
3D Persistence of Vision Device

Aaron Burlison, Antonio Ortiz III,
Timothy Egan, Patrick Srofe

Dept. of Electrical Engineering and Computer
Science, University of Central Florida, Orlando,

Florida, 32816-2450

Abstract — Persistence of vision is widely used as a

method of image recreation and distribution. While generally
done through the use of various monitors or touch screens
available on the market there are some other methods using
motors and light emitting diodes that have been used to
perform the same function. The objective of this paper is to
present a design of such a device at a much grander scale,
including higher resolutions and wireless image processing.
Index Terms — AC-DC Converters, Image processing,

Image coding, Image generation, Light emitting diodes,
Permanent magnet motors, Visual effects.

I. INTRODUCTION

Persistence of vision is a phenomenon that has motivated
engineers for years to create a variety of inventions. This
has motivated engineers for years to create a variety of
inventions. This has not changed even to this day. There
are still devices using this visual trick being constructed
with a wealth of internet examples available to show for it.

Fig. 1.1. Persistence of vision globe.

These spinning devices that utilize LEDS to create the

illusion of one solid image come in a variety of shapes and
sizes from spheres and discs, to cylinders.

A. Frame Rate

Since human vision is tricked to perceive motion around
the rate of twenty-five frames per second we needed a

device to spin at a rate capable of recreating this illusion.
Since twenty-five was the bare minimum we decided to
overshoot to thirty frames per second, this would hopefully
either make a more seamless image or account for any
variations that may occur within the device.

B. Computer Interfacing

We designed the device with the intent of being able to
connect directly to any computer and receive images to
process and display. This is entirely being done through an
Ad Hoc wireless network.

D. Portability

Since we had decided the device needed to be portable it
could be no heavier than a small television and only about
as bulky. This meant the materials we chose to build this
device out of need to be durable and light weight.

A. Programmability

The device also needed to be easily programmable and
capable of at least simple marquee text displays that would
be implemented with our own self developed program.
This would allow the user to simply input a text banner or
the time, and have it displayed on the device instead of just
the computer interface. In addition, we also wanted the
device to be complex enough that someone with
experience in programming could also program the
processor and create custom images and animations. This
would allow for a lot of space for user development.

II. CHASSIS DESIGN

The chassis is the main support structure that will be
used to mount the motor, the LED array support frame and
the motor controller. The chassis will also allow for the
motor to integrate with the LED array support frame
through a bearing to allow the frame to be driven by the
motor.

A. LED Support Frame

Before we were able to finalize the chassis design, some
critical dimensions had to be determined. The first
dimension that needed to be determined was the size of the
LED array support frame. The LEDs chosen for this
project had a vertical dimension of 2.8mm. Using 1mm of
spacing between LEDs resulted in each LED requiring
2.85mm of space. Multiplying the number of LEDs by the
space requirement per LED resulted in an overall vertical
dimension of 364.8mm or 14.362 inches. Using the idea
that the desired look of the POV display will be a cylinder,

we then calculated the distance the primary LED array will
need to be from the center of rotation, which was equal to
6.97 inches or approximately 7 inches. The secondary
LED array will need to appear to stand off from the
primary LED array. To achieve this appearance we offset
the secondary LED array from the primary by 2 inches.
This resulted in the longest piece of the LED array support
frame, as measured from the center of rotation, to be
approximately 9 inches. The overall dimensions of the
LED array support frame are 15 inches by 18 inches. In
order to reduce the weight and torque required to spin the
LED support frame, we constructed the frame out of
carbon fiber tubing with aluminum gussets at the corners.
The gussets increased the strength of the frame while it is
spinning and help provide a rigid frame for the LED
arrays. We chose to use a square carbon fiber tube with
0.315 inch sides.

B. Chassis Base Dimensions and Assembly

Once we had determined the longest piece of the LED
array support frame that will be rotating, we were able to
determine the size of the chassis base. For safety reasons,
we decided to make the chassis base large enough to allow
the LED array support frame to spin inside the foot print
of the chassis base or a square base with 18 inch sides. We
decided to construct the chassis base from two 1/4 inch
aluminum plates. The two plates were offset by 12 inch
solid aluminum rods and bolted together. The aluminum
plate and rods provided strength while minimizing the
weight of the chassis. The 12 inch rods allowed the chassis
base to be open in the middle for mounting the motor and
the motor controller. The overall dimensions for the
chassis base are 18 inches wide by 18 inches long by 12.5
inches high.

Fig. 2.1. Model of the chassis base showing the assembly of the

base plates and rods.

C. Motor and LED Array Support Frame Rotating
Interface

To allow for the LED array support frame to be driven
by the motor, we decided mount an extended-ring bearing
in the center of the top plate of the chassis base. In order to
provide the most space for feeding the power supply cable
through the rotating interface, we selected an extended-
ring bearing with a one inch shaft diameter. We secured
the bearing to the base of the chassis by welding a 2 inch,
schedule 40 pipe to the top plate with four set screws to

Fig. 2.2. Model of the extended-ring bearing and support tube
for mounting the LED array support frame.

secure the bearing to the pipe. To secure the LED array
support frame to the bearing, we inserted an aluminum
tube through the inner ring of the bearing. The tube was
secured to the bearing using the two set screws that come
installed on the bearing. This allowed for the POV display
to be easily disassembled when moving between locations.
Also, this design allowed the tube to be used to mount a
slip ring for electrical power transfer. The tube was then
attached to the shaft of the motor using additional set
screws. Lastly, the tube was notched to 0.315 inches wide
on the top to allow the LED array support frame to be
secured to the tube.

Fig. 2.3. Model of the chassis assembled with the LED array

support frame.

III. PRIMARY LED ARRAY

The primary LED array is used to display the main

image of the POV display. The primary LED array
consists of 128 LEDs and 24 LED controllers. The LEDs
chosen for the primary LED array are surface mount RGB
LEDs with

A. Primary Array LEDs

The LEDs chosen for the primary LED array are surface
mount, super bright, RGB LEDs. As previously discussed,
the LEDs are only 2.8mm wide. This allowed us to achieve
a high density of LEDs and therefore increasing the
resolution of the display. The final design of the primary
LED array allowed for 16 LEDs to fit in approximately
1.85 inches. Lastly, the RGB LEDs in each LED chip can
be individually driven allowing use to easy integrate the
LEDs with the LED controllers.

B. Primary Array LED Controllers

The LED controllers chosen for the primary LED array
are the TLC5940 by Texas Instruments. The TLC5940
allowed for controlling 16 individual LEDs through 16
individual controlled pulse width modulated channels.
Each channel is capable of 4096 grayscale steps of the
pulse width channel allowing us to achieve a wide range of
RGB colors. Additionally, the communications of the
controllers can be wired in series allowing us to write to
each controller using only one output line from the
primary microcontroller. Essentially, the output of one
controller is the input of another controller. Lastly, the

controllers have an enable line allowing us to latch all the
controllers at the same time. This allows us to flash the
controllers at the same time to generate the image display.

C. Primary Array Circuit Boards

The primary LEDs and controllers required mounting on
printed circuit boards. We chose to break the 128 RGB
LEDs into 8 individual boards. Each board houses 16
RGB LEDs and 3 LED controllers. This allowed us to
have the flexibility to change the size of the primary LED
array or replace a string of LEDs if required. Each board
has terminal blocks allowing it to be wired in parallel for
power and common inputs, and in series for
communications. The outputs of the LED controllers are
wired in sequential order to each RGB LED. Outputs 0, 1
and 2 of the first LED controller are wired to the inputs of
the first RGB LED. The pattern continues until the last
RGB LED.

Fig. 3.1. Example wiring scheme of LEDs and LED Controller

IV. SECONDARY LED ARRAY

The secondary LED array is used to display a text image
that appears to stand off from the image being displayed
by the primary LED array. The design for the secondary
LED array follows closely to the design for the primary
LED array. The changes that we made for the secondary
LED include using green LEDs instead of the RGB LEDs.
Also, the size of the secondary LED array is smaller than
the size of the primary LED array. The secondary LED

array consists only of 16 green LEDs. This also resulted in
only requiring one LED controller. The secondary LED
array still maintains to module design of the primary LED
array allowing us the flexibility of adding or replacement
LED modules as required.

V. COMPUTER SIDE IMAGE PROCESSING

We will be accepting image input from users via
computer side GUI. Image processing functions will then
extract then determine the image file type, and extract the
RGB data from the image. The RGB data will then go
through various forms of processing including color depth
reduction, cropping, and padding. The image may also be
top justified, bottom justified, or centered. The RGB data
will also be rearranged and packed into a binary file which
will then be sent to the POV display. The rearranged data
will be stored in the same order that it will be used by the
PIC32, which is an effort to reduce the required processing
power.

A. Image Format

We wanted to accept any reasonable image file format
that the user might input. This includes .jpg, .bmp, .png,
and many more. In order to obtain the RGB data from
these various image formats, we used several java
functions in the standard library. The first function is
ImageIO, which is supplied an image file format. ImageIO
then returns a Buffered Image, from which RGB values
can be extracted by calling Buffered Image.getRGB with
specific x and y coordinate as arguments. This extracted
RGB value is an integer in sRGB colospace, which can be
used as an argument to create a new java color, from
which the RGB data can be extracted individually using
Color.getR, color.getG, and color.getB, each having a
value between 0 and 255.

B. Color Depth

The maximum color depth that we can obtain from an
image is 24 bit color, which is far higher than what our
display needs. We can convert this RGB data into 8 bit
color by only using the 3 most significant bits of red and
green, and 2 most significant of blue, since the human eye
is less attuned to changes in blue.

C. Image Editing

If the image does not exactly match the required
dimensions of our display, it will require cropping and
padding since our output format is fixed in size. This is
accomplished by adding a padding/cropping value to each
index being used to obtain data from the buffered image. If
this altered index is out of range, the attempt to obtain the

pixel will fail and a predefined black or white pixel will be
written to the output file. There is a padding/cropping
value for both the X and Y index. These two values can be
determined by comparing the Height and Width of the
buffered image with the predefined Height and Width of
our display.

C. Image Storage

The RGB data will be stored into a binary output file in
the order that the PIC32 will use it. Since the display
shows a single column of the image at a time, we will
iterate through the image column by column and output the
RGB data as we arrive at each pixel. We will transverse
the image from top down first, then left to right.

VI. OUTPUTTING DATA TO THE LED ARRAY

The PIC32 contains two timers which can be set to
specific frequencies. The first timer, Timer 2, will be set to
operate at 20 Mhz. The second timer, Timer 3, will be set
to operate at 9600 Hz. The PIC32 also has 5 output

Fig. 6.1. ChipKIT uc32 Micro Processor

compare modules which can be used to pulse their

associated pins, and generate interrupts. An output
compare module can use either Timer 2 or Timer 3 when
configuring it, and the pulse width and behavior can be
controlled by selecting from various operating modes.
The Grayscale clock will use Output Compare Module 1

and pulse on pin 3 at 20 MHz. Modules 2 and 4 will be
configured using timer 3 and used to generate control
signals from Blank and XLAT. The blank signal will fire
first, driving pin 6 High. While pin 6 is high, the XLAT
pulse will fire and drive pin 6 High. Blank will go low
after XLAT has gone low, since it has a wider pulse width.
 The LED controllers contain a 192 bit shift register to

which the Grayscale data is written via serial transfer. We
are attempting a few different ways of doing this. The first

method, via SPI interface, has been successful, but has
created conflicts with other devices sharing the SPI data
bus.

A. LED Driver Communication

Another scheme for transmitting the serial data involves
setting up an output compare module on pin 5 to act as the
SCLK. The falling edge of each pulse creates and interrupt
which sets a flag allowing a function to change the SOUT
pin to high or low depending on the current bit of data.
We are using a TLC5940 library which allows us to

manipulate the Grayscale Data Buffer in various ways, and
sets up a scheme in which to update the data in the
controller via SPI communication. This library has become
a template for our own software design, but with many
changes. This includes altering the Output Compare
Module code to move the blank signal off of pin 10 and
onto pin 6, and also using a different scheme to alter the
GS data buffer, by reading the data from the SD memory
and storing it directly into the buffer. Also, we will need to
add a means for the library to either share the hardware
SPI or to not use it at all.
The control program will initialize the TLC5940 library

and begin reading data stored in SD memory. For each
iteration of the control program, the Grayscale Data buffer
is altered, and then an update function is called which
writes the new data to the LED controllers. The control
program then checks for incoming date via wireless
communication. The BLANK and LAT signals will
eventually go high, and the new data will be latched in and
displayed.
The data is being read from SD memory one column at a

time, these bytes are then combined to create an unsigned
integer, and then stored in the grayscale buffer. The
grayscale buffer size is exactly one column of data, that
being 6 unsigned integers times the number of LED
controllers in series. This corresponds to 192 bits per
controller.

B. LED Text Array Communication

A second LED array used for displaying text will be
connected to the primary LED array’s SOUT and receive
the same SCLK signal that the primary array receives,
effectively extending the main array by one more LED
controller. The user may want to only display text and
without an image, or an image without text, or both.
Because of this we will have various modes of operation
which help to determine what data to write into the
grayscale data buffer. If either is disabled, the data for that
display must still be written as all zeros so that the shift
registers that the user specified read from SD will be in the
proper position.

C. Scrolling Text

Image and text files stored on the micro SD card all start
with a one byte header which specifies whether or not the
image should rotate left, right, or stand still. The speed of
this rotation can also be set. This header is created by the
GUI based on user input. In order to cause an image to
scroll left or right as it is being displayed, we first save a
pointer to the start of the image. A pointer used to
transverse the image is then incremented as it is output, if
it increments beyond horizontal resolution of our display,
the pointer is reset to zero. The starting position of the
transversal pointer is adjusted based on the speed value
stored in the header file.

D. Internal Storage and External Communication

We will also occasionally check for communication
from the computer connected to the device. These
messages could be telling the device to turn on or off the
main display, or to switch which image to display that has
already been loaded onto the SD memory storage.
Additionally, new data for the text array can also be
received so that the text displayed updates to the new
message. At this time, we are not sure if we will be able to
receive live updates of images not already stored in SD
memory because of the amount of time it would take to
receive an image in entirety. It may be possible to receive
the image in smaller packets and write them to a file in SD
memory as they are received, all while still displaying an
image on the primary array uninterrupted. If this proves
infeasible we could enter into a data transmission mode,
where image displaying ceases and the controller is
dedicated to receiving and processing the data. The
controller would then enter back into display mode, and
display the newly received image.

VII. WIRELESS COMMUNICATIONS

We will be using ad-hoc mode Wi-Fi communication in
order to send data to be stored on the SD card. The
microcontroller will use the attached Wi-Fi shield to act as
a server and create an ad-hoc network with the SSID
"POV Display". This is the network that will allow us to
send various signals to the microcontroller while it is
rotating and displaying images. We will be using 104-bit
WEP encryption in order to secure the network and
prevent unwanted connections from vandalizing the
display.

A. Data to be Received

After the microcontroller is powered on and the network
is created it will wait for an incoming connection. It will
then be possible to connect a computer to the "POV
Display" network using the required 104-bit WEP key.
Once a computer is connected to the network it will then
be possible to use the GUI application to send properly
formatted image data to be saved on the SD card and later
displayed. The data that is received will have a header to
differentiate the types of data that the microcontroller may
receive. Depending on the contents of the header the
microcontroller will know where to store the image file
since there will be separate files for the main display and
the smaller text display. Any possible animation settings
contained in the header will not be saved on the SD card
but instead on the flash memory of the microcontroller.
Any other information that the microcontroller receives
that is not image data will be used to manipulate variables
in the flash memory that will control the operation of the
display.

A. Server Operation

The server software running on the microcontroller will
use a state machine apporach. There will be a global
variable to store the current state of the server. This is an
efficient way of having the microcontroller decide what
should be done (if anything) during each iteration of the
main loop. Different possible states will include: initialize,
listen, isLisening, availableClient, acceptClient, read,
write, and close. The initialize state will ititialize the IP
stack and begin the listen state. The listen state will have
the server begin waiting for a connection on a
predetermined port number. The server will continue
lisening until a client attempts a connection which will
then enter the avialableClient and acceptClient states in
order. After the client is accepted the read state will wait
until data is sent. All data will then be received and stored
and then the connection will be terminated within the close
state. If any information needs to be sent back to the
computer this will happen within in the write state before
the close state. The write state will most likely be
primarily used for debugging purposes since information
will not normally be sent back to the computer.

C. Client Operation

The computer running the GUI application will act as
the client in the "POV Display" network. The connection
to the network will need to be made manually using the
wireless network manager provided by the operating
system. Once the connection is established the GUI
application will be required to connect to the proper port

number and send meaningful information to the display.
The GUI will handle all image formatting as detailed
previously and send the data to the server. The connection
will be terminated after each successful transfer and
reestablished for each new transfer. This will allow the
user to take as much time as they need between transfers
without having to worry about timeouts and manually
reconnecting.

VIII. DISPLAY SENSOR

In order to help the process of creating a clear image a
trip sensor is needed to determine an exact point in the
LED array’s trajectory to begin a new frame. The method
we chose to implement is an infrared sensor that will
trigger when passing over a reflective surface on the top of
the Chassis. The total Sensor encompasses two circuits, a
sending circuit and a receiving circuit. Both circuits will
be on the same chip and mounted on the bottom of the
spinning apparatus. The sensors will point towards the top
of the housing chassis where it will rotate along a
trajectory. Most of its trajectory will be covered in black
paint but at one point along the trajectory a reflective
surface will break up the path in order to create a trigger
point. This point will be where the device will be triggered
to start displaying a new frame.

A. Sending Circuit

The sending circuit, as seen in figure XYZ.1, is using an
LM358 operational amplifier to implement. In this case a 5
volts Vin signal is required to run the circuit. The CTRL
line is a signal coming from the rotating microcontroller,
when this signal reads 2.5 volts the output will go high and
turn the infrared LED on.

Fig. 8.1. Infrared Sending Circuit

A. Receiving Circuit

The receiving circuit will receive a 5 volts signal just
like the sending signal. Both IR LEDs will be adjacent to
each other and use a common property among LEDS in
which when subjected to light a voltage drop can be read
on the terminals of the LED. In this case when the
receiving signal is hit by the reflected light from the
sending signal it will create a voltage drop along its leads
which will cause the LM358 on the receiving side to read
high, turning on the indicator LED and sending a signal to
the output terminal which will be connected to the
microcontroller.

Fig. 8.2. Infrared Receiving Circuit

IX. MOTOR

A heavy duty motor is required to obtain the torque to
rotate the LED apparatus at 1800 rpms or 30 frames per
second. Using the two masses method to estimate the
amount of torque that is required came out to be about
0.248 Nm. We needed our motor to be well above that to
conceivably rotate the device at the speed we desired. It
also needed to be large enough so that we could mount a
slip ring and the apparatus onto its shaft.

A. Motor Choice

Our choice was the Dayton 9FHD7 permanent magnet
motor. The motor is relatively light weight, but more

Fig. 9.1. Dayton 9FHD7 Motor

importantly is rated for 1800 rpm, and 0.49 Nm which is
almost double what we need. It has a 0.5 in diameter shaft
with 1.38 in shaft length, which is suitable for power
transmission via slip ring from the stationary side to the
rotating side. It is rated at 90 volts and 1.5 amps.

B. Motor Control

Since we need to both power this motor and have some
control over its speed it would be ideal to get a driver chip

Fig. 9.2. Main Speed Potentiometer

for it. The one we found to use for this project is the
KBRG-212D Regenerative Drive chip. This chip has a
variety of features that are useful for our project and for
possible scalability. However, for the purposes of our
project the chip will be set up just for running and
maintaining the rpm value of the motor.
There are two sections of the motor driver that are

important to us and that is the +15 volts input, the SIG line

and the COM. A 5 kilo-ohms mechanical potentiometer
will be wired into these inputs in order to vary the speed of
the motor. The speed of the motor is directly related to

the amount of voltage that is seen at this terminal. Figure
XYZ.2 shows the connection required for this. This set up
only allows for single direction rotation, with the
potentiometer only controlling how fast or slow the motor
is rotating. During normal operations this will be turned to
the maximum speed.
The second section of the motor driver of importance is

the enable line. This allows for an on and off switch to the
motor. There are two settings for the braking mechanism
this feature uses but for our purposes we are going to use
the coast to stop feature since we do not require a lot of
torque to stop the device. This portion of the circuit will be
connected to a switch that will be normally on and when
the switch is thrown it will cause the motor to slow down
to a stop, after which flipping the switch again will rev the
motor back up to the speed correlating with its current
setting via the potentiometer. Figure XYZ.3 shows the
connections for this.

Fig. 9.3. Enable Line

X. CONCLUSION

The design described above was the best solution found
for the specifications of the project. The product is
relatively light weight and portable allowing for it to be
transported from one location to another for ease of use.

The device is capable of displaying a variety of images
both preprogramed and custom, allowing for wide user
specified applications. With further time and resources the
device is openly capable of scalability ranging from a
more powerful microcontroller to additional LEDs.

ACKNOWLEDGEMENT

The authors wish to acknowledge KEMCO for
sponsoring this project by donating the chassis.

BIOGRAPHY

Patrick Logan Srofe is currently a senior at the
University of Central Florida and will receive his
Bachelor's of Science in Electrical Engineering in
December of 2012. His primary interests lie in embedded
systems, semiconductor fabrication, and biomedical
nanotechnology.

Aaron Burlison is currently a senior at the University of

Central Florida and will receive his Bachelor's of Science
in Electrical Engineering in December of 2012. He is
currently working as a project manager at Kemco.

Timothy Egan will graduate from the University of

Central Florida with a Bachelor's of Science in Computer
Engineering in December of 2012.

Antonio Ortiz III will graduate from the University of

Central Florida with a Bachelor's of Science in Computer
Engineering in December of 2012.

REFERENCES

[1] “IKA-TACH.” IKALOGIC.N.P., n.d. Web. 01 Aug. 2012.
 http://www.ikalogic.com/ika-tach/.
[2] “99000 RPM Contact-Less Digital Tachometer.”

IKALOGIC. N.p., n.d. Web. 01 Aug. 2012
http://www.ikalogic.com/99-000-rpm-contact-less-digital-
tachometer/.

[3] “Infra-Red Proximity Sensor Part 1.” IKALOGIC. N.p., n.d.
Web. 01 Aug. 2012 http://ikalogic.cluster006.ovh.net/infra-
red-proximity-sensor-part-1/>.

http://www.ikalogic.com/ika-tach/
http://www.ikalogic.com/99-000-rpm-contact-less-digital-tachometer/
http://www.ikalogic.com/99-000-rpm-contact-less-digital-tachometer/
http://ikalogic.cluster006.ovh.net/infra-red-proximity-sensor-part-1/
http://ikalogic.cluster006.ovh.net/infra-red-proximity-sensor-part-1/

	3D Persistence of Vision Device
	Dept. of Electrical Engineering and Computer Science, University of Central Florida, Orlando, Florida, 32816-2450
	Abstract — Persistence of vision is widely used as a method of image recreation and distribution. While generally done throu
	Index Terms — AC-DC Converters, Image processing, Image coding, Image generation, Light emitting diodes, Permanent magnet mo
	I. Introduction
	V. Computer Side Image Processing
	VI. Outputting data to the Led Array
	VII. Wireless Communications
	VIII. Display Sensor
	IX. Motor
	Acknowledgement
	Biography
	References

