A secondary objective is for cuburn to accurately render the entire catalogue of variations available in flam3,
our reference implementation. In order to verify that both the completeness and performance objectives
have been reached it is necessary to benchmark and each flame variation. Ǥe benchmark’s framework,
setup, results, and analysis will be described in the following sections.

A very important note is on the maǣer of comparing the flam3, the reference implementation, and cuburn is
that it is a complicated maǣer which could be done many ways that do not lend anymeaningful insight.
Because performance can vary so greatly depending on the flam3 used we instead present an alternative,
meaningful discussion on benchmarking the interesting performance statistics of cuburn.

15.1 Framework

NVIDIA has released a profiler with CUDAwhich aids developers in gathering information about a wide
array of information such as kernel execution andmemory transfer times. Ǥe profile can be enabled and
configured by the use of a handful of environment variables that need to be set on the user’s operating
system.

By exporting the environment variable CUDA_PROFILE and seǣing it equal to 1, the profiler exports the
program’s GPU statistics into a log file. By default, the profile will write the data to ./cuda_profile.log.
If a different location is desired, the user can set the CUDA_PROFILE_LOG environment variable accordingly.
Additionally by exporting the environment variable CUDA_PROFILE_CSV and seǣing it equal to 1, the log
file’s format can be changed to a comma-separated value (CSV) format. Ǥis format eases the processing of
parsing this file for analysis because of it’s more rigidly defined format specification.

Performance counters can be used in addition to the default timing information (timestamp, method,
gputime, cputime, and occupancy) by creating a profiler configuration file specifying additional
performance counters using the CUDA_PROFILE_CONFIG environment variable. Ǥe performance counters
use on-chip hardware counters to gather statistics and hence their use change the algorithm’s performance
and should be used with caution. Ǥese performance counters were explored but in the end did not provide
useful statistics or yield any insight that could make for an interesting discussion.

15.2 BenchmarkMachine

In order to accurately talk about the benchmarking results as well as provide a frame of reference for the
user, the benchmarking machine is described. Ǥemachine used for the benchmarking was an

107

Alienware M17xR3 laptop model with the following hardware and soǍware specifics:

• Intel Core i7–2630QM CPU@ 2.00Ghz

• 6 GB Ram

• Windows 7 x64

• GeForce GTX 460Mwith:

® 192 CUDA Cores

® 675 Mhz Graphics Clock

® 1350Mhz Processor Clock

® 1250MhzMemory Clock

® 1.5 GB GDDR5Memory

Note: All tests were performed with the AC/DC adapter plugged in and system performance set to the
maximum allowable levels. Ǥis is an important note because GPU performance can be severely throǣled,
for power concerns, if the adapter is not plugged in or performance is being limited by the user.

15.3 Benchmark Setup and Design

Premise

AǍer several empirical tests and observations it was noted that GPU time was one of the main performance
statistics that we wanted to explore and discuss. With our goal of accurately comparing all of the catalogued
variations, a design procedure was needed that aǣempted to isolate all other factors that could influence
execution time and exclusively focus on how the variation code injected in the device.

Auto generation of flames

Ǥe procedure is as follows. First, all of the variations needed to be auto-generated into respective flam3
files which could be used as input for cuburn. Cuburn can run these flam3 files individually and the CUDA
profiler can produce output statistics (using methods described above). Immediately, using this approach a
complication arises. A valid iterated function systemmust be contractive or contractive on average. Using a
single transform that is solely our selected variation is not a valid iterated function system and cuburnmay
prematurely abort rendering the frame. Because of this, we chose a baseline iterated function system that
each variation would be added to. Ǥis baseline iterated function consisted of two linear transforms. Ǥe
transform code is seen in Figure 15.1:

< flame >
< xform weight = ”0.33” ... linear = ”1” coefs = ”− 0.26 0.0 0.0 − 0.26 0.0 0.020” / >
< xformweight = ”1.00” ... linear = ”1” coefs = ”0.70 0.70 − 0.70 0.70 0.51 − 1.18” / >
...
< /flame >

Figure 15.1: Baseline Iterated Function System that each variation was applied to.

When rendering a single frame with standard coloring parameters, a size of 640× 480, quality of 50, and the
predefined autumn-themed color paleǣe 10 the resulting flame looks like that of Figure 15.2:

108

Figure 15.2: Visual of Baseline Iterated Function System

Now that an acceptable iterated function has been chosen we can append the appropriate variation to one of
the xforms. We have chosen to append it to the second xform but have to note that this decision was does not
have any significant effects besides that the chance of the variation being applied is Second XformWeight

×V ariationWeight versusFirst XformWeight×V ariationWeight if it were applied to the first variation.

Ǥe new transform code for the second xformwould look like Figure 15.3 if the julia variation was applied:

< xformweight = ”1.00” ... linear = ”1” coefs = ”0.70 0.70 − 0.70 0.70 0.51 − 1.18” julia =
”1e− 07” / >

Figure 15.3: Julia variation being applied to Baseline Iterated Function System.

By keeping the baseline IFS fixed and just appending an additional variation for each flame we can
effectively isolate the runtime differences caused by having to load the additional code onto our device and
compute the additional variation. Ǥis will only hold if our initial assumptions that the runtime is consistent
that for each generation of a flame with minimal deviation.

Ǥe extremely lowweighting value (chance of variation being applied) of 1e− 7was chosen because it will
still be applied given the tremendous amount of points being computed however it will only influence it in a
minor fashion. Ǥis small influence is what we hope to capture. Ǥeweight could have been dramatically
increased but the entire benchmarking process would have taken an greatly increased amount of time and
the graphs would more than likely need data transformations such as a log transformation in order to be
useful.

109

Accumulating Kernel Execution Times

AǍer using CUDA’s Compute Visual Profiler developer tool to compare several pairs of the numerous
variation profile results it was found that the only interesting kernel which changed was the main iter
kernel. We have decided to focus on comparisons between this kernel when presenting our results. A
drawback of the Compute Visual Profiler is that it is limited to comparing 2 profile results and lacks
more sophisticated tools such as averaging multiple runs, computing standard deviations, and comparing
numerous profile results. A hand craǍed solution was in order if the data was needed to be properly
visualized and analyzed.

Ǥe CUDA profile log file we are using displays each instance of the kernel running regardless if it is a kernel
that has run previously. Ǥis results in numerous iter kernel entries for our log file. In order of this
information to be of any use the individual iter GPU times needed to be accumulated to produce a Total
GPU time. Once this was done all of the variations were compared using a bar chart sorted in ascending
order. Ǥe graph confirmed our predictions that variations that applied more expensive operations such as
modulus performed worse than variations that applied simple arithmetic such as linear. However, this was
not enough to convince ourselves and conclude that this was the way the system operated.

Multiple Runs and Standard Deviation Analysis: Convincing ourselves, and you

Comparing iter kernel execution times between all catalogued variations is not merely enough. In order to
account for the difference of execution times between runs, multiple runs were executed and the total
execution time was averaged. Additionally, the standard deviation was computed in order to verify that it
was not a statistically significant deviation which needed further analysis. Ǥe standard deviation proved to
be of minimal concern and the conclusive results are presented in the next section and then visualized
aǍerwards.

GPU Execution Time Table

Below in Table 15.1 are the average GPU execution times of 20 runs and their respective standard deviations
of the iter kernel sorted in ascending order.

V>QF>TFNM >OOKFBA: DOU BXB@UTFNM TFLB �µSB@�: ST>MA>QA ABVF>TFNM �µSB@�:
linear 41,215.01 30.41
oscope 41,220.54 25.60

sinusoidal 41,482.11 33.98
spherical 41,541.97 36.79
bent 41,591.70 36.05
exp 41,603.94 34.31

bubble 41,609.78 37.94
exponential 41,670.39 36.64
horseshoe 41,684.67 33.05
square 41,687.31 30.63
waves 41,688.71 29.72
swirl 41,714.31 23.33
cross 41,726.91 34.17

cylinder 41,768.29 42.57
loonie 41,779.30 40.05
arch 41,815.04 37.59

110

tangent 41,832.91 34.37
rays 41,870.36 41.76
blur 41,871.57 28.48
bent2 41,871.63 35.45
scry 41,875.42 36.75
foci 41,893.15 36.83

stripes 41,911.58 39.83
blade 41,921.20 30.32

pre_blur 41,930.98 33.02
noise 41,941.71 40.02
fisheye 41,968.95 36.98
eyefish 41,977.16 30.31
split 42,008.76 33.99

buǣerfly 42,018.22 36.21
secant2 42,030.67 33.96
rectangles 42,035.00 29.72

curl 42,051.49 24.40
splits 42,069.96 34.11

perspective 42,181.27 31.24
waves2 42,257.88 25.12
popcorn 42,259.05 33.54
pdj 42,292.23 26.90

parabola 42,333.18 31.25
popcorn2 42,401.33 37.46

gaussian_blur 42,409.56 28.35
cell 42,562.43 44.09
curve 42,617.94 26.56
conic 42,636.51 43.74

lazysusan 42,642.68 31.45
separation 42,698.13 25.62

log 42,725.48 54.63
cosine 42,809.25 44.79
cos 42,823.28 38.41
sin 42,835.36 42.60

polar2 42,845.89 43.50
polar 42,853.39 51.13
cosh 42,861.36 44.98
pie 42,868.96 23.46

hyperbolic 42,884.68 52.65
handkerchief 42,909.86 62.95

heart 42,965.43 66.75
cot 42,966.10 47.70
tan 42,975.99 40.86

diamond 42,993.51 55.80
julia 43,026.11 79.77
power 43,058.50 60.50
disc 43,075.76 76.50
sinh 43,148.75 54.12

111

ex 43,213.52 46.36
tanh 43,221.40 47.42
coth 43,268.99 38.96
sec 43,316.82 46.80
spiral 43,317.85 59.94
csc 43,318.06 48.53
sech 43,451.97 50.67
fan2 43,466.66 62.67
flower 43,516.26 42.37
rings2 43,519.23 50.51
mobius 43,537.89 25.99
julian 43,575.00 51.50

juliascope 43,640.76 48.41
blob 43,698.43 56.94

boarders 43,741.34 110.07
escher 43,763.02 55.41
disc2 43,845.57 62.24
bipolar 43,847.78 77.48
csch 43,994.95 51.53
wedge 44,104.10 55.02

radial_blur 44,131.67 76.65
cpow 44,185.85 61.63
ngon 44,333.52 74.90
elliptic 44,484.01 76.08

super_shape 44,871.59 77.20
edisc 45,076.11 134.23
flux 45,527.62 217.42
rings 47,397.50 355.91
fan 47,726.17 393.94

modulus 49,125.81 225.78

Table 15.1: ‘Iter‘ kernel performance results on each variation.

GPU Execution Time Bar Graph

Ǥis data can easily be visualized on a bar graph and as an additional feature error bars representing the
standard deviation have been added. Ǥis is shown in Figure 15.4:

112

Kernel Execution Times Between Variations

GPU time (µsec)

V
ar

ia
tio

ns

modulus
fan

rings
flux

edisc
super_shape

elliptic
ngon
cpow

radial_blur
wedge

csch
bipolar

disc2
escher

boarders
blob

juliascope
julian

mobius
rings2
flower

fan2
sech

csc
spiral

sec
coth
tanh

ex
sinh
disc

power
julia

diamond
tan
cot

heart
handkerchief

hyperbolic
pie

cosh
polar

polar2
sin

cos
cosine

log
separation
lazysusan

conic
curve

cell
gaussian_blur

popcorn2
parabola

pdj
popcorn
waves2

perspective
splits

curl
rectangles

secant2
butterfly

split
eyefish
fisheye

noise
pre_blur

blade
stripes

foci
scry

bent2
blur
rays

tangent
arch

loonie
cylinder

cross
swirl

waves
square

horseshoe
exponential

bubble
exp

bent
spherical

sinusoidal
oscope

linear

49125.81
47726.17
47397.50
45527.62
45076.11
44871.59
44484.01
44333.52
44185.85
44131.67
44104.10
43994.95
43847.78
43845.57
43763.02
43741.34
43698.43
43640.76
43575.00
43537.89
43519.23
43516.26
43466.66
43451.97
43318.06
43317.85
43316.82
43268.99
43221.40
43213.52
43148.75
43075.76
43058.50
43026.11
42993.51
42975.99
42966.10
42965.43
42909.86
42884.68
42868.96
42861.36
42853.39
42845.89
42835.36
42823.28
42809.25
42725.48
42698.13
42642.68
42636.51
42617.94
42562.43
42409.56
42401.33
42333.18
42292.23
42259.05
42257.88
42181.27
42069.96
42051.49
42035.00
42030.67
42018.22
42008.76
41977.16
41968.95
41941.71
41930.98
41921.20
41911.58
41893.15
41875.42
41871.63
41871.57
41870.36
41832.91
41815.04
41779.30
41768.29
41726.91
41714.31
41688.71
41687.31
41684.67
41670.39
41609.78
41603.94
41591.70
41541.97
41482.11
41220.54
41215.01

0 10000 20000 30000 40000

Kernel

iter

Figure 15.4: Bar graph of ‘iter‘ kernel performance results on each variation.

113

15.4 Discussion and Analysis

Visualizing the execution times easily makes for an interesting discussion concerning why certain
variations performed the way they did as well as the explanations that explain the differences in execution
times. Ǥe first observation is that it is rather difficult to cluster variations into performance groups as the
execution times increase linearly (with a few outliers such as the rings, modulus, and the fan variation).
Ǥe performance difference between the best and worst performing variations is on the order of 20%which
is shows significance but for single frame renders is negligible to casual human observation. Of course if this
was reframed with our goals being real time rendering then that casual 20% is nowwhopping difference
which would prompt further optimizations. Furthermore, the standard deviations of lower performing
variations were dramatically higher thanmore well behaved higher performing variations such as linear.

By observational sampling of high, mid-grade, and low performing variations, a conjecture that operations
such as addition, subtraction, multiplication, division, generating aMWC random number, and basic
trigonometric functions such as sine and cosine are less expensive in terms of GPU time than the operations
that follows. Ǥese more expensive operations were found to be modulus, exponential math, square root
values, and logarithms. By observing the actual code that will be dynamically generated on the device we can
verify the conjecture above. Some of the highest performing variations in terms of performance are seen in
Figure 15.5, Figure 15.6, and Figure 15.7. Lower performing variations are seen in Figure 15.8, Figure 15.9, and
15.10.

High Performing Variation

Ǥree high performing variations are presented below:

ox += tx * w;
oy += ty * w;

Figure 15.5: High Performing Variation 1: Code for ‘linear‘ variation

float tpf = 2.0f * M_PI * {{pv.frequency}};
float amp = {{pv.amplitude}};
float sep = {{pv.separation}};
float dmp = {{pv.damping}};

float t = amp * expf(-fabsf(tx)*dmp) * cosf(tpf*tx) + sep;
ox += w*tx;
if (fabsf(ty) <= t)

oy -= w*ty;
else

oy += w*ty;

Figure 15.6: High Performing Variation 2: Code for ‘oscope‘ variation

ox += w * sinf(tx);
oy += w * sinf(ty);

Figure 15.7: High Performing Variation 3: Code for ‘sinusoidal‘ variation

114

Low Performing Variation

Ǥree low performing variations are presented below:

float mx = {{pv.x}}, my = {{pv.y}};
float xr = 2.0f*mx;
float yr = 2.0f*my;

if (tx > mx)
ox += w * (-mx + fmodf(tx + mx, xr));

else if (tx < -mx)
ox += w * (mx - fmodf(mx - tx, xr));

else
ox += w * tx;

if (ty > my)
oy += w * (-my + fmodf(ty + my, yr));

else if (ty < -my)
oy += w * (my - fmodf(my - ty, yr));

else
oy += w * ty;

Figure 15.8: Low Performing Variation 1: Code for ‘modulus‘ variation

float dx = M_PI * ({{px.affine.xo}} * {{px.affine.xo}});
float dx2 = 0.5f * dx;
float dy = {{px.affine.yo}};
float a = atan2f(tx, ty);
a += (fmodf(a+dy, dx) > dx2) ? -dx2 : dx2;
float r = w * sqrtf(tx*tx + ty*ty);
ox += r * cosf(a);
oy += r * sinf(a);

Figure 15.9: Low Performing Variation 2: Code for ‘fan‘ variation

float dx = {{px.affine.xo}} * {{px.affine.xo}};
float r = sqrtf(tx*tx + ty*ty);
float a = atan2f(tx, ty);
r = w * (fmodf(r+dx, 2.0f*dx) - dx + r * (1.0f - dx));
ox += r * cosf(a);
oy += r * sinf(a);

Figure 15.10: Low Performing Variation 3: Code for ‘rings‘ variation

In closing, these performance benchmarks allow us to observe how the device code runs reliably without
having to crawl over ten thousand lines of assembler to find out which operations they use. Ǥese
benchmarks show that we don’t have to count opcodes in order to understand performance. It is evident
from the charts that the performance estimates from assembly are reliable without things such as memory
accesses geǣing in the way.

115

@E>OTBQ ʢʧ

US>DB >MA ENST-SFAB >OF

Despite cuburn’s internal complexity, its API is straightforward. Only two user-facing modules are required
to render a flame: cuburn.genome and cuburn.render.

To load a JSON genome file, call cuburn.genome.load_infowith the file’s contents as a string argument.
Ǥis loads all genomes in the file, as well as information about rendering parameters, if present. Pass this
information to cuburn.render.Renderer to create a new instance of that object. Use the compile
method to perform code generation, infer and store runtime parameters, and aǣach the compiled module to
the current CUDA context. Call the render object with a list of (name, start_time, end_time) tuples,
producing a generator, and read the resulting RenderedImage objects from that generator.

16.1 Behind the scenes

Ǥat one call to render does quite a bit.

Because it is a generator function, the rendermethod is not necessarily blocking. AǍer the initial call to
create the generator loads two frames into the GPU’s asynchronous task dispatch queue, each frame that gets
read triggers the dispatch of another frame for later reading. In blocking mode, if a frame is requested when
none is available, the thread will repeatedly sleep until a frame is ready to return, allowing other tasks to
execute in different threads. When blocking is disabled, even this behavior is gone: the generator simply
returns None immediately if no frames are available. Ǥis allows rendering to be used from, say, a
GUI-driven application without the inconvenience of threading or the performance loss that comes from
infrequent polling; since multiple frames are queued, polling only needs to happen once per frame to keep
the GPU at full load.

In order for this method to work, care must be taken to avoid conflicting use of shared resources by
asynchronously-scheduled kernels. On the other hand, strict serialization of kernels reduces performance,
as it does not allow proper load-balancing— important in cuburn due to the use of unusually long-running
kernel invocations. Asynchronous dispatch therefore requires the use of multiple, cross-synchronized
CUDA streams, ensuring that asynchronous work which does not result in buffer conflicts is free to proceed
until shared resources need once again be handled individually.

Ǥere are three contested resources which must be synchronized: the point log, used as the destination of
iteration samples and the source for sorting; the accumulation buffer, used as the destination for the entire
iteration process and the source for density estimation; and the final output buffer, destination of color
filtering and source for the host-to-device copy. Each source has its own stream, and events are injected into
the destination streams to act as barriers to prevent one stream from outpacing another in a manner that
could cause inconsistent access.

116

To allow for asynchronous processing by the host, there are two independent device buffers that are
preallocated for asynchronous copies. Ǥe generator’s control logic only yields a buffer when it has been
copied, and queues everything up to the next overwrite of that buffer on the device before yielding it again.
When the next iteration begins, the previous buffer is reclaimed. Ǥis ensures that the current buffer is
never overwriǣen by asynchronous DMAwhile in use by the application.

An instance of this asynchronous dispatch architecture is depicted in an abbreviated form in Figure 16.1.

A curiosity of this architecture is that the rendermethod is a single monolithic function. Ǥis is not an
example of poor programming practice or lazy design, but rather a cautious and proactive choice intended to
make development easier and program operation more reliable. Inside the rendering function, dozens of
resources on both the host and the device must be obtained, many of which depend on values calculated
during the allocation of previous resources. Using a single, local namespace for these values ensures that the
complex, interrelated calculations are all present in a single file for easy inspection, modification, and
documentation. Ǥese parameters are never accessed outside of the render loop, so a more modular,
object-oriented approach would have added overhead and almost certainly introduced additional bugs
resulting from repeated calculations driǍing out of sync with revisions to different files. Ǥis also enables
more accurate tracking of resource lifetime, as Python’s reference tracking occasionally frees device
resources too aggressively as they pass out of scope, resulting in stalls due to synchronization barriers
imposed by CUDA on deallocation functions.

16.2 Command-line use

Cuburn also comes with a command-line client. Ǥis client includes several options tomake convertingn and
rendering an animation from an XML genome easier, as well as a simple OpenGL interface which displays
frames as they are rendered. Ǥe documentation for the command-line interface is repoduced in Figure 16.2.

117

Figure 16.1: One example of the task dispatch pattern for a particular flame animation rendered using deferred
writeback. Solid arrows indicate host dispatch order; dashed arrows indicate buffer contention and event
barriers; vertical order within a stream indicates mandatory execution order; vertical order between streams
indicates expected execution order. Tasks that may block are represented by boxes with rounded corners.

118

usage: main.py [-h] [-g] [-j [QUALITY]] [-n NAME] [-o DIR] [--resume] [--raw]
[--nopause] [-s TIME] [-e TIME] [-k TIME] [--renumber [TIME]]
[--qs SCALE] [--scale SCALE] [--tempscale SCALE]
[--width PIXELS] [--height PIXELS] [--test] [--keep] [--debug]
[--sync] [--sleep [MSEC]]
FILE

Render fractal flames.

positional arguments:
FILE Path to genome file ('-' for stdin)

optional arguments:
-h, --help show this help message and exit
-g Show output in OpenGL window
-j [QUALITY] Write .jpg in addition to .png (default quality 90)
-n NAME Prefix to use when saving files (default is basename of

input)
-o DIR Output directory
--resume Do not render any frame for which a .png already exists.
--raw Do not write files; instead, send raw RGBA data to

stdout.
--nopause Don't pause after rendering when preview is up

Sequence options:
Control which frames are rendered from a genome sequence. If '-k' is not
given, '-s' and '-e' act as limits, and any control point with a time in
bounds is rendered at its central time. If '-k' is given, a list of times
to render is given according to the semantics of Python's range operator,
as in range(start, end, skip). If no options are given, all control points
except the first and last are rendered. If only one or two control points
are passed, everything gets rendered.

-s TIME Start time of image sequence (inclusive)
-e TIME End time of image sequence (exclusive)
-k TIME Skip time between frames in image sequence. Auto-sets

--tempscale, use '--tempscale 1' to override.
--renumber [TIME] Renumber frame times, counting up from the supplied start

time (default is 0).

Figure 16.2: Usage information for the command-line cuburn application.

119

Genome options:
--qs SCALE Scale quality and number of temporal samples
--scale SCALE Scale pixels per unit (camera zoom)
--tempscale SCALE Scale temporal filter width
--width PIXELS Use this width. Auto-sets scale, use '--scale 1' to

override.
--height PIXELS Use this height (does *not* auto-set scale)

Debug options:
--test Run some internal tests
--keep Keep compilation directory (disables kernel caching)
--debug Compile kernel with debugging enabled (implies --keep)
--sync Use synchronous launches whenever possible
--sleep [MSEC] Sleep between invocations. Keeps a single-card system

usable. Implies --sync.

Figure 16.2: Usage information for the command-line cuburn application (continued).

120

@E>OTBQ ʢʨ

ABSFDM SULL>QY

Cuburn is a Python library for rendering fractal flames on the GPU.Ǥis chapter provides an overview of the
operation of this library.

17.1 Device soǍware

AǍer host-side initialization, a frame rendering begins with an invocation of the interpolation function
constructed for the current genome (Chapter 12). During interpolation, the splines representing an
animation are loaded from global memory, interpolated against at the current control point time, and
optionally used as the input of more complex functions to produce control point parameters. Many control
points are evaluated simultaneously, and the results are stored in a global memory array.

An iteration kernel plays the chaos game, evaluating the trajectory of individual points as they pass aroudn
the aǣractor. Ǥe iteration kernel is carefully tuned for high occupancy. When the kernel is generated to
operate in deferred mode, it is ALU-bound, and so care is taken to avoid warp divergence without resulting
in trajectory convergence (Chapter 8). Each iteration of the kernel produces an image sample, which is
stored to a sample log on the device in a condensed format (Chapter 12).

A sort engine built for this project (Chapter 13) efficiently rearranges the sample log’s contents for efficient
histogram generation. Ǥe sort engine is a scan-based radix sort, although it makes extensive use of
low-level hardware features in a manner that differs frommost other GPU radix sorts to aǣain
record-seǣing levels of performance.

AǍer the functions comprising the sort engine have concluded, the log is processed by an accumulation
function (Chapter 12). Ǥis function uses shared memory to generate a histogram of the logged trajectory
data quickly and accurately. Since memory is limited, the point log is finite, and oǍen too short to contain a
full image’s length of samples; therefore, the process of iterate, log, sort, and accumulate usually repeats
several times before the next stage is reached.

Density estimation with antialiasing correction is applied to the generated full-scale image (Chapter 14). Ǥis
step, along with colorspace conversion and out-of-bounds clamping, is used to convert the generated
histogram buffer into a low-dynamic-range image. Ǥe image is then sent via a memory copy to the host,
where it is compressed in the current output format.

121

17.2 Host soǍware

Ǥe cuburn library uses NumPy extensively and returns buffers as NumPy arrays, meaning applications
using cuburn as a library will also need to use NumPy for numerical manipulation. Internally, cuburn also
depends on PyCUDA and Tempita. When using XML genome files, cuburn additionally depends on fr0stlib
and libflam3 to perform conversion. A cuburn client application can be constructed in under ten lines of
Python code, and an example command-line application which provides a rich set of options is available for
non-programmers to use.

Despite a simple API, the control flow of the rendering process is complex. An example internal flow is
provided in Figure 17.1.

Cuburn relies heavily on runtime code generation to aǣain both speed and flexibility (Chapter 7). Kernels
are generated before rendering starts in response to analysis of both the genome to be rendered and the
hardware it is to be rendered on. Ǥe code needed to render the genome is computed in multiple passes, each
pass adding additional auxiliary information to prepare the next pass, and then sent to nvcc for
compilation. A final pass performs “monkey-patching” of opcodes in place to work around the absence of
certain hardware instructions from the PTX ISA.Ǥemodule is then loaded in the current CUDA context,
allowing it to be used for host computation.

Resource allocation is performed at the call to the render function (Chapter 16). Ǥis function masks
complicated asynchronous dispatch behind the Python generator API; in most cases, a Python for loop or
imap statement is all that is needed to read and process frames. When the function exits, Python’s reference
management system cleans up outstanding references, seǣing the CUDA context up for further rendering or
a clean exit.

122

Application start

Examine startup
environment

Environment

Load flame sourceXML file

Parse flameGenomes (foreign)

Interpolate prototype

Load prototypePrototype genome

Examine CUDA devicesDevice info

Build device code

Data packer

Device code

Launch parametersBind CUDA context

Load CUDA module

Initialize session-based
device resources

Interpolate per-frame
center control points

Frame genomes
(foreign)

Spawn render thread

Wait for completion

Deinitialize CUDA

Application exit

Render thread

Load frame genome

Interpolate control points
for motion blur

Genome (foreign)

Control points
(foreign)

Load control pointsControl points

Pack control points
Control points

(packed)

Allocate framebuffer

Schedule kernels

Initialize per-frame
device resources

Framebuffer

Schedule FB copy

Spawn output thread

All frames
scheduled?

Thread exit

Wait for output

Yes
To thread start

No

Output thread

FB copy event

Wait for FB copy event

Encode framebuffer

Write image file

Thread exit

Free framebuffer

Legend

Cuburn

Native / Application

flam3-hs

flam3-types

CUDA

Figure 17.1: The host-side workflow of the example application. This diagram describes the workflow of the
most recent Windows port. The most recent development version differs slightly, and no longer follows a fixed
dispatch pattern.

123

>OOBMAFX >

DKNSS>QY

Between GPU computing, the fractal flame algorithm, signal processing, and multiresolution analysis,
describing this project requires a considerable amount of oǍen conflicting terminology. Ǥis reference may
help resolve and disambiguate unfamiliar terminology.

In cases where terminology is nonstandard or conflicting across the fields of study involved by this project,
the source of a term is provided. Only the terms used in our project have entries; some termsmay have
alternate meanings in other fields of study, but these are not listed here.

>@@ULUK>TFNM ?UCCBQ Ǥe grid of accumulators used to store the results of a simulation. Ǥe
accumulation buffer may be of a higher resolution than the output buffer to accomodate FSAA.

>@@ULUK>TNQ An element of the accumulation buffer, storing density and color information. In flam3,
these are called “buckets”. In some IFS literature, these are called “histogram bins”.

>@@ULUK>TBA S>LOKB Ǥe value of an accumulator aǍer all iterations have been performed.

>MFL>TFNM (flam3) A series of frames, where each frame is generated from a different time step along a
particular interpolation between two flames.

?>QQFBQ (CUDA) An instruction which will stall the warp which issues it until a condition is met, used for
synchronization. OpenCL term is “work-group barrier”, where OpenCL’s “command-queue barriers”
are used to build streams.

@NLL>MA (OpenCL) A task which a device must complete.

@NQB Ǥe smallest unit of a device capable of completely executing a single instruction. Our usage explicitly
conflicts with marketing material from both AMD and NVIDIA, which refer to each vector lane as a
core, but is in line with industry parlance. (In some architectures, a core may be able to dispatch more
than one instruction at a time to shared hardware resources; under this definition, it is still a single
core, as the functional unit cannot be divided further.)

AB@FL>TFNM (Multiresolution analysis) A reduction in the number of samples in a signal. In our algorithm,
as elsewhere, the term is assumed to refer to octave-band decimation, where a signal is downsampled
by a factor of 2 in all dimensions.

ABVF@B (OpenCL) A hardware unit which may execute commands, and which appears to run
asynchronously to the CPU. In our case, one of the GPUs available in a system.

124

BADB (flam3) An animation involving interpolation between two visually distinct flames, so named because
they are aǣached to the edges in the graph used to resolve playback order in the Electric Sheep
screensaver.

CK>LB Ǥe abstract notion of a particular class of chaotic aǣractor. Flames are described by their genomes,
and visually approximated using the fractal flame algorithm.

DBMNLB (flam3)Ǥe set of parameters describing a flame, or the concrete data structure containing this
information. May also include information about aspects that affect the rendering only, rather than
the underlying aǣractor.

FCS FTBQ>TFNM An application of one transform function from an iterated function system to an IFS point to
produce a new point.

FCS ONFMT Ǥe vector resulting from a number of applications of transform functions to a starting vector.

FCS S>LOKB Ǥe information about the shape of the aǣractor gained by performing an iteration.

IBQMBK An entry point for a device thread; the code associated with a single device invocation.

KNNO (flam3) An animation of a rotation interpolation, which modifies a single flame in such a way that the
final frame is identical to the first.

STQB>L (CUDA) A strictly ordered series of device commands. Ordinarily, devices may dispatch commands
as soon as execution resources become available to do so; a command in a stream, on the other hand, is
not started until the previous command in the stream completes.

TQ>MSCNQL CUM@TFNM Amember of an iterated function system, as described by an xform.

W>QO (CUDA) A group of threads that must execute the same instruction at the hardware level. Hardware
and compiler tools allow a programmer to overlook warps without compromising code correctness,
but optimal performance requires careful consideration of warps. Ǥis term technically applies only
to NVIDIA devices, where AMD uses notionally similar but technically different “wave-fronts”, and its
use in this document is a compromise between correctness and clarity.

WNQI-DQNUO (OpenCL) A collection of threads which share a global ID. Work-groups are the largest
structure that can access a common slice of shared memory or enter a barrier. CUDA equivalent term
is “block”.

VB@TNQ K>MB An element of a vector.

XCNQL (flam3)Ǥe data structure associated with each function of an iterated function system.

125

>OOBMAFX ?

KF@BMSFMD >MA OBQLFSSFNMS

CFDUQB ʣ.ʣ: Reprinted with permission under the Creative Commons Aǣribution-ShareAlike 3.0 license.

• Source: Self made based on Java Appplication (hǣp://to-campos.planetaclix.pt/fractal/koch.html).

• Date: 15 May 2007

• Author: António Miguel de Campos

• Description: 7 first steps of the building of the von Koch curve in animated gif. Notice the parallel
corresponding diameters present in the inner rhomboids.

CFDUQB ʣ.ʤ: Reprinted with permission from Vlado from FreeDigitalPhotos.net a royalty-free site.

• Source: hǣp://www.freedigitalphotos.net/images/Trees_and_Shrubs_g75-
Cherry_Tree_In_Winter_p33977.html

• Terms: hǣp://www.freedigitalphotos.net/images/help/acknowledgement/terms.php

• Permission: hǣp://www.freedigitalphotos.net/images/help/-
acknowledgement/index.php?photogname=Vlado&photogid=1836

• Author: Vlado

• Description: llustration of a cherry tree in winter.

CFDUQB ʣ.ʨ: Reprinted with permission under the Creative Commons Aǣribution-Share Alike 3.0 Unported.

• Source: hǣp://www.chaoscope.org/gallery.htm

• Date: 5 March 2007

• Author: Nicolas Desprez

• Description: Aǣractor Poisson Saturne.

CFDUQB ʣ.ʩ �KBCT�: Reprinted with permission under the Creative Commons Aǣribution-ShareAlike 3.0
license.

126

• Source: Self made based on Java Appplication
(hǣp://en.wikipedia.org/wiki/File:Animated_fractal_mountain.gif).

• Date: March 2006

• Author: António Miguel de Campos

• Description: Animated fractal mountain.

CFDUQB ʣ.ʩ �QFDET�: Reprinted with permission under the Creative Commons Aǣribution 3.0 Unported.

• Source: Terragen.

• Date: 2002

• Author: Ǥe Ostrich

• Description: n example of a fractal landscape, generated using my own program and rendered using
Terragen.

CFDUQB ʤ.ʦ: Reprinted with permission under the Creative Commons Aǣribution-ShareAlike 3.0 license.

• Source: Ownwork, using model wriǣen byMike Borrello (hǣp://www.vissim.com/node/199)

• Date: 6 January 2010

• Author: DSP-user

• Description: Barnsley’s fern illustrates the use of affine translations in an iterated function system (IFS)
to create a fractal. In Table III.3 of Michael Barnsley’s book, the IFS code for the four affine
transformations for the Barnsley leaf is given as a table of values for the coefficients a, b, c, and d, the
constants e and f and the probability percentage factor of p as follows:

CFDUQB ʤ.ʨ �TNO�: Reprinted with permission under the Creative Commons Aǣribution 3.0 license.

• Source: hǣp://sheep.arces.net/generation–243/dead.cgi?id=1490

• Date: July 28 2008

• Author: ReFa

CFDUQB ʤ.ʨ �TNO�: Reprinted with permission under the Creative Commons Aǣribution 3.0 license.

• Source: hǣp://sheep.arces.net/generation–243/dead.cgi?id=243

• Date: June 28 2008

• Author: BrothaLewis

CFDUQB ʢʢ.ʢ: Reprinted with permission under the Creative Commons Aǣribution-ShareAlike 3.0 license.

• Source: hǣp://en.wikipedia.org/wiki/File:HSV_color_solid_cylinder_alpha_lowgamma.png

127

• Date: March 22 2010

• Author: SharkD

• Description: Ǥe HSV color model mapped to a cylinder. POV-Ray source is available from the POV-Ray
Object Collection.

CFDUQB ʢʢ.ʣ: Reprinted with permission under the Creative Commons Aǣribution-ShareAlike 3.0 license.

• Source: hǣp://en.wikipedia.org/wiki/File:GammaCorrection_demo.jpg

• Date: September 14 2010

• Author: X-romix and Rubybrian

• Description: A demonstration of the effect of gamma correction on images.

CFDUQB ʢʢ.ʤ: Reprinted with permission under the Creative Commons Aǣribution-ShareAlike 3.0 license.

• Source: hǣp://en.wikipedia.org/wiki/File:GammaCorrection_demo.jpg

• Author: UC Davis ChemWiki by University of California

• Description: DifferentWavelengths and Frequencies

CFDUQB ʢʢ.ʦ, CFDUQB ʢʢ.ʧ, CFDUQB ʢʢ.ʨ, CFDUQB ʢʢ.ʩ, CFDUQB ʢʢ.ʪ, CFDUQB ʢʢ.ʢʡ, CFDUQB ʢʢ.ʢʢ, CFDUQB ʢʢ.ʢʣ:
Reprinted with permission under the Creative Commons Aǣribution 3.0 license.

• Source: hǣp://v2d7c.sheepserver.net/cgi/dead.cgi?id=11148

• Date: January 28 2011

• Author: BrothaLewis

**Figure 10.1

• Source: hǣp://random.mat.sbg.ac.at/tests/theory/spectral/img13.gif

• Date: April 17 2011

Dear Nicolas,

thank you very much for your interest in our research.

Ǥe images are the scientific property of Karl Entacher, now at Fachhochschule Salzburg
(Salzburg Polytechnical University). Please contact Karl at the address
karl.entacher@holztechnikum.at or, alternatively, entacher@cosy.sbg.ac.at

Best regards

Peter

128

Peter Hellekalek Dept. of Mathematics University of Salzburg Hellbrunner Str. 34 A–5020
Salzburg

tel.: +43-(0)662 8044 5310 fax : +43-(0)662 6389 5310 web : hǣp://random.mat.sbg.ac.at

Ǥis message is for personal use only. It may not be forwarded without permission. Die
Weitergabe dieser e-mail ist ohne ausdrueckliche Zustimmung untersagt.

CFDUQB ʢʥ.ʢ: Reprinted with permission under the Creative Commons Aǣribution-ShareAlike 3.0 license.

• Source: hǣp://upload.wikimedia.org/wikipedia/commons/8/88/Aliasing_a.png

• Date: July 29 2009

• Author: Mwyann

• Description: Aliasing example of the “A” leǣer in Times New Roman.

CFDUQB ʢʥ.ʣ: Reprinted with permission from Dorbie aǍer being released into the public domain.

• Source: hǣp://upload.wikimedia.org/wikipedia/en/3/32/GridSS.png

• Source: hǣp://upload.wikimedia.org/wikipedia/en/1/16/RandomSS.png

• Source: hǣp://upload.wikimedia.org/wikipedia/en/e/e3/PoissonSS.png

• Source: hǣp://en.wikipedia.org/wiki/File:JiǣerSS.png

• Source: hǣp://upload.wikimedia.org/wikipedia/en/3/30/RotGridSS.png

• Date: September 14 2007

• Author: Dorbie

Important Note: All other illustrations and figures have been generated by the authors of this document.

129

>OOBMAFX @

?F?KFNDQ>OEY

[1] B.B. Mandelbrot,ǫe Fractal Geometry of Nature, W. H. Freeman, 1983

[2] S. Draves and E. Reckase, “Ǥe fractal flame algorithm,” 2003, pp. 1-41.
hǣp://www.flam3.com/flame_draves.pdf

[3] R. Eglash, “Ron Eglash on African fractals,” TED Conferences, LLC, 2007.
hǣp://www.ted.com/talks/ron_eglash_on_african_fractals.html

[4] P. Perry, “Special Post: Scoǣ Draves,” 2011. hǣp://www.triangulationblog.com/2011/01/scoǣ-draves.html

[5] M.F. Barnsley, Fractals Everywhere, Academic Press, 1988

[6] E. Weisstein, “Affine Transformation,”MathWorld.
hǣp://mathworld.wolfram.com/AffineTransformation.html

[7] K. Conrad, “Ǥe ContractionMappingǤeorem,” 2010, pp. 1-9.
hǣp://www.math.uconn.edu/\∼kconrad/blurbs/analysis/contractionshort.pdf

[8] E. Weisstein, “Barnsley’s Fern,”MathWorld. hǣp://mathworld.wolfram.com/BarnsleysFern.html

[9] F. Charles, “Looking Good: Ǥe Psychology and Biology of Beauty,” Journal of Young Investigators, vol. 6,
2002. hǣp://www.jyi.org/volumes/volume6/issue6/features/feng.html

[10] E. Reckase and S. Draves, “flam3,” 2011. hǣp://flam3.com

[11] R. Hordijk, P. Borys, and P. Sdobnov, “Apophysis,” 2011. hǣp://www.apophysis.org

[12] S. Brodhead, “flam4,” 2011. hǣp://sourceforge.net/projects/flam4/

[13] M.Ǥiesen, “Fractron 9000,” 2011. hǣp://fractron9000.sourceforge.net/

[14] T. Ludwig, “Chaotica,” 2010. hǣp://www.indigorenderer.com/forum/viewtopic.php?f=6\&t=10205

[15] A. Voicu, “NVIDIA Fermi GPU and Architecture Analysis,” Beyond3D, 2010.
hǣp://www.beyond3d.com/content/reviews/55

[16] D. Kanter, “Introduction to OpenCL,” RealWorld Technologies, 2010.
hǣp://www.realworldtech.com/page.cfm?ArticleID=RWT120710035639

[17] S. Robertson, “CUDA atomics: a detailed analysis,” strobe.cc, 2009. hǣp://strobe.cc/cuda_atomics/

[18] D. Kanter, “Larrabee 1 Defers Graphics, Bins Rendering,” RealWorld Technologies, 2009.
hǣp://www.realworldtech.com/page.cfm?ArticleID=RWT120409180449

[19] S. Wasson, “Nvidia’s GeForce GTX 590 graphics card,”ǫeTech Report, 2011.
hǣp://techreport.com/articles.x/20629

130

http://www.flam3.com/flame_draves.pdf
http://www.ted.com/talks/ron_eglash_on_african_fractals.html
http://www.triangulationblog.com/2011/01/scott-draves.html
http://mathworld.wolfram.com/AffineTransformation.html
http://www.math.uconn.edu/\char "005C\relax {}\protect $\relax \sim $kconrad/blurbs/analysis/contractionshort.pdf
http://mathworld.wolfram.com/BarnsleysFern.html
http://www.jyi.org/volumes/volume6/issue6/features/feng.html
http://flam3.com
http://www.apophysis.org
http://sourceforge.net/projects/flam4/
http://fractron9000.sourceforge.net/
http://www.indigorenderer.com/forum/viewtopic.php?f=6\char "005C\relax {}&t=10205
http://www.beyond3d.com/content/reviews/55
http://www.realworldtech.com/page.cfm?ArticleID=RWT120710035639
http://strobe.cc/cuda_atomics/
http://www.realworldtech.com/page.cfm?ArticleID=RWT120409180449
http://techreport.com/articles.x/20629

[20] D. Kanter, “AMD’s Cayman GPU Architecture,” RealWorld Technologies, 2010.
hǣp://www.realworldtech.com/page.cfm?ArticleID=RWT121410213827

[21] A. Munshi, “OpenCL Specification,” Khronos Group, 2010

[22] M. Bevand, “Whitepixel,” 2010. hǣp://whitepixel.zorinaq.com/

[23] S. Marlow, “Ǥe Haskell 2010 Language Report,” 2010.
hǣp://www.haskell.org/onlinereport/haskell2010/

[24] S. Robertson, “PyPTX,” 2010. hǣp://bitbucket.org/srobertson/pyptx

[25] W.H. Press, B.P. Flannery, S.A. Teukolsky, andW.T. Veǣerling, Numerical recipes, Cambridge University
Press, 2007. hǣp://www.nr.com

[26] R. Anderson, D. Gollmann, B. Preneel, C.S.W. (1993), FSE., andW. on Fast SoǍware Encryption, Fast
soǔware encryption: proceedings ; ... international workshop, FSE Cambridge, UK, February 21 - 23, 1996,
Springer, 1996. hǣp://books.google.com/books?id=yngAFrKFsd4C

[27] B. Jenkins, “ISAAC: a fast cryptographic random number generator.”
hǣp://www.burtleburtle.net/bob/rand/isaacafa.html

[28] E. Reinhard, G. Ward, S. Paǣanaik, and P. Debevec,High dynamic range imaging: acquisition, display, and
image-based lighting, Morgan Kaufmann, 2006. hǣp://portal.acm.org/citation.cfm?id=1208706

[29] M.D. Fairchild, “Color AppearanceModels: CIECAM02 and Beyond,” 2008

[30] P. Ledda, A. Chalmers, T. Troscianko, and H. Seetzen, “Evaluation of tone mapping operators using a
High Dynamic Range display,” ACMTransactions on Graphics, ACM, vol. 24, 2005, p. 640.
doi:10.1145/1073204.1073242

[31] S. Draves and E. Reckase, “flam3Wiki Page,” 2011. hǣp://code.google.com/p/flam3/w/list

[32]“Datasheet: 2G bits GDDR5 SGRAM EDW2032BABG,” ElpidaMemory, Inc., 2011

[33] R.L. Cook and L. Carpenter, “Ǥe Reyes Rendering Architecture,” Computer Graphics, vol. 21, 1987, pp.
95-102. hǣp://graphics.pixar.com/library/Reyes/

[34]“POWERVRMBX Technology Overview,” Imagination Technologies, Inc., 2009, pp. 1-17

[35] B. Furht, Encyclopedia of multimedia, Springer-Verlag New York Inc, 2008

[36] L. Yang, D. Nehab, P.V. Sander, P. Siǣhi-amorn, J. Lawrence, and H. Hoppe, “Amortized supersampling,”
ACMTransactions on Graphics, vol. 28, 2009, p. 1. doi:10.1145/1618452.1618481

[37] M. Schwarz andM. Stamminger, “Multisampled Antialiasing of Per-pixel Geometry,” Eurographics, 2009,
pp. 21-24. hǣp://www.mpi-inf.mpg.de/\∼mschwarz/papers/msaappg-eg09.pdf

[38] K. Beets and D. Barron, “Super-sampling Anti-aliasing Analyzed,” Beyond3D, 2000, p. 22.
hǣp://www.beyond3d.com/content/articles/37/

[39] M. Segal and K. Akeley, “Ǥe OpenGL Graphics System: A Specification (Version 1.5),” 2003.
hǣp://www.opengl.org/documentation/specs/version1.5/glspec15.pdf

[40] P. Young, “Coverage Sample Aliasing Technical Report,” 2002. hǣp://tinyurl.com/3jyq6g3

[41] A. Reshetov, “Morphological antialiasing,” Proceedings of the 1st ACM conference on High Performance
Graphics - HPG ’09, ACMPress, 2009, p. 109. doi:10.1145/1572769.1572787

[42] A. Buades, B. Coll, and J.M. Morel, “On image denoising methods,” SIAMMultiscale Modeling and
Simulation, 2005, pp. 490-530.
hǣp://www.cmla.ens-cachan.fr/fileadmin/Documentation/Prepublications/2004/CMLA2004-15.pdf

131

http://www.realworldtech.com/page.cfm?ArticleID=RWT121410213827
http://whitepixel.zorinaq.com/
http://www.haskell.org/onlinereport/haskell2010/
http://bitbucket.org/srobertson/pyptx
http://www.nr.com
http://books.google.com/books?id=yngAFrKFsd4C
http://www.burtleburtle.net/bob/rand/isaacafa.html
http://portal.acm.org/citation.cfm?id=1208706
http://dx.doi.org/10.1145/1073204.1073242
http://code.google.com/p/flam3/w/list
http://graphics.pixar.com/library/Reyes/
http://dx.doi.org/10.1145/1618452.1618481
http://www.mpi-inf.mpg.de/\char "005C\relax {}\protect $\relax \sim $mschwarz/papers/msaappg-eg09.pdf
http://www.beyond3d.com/content/articles/37/
http://www.opengl.org/documentation/specs/version1.5/glspec15.pdf
http://tinyurl.com/3jyq6g3
http://dx.doi.org/10.1145/1572769.1572787
http://www.cmla.ens-cachan.fr/fileadmin/Documentation/Prepublications/2004/CMLA2004-15.pdf

[43] F. Suykens, K.U. Leuven, and Y.Willems, “Adaptive Filtering for Progressive Monte Carlo Image
Rendering,” Eighth International Conference in Central Europe on Computer Graphics, Visualization and Interactive
Digital Media, Plzen, Czech Republic: 2000.
hǣp://graphics.cs.kuleuven.be/publications/DESCREEN/descreen.pdf.gz

[44] S. Paris, P. Kornprobst, J. Tumblin, and F. Durand, “Bilateral Filtering: Ǥeory and Applications,”
Foundations and Trends in Computer Graphics and Vision, vol. 4, 2008, pp. 1-75. doi:10.1561/0600000020

[45] K. Huang, D. Zhang, and K.Wang, “Non-local means denoising algorithm accelerated by GPU,”
Proceedings of SPIE, SPIE, 2009, pp. 749711-749711. doi:10.1117/12.833025

[46] A. Adams, J. Baek, andM.A. Davis, “Fast High-Dimensional Filtering Using the Permutohedral Laǣice,”
Computer Graphics Forum, Wiley Online Library, 2010, pp. 753-762. doi:10.1111/j.1467-8659.2009.01645.x

[47] A. Adams, N. Gelfand, J. Dolson, andM. Levoy, “Gaussian kd-trees for fast high-dimensional filtering,”
ACMTransactions on Graphics (TOG), ACM, vol. 28, 2009, pp. 1-12. doi:10.1145/1531326.1531327

[48] A. Moore, A tutorial on kd-trees, 1991.
hǣp://www.autonlab.org/autonweb/14665/version/2/part/5/data/moore-
tutorial.pdf?branch=main\&language=en

132

http://graphics.cs.kuleuven.be/publications/DESCREEN/descreen.pdf.gz
http://dx.doi.org/10.1561/0600000020
http://dx.doi.org/10.1117/12.833025
http://dx.doi.org/10.1111/j.1467-8659.2009.01645.x
http://dx.doi.org/10.1145/1531326.1531327
http://www.autonlab.org/autonweb/14665/version/2/part/5/data/moore-tutorial.pdf?branch=main\char "005C\relax {}&language=en
http://www.autonlab.org/autonweb/14665/version/2/part/5/data/moore-tutorial.pdf?branch=main\char "005C\relax {}&language=en

	Executive Summary
	Description
	Significance
	Motivation
	Goals and Objectives
	Research

	Fractal Background
	Purpose of Section
	Origins: Euclidean Geometry vs. Fractal Geometry
	Fractal Geometry and Its Properties
	Fractal Types
	Visual Appeal
	Limitations of Classical Fractal Algorithms

	The Fractal Flame Algorithm
	Section Outline
	Iterated Function System Primer
	Fractal Flame Algorithm
	Filtering

	Existing implementations
	flam3
	Apophysis
	flam4
	Fractron 9000
	Chaotica
	Our implementation

	A (not-so-)brief tour of GPU computing
	OpenCL
	Common implementation strategies
	Closer look: NVIDIA Fermi
	Closer look: AMD Cayman

	Tools and components
	GPU architecture
	GPGPU framework
	Host language and intermediate language

	Runtime code generation
	Function selection
	Divergence is bad, so convergence is… worse?
	Doing the twist (in hardware)
	Shift amounts and sequence lengths

	Animating fractal flames
	Flocks
	XML genome sequences
	Cuburn genome format
	Implementing interpolation on device

	Random Numbers and Pseudo-Random Number Generators
	Bias : An Illustrative Example
	Pseudo Random Number Generators
	rand() and Linear Congruential Generators
	ISAAC
	Mersenne Twister
	Multiply With Carry
	Spectral Distribution
	Monte Carlo simulations

	Coloring and Log Scaling
	Overview
	Relevant Applied Color Theory and Imaging Techniques
	Log Transformation of Data
	Tone Mapping and Tone Operators
	flam3 : Original Coloring and Log Scaling Implementation
	Challenge

	Sample accumulation
	Chaos, coalescing, and cache
	Atomic writeback: perfectly slow
	Direct writeback
	Deferred writeback

	Cuburn sort
	Filtering
	Aliasing
	Denoising
	Filtering in cuburn

	Benchmarking
	Framework
	Benchmark Machine
	Benchmark Setup and Design
	Discussion and Analysis

	Usage and host-side API
	Behind the scenes
	Command-line use

	Design summary
	Device software
	Host software

	Glossary
	Licensing and permissions
	Bibliography

