University of Central Florida

3D Persistence of Vision Display

Sponsor: KEMCO Industries

Group 8
Aaron Burlison
Patrick Srofe
Antonio Ortiz
Timothy Egan

Goals and Objectives

- Computer Interfacing
- Live program-ability
- High Resolution
- Capable of displaying complex images and animations.
- RGB capabilities.
- Portable

Specifications

- 128 RGB LEDs
- 128×384 resolution
- 30 fps or 1800 rpm
- 18 " overall diameter
- 24 in. height
- Less than 100 lbs .
- 120 V AC [Standard US outlet]
- 1-2 Mbits/s wireless data transmission.
- 512 Kb onboard flash memory.

Hardware Flowchart

LED Arrays Main Overview

- Primary LED Array:
- Used to display the picture
- Consist of (128) RGB LEDs and (48) LED Controllers
- Produces an image of (128) pixels x (384) pixels
- Operate at 5.0 V
- Secondary LED Array:
- Used to display a text message
- Text message will appear to "stand off" from the picture being displayed by the Primary LED Array.
- Consist of (16) Mono-color LEDs and (2) LED Controllers
- Operate at 3.2 V

LED Arrays RGB LED Specifications

- Surface Mount
- Low Profile Package
- Operates at 5.0 V and 30 mA
- Part Number: OVS-3309

LED Arrays Mono-Color LED Specifications

- Through Hole - T-1 3/4 (5mm) Package
- Green LED
- Operates at 3.2 V and 20 mA
- Part Number: C503B-GAN-CB0F0791

LED Arrays LED Controllers

- 16 Channel Constant-Current Sink LED Driver
- Each channel has individually adjustable PWM
- PWM has (4096) Steps (12 Bit)
- Drive Capabilities:
- OmA to 60mA when Vcc < 3.6 V (Secondary LED Array)
- OmA to 120 mA when Vcc > 3.6 V (Primary LED Array)
- Serial Data Interface
- Multiple Controllers can be wired in series or cascaded together and use the same output from the microcontroller
- 30MHz Data Transfer Rate
- Each controller will handle only one color (Red, Green or Blue)
- Part Number: TLC5940PWP (Surface Mount)

LED Arrays LED Controllers

- Data Transfer Rate is 30 MHz

$$
\begin{gathered}
f(\text { GSCLK })=4096 \times f(\text { update }) \\
f(S C L K)=193 \times f(\text { update }) \times n \\
\text { Where }:
\end{gathered}
$$

$f(G S C L K)$ equals the minimum frequency needed for the gray scale clock. $f(S C L K)$ equals the minimum frequency needed for SCLK and SIN n equals the number of cascaded controllers

$$
\begin{gathered}
f(\text { update })=384 \times 30=11,520 \mathrm{~Hz} \\
n=\frac{128}{16}=8 \\
f(\text { GSCLK })=4096 \times 11520=47.185 \mathrm{MHz} \\
f(\text { SCLK })=193 \times 11520 \times 8=17.786 \mathrm{MHz}
\end{gathered}
$$

LED Arrays LED Controllers

- To overcome the high frequency requirements for $f(G S C L K)$, we created two groups of LED controllers each handling half of the work load.

$$
\begin{gathered}
f(\text { update })=192 \times 15=2,880 \mathrm{~Hz} \\
n=\frac{128}{16}=8 \\
f(G S C L K)=4096 \times 2880=11.796 \mathrm{MHz} \\
f(S C L K)=193 \times 11520 \times 8=4.446 \mathrm{MHz}
\end{gathered}
$$

Vertical Group A Pixel Column 1	Vertical Group B Pixel Column 2	Vertical Group A Pixel Column 3	Vertical Group B Pixel Column 4	\ldots	Vertical Group A Pixel Column 383	Vertical Group B Pixel Column 382	Vertical Group A Pixel Column 383	Vertical Group B Pixel Column 384
Group A	Group B	Group A	Group B	-•	Group A	Group B	Group A	Group B

LED Arravs
 FROM

MICROCONTROLLER

LED Arrays Primary LED Array Design

- Creating module LED arrays that can be pieced together.
- Each module will contain (16) RGB LEDs and (6) LED Controllers
- Each module will be identical in design
- Each module will have surface mount terminal blocks for jumpering modules together and power supply
- Approximate dimensions of each module will be 1.823 " H x 3.00" W

LED Arrays Secondary LED Array Design

- Similar in design to the Primary LED Array
- Array will contain (16) Mono-color LEDs and (2) LED Controllers
- Array will have surface mount terminal blocks for connection to microcontroller and power supply

- Approximate dimensions of each module will be 4.0 " H x 3.00" W

Microcontroller Requirements

- 128×384 pixels with 8 bit color.
- 30 FPS refresh rate.
- Gray scale data contains 12 bits per color.
- $128 \times 384 \times 36 \times 30=53,084,160$ bits of data that must be sent to the LED controllers per second.

Microcontroller Requirements

- A single image stored in flash will require 393,216 bits.
- Wi-Fi connectivity to receive a new image.
- An image for the text display will require 6,144 bits.
- Total storage requirement: 399,360 bits

Microcontroller

- chipKIT uc32
- 80 Mhz
- 512K Flash
- 32K SRAM
- 42 available I/O's

Chassis Design Chassis Base

- Constructed from steel
- Painted Satin Black
- Open in middle for mounting motor and power supply
- Approximate Dimensions: 18" W x 18" L x 12.5 " H

Chassis Design Rotary Interface

- Extended-Ring Bearing with set screws to secure a pipe to the inner ring of the bearing.
- Bearing to be welded to the top of the chassis base
- Bearing and pipe will be painted black
- Pipe will be notched on top to secure the LED Support Frame

Chassis Design

 LED Array Support Structure- Construction from carbon fiber square tubing (to reduce weight)
- Holes drilled in vertical frame to secure LED PCB
- Horizontal support frame will be longer on one side for the Secondary LED Array
- Approximate Dimensions: 15" H x $16.5^{\prime \prime} \mathrm{W}$

Chassis Design Motor Interface

- Option 1:
- Use a pulley system
- Attach a pulley to the motor shaft
- Use a flat belt to connect the pulley and the pipe together
- Advantage: Allows for gear changing (ex. 4:1)
- Option 2:
- Mount the motor directly under the pipe at the center of rotation
- Weld a plate to the bottom of the pipe with a hole in the middle for motor shaft
- Advantage: Easier to implement

Chassis Design Torque Requirements

Simplified LED Support Structure
$M 1$ (mass of primary LED array) $=0.013956 \mathrm{~kg}$ $M 2$ (mass of secondary LED array) $=0.013956 \mathrm{~kg}$ $R 1=0.35448 \mathrm{~m}$ and 0.0128 kg $R 2=0.40752 \mathrm{~m}$ and 0.0148 kg

$$
\begin{gathered}
I_{M 1}=M 1 \times R 1^{2}=(0.013956 \mathrm{~kg}) x(0.35448)^{2}=0.001688 \mathrm{~kg} \cdot \mathrm{~m}^{2} \\
I_{M 2}=M 2 \times R 2^{2}=(0.013956 \mathrm{~kg}) x(0.40752)^{2}=0.00223 \mathrm{~kg} \cdot \mathrm{~m}^{2} \\
I_{R 1}=1 / 3 \times M R 1 \times R 1^{2}=(0.333) x(0.0128 \mathrm{~kg}) x(0.35448)^{2}=0.000537 \mathrm{~kg} \cdot \mathrm{~m}^{2} \\
I_{R 2}=1 / 3 \times M R 2 \times R 2^{2}=(0.333) x(0.0148 \mathrm{~kg}) x(0.40752)^{2}=0.000817 \mathrm{~kg} \cdot \mathrm{~m}^{2} \\
\\
\quad \sum I=I_{M 1}+I_{M 2}+I_{R 1}+I_{R 2}=0.00527 \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{gathered}
$$

Chassis Design Torque Requirements

Simplified LED Support Structure

$$
\begin{gathered}
\sum I=0.00527 \mathrm{~kg} \cdot \mathrm{~m}^{2} \\
\alpha=\frac{\left[(30) x(2 \pi)^{2}\right]}{\left[(2) x(1) x(2 \pi)^{2}\right]}=47.123 \\
T=\sum I \quad \mathcal{X}=0.248 \mathrm{~N} \cdot m
\end{gathered}
$$

Motor Requirements

- The motor needs to be light weight.
- Capable of maintaining 24-30 fps
- 1440 to 1800 rpm
- Low Noise.
- Capable of handling $0.25 \mathrm{~N} \cdot \mathrm{~m}$ of Torque.
- Large motor shaft
- For mounting LED array directly or in the case of using a pulley system to rotate array.

Motor

- Dayton 9FHD7 DC motor
- Runs on 90 V, 1.5 A.
- 1800 rated rpm.
- $0.49 \mathrm{~N} \cdot \mathrm{~m}$ of torque.
- Light weight.
- 0.5 in. shaft diameter.
- 1.38 in. shaft length.

Motor Control

- Limited Functionality
- Turn on
- Turn off
- Maintain
- Inexpensive
- Capable of storing data:
- Current rpm
- Time between complete rotations
- Location of LED apparatus in transit

Tachometer

- Works off two IR LEDs and a LM358 Op-amp.
- Designed around a common principle where LEDs show a voltage drop when light shines on them.
- Creates a voltage pulse of 3.69 V on the output when the sending LED's light is reflected onto the receiving LED.
- Both LEDs will be shielded with a black hollow cylinder to help prevent ambient light-noise.

Sender Circuit

Receiver Circuit

PWM Control Circuit

- R9 resistance varies the frequency of the PWM wave from 400 Hz to 3 KHz .
- This will be preset and unchanged during operation.
- $R 8$ resistance varies the rated rpm value from 0-100\%.
- This will be controlled through the use of a voltage controlled resistance.
- The voltage to this VCR will be controlled by the stationary micro-controller.

Stationary Controller

- An Arduino Uno will be sufficient to run the tachometer and PWM circuit for the motor.
- Can store up to 32 Kb of flash memory.
- 5 V operating voltage
- 16 MHz clock speed.

GUI

- Easy to use interface
- Allows user to enter a text message or image
- Text: color, animation, and alignment options
- Images: crop, position, and clear options

GUI

Wi-Fi Client

- PC will connect in ad-hoc mode
- 1-2 Mbps
- TCP protocol
- PC will send formatted data with header

Wi-Fi Server

- chipKIT Wi-Fi shield

Preprocessing

- Preprocessing occurs on laptop before data transfer to device.
- Primary Display - Converts Image input into data used by the microcontroller.
- Secondary Display - Converts text input into data used by the microcontroller.

Data Formatting

- Truncate image to fit within $384 \mathrm{~W} \times 128 \mathrm{H}$
- Pad image and center if necessary
- Store data in the order it will be needed by processor.
- Affix a header describing the data. (Includes scrolling information, etc.)

Data Formatting

- Obtain RGB data
- Java Classes Used: ImageIO, ImageReader, Bufferedlmage.
- ImageIO finds an ImageReader that claims to be able to read the image type
- ImageIO.read() returns Bufferedlmage
- Bufferedlmage.getRGB(x,y)

Preprocessing Functions

- TranslateFrame() - Converts image from .jpg, .bmp, etc
- TranslateAndOutput() - Two pixels, stores in output bin
- ConvertToGrayscale() - 12 bit representation of value
- CombineGrayscale() - Combines two grayscale values into a 3 byte structure.

Microcontroller Functions

- Display Mode:
- Write to LED Controllers via serial communication. SIN, SCLK 30 MHz
- XLAT, BLANK 11520 Hz, GSCLK 30 MHz

Microcontroller Functions

- Communications Mode:
- Occasional check for incoming data.
- Receive data and store in memory.
- Return to Display Mode operations.

Power Requirements

- Main LED array Power Draw:
- 90 mA * 5 V * 128 LEDs = 57.6 W
- Secondary LED array Power Draw:
- 20 mA * 3.2 V * 16 LEDs $=1.024 \mathrm{~W}$
- On board Micro-controller Power Draw:
- 75 mA * $3.3 \mathrm{~V}=0.2475 \mathrm{~W}$
- Total Power Draw: 58.63 W
- Assuming 20% power dissipation through the slip-ring we need to transfer around 70.36 watts to the rotating side.

Power Supply

- Using standard AC outlet (120 V, 60 Hz)
- Use fuses for overcurrent protection
- One for main incoming AC power
- One for branch circuit to rotating side
- Using standard full wave rectifier circuits to convert incoming AC to DC
- Three Rectifier Circuits Required:
- Rectifier 1 Output: 100 Vdc and 150 W
- Rectifier 2 Output: 5 Vdc and 10 W
- Rectifier 3 Output: 5 Vdc and 100 W
- Each LED Array Module will have voltage regulator on PCB
- AC power will be transferred to rotating side using slip rings

Slip Ring

- The slip ring will consist of two separate copper washers attached to the shaft of the LED apparatus.
- Insulating material [glastic] will separate the shaft and the washer from direct contact.
- One washer will act as the Live while the other will be the neutral or ground line.
- A mounted copper wire with a frayed end will create the contact to the outer wall of the washer.
- A hole will be bore through at a point on the inner wall of the copper washer
- A wire will be connected here and threaded up through the LED apparatus' shaft to the micro-controller and LEDs.

Cost Projection

Description	Quantity	Cost (per unit)	Price
Primary LEDs	128	$\$ 1.51$	$\$ 193.28$
Green LEDs	16	$\$ 0.27$	$\$ 4.32$
LED Controllers	50	$\$ 0.52$	$\$ 26.00$
Motor	1	$\$ 35.00$	$\$ 35.00$
Chassis	1	-	Donated
Stationary	1	-	Donated
Controller	1	$\$ 34.99$	$\$ 34.99$
On-board Controller	1	-	$\$ 49.99$
Wireless Chip	-	-	$\$ 100.00$
PCB	-	Total:	$\$ 150.00$
Misc. Equipment			$\$ 100$
Prototyping			$\$ 693.58$

Division of Labor

	Aaron	Patrick	Tim	Tony
 Array	75%	5%	15%	5%
Motor Control	5%	85%	5%	5%
Sensors	5%	85%	5%	5%
Power Supply	85%	5%	5%	5%
Power Transmission	15%	75%	5%	5%
Chassis	85%	5%	5%	5%
GUI	5%	5%	5%	85%
Image Processing	5%	5%	85%	5%
Wireless Transmission	5%	5%	30%	60%

Progress

Current Issues

- Measuring power dissipation for a rotating device.
- Transmitting 120V AC over slip ring

Questions?

