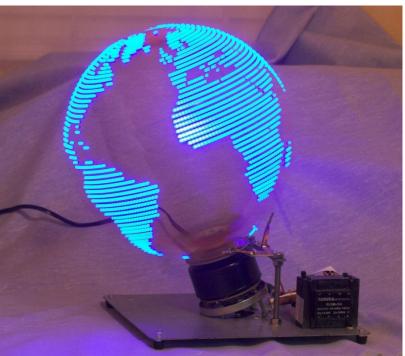
University of Central Florida

Department of Electrical Engineering and Computer Science

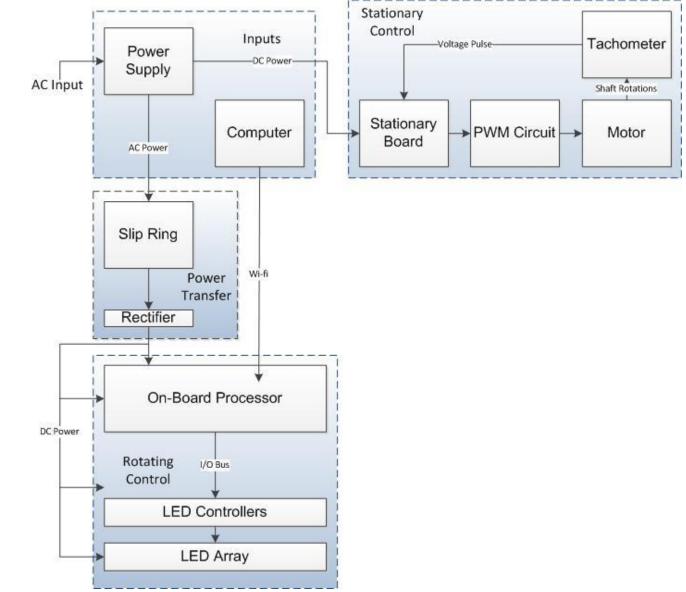

3D Persistence of Vision Display

Sponsor: KEMCO Industries

Group 8 Aaron Burlison Patrick Srofe Antonio Ortiz Timothy Egan

Goals and Objectives

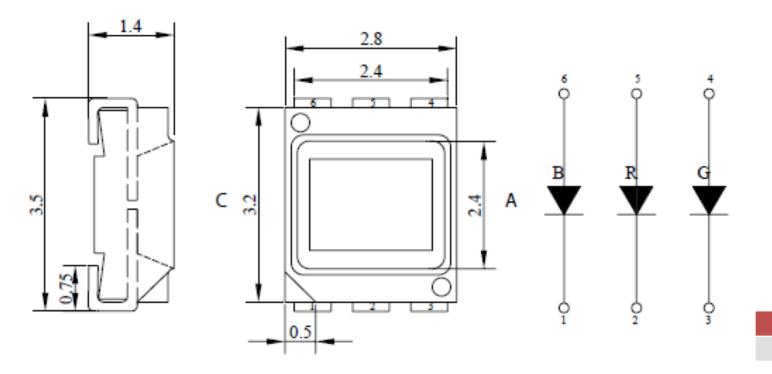
- Computer Interfacing
 - Live program-ability
- High Resolution
 - Capable of displaying complex images and animations.
 - RGB capabilities.
- Portable



Specifications

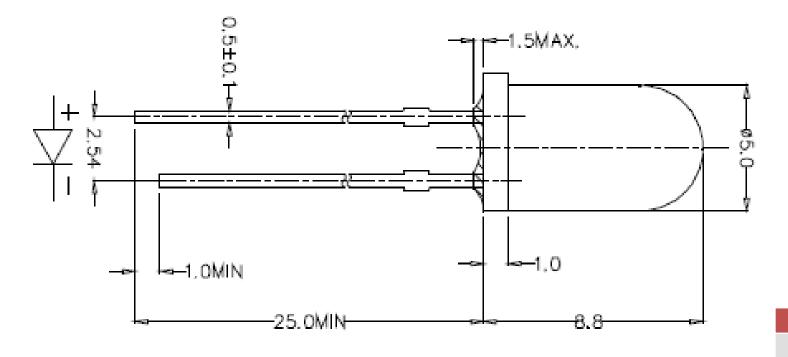
- 128 RGB LEDs
- 128x384 resolution
- 30 fps or 1800 rpm
- 18" overall diameter
- 24 in. height
- Less than 100 lbs.
- 120 V AC [Standard US outlet]
- 1-2 Mbits/s wireless data transmission.
- 512 Kb onboard flash memory.

Hardware Flowchart



LED Arrays Main Overview

- Primary LED Array:
 - Used to display the picture
 - Consist of (128) RGB LEDs and (48) LED Controllers
 - Produces an image of (128) pixels x (384) pixels
 - Operate at 5.0 V
- Secondary LED Array:
 - Used to display a text message
 - Text message will appear to "stand off" from the picture being displayed by the Primary LED Array.
 - Consist of (16) Mono-color LEDs and (2) LED Controllers
 - Operate at 3.2 V


LED Arrays RGB LED Specifications

- Surface Mount
- Low Profile Package
- Operates at 5.0 V and 30 mA
- Part Number: OVS-3309

LED Arrays Mono-Color LED Specifications

- Through Hole T-1 ³/₄ (5mm) Package
- Green LED
- Operates at 3.2 V and 20 mA
- Part Number: C503B-GAN-CB0F0791

LED Arrays LED Controllers

- 16 Channel Constant-Current Sink LED Driver
- Each channel has individually adjustable PWM
- PWM has (4096) Steps (12 Bit)
- Drive Capabilities:
 - 0mA to 60mA when Vcc < 3.6 V (Secondary LED Array)
 - 0mA to 120mA when Vcc > 3.6 V (Primary LED Array)
- Serial Data Interface
 - Multiple Controllers can be wired in series or cascaded together and use the same output from the microcontroller
- 30MHz Data Transfer Rate
- Each controller will handle only one color (Red, Green or Blue)
- Part Number: TLC5940PWP (Surface Mount)

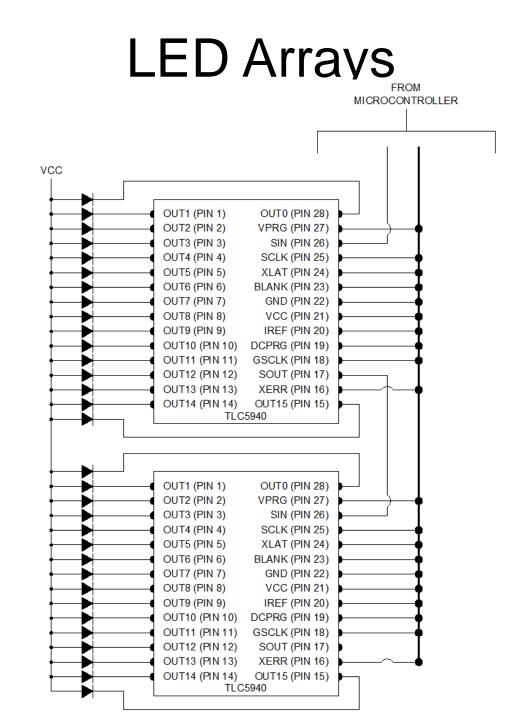
LED Arrays LED Controllers

• Data Transfer Rate is 30MHz

f(GSCLK) = 4096 x f(update)f(SCLK) = 193 x f(update)x nWhere:

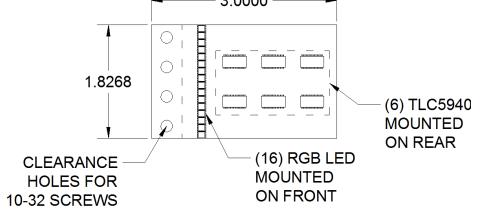
f(GSCLK) equals the minimum frequency needed for the gray scale clock. f(SCLK) equals the minimum frequency needed for SCLK and SIN n equals the number of cascaded controllers

$$f(update) = 384 x 30 = 11,520 Hz$$
$$n = \frac{128}{16} = 8$$

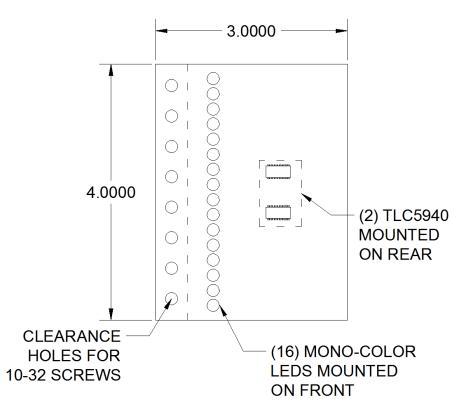

f(GSCLK) = 4096 x 11520 = 47.185 MHzf(SCLK) = 193 x 11520 x 8 = 17.786 MHz

LED Arrays LED Controllers

 To overcome the high frequency requirements for f(GSCLK), we created two groups of LED controllers each handling half of the work load.


$$f(update) = 192 \ x \ 15 = 2,880 \ Hz$$
$$n = \frac{128}{16} = 8$$
$$F(GSCLK) = 4096 \ x \ 2880 = 11.796 \ MHz$$
$$F(SCLK) = 193 \ x \ 11520 \ x \ 8 = 4.446 \ MHz$$

Vertical Group A Pixel Column 1	Vertical Group B Pixel Column 2	Vertical Group A Pixel Column 3	Vertical Group B Pixel Column 4	••••	Vertical Group A Pixel Column 383	Vertical Group B Pixel Column 382	Vertical Group A Pixel Column 383	Vertical Group B Pixel Column 384
Group A	Group B	Group A	Group B		Group A	Group B	Group A	Group B


LED Arrays Primary LED Array Design

- Creating module LED arrays that can be pieced together.
- Each module will contain (16) RGB LEDs and (6) LED Controllers
- Each module will be identical in design
- Each module will have surface mount terminal blocks for jumpering modules together and power supply
- Approximate dimensions of each module will be 1.823" H x 3.00" W

LED Arrays Secondary LED Array Design

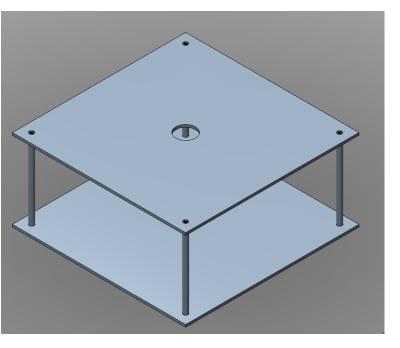
- Similar in design to the Primary LED Array
- Array will contain (16) Mono-color LEDs and (2) LED Controllers
- Array will have surface mount terminal blocks for connection to microcontroller and power supply
- Approximate dimensions of each module will be 4.0" H x 3.00" W

Microcontroller Requirements

- 128 X 384 pixels with 8 bit color.
- 30 FPS refresh rate.
- Gray scale data contains 12 bits per color.
- 128 X 384 X 36 X 30 = 53,084,160 bits of data that must be sent to the LED controllers per second.

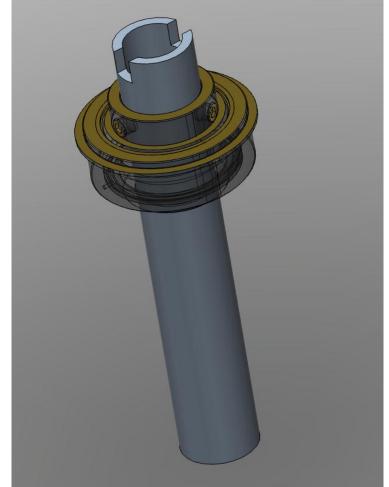
Microcontroller Requirements

- A single image stored in flash will require 393,216 bits.
- Wi-Fi connectivity to receive a new image.
- An image for the text display will require 6,144 bits.
- Total storage requirement: 399,360 bits

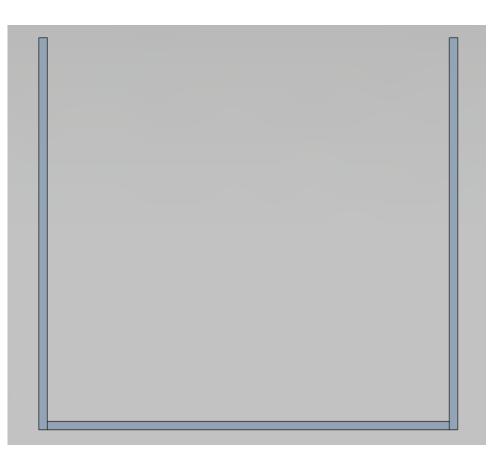

Microcontroller

- chipKIT uc32
- 80 Mhz
- 512K Flash
- 32K SRAM
- 42 available I/O's

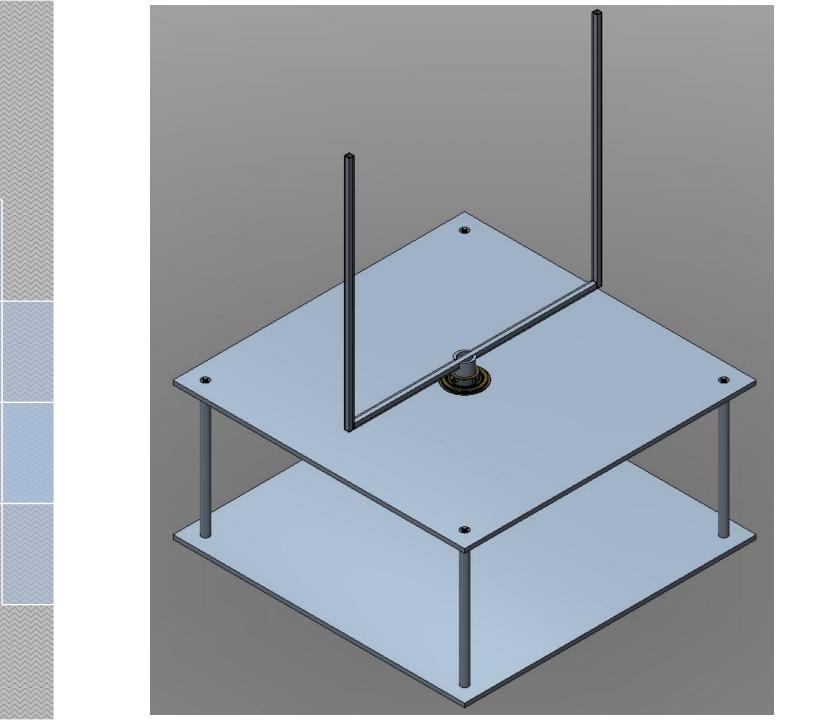
Chassis Design Chassis Base


- Constructed from steel
- Painted Satin Black
- Open in middle for mounting motor and power supply
- Approximate Dimensions: 18" W x 18" L x 12.5" H

 		_	_


Chassis Design Rotary Interface

- Extended-Ring Bearing with set screws to secure a pipe to the inner ring of the bearing.
- Bearing to be welded to the top of the chassis base
- Bearing and pipe will be painted black
- Pipe will be notched on top to secure the LED Support Frame


Chassis Design LED Array Support Structure

- Construction from carbon fiber square tubing (to reduce weight)
- Holes drilled in vertical frame to secure LED PCB
- Horizontal support frame will be longer on one side for the Secondary LED Array
- Approximate Dimensions: 15" H x 16.5" W

Chassis Design Motor Interface

- Option 1:
 - Use a pulley system
 - Attach a pulley to the motor shaft
 - Use a flat belt to connect the pulley and the pipe together
 - Advantage: Allows for gear changing (ex. 4:1)
- Option 2:
 - Mount the motor directly under the pipe at the center of rotation
 - Weld a plate to the bottom of the pipe with a hole in the middle for motor shaft
 - Advantage: Easier to implement

Chassis Design **Torque Requirements** R2 R1 M1 M2 Simplified LED Support Structure M1 (mass of primary LED array) = 0.013956 kgM2 (mass of secondary LED array) = 0.013956 kgR1 = 0.35448 m and 0.0128 kgR2 = 0.40752 m and 0.0148 kg $I_{M1} = M1 x R1^2 = (0.013956 kg)x(0.35448)^2 = 0.001688 kg \cdot m^2$ $I_{M2} = M2 x R2^2 = (0.013956 kg)x(0.40752)^2 = 0.00223 kg \cdot m^2$ $I_{R1} = \frac{1}{3} x MR1 x R1^2 = (0.333)x(0.0128 kg)x(0.35448)^2 = 0.000537 kg \cdot m^2$ $I_{R2} = \frac{1}{3} x MR2 x R2^2 = (0.333)x(0.0148 kg)x(0.40752)^2 = 0.000817 kg \cdot m^2$

$$\sum I = I_{M1} + I_{M2} + I_{R1} + I_{R2} = 0.00527 \ kg \cdot m^2$$

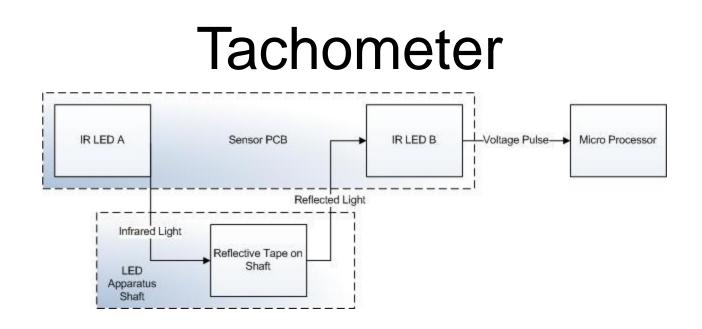
Chassis Design Torque Requirements R1 R2 M2 M1 M2 Simplified LED Support Structure

$$\sum I = 0.00527 \ kg \ \cdot \ m^2$$
$$\alpha = \frac{[(30)x(2\pi)^2]}{[(2)x(1)x(2\pi)^2]} = 47.123$$

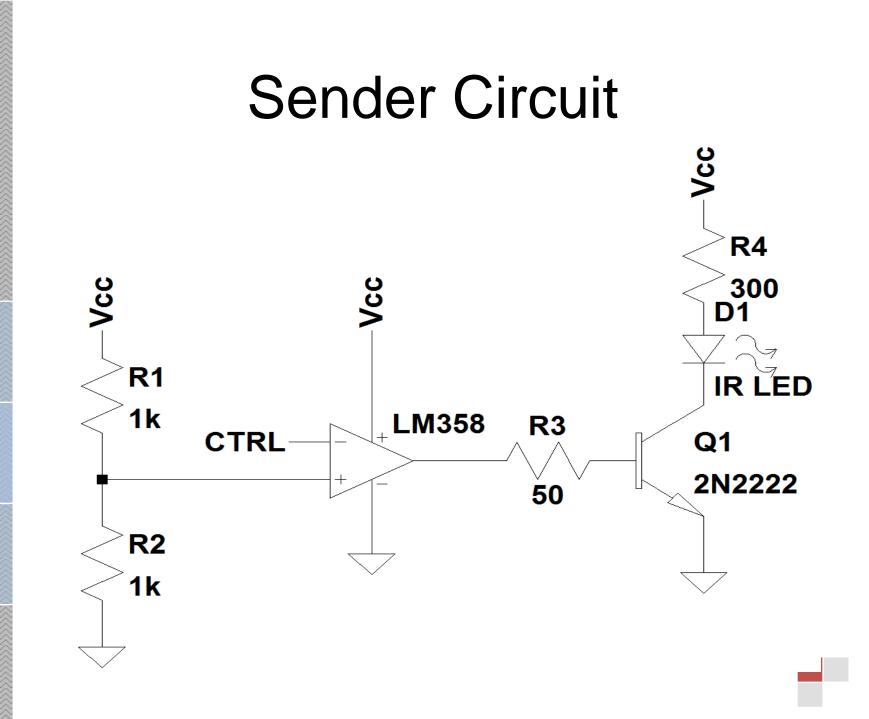
 $T = \sum I x \alpha = 0.248 N \cdot m$

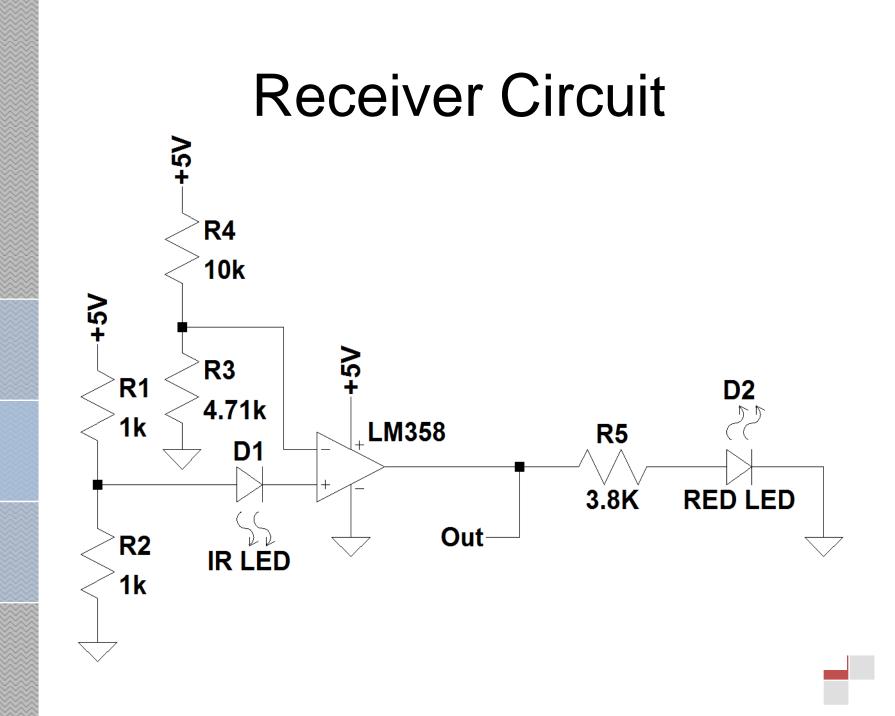
Motor Requirements

- The motor needs to be light weight.
- Capable of maintaining 24-30 fps
 - 1440 to 1800 rpm
- Low Noise.
- Capable of handling 0.25 N·m of Torque.
- Large motor shaft
 - For mounting LED array directly or in the case of using a pulley system to rotate array.

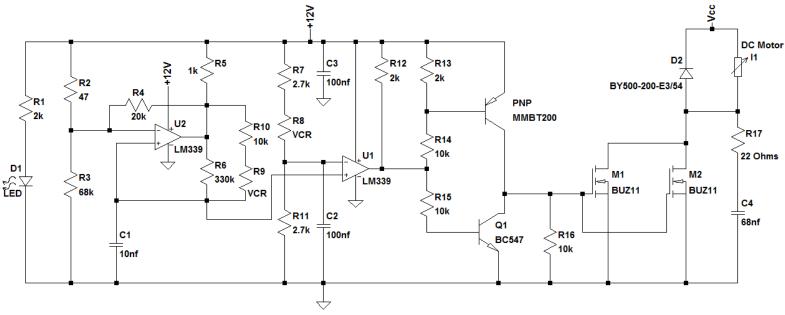

Motor

- Dayton 9FHD7 DC motor
 - Runs on 90 V, 1.5 A.
 - 1800 rated rpm.
 - 0.49 N·m of torque.
 - Light weight.
 - 0.5 in. shaft diameter.
 - 1.38 in. shaft length.




Motor Control

- Limited Functionality
 - Turn on
 - Turn off
 - Maintain
- Inexpensive
- Capable of storing data:
 - Current rpm
 - Time between complete rotations
 - Location of LED apparatus in transit



- Works off two IR LEDs and a LM358 Op-amp.
 - Designed around a common principle where LEDs show a voltage drop when light shines on them.
 - Creates a voltage pulse of 3.69 V on the output when the sending LED's light is reflected onto the receiving LED.
 - Both LEDs will be shielded with a black hollow cylinder to help prevent ambient light-noise.

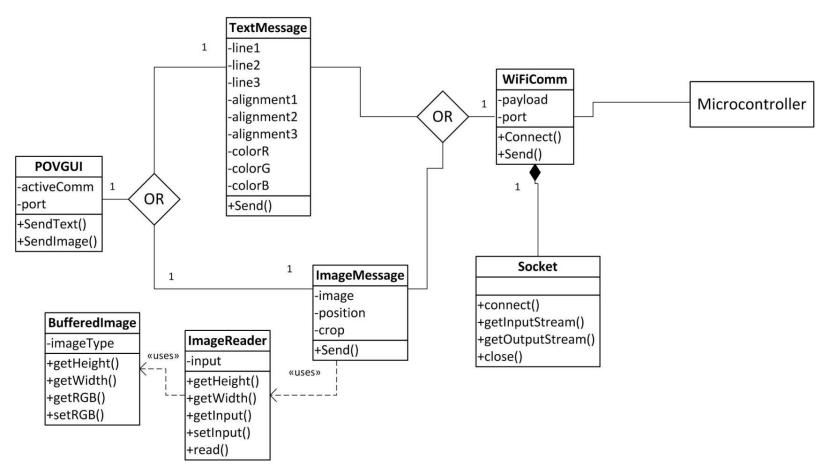
PWM Control Circuit

- R9 resistance varies the frequency of the PWM wave from 400 Hz to 3 KHz.
 - This will be preset and unchanged during operation.
- R8 resistance varies the rated rpm value from 0-100%.
 - This will be controlled through the use of a voltage controlled resistance.
 - The voltage to this VCR will be controlled by the stationary micro-controller.

Stationary Controller

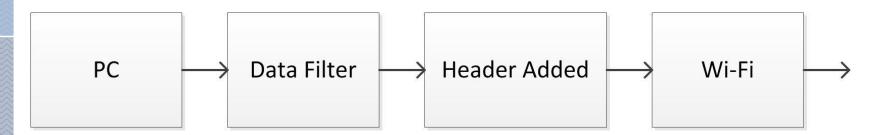
- An Arduino Uno will be sufficient to run the tachometer and PWM circuit for the motor.
 - Can store up to 32 Kb of flash memory.
 - 5 V operating voltage
 - 16 MHz clock speed.

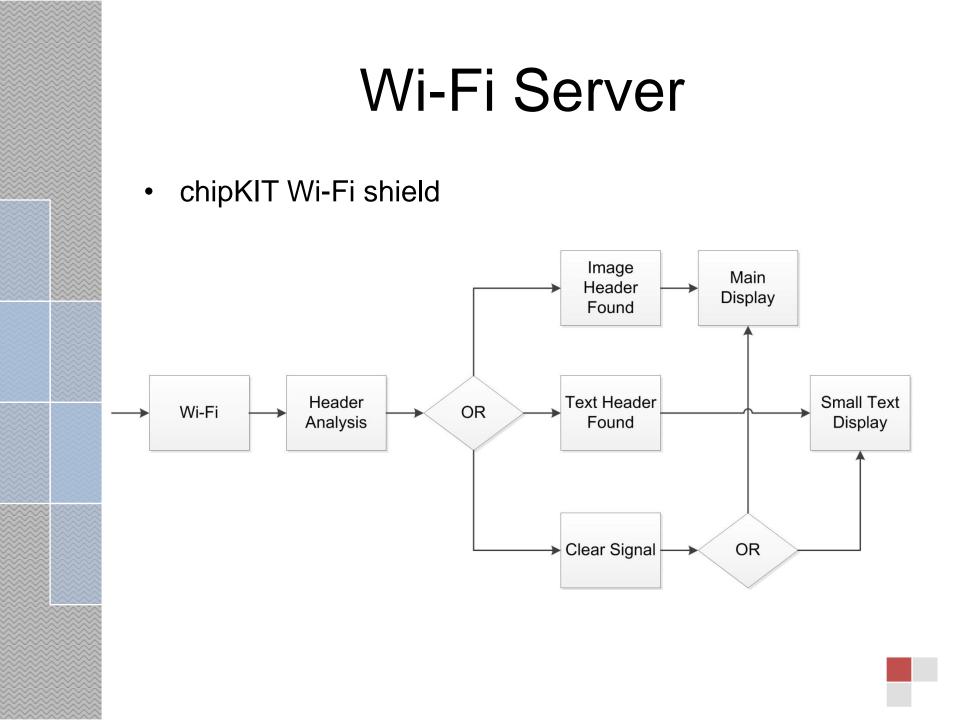
GUI


- Easy to use interface
- Allows user to enter a text message or image
- Text: color, animation, and alignment options
- Images: crop, position, and clear options

GUI

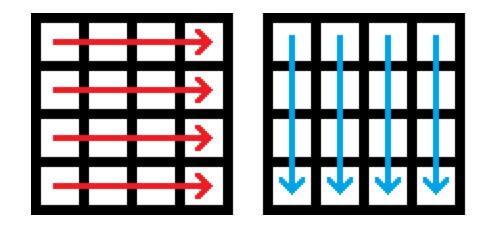
6


S POV GUI	Communications: Initializing
Image Text	Display: 💿 Text display 🔘 Main display
Crop Select Image	Lines of Text: (a) 1 Line (C) 2 Lines (C) 3 Lines
Position:	Color: Color: Red Green Blue Custor
	Alignment: Same alignment for all lines Line 1: Left Center Right
	Line 2: Line 2: Left Center Right Line 3: Left Center Right
	Animation: None 👻
	jTextField1
	jTextField2
	jTextField3
	Send Text Clear Text


GUI

Wi-Fi Client

- PC will connect in ad-hoc mode
- 1-2 Mbps
- TCP protocol
- PC will send formatted data with header

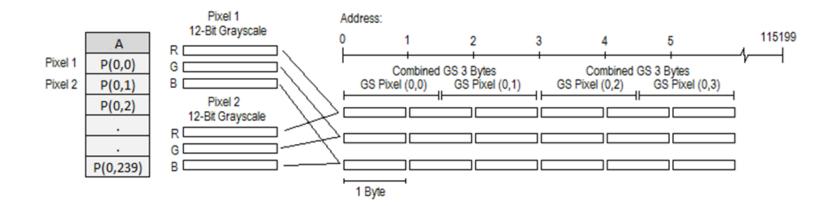


Preprocessing

- Preprocessing occurs on laptop before data transfer to device.
- Primary Display Converts Image input into data used by the microcontroller.
- Secondary Display Converts text input into data used by the microcontroller.

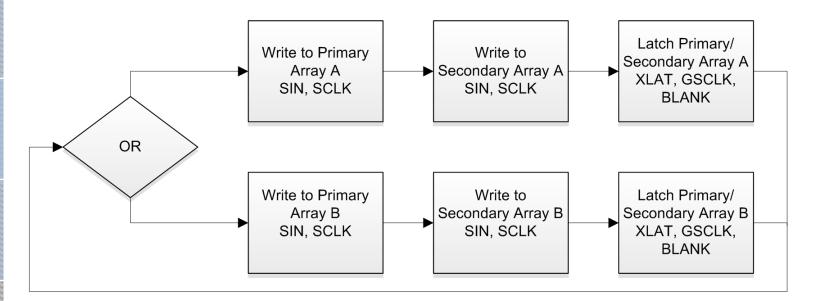
Data Formatting

- Truncate image to fit within 384Wx128H
- Pad image and center if necessary
- Store data in the order it will be needed by processor.
- Affix a header describing the data. (Includes scrolling information, etc.)

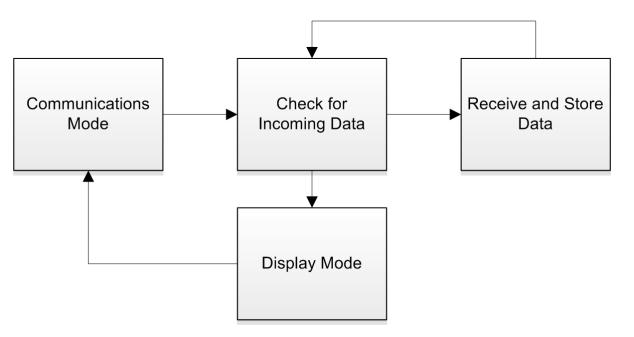


Data Formatting

- Obtain RGB data
- Java Classes Used: ImageIO, ImageReader, BufferedImage.
- ImageIO finds an ImageReader that claims to be able to read the image type
- ImageIO.read() returns BufferedImage
- BufferedImage.getRGB(x,y)


Preprocessing Functions

- TranslateFrame() Converts image from .jpg, .bmp, etc
- TranslateAndOutput() Two pixels, stores in output bin
- ConvertToGrayscale() 12 bit representation of value
- CombineGrayscale() Combines two grayscale values into a 3 byte structure.


Microcontroller Functions

- Display Mode:
 - Write to LED Controllers via serial communication. SIN, SCLK 30 MHz
 - XLAT, BLANK 11520 Hz, GSCLK 30 MHz

Microcontroller Functions

- Communications Mode:
 - Occasional check for incoming data.
 - Receive data and store in memory.
 - Return to Display Mode operations.

Power Requirements

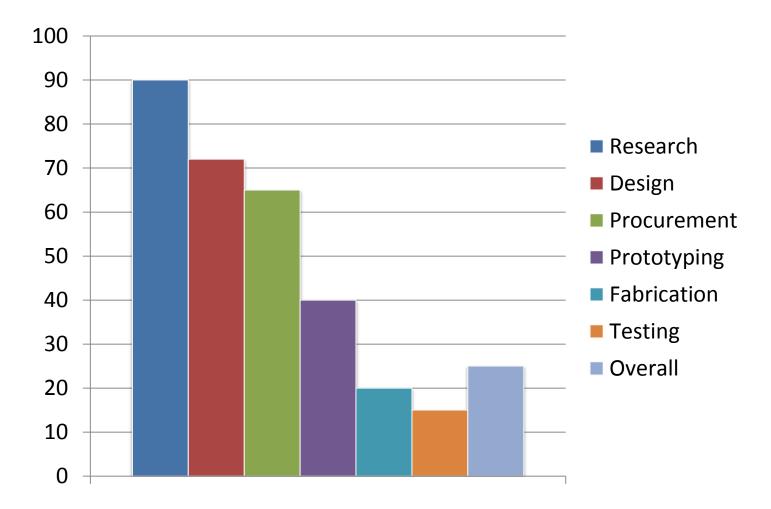
- Main LED array Power Draw:
 - 90 mA * 5 V * 128 LEDs = 57.6 W
- Secondary LED array Power Draw:
 - 20 mA * 3.2 V * 16 LEDs = 1.024 W
- On board Micro-controller Power Draw:
 - -75 mA * 3.3 V = 0.2475 W
- Total Power Draw: 58.63 W
- Assuming 20% power dissipation through the slip-ring we need to transfer around 70.36 watts to the rotating side.

Power Supply

- Using standard AC outlet (120 V, 60 Hz)
- Use fuses for overcurrent protection
 - One for main incoming AC power
 - One for branch circuit to rotating side
- Using standard full wave rectifier circuits to convert incoming AC to DC
- Three Rectifier Circuits Required:
 - Rectifier 1 Output: 100 Vdc and 150 W
 - Rectifier 2 Output: 5 Vdc and 10 W
 - Rectifier 3 Output: 5 Vdc and 100 W
- Each LED Array Module will have voltage regulator on PCB
- AC power will be transferred to rotating side using slip rings

Slip Ring

- The slip ring will consist of two separate copper washers attached to the shaft of the LED apparatus.
 - Insulating material [glastic] will separate the shaft and the washer from direct contact.
 - One washer will act as the Live while the other will be the neutral or ground line.
- A mounted copper wire with a frayed end will create the contact to the outer wall of the washer.
- A hole will be bore through at a point on the inner wall of the copper washer
 - A wire will be connected here and threaded up through the LED apparatus' shaft to the micro-controller and LEDs.


Cost Projection

Description	Quantity	Cost (per unit)	Price
Primary LEDs	128	\$1.51	\$193.28
Green LEDs	16	\$0.27	\$4.32
LED Controllers	50	\$0.52	\$26.00
Motor	1	\$35.00	\$35.00
Chassis	1	-	Donated
Stationary Controller	1	-	Donated
On-board Controller	1	\$34.99	\$34.99
Wireless Chip	1	\$49.99	\$49.99
РСВ	-	-	\$100.00
Misc. Equipment	-	-	\$150.00
Prototyping	-	-	\$100
		Total:	\$693.58

Division of Labor

	Aaron	Patrick	Tim	Tony
LED Control & Array	75%	5%	15%	5%
Motor Control	5%	85%	5%	5%
Sensors	5%	85%	5%	5%
Power Supply	85%	5%	5%	5%
Power Transmission	15%	75%	5%	5%
Chassis	85%	5%	5%	5%
GUI	5%	5%	5%	85%
Image Processing	5%	5%	85%	5%
Wireless Transmission	5%	5%	30%	60%

Progress

Current Issues

- Measuring power dissipation for a rotating device.
- Transmitting 120V AC over slip ring

Questions?