
1

iversity

3D Persistence of Vision Display

Group 8
Senior Design I Documentation

University of Central Florida
Department of Electrical Engineering and Computer Science

Aaron Burlison
Patrick Srofe
Antonio Ortiz
Timothy Egan
Summer 2012 - Fall 2012

i

Table of Contents

1 Executive Summary: .. 1

2 Project Description: .. 1

2.1 Motivation: ... 1

2.1.1 Sponsorship: ... 1

2.1.2 Skill Sets: .. 2

2.1.3 Creativity: .. 2

2.2 Objectives: ... 3

2.2.1 Frame Rate: .. 3

2.2.2 Computer Interfacing: .. 3

2.2.3 High Resolution: .. 3

2.2.4 Portability: ... 3

2.2.5 Programmability: ... 4

2.3 Specifications:.. 4

3 Administrative Content: .. 4

3.1 Budget: .. 5

3.2 Finance: ... 6

3.3 Schedule and Milestones: .. 7

4 Research: ... 9

4.1 Power Supply:.. 10

4.1.1 AC Input: ... 10

4.1.1.1 Circuit Protection: ... 10

4.1.1.1.1 Fuse Blocks and Fuses for Circuit Protection: 11

4.1.2 AC to DC Converter: ... 11

4.1.2.1 Diodes: ... 12

4.1.2.2 Resistors: .. 13

4.1.2.3 Potentiometers and Variable Resistors: 13

4.1.2.4 Capacitors: ... 13

ii

4.2 Video and Signal Processing: .. 13

4.2.1 VGA .. 14

4.2.1.1 VGA Signal Standards: .. 14

4.2.1.2 .Signal Sampling: ... 14

4.2.1.3 Analog to Digital Conversion: ... 17

4.2.2 HDMI: .. 17

4.2.2.1 HDMI Signal Standards: ... 17

4.2.2.2 Signal Sampling: .. 20

4.2.3 Video Processing (Stationary Controller): 20

4.2.3.1 Color Depth Reduction: .. 21

4.2.3.2 Frame Resizing: ... 21

4.2.3.3 Frame Skipping: ... 22

4.2.3.4 Video Compression: ... 22

4.3 LED Array: ... 24

4.3.1 LEDs: .. 24

4.3.2 LED RGB Control: ... 25

4.3.2.1 Pulse Width Modulation: ... 25

4.3.2.1.1 TLC5971 LED Controller: ... 25

4.3.2.1.2 TLC5940 LED Controller: ... 25

4.3.2.2 Latch Control: ... 26

4.4 Communications: ... 27

4.4.1 Requirements ... 27

4.4.2 Wired Communications: .. 29

4.4.2.1 Fiber Optic Communications: ... 29

4.4.2.1.1 Fiber to Ethernet Conversion: .. 29

4.4.2.1.2 Fiber Optic Rotary Joints: ... 30

4.4.2.2 Coaxial Copper Communications: .. 31

4.4.2.2.1 Coaxial to Ethernet Conversion: ... 31

4.4.2.2.2 Coax Rotating Joint: ... 32

4.4.2.3 Ethernet Protocols: ... 33

iii

4.4.2.3.1 Ethernet Software Library: .. 34

4.4.2.4 Microprocessor Ethernet Hardware: ... 35

4.4.3 Wireless Communications: .. 35

4.4.3.1 WiFi: ... 36

4.4.3.1.1 WiFi Protocols: ... 36

4.4.3.2 Bluetooth .. 37

4.4.3.2.1 Bluetooth Protocols: ... 37

4.4.3.3 Effects of Rotational Speed: ... 37

4.5 Motor: .. 38

4.5.1 Torque Requirements: .. 38

4.5.1.1 AC Motor Application for Torque Requirements: 38

4.5.1.2 DC Motor Application for Torque Requirements: 39

4.5.2 RPM Requirements: .. 39

4.5.2.1 AC Motor Application for RPM Requirements: 39

4.5.2.2 DC Motor Application for RPM Requirements: 40

4.5.3 Sound Requirements: ... 40

4.5.4 AC and DC Motor Comparison: ... 40

4.5.5 Motor Control: ... 40

4.5.5.1 Variable Resistance Method to Motor Control: 41

4.5.5.2 Pulse Width Modulation Method for Motor Control: 41

4.5.5.3 Variable Resistance and Pulse Width Modulation Motor Control
Method Comparison: ... 41

4.5.5.4 Sensor Reading Applications for Motor Control: 42

4.5.5.4.1 Infrared Sensor: .. 42

4.5.5.4.2 Hall Effect Sensor: .. 43

4.5.5.4.3 Motor Sensor Comparison: ... 44

4.6 Chassis: ... 44

4.6.1 Chassis Materials: ... 44

4.6.2 Chassis Rotating Interface: ... 45

4.7 Graphical User Interface: ... 46

iv

4.7.1 Required Functions: .. 46

4.7.2 Programming Language: .. 48

4.7.2.1 Image Format Conversion and Resizing: 49

4.7.3 GUI Communications to Microcontroller: .. 50

4.7.3.1 Serial Communication Software Library: 50

4.8 Microcontrollers: .. 51

4.8.1 Digilent Atlys (Stationary FPGA): .. 52

4.8.2 TI Launchpad (Rotating Microcontroller): .. 52

4.8.3 Arduino Uno REV 3 (Rotationg Microcontroller):............................. 52

4.8.4 Digilent Cerebot MX7cK (Rotating Microcontroller):........................ 53

4.8.5 Additional Microcontroller Concerns: .. 53

5 Hardware Design: .. 55

5.1 Chassis Hardware Design: .. 57

5.1.1 Chassis Dimensions: .. 57

5.1.1.1 Dimensions of LED Array: .. 57

5.1.1.2 Dimensions of Chassis Base: ... 58

5.1.2 Chassis Assembly: .. 58

5.1.3 Motor Interface: ... 61

5.1.4 Chassis Torque Calculations: ... 62

5.2 LED Array Hardware Design: .. 62

5.2.1 TLC5940 Pin Out and Wiring: ... 64

5.2.2 LED Array for Text Display: .. 67

5.3 Motor Hardware Design: .. 68

5.3.1 Motor Control Sensor Design: ... 68

5.3.1.1 Motor Control Sensor Hardware: .. 70

5.3.2 Motor Speed Controller: .. 72

5.4 Primary Microcontroller Hardware Design (Stationary):......................... 74

5.5 Secondary Microcontroller Hardware Design (Rotating):....................... 76

5.6 Power Supply Hardware Design: ... 77

5.6.1 Stationary Power Supply: .. 78

v

5.6.2 Rotating Power Supply: ... 78

5.6.3 Slip Ring Design: ... 78

5.7 Wired Ethernet Communications: .. 79

6 Software Design: .. 80

6.1 Primary Microcontroller Software Design (Stationary): 81

6.1.1 Processing HDMI Signals:... 81

6.1.2 Frame Buffer Format: .. 83

6.1.3 Output Format Specification: ... 84

6.1.4 Frame Processing Pseudocode: ... 85

6.1.5 Stationary FPGA Ethernet Communications: 90

6.1.6 Motor Control Sensor Software: .. 91

6.2 Secondary Microcontroller Software Design: ... 92

6.2.1 Modes of Operation: .. 92

6.2.2 Outputting Data to LED Array: ... 93

6.2.3 Outputting Data to Text Array: ... 94

6.2.4 Rotating FPGA Ethernet Communications: 95

6.3 Computer GUI Software Design: ... 97

6.3.1 Text Message Input: .. 98

6.3.2 Image Input: .. 99

6.3.3 FPGA GUI Communications: .. 101

6.3.3.1 Serial Communication Thread: ... 102

6.3.3.2 Serial Communication I/O: .. 102

6.3.4 GUI Class Summary: .. 104

7 Prototyping: .. 105

7.1 Slip Ring Power Transmission Prototype: .. 105

7.2 Scaled LED Array Prototype: ... 106

7.2.1 Scaled LED Array Hardware Prototype Design: 106

7.2.2 Scaled LED Array Software Prototype Design: 106

8 Testing: .. 107

8.1 Video Signal Processing Testing: .. 108

vi

8.2 LED Array Testing: .. 110

8.3 GUI Testing: .. 111

8.3.1 Text Messaging Testing: ... 111

8.3.2 Image Messaging Testing: .. 112

8.4 Tachometer Testing:.. 113

8.4.1 Tachometer Hardware Test: ... 113

8.4.1.1 Sending/Receiving Signal Hardware Test: 113

8.4.1.2 CTRL Signal Calibration: .. 114

8.4.1.3 Tachometer Hardware Test Conclusion: 114

8.4.2 Tachometer Software Test: ... 114

8.5 Pulse Width Modulation Circuit Test: ... 115

8.5.1 Voltage Controlled Resistance Calibration: 115

8.5.2 VCR Frequency/Duty Cycle Relationship: 116

8.5.3 Frequency Calibrations: .. 116

8.5.4 Motor Control Test: ... 116

8.5.5 PWM Test Conclusions: .. 116

8.6 Slip Ring Test: ... 117

8.6.1 Slip Ring Durability Test: ... 117

8.6.2 Ideal Power Transfer Test: .. 117

8.6.3 Rotational Power Transfer and Thermal Dissipation Test: 118

8.6.4 Slip Ring Test Conclusions: .. 118

9 Conclusion: .. 118

9.1 Bill of Materials: ... 120

10 Appendix: .. 121

11 Bibliography: ... 122

vii

Table of Figures

Figure 4.1.2 Full Wave Rectifier Circuit... 12
Figure 4.2.1.2.a VGA DB15 connector and pin assignment 14
Figure 4.2.1.2.b Resistor circuit providing 16 colors from 4 inputs 15
Figure 4.2.1.2.c VGA timing for V-SYNC and H-SYNC windows 15
Figure 4.2.1.2.d Precise Timing Specifications for VGA Display Modes 17
Figure 4.2.2.1 TMDS Input Flowchart ... 20
Figure 4.2.3.1 Example of image shown in 4 bit and 8 bit color depth 21
Figure 4.2.3.4.a NTSC and PAL Calc. for Luminance and Chrominance 23
Figure 4.2.3.4.b Method for Interpolating Chrominance Values 23
Figure 4.3.1 OVS-33 Pin Information .. 25
Figure 4.3.1.2 Latch control Implementation ... 27
Figure 4.4.1 Data Array ... 28
Figure 4.4.2.2.2 Model 205 Rotary Joint for Rotary Interfaces 33
Figure 4.4.3.1.1 Infrastructure/Ad-hoc Comparison. ... 36
Figure 4.7.1.a Software Development Life Cycle – Waterfall Model 47
Figure 4.7.1.b Use case diagram for GUI ... 48
Figure 5 Hardware Flow Chart .. 56
Figure 5.1.2.a Bearing Assembly .. 59
Figure 5.1.2.b Chassis Base Assembly .. 60
Figure 5.1.2.c Chassis Base Assembly... 61
Figure 5.2 LED Array Group Layout ... 64
Figure 5.2.1.a TLC5940 LED Controller Pin Out ... 64
Figure 5.2.1.b LED Controller Wiring .. 66
Figure 5.2.1.c LED Wiring ... 67
Figure 5.3 Motor Control Flow Chart ... 68
Figure 5.3.1.a Motor Control Sensor Flow Chart .. 69
Figure 5.3.1.b Motor Control Sensor Mounting ... 70
Figure 5.3.1.1.a Motor Control Sending Circuit ... 71
Figure 5.3.1.1.b Motor Control Receiving Circuit .. 72
Figure 5.3.2.a PWM Circuit ... 73
Figure 5.3.2.b Voltage Controlled Resistor Circuit .. 74
Figure 5.4.a Communication Hardware Used by Stationary Controller 74
Figure 5.4.b Sensor Pin Assignment on Stationary VmodBB 75
Figure 5.5.a Pin Assignments on VmodBB ... 76
Figure 5.5.b Pin Assignments with Text Display Implementation 77
Figure 5.6.3 Slip Ring side and top view ... 79
Figure 6 Software Flowchart ... 80

viii

Figure 6.1.1 HDMI Registers .. 83
Figure 6.1.2.a Arrangement of Pixel Values in Memory 83
Figure 6.1.2.b 16 Bit RGB Arrangement ... 83
Figure 6.1.2.c Arrangement of Pixel Coordinates in a Frame 84
Figure 6.1.3.a Arrangement of Frame Sub-divisions .. 85
Figure 6.1.3.b Memory locations of the 12 output Bins 85
Figure 6.1.4.a Range of pixel data as it is stored in memory 87
Figure 6.1.4.b Combining Grayscale values and storing in memory 87
Figure 6.1.4.c Visualization of Isolating Red RGB Value 88
Figure 6.1.4.d Visualization of Isolating Green RGB Value 89
Figure 6.1.4.e Visualization of Isolating Green RGB Value 89
Figure 6.1.4.f Grayscale Mapping Diagram .. 89
Figure 6.1.4.g Visualization of Combining Grayscale Values 90
Figure 6.1.5 Ethernet Transmission Flowchart ... 91
Figure 6.1.6 Control Program Flow Chart for Motor Control 92
Figure 6.2.1 State Chart for Modes of Operation .. 93
Figure 6.2.4.a Simplified Ethernet Header Register ... 96
Figure 6.2.4.b Ethernet Receiving Flowchart .. 97
Figure 6.3 Pipe and Filter Software Architecture .. 98
Figure 6.3.1 Text Input GUI Draft ... 99
Figure 6.3.2 Image Input GUI Draft .. 100
Figure 6.3.3 Complete GUI Design Draft .. 101
Figure 6.3.3.2 USBComm Sequence Diagram ... 103
Figure 6.3.4 Class Diagram for the GUI ... 105
Figure 7.1 Power Transmission Prototype .. 106
Figure 8.1.a Video Processing Test Frame Layout ... 109
Figure 8.1.b Expected Memory Contents of Processed Test Frame 110
Figure 10.a Infrared Sensor Reference Circuit ... 121
Figure 10.b Pulse Width Modulation Reference Circuit 121

ix

Table of Tables

Table 3.1 Project Budget .. 6
Table 3.3 Project Schedule ... 8
Table 4.1.1.1.1 Type LP-CC Fuses and Current Ratings.................................... 11
Table 4.2.2.1.a HDMI Pin Configuration ... 18
Table 4.2.2.1.b EDID Information and Requirements ... 19
Table 4.4.2.1.1 Fiber to Ethernet Converters .. 30
Table 4.4.2.1.2 MJX Part Numbers ... 31
Table 4.4.2.2.1 Coax to Ethernet Converters .. 32
Table 4.4.1.2.2: Coax to Ethernet Converters ... 33
Table 4.6.1 Typical Aluminum Pieces and Weight .. 45
Table 4.6.2 Extended-Ring Ball Bearings ... 46
Table 4.8.4 Microcontroller Comparison ... 53
Table 4.8.5 Possible Resolutions and Corresponding Data Rates 54
Table 5.2.1 TLC5940 LED Controller Pin Information ... 65
Table 6.1.5 Header Information .. 90
Table 9.1 Bill of Materials .. 120

1

1 Executive Summary:

Persistence of vision is a phenomena that has motivated engineers for years to
create a variety of inventions. This has not changed even to this day. There are
still devices using this visual trick being constructed with a wealth of internet
examples available to show for it. These spinning devices that utilize LEDs to
create the illusion of one solid image come in a variety of shapes and sizes from
spheres and discs, to cylinders.

2 Project Description:

This chapter encompasses the motivations for why we chose one of these
devices as our project. It also touches on the objectives or goals for this project,
and the specifications for the device that we planned on implementing.

2.1 Motivation:

The construction of these devices encompass a large spectrum of computer and
electrical engineering knowledge from embedded systems and electronics, to
digital systems processing and even electric machinery. Which our team felt
allowed us to effectively test and display our grasp of knowledge.

In the case of our group project, when determining which of our groups ideas we
wanted to tackle we found that the group had a split in interests. While some of
the group wanted to create something that displayed a level of creativity other
members wanted something within the scope of the group's skill sets. Finally, we
all desired a project that was either inexpensive enough for the group to fund on
their own or a project that was capable of acquiring sponsorship to fund it for us.
After some deliberation we all agreed on the persistence of vision project as the
best fit for all these concepts. The following sections help elaborate on why this
project was such a good fit for our group.

2.1.1 Sponsorship:

As mentioned above our team was seeking a project that was inexpensive or
capable of sponsorship. Since there are a variety of groups or organizations that
rely on public advisement and these displays require attention getting gimmicks
out team felt that a persistence of vision device is a perfect fit. These devices
have adequate levels of scalability, visual attractiveness, and portability that
make it perfect for such a use.

A persistence of vision device is incredibly visually attractive with its various
colorful and active displays. They are great at pulling people's attention and

2

keeping it, and in a scenario where a group is seeking to be both noticed and
remembered it is quite a useful device. In the case that we were adequately
funded we could make this device extremely attractive through high resolutions
of LEDs and wide ranges of colors. This would also allow us to create simplistic
to complex animations for the device that would draw people's attention.

These devices are also extremely scalable. We wanted to make the device easily
programmed and accessible to both the experienced and inexperienced. This
would allow someone experienced with programming to make a variety of their
own custom displays and animations on the device. Someone inexperienced with
programming would be capable of inputting various functions such as text inputs
for banners. Both of these functions are excellent for sponsorship since they
allow the user to easily set the device for any advertisement they desire.

Portability is obviously a concern for organizations that are advertising at booths
or displays. These devices are extremely portable and our design is to not only
make it portable but outlet friendly allowing you to plug it in to any standard
outlet.

2.1.2 Skill Sets:

With a group made up of two students of electrical engineering and two students
of computer engineering, we wanted a project that adequately displayed all of our
skill sets. This project not only has a significant level of electrical design in both
advanced and intermediate levels of electrical engineering but it has a significant
level of both advanced and intermediate levels of programming and computer
architecture requirements. This means that all four of the team members working
on the project would find adequate amount of both familiarity and challenge
within the project.

2.1.3 Creativity:

To be completely honest, if you are not interested in a project it is very difficult to
work on it. This is a very true statement and most of our group members wanted
a project that was entertaining enough to really keep their attention in addition to
test their knowledge. This project seemed entertaining to our team. It is as simple
as that. Not only would we be developing our skills as engineers but we would
also get to flex our creativity by programming and designing a variety of
interesting displays for this device. The final product would be bright, exciting,
and interesting to see once it was complete; which our team was very excited to
experience.

3

2.2 Objectives:

While in concept a persistence of vision device is good we needed to put to
words specifically what our objectives for this device were. Since we had some
ideas of what we wanted when choosing this project we also had a variety of
features we wanted to add besides the basic features these devices generally
come with. The following sections identify and describe these features in further
detail.

2.2.1 Frame Rate:

Since human vision is tricked to perceive motion around the rate of twenty-five
frames per second we needed a device to spin at a rate capable of recreating
this illusion. Since twenty-five was the bare minimum we decided to overshoot to
thirty frames per second, this would hopefully either make a more seamless
image or account for any variations that may occur within the device.

2.2.2 Computer Interfacing:

One of our group members brought up the thought that if we can make this
device not only display images and do simple animations then why can't we
make the device also display a video such as from a DVD or CD played from
your computer. Since we wanted the project to be sponsored allowing the
eventual sponsor to display a prerecorded advertisement on this device from
such a media, seemed like a great idea. So our group set out to implement it
through computer interfacing. We chose an HDMI connection between the
computer and the POV device since this would create an almost monitor like
relationship with the POV device and the computer. While this was the largest
challenge for this project it also seemed like its biggest feature.

2.2.3 High Resolution:

Since we wanted to create the above mention monitor relationship between the
computer and the POV device we needed to design the project with a high pixel
count in order to effectively display the computer's desktop or HUD. We
specifically chose 640x480 as our target resolution since it seemed to be a
relatively universal one. This meant we needed a total of 480 LEDs. This also
meant each LED had to be capable of a large scale of colors in order to recreate
the image being sent each frame.

2.2.4 Portability:

Since we had decided the device needed to be portable it could be no heavier
than a small television and only about as bulky. This meant the materials we
chose to build this device out of need to be durable and light weight.

4

2.2.5 Programmability:

We wanted the device to be easily programmable and capable of at least simple
marquee text displays that would be implemented with our own self developed
program. This would allow the user to simply input a text banner or the time, and
have it displayed on the device instead of just the computer interface. In addition,
we also wanted the device to be complex enough that someone with experience
in programming could also program to the processor and create their own
custom images and animations. This would allow for a lot of space for user
development which seemed desirable to someone looking to advertise with the
device.

2.3 Specifications:

The following is a list of specifications that we have come up with based on both
our research, assumptions, and components that we have chosen during the
development of this product.

480 LEDs
256 colors per LED
60 Hz refresh rate for LEDs
30 rps or 1800 rpm
61 cm diameter (cylinder)
80 cm height (cylinder)
12 - 15 lbs
Operates on 120V AC or 90V DC
HDMI input via computer connection
USB input via computer connection
2Mbits/s data transmission
Data Rates up to 800 Mb/s (12.8 GB/s peak bandwidth)
Up to 1,080 Mb/s data transfer rate per differential I/O
128 megabits of storage space for images and animations.

3 Administrative Content:

Having a strong plan for administrating the budget and making due dates is
essential for completing any project successfully. Our senior design project is by
no means an exception. Our goal will be to layout an administrative plan to
govern and guide our project through the varies stages and will be the foundation
that will support our work. Our administrative plan will be laid out in three
sections - budget, finance and schedule and milestones.

5

3.1 Budget:

Understanding the cost associated with any project helps separate what is
feasible from what is unrealistic. To better understand the cost associated with
our senior design project we will need to estimate our total material cost and any
cost associated with prototyping and testing.

As stated in our specifications section, the POV display will require 480 LED's
each with a 256 color range. This will require us to procure 480 RGB capably
LED's which we can estimate to be about $1.25 each. In addition to the LED's,
we will also need to procure some way to control the LED's. If we estimated an
additional $1.00 per LED to control it we have a total cost per LED of $2.25 or
$1,080.

The POV display must be capable of rotating at 30 RPS or 1800 RPM. This will
require a sizable motor to insure we can operate at the required toque values. As
well, we will require a chassis or frame to support the LED array and on board
controllers. We can estimate the cost of the motor and chassis frame at $80.00

In order to process the incoming video signals and control the LED's we will
require two microcontrollers. One microcontroller, which we can refer to as the on
board controller, will process the video signal coming from the main
microcontroller. The on board controller will require less functionality and can be
estimated at a cost of $250. The main controller will require additional
functionality to interface with the user. We will estimate the cost of the main
controller at $300. Therefore, the overall cost for both the on board and main
controller will be $550.

In order to tie the on board controller to the LED array we will need to procure
PCB boards. We will also need to procure additional wire and cable to make all
the miscellaneous connections required. For estimating purposes we will lump all
the cost associated with procuring PCB boards and wire as required will cost
$100 but not to exceed to $200.

The final piece of the budget will be any cost associated with prototyping and
testing. Currently we are anticipating we will require a scaled LED array, motor
control and slip ring prototypes. If we estimated approximately 1:60 scaled LED
array or about 8 LED's and using the previous estimate of $2.25 per LED the cost
for the LED array prototype is about $18. The slip ring and motor control we can
estimate about $25 each in cost for prototyping. That brings the total estimated
cost for prototyping to $68 but not to exceed $150.

The total cost associated with this project is estimated to be $1,878 but not to
exceed a total cost of $2,060. As seen in Table 3.1, a detailed summary of the
budget and distributed cost can be complied. Based on this estimated, we have
determined that the cost associated with this project is realistic and feasible.

6

Description Est. Qty
Req.

Cost (Each) Ext. Price

LED's and Controller 480 $2.25 $1,080.00

Motor and Frame 1 $80.00 $80.00

On Board Controller 1 $250.00 $250.00

Main Controller 1 $300.00 $300.00

Misc. Equipment 1 $100.00 -
$200.00

$100.00 -
$200.00

Prototyping 1 $68.00 -
$150.00

$68.00 -
$150.00

 Total: $1,878 to 2,060

Table 3.1 Project Budget

3.2 Finance:

The second portion of our administrative plan is to determine where the financial
backing will come from to support the design and development of our POV
display. As discussed in our motivation for working on this project, we are
interested in finding sponsorship to support our work. Currently we have two
potential sponsors. The first and preferred sponsorship will come from the United
States Navy. The idea of the POV display grew from the Navy's desire for a
device to aid in their recruitment of new cadets. As our sponsors, the Navy will
acquire the POV display after the completion of fabrication, testing and final
review by the University of Central Florida to take between various recruitment
opportunities.

If the U.S. Navy elects to sponsor another project, the second potential
sponsorship will come from the University of Central Florida's Department of
Electrical Engineering and Computer Science or Department of EECS. If the
Department of EECS sponsors the design and development of the POV display,
the application of the display will remain vastly the same. The Department would
use the POV display to showcase the Department of EECS and the capabilities
their students possess.

The final, and least preferred option, would be to split the cost of the project
equally between all four group members. In the event that we do not acquire any
sponsorship, the project design maybe be scaled back slightly to account for the

7

smaller budget we will be working worth but the overall functionality and
operation of the POV display will remain the same. The ownership of the POV
display after completion of the project will be up to the group. One potential
outcome would be to donate the POV display to the University of Central
Florida's Department of Electrical Engineering and Computer Science. Another
potential outcome of ownership could be one ground member takes ownership of
the POV display by means of voting or by means of additional finical
responsibility beyond the other ground members.

3.3 Schedule and Milestones:

The final portion of our administrative plan will be to develop a schedule, which
will include major and minor milestones, to be a guide for keeping the production
of the project on time and finished by the due date. Before a schedule can be
developed, the major and minor milestones of the project must be defined.

Major milestones will be defined as events or task that must be completed before
the project can continue. A complete list of major milestones for the project is
below.
Senior Design I Documentation Due
Prototyping Completed
Project Design Finalized
Project Fabrication Completed
Testing
Senior Design II Documentation and Final Project Due

Minor milestones will be defined as events or task that are less critical on an
individual basis but must be completed before a Major milestone can be
completed.
Project Research
Project Preliminary Design Review (Prior to Senior Design I Documentation
Completed)
Senior Design I Documentation Review
Prototype Fabrication
Prototype Testing
Project Design Review from Prototype Results
Fabrication of Chassis
Fabrication of LED Array
Project Assembly
Preliminary Mechanical Operational Test
Senior Design II Documentation Review

Finally, as seen in Table 3.3, a completed schedule can be put together. The
schedule contains all predefined major and minor milestones as well as
completion by dates.

8

Milestone(Major/Minor)
Start
Date

Duration
(Days)

Finish
Date

Project Research (Minor): 05/27/12 46 07/12/12

Project Design Review (Minor): 07/15/12 4 07/19/12

Senior Design 1 Doc. Draft Review (Minor): 07/25/12 4 07/29/12

Senior Design 1 Documentation Printing (Minor): 07/30/12 1 07/31/12

Senior Design 1 Documentation Final (Major): 05/27/12 67 08/02/12

Prototype Fabrication (Minor): 08/19/12 14 09/02/12

Prototype Testing (Minor): 09/02/12 7 09/09/12

Project Design Review from Proto Results (Minor): 09/09/12 7 09/16/12

Project Design Finalized (Major): 09/16/12 7 09/23/12

Procurement of Equipment (Minor): 09/23/12 56 11/18/12

Fabrication of Chassis (Minor): 10/29/12 18 11/16/12

Fabrication of LED Array (Minor): 11/16/12 14 11/30/12

Programming of Processors (Minor): 11/16/12 14 11/30/12

Assembly of POV Display (Minor): 11/18/12 12 11/30/12

Preliminary Mechanical Operational Test (Minor): 11/16/12 14 11/30/12

Project Fabrication Completed (Major): 09/23/12 68 11/30/12

Complete Functional and Operational Testing (Major): 11/30/12 7 12/07/12

Senior Design 1 Doc. Draft Review (Minor): 09/23/12 75 12/07/12

Senior Design II Doc. and Final Project Due (Major): 12/07/12 3 12/10/12

Table 3.3 Project Schedule

9

4 Research:

Designing is both a matter of applying the best known solution for a problem and
creating new methods when the problem’s solution isn’t well known. In addition,
many times a solution has multiple methods that fit well for solving a problem. In
these cases we need to effectively narrow down the list and determine the
solution our group feels will work best for us. In the case of our project there were
eight key issues that we needed solutions to for our project that kept appearing in
our discussions of this project.

The first problem was supplying power to this device. We needed to know
whether we were going to use AC or DC power or some combination of both. Did
we need to do some sort of AC to DC conversion? Which one was best for the
purposes of our project? Section 4.1 discusses this topic and which one best
suits our needs.

The second issue was signal processing. Our group new we wanted to allow for
some way for this device to communicate with a computer. The question was
which medium was best for our purposes? Since none of us had any experience
in video processing this also meant we needed to figure out which format was
best suited for our project. Would it be better to process an HDMI signal, VGA
signal, or just do some form of file transfer through USB? Section 4.2 discusses
this topic and compares each of these signals and the processing method
needed to implement them for our project.

The third issue was LED implementation and control. Since we needed to blink
these LEDs at a rapid speed we needed to know how this would affect the LED.
What LED is best suited for this application? Will using pulse with modulation
effect our display rate? How do we effectively control over four hundred LEDs?
Section 4.3 will discuss these questions and determine the best fitting solution for
each of these problems.

The forth issue was communications. Since this device has two sides to it, a
stationary side and a rotating side, we need to determine how we are going to
send the above signal across these kinetic state changes. Is there a wired
solution for this problem? Would wireless be an effective solution to this
problem? Are there issues with wireless when dealing with a rapidly rotating
receiver? Section 4.4 discusses these issues and compares each of these
communication solutions.

The fifth issue is the motor itself. None of us had much experience with motors
so we needed to research specifically which motor would work best for our
purposes. Would a DC motor bet best or an AC motor? What is the most
effective way of controlling the motor for our purpose? How can we minimize the
noise commonly associated with motors? Section 4.5 discusses these topics and

10

compares both motor types, and which method of controlling the device is best
for our purposes.

The sixth issue is the actual structure of this project. This device is going to rotate
at a very fast rpm value and that means it needs to be both very stable and
balanced. What material is best suited for this project then? How do we balance
it? What will be the torque requirements of this device? Section 4.6 discusses
these questions and determines the best solution to each of them.

The seventh and final issue is our GUI. Since we want to develop a user
interface for communicating with our device we need to know the best way of
going about creating it. Would it be better to create it in C language or Java?
What classes, functions, and variables will we need to implement the project?
Section 4.7 will further discuss these concepts answering these questions and
more.

4.1 Power Supply:

Just like any machine, the POV display will require a source of power to operate.
As discussed in the motivation, the POV display will need to be portable to
require movement between events and shows. However, due to the size of the
POV display and the power requirements of the motor, to operate the POV
display from a battery supply would require a significantly large battery. A large
battery deters from the portability of the POV display. As such, the power supply
research will focus on utilizing power from an AC outlet.

4.1.1 AC Input:

As previously stated, the POV display will draw all of its power from a standard
AC outlet. In the United States, the standard power for an outlet is 120 Vac at 60
Hz. In addition, the standard wiring practices for AC power in the United States
for wiring of a 120V system is for the black wire to be the hot or line, the white
wire to be the neutral and the green or bare cooper wire to be the ground.

4.1.1.1 Circuit Protection:

One additional design requirement for the AC input to the POV display that will
require research is circuit protection. Since we will be accepting 120V AC from a
wall outlet which is most likely rated for 15 to 20 amps into the POV display, a
good design criteria will be to protect the POV display from potential damaged
cause by surge in current. Over current can occur anytime there is a short circuit
and since we will be most likely working with a metal chassis, adequate
protection against short circuits should be taken.

Currently two commonly used forms of over current protection are available,
fuses and circuit breakers. One disadvantage fuses have compared to circuit
breakers is once fuses are used or blown, they must be replaced with a new

11

fuse. In the case of circuit breakers, the breaker only needs to be reset and not
completely replaced. However, the upfront cost of circuit breakers generally is
greater than the initial cost of fuses. Two additional advantage fuses have over
circuit breakers is their size tends to be smaller than circuit breakers and the
flexibility to easily change a fuse to a higher or lower current rating without the
need to re-wire any equipment. Therefore, we will focus our research on
available fuse blocks or holders and fuses.

4.1.1.1.1 Fuse Blocks and Fuses for Circuit Protection:

Cooper Bussmann is a well known and commonly used manufacturer of fuse
blocks. The Bussmann Type BC and BCCM Series Class CC fuse blocks offer a
compact but reliable solution for fused circuit requirements. The BC and BCCM
series fuse blocks accept Class CC size fuses. As well, the fuse blocks are rated
for operations at 600 Volts and up to 30 Amps. Since we will be protecting the
incoming AC power, only the positive or line side of the AC power supply needs
protection. This means we will only require a single pole fuse block. The part
number for a single pole Bussmann type BC fuse block with screw connections is
BC6031S. As well, Table 4.1.1.1.1 shows some of the available Type CC fuses
offered by Bussmann and their corresponding current rating.

Part Number Current Ratings
LP-CC-1 1 Amps
LP-CC-2 2 Amps
LP-CC-3 3 Amps
LP-CC-4 4 Amps
LP-CC-5 5 Amps
LP-CC-10 10 Amps
LP-CC-15 15 Amps
LP-CC-20 20 Amps

Table 4.1.1.1.1 Type LP-CC Fuses and Current Ratings

4.1.2 AC to DC Converter:

The POV display will require conversion of the AC power coming from the wall
outlet to DC in order to power the motor, the LED array and the microprocessors.
A simple full wave rectifier circuit as seen in Figure 4.2, will be used.

12

Figure 4.1.2 Full Wave Rectifier Circuit

Although the exact voltage required for the motor, LED array and
microprocessors is not known at this time, we do know that we will most likely
require the functionality to change the voltage output of the DC converter based
on the requirements. In order to change the DC output voltage of the converter,
we will vary the AC input by using a simple voltage divider circuit with a
potentiometer or variable resister. Therefore we will focus our research on
determining what variety of parts are available and their characteristics. In
particular, we will be researching for diodes, resisters, variable resisters and
capacitors that have a maximum operating voltage of at least 150 volts and for
the diodes, a power rating of at least 1500 to watts. The equation below, where
Vr equals the ripple voltage and Vm equals the maximum voltage output, will be
used to determine the ripple voltage of the rectifier circuit and help to determine
the correct combination of resistance and capacitance.

�� � �
��
���	

4.1.2.1 Diodes:

As previously stated, the diodes required for the AC to DC converter will need to
operate at a maximum of 150 volts and 1500 watts. This design criteria will allow
for a maximum of 10 amps to flow through the diodes and provide adequate
power to the motor and other circuits. One such diode is the MUR Series diode
manufactured by Multicomp. The diode was design with the purpose to be used

13

in inverting and rectifying circuits. Part number MUR1560 has the maximum
ratings of 420 Vrms and 15 A forward current. The diode comes in TO-220A case
allowing for easy integration into bread boards or PCB boards. As well, the
MUR1560 is readily available with over 3,000 available to ship at a cost of less
than $1.00 each.

4.1.2.2 Resistors:

The voltage requirements of the converter do not necessarily directly apply to the
resistor. The most important characteristic of the resistor will be the power rating.
Although the power rating for the resistors is less critical than the diodes, we will
still require resistors with a power rating of at least 5 watts to allow for proper
heat dissipation. Vishay, a well known resistor manufacture, provides a type RS
resistor that is wirewound with axial leads that will work well the bread boards
and PCB boards. Although the exact resistor requirements are not known at this
time, one example of a complete resistor part number is RS00510K00FE12,
which is a resistor rated for 10 kohm, 5 watts and a tolerance of +/- 1 percent.

4.1.2.3 Potentiometers and Variable Resistors:

After during some initial research, it was discovered that potentiometers and
variable resistors do not come readily available at the power ratings required for
the converter. Therefore, we will use fixed valued resistors similar to the type RS
resistor previously discussed.

4.1.2.4 Capacitors:

One available capacitor that meets the required specifications is manufactured
by Vishay. Vishay offers an aluminum electrolytic type 53D capacitor that can
operate at 200 Volts. Although the tolerance is only +/- 10%, the capacitor is
available at rated capacitance range of 15 uF to 220,000 uF. Just like the
resistor, the capacitor has axial leads to allow for easy integration into bread
boards and PCB boards. Once again, the exact capacitance requirements are
not know at this time, but an example of a completed capacitor part number rated
for 350 uF is 53D351F200JL6.

4.2 Video and Signal Processing:

We intend to receive a live video stream from a laptop and display this video on
our LED array. There are two primary formats that computers output video data
in, VGA and HDMI. The research into these two different formats will be used to
determine which format will be most appropriate for our needs and what would
be required to use that format. This section will also look at various means of
video data compression and alteration.

14

4.2.1 VGA

We are considering using the VGA output available from a computer as the video
source for our display. This section will focus on the VGA signal format and will
describe how video data is transmitted via VGA.

4.2.1.1 VGA Signal Standards:

In order for a computer to know what types of signal a display can handle, the
computer communicates with the display through the Data Display Channel. The
protocol used most commonly today is E-EDID, which has been defined by the
organization VESA. With the E-EDID protocol, the computer reads a binary file in
the display to determine what signal to send. It seems possible that we will need
to write or edit our own E-EDID or file.

The EDID file is 128 bytes and contains basic information such as the vendor ID,
serial number, manufacturing date of the display, and which EDID version is
being used. It also contains a Video Input Definition, which specifies analog or
digital. In the case of analog it contains several bits specify which types of
syncing the display supports, as there are several ways of doing this. A section of
bits specify which of 16 predefined standard modes the display supports.
Detailed timing information is contained within the last section. The second to last
bit is a flag indicating whether or not there are any extensions to the file.

4.2.1.2 .Signal Sampling:

The video frames to be transmitted via VGA first start in a digital format on the
PC and are converted to analog though the use of DAC’s. Figure 4.2.1.2.a shows
the pin configuration for the VGA DB15 connector and a summary of each pins
function. The pins for Red, Green, and Blue (1 2 and 3) each carry a signal that
ranges between 0V and 7V referenced from their respective ground pins (6 7 and
8).

Figure 4.2.1.2.a VGA DB15 connector and pin assignment

Figure 4.2.1.2.b shows how the red voltage value could be generated from 4 bits,
allowing for 16 distinct voltages and therefore 16 colors of red. Combined with
Blue and Green, this allows for the representation of 212 different colors. There

15

are many color modes, each with varying amounts of bits defining red, green and
blue. The voltage range does not change, and when each RGB pin is read at the
same time, a single pixel’s color is defined.

Figure 4.2.1.2.b Resistor circuit providing 16 colors from 4 inputs

The VGA signal transmits pixels one by one, starting in the top left of the frame,
going from left to right, and then down. This process is timed using two
synchronization pulses, HSYNC and VSYNC. The HSYNC pulse indicates the
start and end of a row of pixels being transmitted, and the VSYNC indicates the
start and end of a frame.

In addition to the VSYNC and HSYNC pulses, there are periods of time in which
no pixel data is transmitted, which are known as the blinking and blanking
intervals. As can be seen in Figure 4.2.1.2.c, these occur starting just before the
VSYNC and HSYNC signals and last longer, making them a little wider. The
period of blinking/blanking time before the SYNC signals is referred to as the
front door, and the period after the back door.

Figure 4.2.1.2.c VGA timing for V-SYNC and H-SYNC windows

The VGA signal was designed to be displayed on CRT monitors, which is the
reason the blinking and blanking intervals exist, giving the monitor time for its
electron gun to realign itself. Additionally, because RGB values transmitted
through VGA are a continuous waveform after the initial DAC from the PC, the
number of horizontal pixels displayed by the CRT must be determined by a pixel
clock. The clock timing is determined based on which video display mode is
currently being used.

There are 3 other important VGA pins, the DDC clock, DDC data, and DDC
return, which allows the display to comminute with the PC and determine which
display mode will be used to transmit the data. Figure 4.2.1.2.d shows the timing

16

specifications of various video modes defined by the original IMB standard and
VESA standards.

As seen in Figure 4.2.1.2.c, a
length A, which is the distance between the front edge of each HSYNC pulse. B
specifies the width of the HSYNC pulse. C and E are the front door and back
door times, respectively, which surround the HSYNC pulse signal. D is the time
during which actual pixel data is transmitted. The vertical timings can be
interpreted similarly to the horizontal timings, O being the time for a full frame, P
the VSYNC width, Q and S the front and back door times, and R the actual time it
takes to transmit the frame.

 IBM VESA

Measu
re

Un
it

640x4
80

720x4
00

60Hz 70Hz
F_HSY
NC

kH
z

31.46
9

31.46
9

A us
31.77
8

31.77
7

B us 3.813 3.813
C us 1.907 1.907

D us
25.42
2

25.42
2

E us 0.636 0.636
F_VSY
NC Hz 59.94

70.08
7

O ms
16.68
3

14.26
8

P ms 0.064 0.064
Q ms 1.048 1.08

R ms
15.25
3

12.71
1

S ms 0.318 0.413
Pixel M 25.17 28.32

specifications of various video modes defined by the original IMB standard and

As seen in Figure 4.2.1.2.c, a row of pixels is transferred in the time specified by
length A, which is the distance between the front edge of each HSYNC pulse. B
specifies the width of the HSYNC pulse. C and E are the front door and back
door times, respectively, which surround the HSYNC pulse signal. D is the time

which actual pixel data is transmitted. The vertical timings can be
interpreted similarly to the horizontal timings, O being the time for a full frame, P
the VSYNC width, Q and S the front and back door times, and R the actual time it

720x4 640x4
80

640x4
80

800x6
00

800x6
00

1024x
768

 75Hz 85Hz 75Hz 85Hz 75Hz

37.5
43.26
9

46.87
5

53.67
4 60.023

26.66
7

23.11
1

21.33
3

18.63
1 16.66

 2.032 1.556 1.616 1.138 1.219
 3.81 2.222 3.232 2.702 2.235
20.31
7

17.77
8

16.16
2

14.22
2 13.003

 0.508 1.558 0.323 0.589 0.203

75
85.00
8 75

85.06
1 75.029

13.33
3

11.76
4

13.33
3

11.75
8 13.328

 0.08 0.671 0.064 0.056 0.05
0.427 0.578 0.448 0.503 0.466

12.8
11.09
3 12.8

11.17
9 12.795

 0.027 0.023 0.021 0.019 0.017
31.5 36 49.5 56.25 78.75

specifications of various video modes defined by the original IMB standard and

e specified by
length A, which is the distance between the front edge of each HSYNC pulse. B
specifies the width of the HSYNC pulse. C and E are the front door and back
door times, respectively, which surround the HSYNC pulse signal. D is the time

which actual pixel data is transmitted. The vertical timings can be
interpreted similarly to the horizontal timings, O being the time for a full frame, P
the VSYNC width, Q and S the front and back door times, and R the actual time it

1024x
768
85Hz

68.677

14.561
1.016
2.201

10.836
0.508

84.997

11.765
0.044
0.524

11.183
0.015
94.5

17

Clock Hz 5 2
HSYN
C +/-

Neg

Neg Neg Neg Pos Pos Pos Pos

VSYN
C +/- Neg Pos Neg Neg Pos Pos Pos Pos

Figure 4.2.1.2.d Precise Timing Specifications for VGA Display Modes

4.2.1.3 Analog to Digital Conversion:

In order to display frames transmitted through VGA on our LED array, we will
need to first obtain the signal in a digital format and build each frame. This is
because the VGA format transmits data in horizontal lines and our display needs
the data in vertical lines. After each frame is constructed, the data must then be
retransmitted a single column at a time. Additionally, this will allow us to perform
processing on each frame, which might include cropping and resizing. Pre-
buffered data can also be accommodated easier if we convert the signal to digital
because the VGA stream and pre-buffered frames would be able to use the
same output to the LED array.

For these reasons, ADCs will be required. From timing diagrams in Section
4.2.1.2, we can see that the pixel clock runs at 25.175 MHz at a resolution of
640x48. At each of these pulses the analog RGB lines need to be read so 3
ADCs would be needed in total. The voltage on each pin ranges from 0 to 7 volts.
With these factors considered, the ADC0801S040 seems to be a good choice for
an ADC. The ADC0801S040, has an 8 bit output and operates between 2.7 V
and 5.5 V, so the input signal will need to be scaled before going into the ADC It
also has a maximum speed of 40MHz, and a clock input which could be tied to
the pixel clock. This ADC costs around $4, however, it seems likely that enough
could be obtained with free samples.

4.2.2 HDMI:

HDMI or High Definition Multimedia Interface is one of the possible inputs we are
considering supporting in our POV display project. HDMI input will allow us to
receive a signal in a format that is quickly gaining popularity and is currently
available on many devices. The main reason we are considering HDMI support is
because Digilent has a Xilinx FPGA based board available with built in HDMI
support, and most modern DVD players and laptop computers have HDMI
outputs. This research is mainly focused on how we would go about receiving the
HDMI signal on the Digilent Atlys board and then translate that signal into a
format we can use to display it on our LED array.

4.2.2.1 HDMI Signal Standards:

18

The HDMI standard indicates that the term used to describe HDMI inputs is
“HDMI sink”, and the term used to describe HDMI outputs is “HDMI source”. Our
POV display is therefore going to be the HDMI sink and any device connected to
our display will be the HDMI source. HDMI has two separate communication
channel protocols that we must become familiar with: DDC, and TMDS. Another
important signal that must be considered is the TMDS clock signal. HDMI
provides content protection capabilities through HDCP or High-bandwidth Digital
Content Protection. HDCP will not be necessary for our project so we will not
consider it in our research. HDMI is also capable of sending control signals in
both directions, allowing the connected devices to send commands to each
other. We will most likely not be taking advantage of HDMI control signals. Our
main focus for HDMI signal standards will be on the DDC and TMDS
communication channels. The pin configuration for an HDMI cable is shown in
the following Table 4.2.2.1.a.

PIN Signal Assignment PIN Signal Assignment
1 TMDS Data2+ 2 TMDS Data2 Shield
3 TMDS Data2- 4 TMDS Data1+
5 TMDS Data1 Shield 6 TMDS Data1-
7 TMDS Data0+ 8 TMDS Data0 Shield
9 TMDS Data0- 10 TMDS Clock+
11 TMDS Clock Shield 12 TMDS Clock-
13 CEC 14 Reserved
15 SCL 16 SDA
17 DDC/CEC Ground 18 +5V Power
19 Hot Plug Detect

Table 4.2.2.1.a HDMI Pin Configuration

 DDC or Display Data Channel provides a way for the display to communicate
which resolutions are supported to the graphics output device. HDMI uses a
DDC protocol named Enhanced Extended Display Identification Data or E-EDID.
This is represented by a 256 byte binary file stored in ROM on the display. Since
we are creating the display we may have to create our own EDID data file in
order to properly have a device such as a DVD player send the correct resolution
picture. Creating a compatible EDID file may prove beneficial to use since it may
eliminate the need for downscaling the resolution of the input since the file will
communicate to the HDMI source which resolution it should be sending to the
sink. Table 4.2.2.1.b below shows the structure and requirements of EDID
information.

19

Description Required
Block “0” Header Yes
ID Manufacturer Yes
ID Product Code Yes
ID Serial Number No
Week of Manufacture No
Year of Manufacture or Model Year Yes
EDID Version Yes
EDID Revision Yes
Basic Display Parameters and Features Yes
Display x, y Chromaticity Coordinates Yes
Established Timings No
Standard Timing Identifications No
Preferred Timing Descriptor Block Yes
Range Limits Descriptor Block No
Monitor Name Descriptor Block No
Other Descriptor Blocks No
Extension flag Yes
Checksum Yes

Table 4.2.2.1.b EDID Information and Requirements

TMDS or Transition Minimized Differential Signaling is an encoding protocol that
takes place for the HDMI audio and video data. “Transition Minimized” means
that the number of transitions in the digital signal is reduced as low as possible.
This means that the transition from 0 to 1 or vice versa will happen as few times
as possible in the transmitted signal. The reason for this is to minimize the
chance of the signal degrading along the transmission line. “Differential
Signaling” means that there are two different signals being sent, one on each
cable in a twisted pair. One of the signals is the audio and video data, and the
other signal is the inverse of the first. The receiving end compares the first signal

20

with the second and calculates the difference between the two; this data is then
used to make corrections when possible. There are three TMDS channels in an
HDMI cable; each channel has its own twisted pair. There is also a TMDS clock
signal, which itself is not a TMDS signal, but simply a digital signal to help
synchronize the TMDS signals and allow for the differential calculations needed
for error correction. The following Figure 4.2.2.1 shows a simple flowchart of how
we will be handling the HDMI TMDS signal with the HDMI input on an FPGA.

Figure 4.2.2.1 TMDS Input Flowchart

4.2.2.2 Signal Sampling:

If we are to use HDMI input we will be using the Atlys board by Digilent. The
Atlys board is based on the Xilinx Spartan 6 FPGA, and has built in HDMI inputs
and outputs. The HDMI inputs and outputs on the Atlys board automatically
encode or decode the TMDS signals for input or output. There is a given
reference design available which uses the onboard switches to choose which
video mode to use (resolution and refresh rate). We will be using the Atlys board
exclusively as an HDMI sink. All of the data received from the HDMI port will then
be sent by some communication method to the secondary spinning
microcontroller which will organize the data into the appropriate latches for
display on the LED array.

4.2.3 Video Processing (Stationary Controller):

Various forms video processing may be required depending upon the required
format of the frames we build in the stationary controller, and how these frames

21

are obtained. The format in which we need the frame data is dependent on the
specifications for the LED array, including its size and how precise it can
represent RGB colors. This will likely be determined by our choice of LED
controllers, which will in turn determine what types of image processing will be
required.

4.2.3.1 Color Depth Reduction:

When building each frame, there will be an RGB value for each pixel in that
frame. It is quite likely that these RGB values will have a much higher color depth
than our display is capable of handling. In code, we will need to convert these
RGB values into a lower color depth. The simplest way of doing this is to truncate
off the least significant bits. If we expect that the RGB color data we obtain will be
in ‘true color’, or 24 bit color, then to reduce it to 8 bit color we would truncate the
Red and Green data to their 3 most significant bits each, and for the Blue data, to
its 2 most significant bits. Since we only want 8 bits for the color, Blue is picked
to be the color with fewer bits because the human eye is less sensitive to
changes in blues when compared to red and green. Figure 4.2.3.1 shows the
same picture in various color resolutions.

Figure 4.2.3.1 Example of image shown in 4 bit and 8 bit color depth

4.2.3.2 Frame Resizing:

Since the possibility exists that we may not be able to receive the exact
resolution we desire for our display, we may need to resize the frames as they
are buffered. This can be accomplished most simply by truncating sections of the
frame and displaying a cropped version. In the most ideal scenario, we will
receive frames at a resolution of 640 x 480, which can then be easily cut in half
to a resolution of 320 x 240. It may also be possible to employ algorithms on the
entire 640 x 480 frame which would reduce it to 320 x 240 by using blurring
techniques, but this could have an effect on how nicely the images look on the
display, and they also come with a heavy processing cost.

22

4.2.3.3 Frame Skipping:

Assuming there is a certain amount of image buffering and that we are receiving
frames into this buffer at a particular rate, it is possible that we may receive more
frames than we need and might need. Our display is intended to show 30 frames
per second, and most video modes provide frames at around 60 Hz. In this
simple case we receive frames at twice the frequency we need them, we could
simply use every other frame. A more complicated frame skipping algorithm may
be needed frequency at which frames are buffered can’t simply be cut in half.

There is also the possibility of increasing or decreasing the rotation speed of the
display, which determines our number frames per second, to a value such that
that it even divides evenly with the frequency of frames being received. As an
example, if the video mode we are in is providing frames at 70 frames per
second, we could display this nicely if we changed our rotation speed to 35
frames per second and then simply used every other frame. It seems likely
however that we can receive 60 frames per second and display at the desired 30
frames per second.

4.2.3.4 Video Compression:

The real time requirement of transferring the frames between the stationary
board and the rotating board is of some concern. Calculations for the required
data rate seem to suggest that the amount of data we are transferring is small
compared to the bandwidth, if it does become an issue due to overhead from
various transfer protocols it would be good to have an efficient solution for
minimizing the amount of data that needs to be transferred.

Video compression is possible because within each frame exists redundant data
that could be described more efficiently, with or without loss of information.
Redundant data can exist in two forms, spatial and temporal. Spatial redundancy
occurs when there are repeated pixels in a single frame. Temporal redundancy
occurs when pixels values do not change from frame to frame.

One of the simplest forms of compression involves simply throwing away the
least significant bits of each RGB color, which would allow each pixel to be
represented by fewer bits. Since our display is a 256 color display, this form of
compression will almost certainly occur, and is discussed in more detail in
section 4.2.3.1 dealing with Color Depth Reduction.

Run length encoding is a very simple compression method that deals with spatial
redundancy. With run length compression, when a pixel color value C is identical
for some sequence of length L, it can be represented by (C, L). The type of
compression works best on computer generated images because of the
increased likelihood of unvarying pixels. Combined with the color depth reduction
that is to occur, the likelihood of identical pixels in sequence is increased and
could greatly reduce the size of the data.

23

Often in transferring the signal between the source and display, composite
formats are used instead of having 3 separate outputs for RGB. In the composite
format, instead of RGB values, a Luminance “Y” value and a Chrominance is
used to represent each pixel. Chrominance is represented by two signals, I and
Q if using NTSC video, or U and V if using PAL video. Figure 4.2.3.4.a shows
how the luminance and chrominance are calculating using the NTSC and PAL
video standards. This in it of itself does not compress the video, it merely
combines the RGB values into a single stream and it also allows compression
algorithms to take advantage of the properties of Luminance and Chrominance.
A simpler composite would involve concatenating the individual RGB values into
a single byte, since we are using 8-bit color.

NTSC video PAL video/Digital recorders
Y = 0.30R + 0.59G + 0.11B Y = 0.3R + 0.6G + 0.1B
I = 0.60R – 0.28G – 0.32B U = (B – Y) x 0.493
Q = 0.21R – 0.52G + 0.31B V = (R – Y) x 0.877

Figure 4.2.3.4.a NTSC and PAL Calc. for Luminance and Chrominance

One form of compression relies on the premise that the human eye has poor
detection of changes in chrominance values, with heavier importance placed on
Luminance. Based on this nature, we could use a compression technique that
involves throwing away much of the chrominance data and uses interpolation to
determine the chrominance value at each pixel location instead. This method of
compression is referred to as an Interpolative compression scheme. As an
example of this method, we will throw out 3 out of 4 columns of chrominance
values and 3 out of 4 rows of chrominance values, reducing the total amount of
values by a factor of 4. Figure 4.2.3.4.b shows a matrix of chrominance values,
the blue dots representing values thrown out, and black dots representing values
to remain in the matrix. Shown also is a sample calculation using interpolation to
approximate the missing chrominance values.

Figure 4.2.3.4.b Method for Interpolating Chrominance Values

24

Using only spatial compression methods, the amount of data that is required to
be transferred can be vastly reduced, as has been seen. This helps to reduce
any issues involving the data transfer rate between the two microcontrollers
being too slow. It is important to note that using video compression involves a
significant tradeoff between the required processing time and data size. Some
forms of compression require additional processing power at the transmitting and
receiving side because of the mathematical calculations that would need to be
performed.

In our real time application, the right balance between compression and data rate
is critical. On the stationary processor, where we have a faster clock speed, we
can perform color depth reduction and combine the RGB values into a single
byte before transmitting. Using those two techniques alone, the rotating
processor would not need to perform any calculations to decode the video. The
rotating processor avoids any extra processing because it will receive the data in
the format that it ultimately needs. The rotating processor would be able to
dedicate its cycles fully to reading the frame buffer and writing to the LED array.

4.3 LED Array:

This section of research will cover the exploring the different possibilities of not
only what type of LEDs to use but different possibilities to control the LEDs as
well.

4.3.1 LEDs:

There are a several available RGB LEDs all with different characteristics and
specifications. Some important unique characteristics required by the POV
display include size and mounting options. In order to reduce the appearance of
streaking when the POV display is running, the distance between each vertical
LED needs to be minimized. This eliminates the most common and popular case
style of LEDs, T-1 3/4 package. The T-1 3/4 style LEDs have a width (as viewed
from the top) of 5.9mm. Therefore, we will turn to researching available surface
mount LEDs. In general, surface mount devices or SMDs offer a much smaller
package and are design for use and easy integration into printed circuit boards.
One available surface mount type LED is manufactured by Multicomp.
Multicomp's OVS-33 Series SMD Super Bright LED is only 2.8mm wide as
viewed from the top. This is about half the size of the T-1 3/4 style LEDs. This will
allow us to group the LEDs on the array much closer reducing the appearance of
streaking as the POV display spins. Figure 4.3.1 shows the pin information for
the OVS-33 Series SMD Super Bright LED.

25

Figure 4.3.1 OVS-33 Pin Information

4.3.2 LED RGB Control:

There are several different methods for controlling RGB LEDs. Two methods that
we will be focusing our research on will be Pulse Width Modulated Controllers
and using latches with a resistor network.

4.3.2.1 Pulse Width Modulation:

The brightness of an LED is determined based on the amount of current the LED
receives during a sample period. Pulse Width Modulation is a form of controlling
the brightness of an LED by controlling the average current a LED receives
during one cycle or period by varying the width of a pulse. Several manufactures
offer a variety of LED controllers but during some preliminary research, it was
discovered that Texas Instruments offered the best selection and supporting
material for their line of LED controllers. Two LED controllers we will focus our
research on will be the TLC5971 and the TLC5940.

4.3.2.1.1 TLC5971 LED Controller:

Texas Instruments TLC5971 LED Driver offers 12 Channel, 16 Bit pulse width
modulated control of LEDs. TI defines the design application of the TLC5971 is
for RGB LED cluster lamp displays. The TLC5971 allows control of up to 12
LEDs broken into groups of (4). Each group containing controls for (3) LEDs or
the RGB values of each LED. Each LED has individually adjustable output with
65,536 steps. As well, the TLC5971 allows for serial data communications and
cascading of an n number of controllers together with a maximum data rate
transfer of 20 MHz.

4.3.2.1.2 TLC5940 LED Controller:

Texas Instruments TLC5940 LED Driver offers 16 Channel, 12 Bit pulse width
modulated control of LEDs. TI defines the design application of the TLC5940 is
for full-color LED displays, LED signboards and a general high current LED
driver. The TLC5940 allows control of up to 16 LEDs but unlike the TLC5971, the

26

outputs are not broken into RGB groups. With the TLC5940, the 12 bit pulse
width allows for each LED to be individually adjusted with 4,096 steps. Like the
TLC5971, the TLC5940 allows for serial data communications and cascading of
an n number of controllers together with a maximum data rate transfer of 30
MHz. One additional useful feature of the TLC5940 is its XERR output. The
XERR output allows for notification if an LED goes out through its LED Open
Detection. As well, XERR also allows for notification of an over temperature. Both
features that may benefit the functionality of the POV display.

4.3.2.2 Latch Control:

Each LED in our LED array needs to flash its appropriate color at the exact same
time as all of the others, so the colors that each LED is to display must be stored
before outputting to that LED. One way of accomplishing this would involve using
latches. Each LED has 4 inputs, RGB colors and ground. One LED that we are
considering using has a color depth of up to 256 colors. Each LED would then
require 8 bits of color data to determine which color it should output. If we are
displaying at 320 x 240 resolution, our LED array will have 240 individual LEDs,
and a latch will be required for each one of them.

Each latch would need to be able to contain 8 bits. We can use a resistor
scheme the VGA signal was generated in section 3.2.1.2 on VGA Signal
Sampling, which would reduce the 8 bits of information down 3 lines which would
connect directly to the LEDs. In order to address each of the 240 latches, we
could use an 8 to 256 decoder, or combination of decoders. This approach
requires 8 addressing lines from the rotating processor, and 8 data lines, as well
as a line that would be used to update the output of the latches all at the same
time, requiring 17 output lines in total. One possible way to reduce the number of
required outputs from the rotating microcontroller would be to use a counter to
address the decoders, as seen in Figure 4.3.1.2. An 8 bit counter would require 2
output lines from the controller, one to increment it and one to reset it. Its output
would be used to address each decoder one by one. The 8 data lines will still be
required, plus the two counter lines, and one final line used to activate the latch
output, so in total 11 outputs would be required from the processor.

27

Figure 4.3.1.2 Latch control Implementation

The resistor network would use the 8 outputs from each of the latches, which are
8 voltages, and would be convert the 8 bits of data into 4 lines with specific
voltage and current for the RGB and Ground connections LEDs have. Overall
this scheme involves the huge dilemma of wiring all of these connections. In total
there are 240 resistor networks which convert the 8 bits down to 4, and then
4*240 (960) connections to the LEDs. Additionally, there are 240 connections
from the decoder to the latches, and an 8 bit data bus which must connect to
each of the 240 latches.

4.4 Communications:

Since one of our objectives with this POV device is to send a signal encoded with
an image or frame of a video, we need a way to transfer data from the stationary
side of the device to the rotating side of the device. For obvious reasons the
simple solution of a wire is not applicable without some special configurations.
There are two options we came up with to solve this issue: a co-axel wire that is
strung through the point of rotation with a rotatable joint or wireless transmission
via a medium like Wi-Fi or Bluetooth.

The following sections will cover our findings for both methods, and a comparison
of both methods and their pros and cons for our specifications. The final section
will sum up our eventual decision and explore the reasons for our choice.

4.4.1 Requirements

Before we can even discuss either method of communication to our rotating device we
need to discuss the data requirements that we will need in order to implement the
system. This is so we can effectively decide the best fit for our POV display.

28

First we need to determine the number of bits it will require for one LED to display a
single color. Since we decided we wanted two
will need about eight bits of information to display a specific color on a sin
However, we don't want to display on just a single LED so we need to be able to
determine which LED we want to send this color to. Since we planned on having four
hundred-eighty LEDs as our vertical dimension we know we will need nine bits of
information to tell the processor which LED we are addressing. That is seventeen bits
total that is needed to turn a single LED in the array a specific color, the eight bits
needed for the color plus the nine bits needed for the specific LED in the array. Figu
3.4.1 gives a visual representation of this concept.

Figure 4.4.1 Data Array

This only turns a single LED in the array a specific color though,
all four-hundred-eighty LEDs a variety of colors, that means we need to send a
seventeen bit word to each LED at once for a single vertical line of our frame. We
also need to tell the device when a new line should be displayed, so we shoul
add two bits for an end of line message and a beginning of line message. For the
sake of discussion and since it is better generally to
estimate we will say two bits. This means we need to multiply the seventeen bit
word by four-hundred-eighty LEDs and add two bits to the end of that to get the
total bits needed for a single vertical line. In other words we need 8162 bits to
display a single vertical line of our frame. Now to display the full frame we need
to multiply this word by six-hundred
This brings the data we need to transfer up to about 5.3 megabytes. We aren't
done yet since we also need end and beginning of frame bits for this word, which
brings us up two more bits. This is
these frames reliably at thirty frames per second. This means we need to send
the above frame data thirty times per second. This means in one second we are
sending a little over a hundred
156,710,460 megabytes.

This means no matter what form of communication we choose to use it has to be
at minimum capable of sending this much information reliably. That being the
case we will probably want a data transfer rate a little
even twice as high as this to make it reasonable that with errors we will still be
able to maintain a steady transmission.

First we need to determine the number of bits it will require for one LED to display a
single color. Since we decided we wanted two-hundred-fifty-six colors we know that we
will need about eight bits of information to display a specific color on a sin
However, we don't want to display on just a single LED so we need to be able to
determine which LED we want to send this color to. Since we planned on having four

eighty LEDs as our vertical dimension we know we will need nine bits of
rmation to tell the processor which LED we are addressing. That is seventeen bits

total that is needed to turn a single LED in the array a specific color, the eight bits
needed for the color plus the nine bits needed for the specific LED in the array. Figu

representation of this concept.

Figure 4.4.1 Data Array

This only turns a single LED in the array a specific color though, we need to turn
eighty LEDs a variety of colors, that means we need to send a

seventeen bit word to each LED at once for a single vertical line of our frame. We
also need to tell the device when a new line should be displayed, so we shoul
add two bits for an end of line message and a beginning of line message. For the
sake of discussion and since it is better generally to overestimate then under
estimate we will say two bits. This means we need to multiply the seventeen bit

eighty LEDs and add two bits to the end of that to get the
total bits needed for a single vertical line. In other words we need 8162 bits to
display a single vertical line of our frame. Now to display the full frame we need

hundred-forty, since this is our horizontal dimension.
This brings the data we need to transfer up to about 5.3 megabytes. We aren't
done yet since we also need end and beginning of frame bits for this word, which
brings us up two more bits. This is just a single frame and we need to display
these frames reliably at thirty frames per second. This means we need to send
the above frame data thirty times per second. This means in one second we are
sending a little over a hundred-fifty-six megabytes, or more specifically:

This means no matter what form of communication we choose to use it has to be
at minimum capable of sending this much information reliably. That being the
case we will probably want a data transfer rate a little higher than this, maybe
even twice as high as this to make it reasonable that with errors we will still be
able to maintain a steady transmission.

First we need to determine the number of bits it will require for one LED to display a
six colors we know that we

will need about eight bits of information to display a specific color on a single LED.
However, we don't want to display on just a single LED so we need to be able to
determine which LED we want to send this color to. Since we planned on having four-

eighty LEDs as our vertical dimension we know we will need nine bits of
rmation to tell the processor which LED we are addressing. That is seventeen bits

total that is needed to turn a single LED in the array a specific color, the eight bits
needed for the color plus the nine bits needed for the specific LED in the array. Figure

we need to turn
eighty LEDs a variety of colors, that means we need to send a

seventeen bit word to each LED at once for a single vertical line of our frame. We
also need to tell the device when a new line should be displayed, so we should
add two bits for an end of line message and a beginning of line message. For the

then under
estimate we will say two bits. This means we need to multiply the seventeen bit

eighty LEDs and add two bits to the end of that to get the
total bits needed for a single vertical line. In other words we need 8162 bits to
display a single vertical line of our frame. Now to display the full frame we need

forty, since this is our horizontal dimension.
This brings the data we need to transfer up to about 5.3 megabytes. We aren't
done yet since we also need end and beginning of frame bits for this word, which

just a single frame and we need to display
these frames reliably at thirty frames per second. This means we need to send
the above frame data thirty times per second. This means in one second we are

more specifically:

This means no matter what form of communication we choose to use it has to be
at minimum capable of sending this much information reliably. That being the

this, maybe
even twice as high as this to make it reasonable that with errors we will still be

29

4.4.2 Wired Communications:

There are many forms of wired communications currently being implemented on
a daily basis in today's high speed world. There are several design criteria which
will restrict some of the available forms of wired communications. From our
specifications and project design criteria, we know that our platform will be
spinning at a rate of 1800 rotations per minute. Through some preliminary
research, it was found that the larger number of conductors being transmitted to
a rotating platform resulted in a smaller maximum allowed RPM's. In other short,
any conductor larger for four strands will be unpractical for this application.
Therefore, the researched will be focused on two types of wired communications,
Fiber Optics and Cooper Coaxial Cable. In both situations, the wired
communications will need to convert existing Ethernet communications ports on
the microprocessors to a form that can be transmitted over their respective
medium. With the idea of using the existing Ethernet ports and protocols of the
microprocessors one additional criteria of the wired communications will be
transmission rates. Currently the standard threshold requirements for Ethernet
communications is 10 Mbs, 100 Mbs, and 1000 Mbs or 1 Gbs. An additional
design criteria for wired communications will be to implement the
communications with inducing the minimal amount of interference to the signal.
The last design criteria for wired communications will be to evaluate cost benefits
between coaxial cable and fiber optic cable. Below a summary of the design
criteria is listed and will be a guide for determining the vitality of each type of
wired communications.

Rotating Speed: 1800 RPM's
Transmission Rates: 10/100/1000 Mbs
Little to no induced interference
Cost

4.4.2.1 Fiber Optic Communications:

In the following section we will research the requirements for using fiber optic
communications to transfer the data from the stationary side of the POV display
to the rotating side of the POV display.

4.4.2.1.1 Fiber to Ethernet Conversion:

The first portion of research on fiber optic communications will be to determine
the requirements for converting Ethernet communications to fiber
communications. Fiber optic communications use either single mode or
multimode fiber cable. Therefore, in addition to determining how to convert
Ethernet to fiber, a review of single mode verse multimode is required to
determine which is preferred for Ethernet communications.

30

Single mode fiber optic communications have a smaller core size than multimode
fiber cables and, as the name implies, single mode fiber cables only operate with
one optical light. Generally, most single mode fiber systems operate at 1300 nm
or 1550 nm wavelengths. As well, single mode fiber systems require very strict
mechanical connections due to the smaller core size. Multimode fiber systems
operate at 850 nm or 1300 nm wavelengths and have a larger core size than
single mode fiber cables. However, due to the larger size of the multimode core,
multimode systems suffer from high attenuation can therefore cannot operate at
the same distance as single mode systems. One advantage the larger core size
of multimode systems is the high capacity and transmission data rates.
Multimode systems can transmit data at rates of 10 Mbs to 10 Gbs. As well, in
general, the cost of multimode fiber systems is less than the cost of single mode
fiber systems.

Upon reviewing the differences between multimode and singe mode fiber cable,
the research on fiber to Ethernet conversions will focus in multimode fiber
communications only. The difference in transmission length between multimode
and single mode is negligible for the application of the POV display as the
maximum transmission distance will not exceed more than ten feet. As well, the
higher cost and lower transmission rates of single mode fiber cable make
multimode fiber a clear choice for the application and use of the POV display.

Various Ethernet to fiber solutions exist on the market today. Ethernet to fiber
converters or media converters are used in various industries from substation
communications to bringing internet to homes across the nation. Several
manufactures provide fiber to Ethernet solutions all within the design criteria of
the POV display. Table 4.4.2.1.1 below list a few available solutions including
product specifications and cost.

Part
Number Mfr. Supported

Data Rates
Fiber
Connector

Ethernet
Connector Cost

EIR102-MT B&B
Electronics

10/100
Mbps MM ST RJ-45 $199.00

FCU-
100SC Aaxeon 200 Mbps MM SC RJ-45 $62.00

ME-1600-
MM2-ST

Support
Systems
Int.

10/100
Mbps MM ST RJ-45 $69.50

Table 4.4.2.1.1 Fiber to Ethernet Converters

4.4.2.1.2 Fiber Optic Rotary Joints:

31

Fiber optic rotary joints or FORJs are used to make the junction between a
stationary fiber cable and a rotating fiber cable. As discussed in the main section,
the fiber optic rotary joints must be cable of rotating at speeds of 1800 RPM's
while not inducing a significant amount of inference. Several fiber optic rotary
joints are available on the market. One company providing a wide range of fiber
optic rotary joints is the Moog Components Group. Almost all available rotary
joints can support either multimode or single mode fiber cable and a wide
wavelength range. Therefore, the research on fiber optic rotary joints will focus
on the maximum rotating speed and minimum induced noise into the signal.

Although Moog provides a variety of fiber optic rotary joints, the manufacture
however does not provide any FORJs that have a maximum rotating of 1800
RPMs or higher. Fortunately, other manufactures do provided FORJs that can
operate at the rotating speed required for the POV display. One alternative to
Moog is Princetel and their line-up of available FORJs. In particular, Princetel
offers the MJX series product line. The MJX series fiber optic rotary joints are
capable of rotating at speeds up to 2000 RPMs. In addition to a maximum
rotating speed of 2000 RPMs, Princetel's MJX series fiber optic rotary joints have
an insertion loss of less than 2 dB (less than 0.5 dB typical) with an insertion loss
ripple of less than plus/minus 0.25 dB.

It is evident that the MJX series fiber optic rotating joint meets and exceeds all
design criteria for the POV display. Depending on what fiber connector and
wavelength is required to connected to the Ethernet convert, Table 4.4.2.1.2
below shows available MJX rotating joints and their respective part number.

Part Number Fiber Connector Wavelength
MJX-850-ST ST 850
MJX-850-SC SC 850
MJX-131-ST ST 1310
MJX-131-SC SC 1310

Table 4.4.2.1.2 MJX Part Numbers

4.4.2.2 Coaxial Copper Communications:

In this section we will research the requirements for using a copper coaxial cable
to transfer the data from the stationary side of the POV display to the rotating
side of the POV display.

4.4.2.2.1 Coaxial to Ethernet Conversion:

Coaxial to Ethernet conversion is the back bone to modern cable modem
internet. Coaxial communications relay on a single copper core that is shield by
an equal but opposite current. This provides one fundamental advantage over
fiber communications, the ability to conduct power over the same line as the data
signal. This allows the conversion of signals to coaxial using simple in-line

32

converters that do not require any additional power supply. One such in-line
convert is provided by EnConn. The EnConn EOC-IN-B Ethernet over Coax
allows for the transmission of Ethernet of coaxial cable at transmission rates up
to 10 Mbs. As stated early, the EOC-IN-B is an in-line or passive device. This
means the EOC-IN-B does not require any additional power. In addition, the
EOC-IN-B is a compact design allowing the device to be installed using less
space not only on the stationary platform but the rotating chassis of the POV
display. However, the EnConn EOC-IN-B only supports Ethernet
communications up to 10 Mbs. In the case that the communications to the LED
array will require a higher bandwidth additional research is required to determine
the best alternative.

One alternative from EnConn is their EOC-AN and EOC-IN Ethernet over Coax
extender allows for transmission of Ethernet at rates of 10 Mbps up to 100 Mbps.
The EOC-AN converter requires a DC power input of 12V but the EOC-IN does
not require any power input. This means we could use the EOC-AN converter on
the stationary side of the POV display and power the converter from the power
supply. We would then install the more compact EOC-IN on the rotating side of
the POV display. Another alternative would be Pulse Link's PL3302 Ethernet over
Coax bridge. The PL3302 allows Ethernet communications of 10 Mbps, 100
Mpbs and 1000 Mbps. Although the PL3302 allows for Ethernet communications
up to 1000 Mbps, the Ethernet bridge will require DC power on both the
stationary and the rotating side of the POV display. Another downside to the
PL3302 is its size. The PL3302 dimensions are 6" wide x 1.75" high x 4.75"
deep. Table 4.4.1.2.1 compares the differences between all converters.

Part
Number Mfr. Supported

Data Rates
Coax
Connector

Ethernet
Connector

EIR102-MT EnConn 10 Mbps BNC RJ-45
EOC-
AN/IN EnConn 10/100

Mbps MM SC RJ-45

PL3302 Pulse
Link

10/100/1000
Mbps MM ST RJ-45

Table 4.4.2.2.1 Coax to Ethernet Converters

4.4.2.2.2 Coax Rotating Joint:

Once the Ethernet is converted to Coax, just like with fiber, the coax will require a
rotating joint to make the bridge between the stationary side and the rotating
side. Although extensive research was done, only one practical solution was
found. Mercotac manufactures a variety of rotating joints and slip rings. Included
Mercotac's product line is a two conductor Model 205 high speed, low torque
rotating joint. The joint is not explicitly design for coaxial communications but due
to the extremely low electrical noise induced by the joint and the fact that a
coaxial cable can be simplified to two conductor cable makes the Model 205 a

33

feasible solution for transmitting the coax cable from the stationary side to the
rotating side. Some other advantages of Mercotac's rotary joints are life
expectancy and maintenance requirements. The Model 205 rotary joint is
manufactured with a life expectancy of several hundred million revolutions. If a
rotary joint is installed and operated under all specified conditions, Mercotac
claims the joint can even last for over a billion revolutions. As well, the joints are
manufactured for to be maintenance free, meaning they will not deteriorate the
signal over the lifetime of the joint. Figure 4.4.1.2.2 below shows a typical
mounting and wiring of a Model 205 joint. As well, Table 4.4.1.2.2 list all models
and their corresponding specifications for the 205 joint. All Model 205 joints have
two terminals, operate at a voltage range of 0-250 V AC/DC and a current rating
of 4 Amps at 240 V AC.

Figure 4.4.2.2.2 Model 205 Rotary Joint for Rotary Interfaces

Part Number Max. Freq Max RPM Ball Bearing Cost
205 200 MHz 2000 Steel $28.52
205-SS 200 MHz 2000 Stainless Steel $37.68
205-H 200 MHz 3600 Steel $29.62
205-HS 200 MHz 3600 Stainless Steel $38.37

Table 4.4.1.2.2: Coax to Ethernet Converters

4.4.2.3 Ethernet Protocols:

In order to determine which protocol is most appropriate for our purposes we will
look at the protocols TCP, UDP, and using our own. TCP is protocol that is

34

designed to reliability transmit a stream of bytes between two programs running
on separate systems. TCP allows a program to request the transmission of data
with a single request and then takes care of segmenting it into IP sized packets,
which contain a sequence of bytes and a header. TCP handles the scenarios
such as out of order transmission, duplicate packets, and lost packets. Out of
order packets are rearranged and lost packets and be requested to be resent.
Reassembly of the stream of bytes is handled by the TCP receiver, which then
passes the data to the program. The TCP protocol favors the accuracy of the
data over timely delivery, and uses positive acknowledgement to guarantee
reliability. In positive acknowledgement method, the receiver sends an
acknowledgement for each packet it receives, and the sender expects to receive
the acknowledgement within a certain amount of time, or it will resend the packet
because it may have been lost or corrupt. The favoring of accuracy over
transmission speed makes TCP generally a poor choice for a real time
application.

Another protocol option is to consider is UDP. UDP doesn’t use any handshaking
and does not guarantee that data is in order and not missing. Any reliability and
accuracy checking, as well as error handling must be performed at the
application level if it is a concern. In our case we could probably implement these
checks at the application level. For instance after each frame is transmitted to the
rotating board we could send a UDP datagram back to the stationary one
confirming its receipt. UDP is often used for real time systems where losing a
packet is preferable to waiting on it, which might make it lend itself better to our
application. This does require that we handle the scenario losing a packet
appropriately at the application level however, although ideally there will not be
any packet loss. Packet loss is unlikely because our two systems are connected
back to back via cross-over Ethernet cable, and the communication is limited to
those two systems. A UDP packet consists of a header which contains the
source port number, destination port number, length, and a checksum, all of
which is followed by the actual data.

4.4.2.3.1 Ethernet Software Library:

The stationary FPGA will communicate with the rotating FPGA using Ethernet
wired communications. In this section we will be considering how the Ethernet
communications work. This includes software library identification, and protocol
selection. Software library identification for the FPGA was more challenging than
expected. The Atlys board was expected to come with built in Ethernet
functionality but it seems that this is not the case. Xilinx offers software in the
form of Intellectual Property (IP) cores to support Ethernet communications but
this core is not free. Licensing fees would cost us over $1,000. To keep the costs
of this project low we searched for alternate solutions. There is a website
opencores.org which has open source “cores” available for FPGA’s. Cores are
FPGA software packages that program the FPGA to function like a certain
hardware design. We were able to find a core which implements a 10/100
Ethernet MAC on the FPGA. Using this core we should be able to use the

35

Ethernet ports on the FPGA’s for communication. If we use the Ethernet core
then we will use the UDP protocol because flow control and acknowledgements
are unnecessary for our application. A live video feed cannot afford to retransmit
packets. It makes more sense to simply drop any lost packets and continue
transmitting the next frames.

Another alternative may possibly be to use the Ethernet ports in a non-standard
way. We can use the pins on the RJ-45 connector to send the data using our
own design. If we choose this route we will not be using any Ethernet protocols
but simply sending raw data through a wire. This will be the simplest method to
design and implement because it will not require any complicated software library
or IP cores. After looking at example code using the Xilinx Ethernet MAC core it
was obvious that many hours would be required just to understand the example.
The core available through the opencores.org website was even more complex
because it lacked documentation and examples. Another fact worth mentioning is
that the cores do not work in a straightforward way like C programming. They are
actual hardware implementations and should be viewed as such. If we create our
own method of using the output pins for the RJ-45 connector we may be able to
simplify communication greatly. We will create our own header for the data being
sent to identify what is being sent. We will most likely use a clock speed of
100MHz for a 100Mbit/s data sampling rate.

4.4.2.4 Microprocessor Ethernet Hardware:

A possible component to implement Ethernet communication on our boards is
the Arduino Ethernet Shield, which would require that we use Arduino boards for
the rotating and stationary controllers. The board has a 16 kilobyte buffer and
has a connection speed of 10/100 Mb. The board supports both TCP and UDP
connections as well as simply transferring single bytes at a time without any
protocol. The board contains a library of functions including a server class, client
class, and an EthernetUDP class, as well as the main Ethernet class and
IPAddress class which allows you to assign the board an IP address.

4.4.3 Wireless Communications:

We will be considering wireless communications in order to send information
from the stationary FPGA to the rotating microcontroller. The wireless
communication must support a high enough bit rate to send a 320x240 color
video signal. The color video signal will have 256 possible colors per pixel, so 8
bits per pixel will be needed. We would also like to transmit 30 frames per
second. The minimum required bitrate that we will need in order to achieve the
desired frame rate will be 320x240x8x30 which is 18.432Mbps. We are also
possibly considering a 480 LED array supporting a 640x480 resolution. If we
were to use the higher resolution then our bandwidth requirements would be
640x480x8x30 which is 73.728 Mbps. Both WiFi and Bluetooth are capable of
these speeds so we will be considering both technologies. Generic RF
communication will not be considered because we do not believe that it will

36

support the bandwidth that will be required for real time video. We will also be
researching if the rotation of the microcontroller will hinder wireless
communications.

4.4.3.1 WiFi:

WiFi is the common name for the IEEE 802.11 wireless communication standard.
This technology most often uses a 2.4GHz frequency. A large advantage to using
WiFi for our wireless communications is that all modern laptop computers have
built in WiFi communication capabilities. It may be possible for us to write
software for a PC that will allow direct WiFi communication between a PC and
the rotating microcontroller in order to send text messages or images to be
displayed.

4.4.3.1.1 WiFi Protocols:

The specific WiFi protocol we will be considering is 802.11g. Devices that use
this protocol are commonly available and are capable of up to 54Mbps data
transfer rates, which is more than enough for our application. WiFi has two
possible modes of operation: infrastructure and ad-hoc. Infrastructure is the most
commonly used mode, but it requires an existing infrastructure including wireless
routers and/or wireless access points. We will be considering the ad-hoc mode
for this project since it does not require any other external hardware. Ad-hoc will
allow us to set up a direct wireless connection between the FPGA and the
microcontroller for bi-directional communication. Although bi-directional
communication will be supported we will probably only have to communicate in
one direction. The following Figure 4.4.3.1.1 shows a comparison between
infrastructure and ad-hoc modes of operation.

Figure 4.4.3.1.1 Infrastructure/Ad-hoc Comparison.

Because of WiFi’s popularity there are many options for WiFi hardware. Digilent
offers a WiFi adapter for their boards although it only supports 2Mbps data rates.
Arduino shields are also available to add WiFi support. All modern laptop

37

computers and cell phones have WiFi built in. With WiFi supported by so many
devices it would be a convenient communication method for us to choose.

4.4.3.2 Bluetooth

Bluetooth may possibly provide an alternative to WiFi. A possible advantage that
Bluetooth may have is that it is a low power, short range method of
communication. Short range for our application may be desirable for security
purposes. Anyone communicating with our display would have to be within about
30 feet of the device. Bluetooth also works on the 2.4GHz frequency, and with
the v3.0 specification can achieve data rates of up to 24Mbps. All modern cell
phones have built in Bluetooth communication capabilities and allow us the
option of creating a mobile application to interface with our POV display. If we
can find suitable Bluetooth hardware compatible with our FPGA and
microcontroller then this will most likely be our preferred method of wireless
communication.

4.4.3.2.1 Bluetooth Protocols:

Bluetooth protocols are divided into two categories: controller stack and host
stack. The controller stack protocols are protocols built into the Bluetooth
module. The host stack protocols are what we will use to deal with our video data
to be sent. We will be looking at both the controller and the host stack protocols
relevant to our project in order to help facilitate communication programming
during the design phase. First we will consider the relevant controller stack
protocols which are: Link Management Protocol (LMP), and Asynchronous
Connection-oriented Logical transport (ACL). The LMP protocol’s function is
related to the name of the protocol, it manages the links. More specifically the
LMP protocol deals with how Bluetooth devices can scan and discover each
other and set up a link in order to exchange data. Once a link has been set up, a
new protocol can take over communications between the devices, in our case
this will most likely be ACL. The ACL protocol is designed to transmit general
data packets on a previously set up Bluetooth link. ACL supports Enhanced Data
Rate or EDR for increased bandwidth by changing the modulation technique.
Theoretically Bluetooth is capable of achieving 24Mbps data rates using EDR. As
far as hardware availability, the Digilent boards have a Bluetooth adapter
available. There are also shields available for Arduino boards to add Bluetooth
support. Adapters for PC’s are easy to find and affordable, if the PC doesn’t
already have a built in solution. All modern cell phones have built in Bluetooth
support.

4.4.3.3 Effects of Rotational Speed:

According to a research paper concerning wireless sensor networks, rotational
speed is a factor in wireless signal quality. Some of the possible effects that we
may have to consider are path loss, multipath fading, the Doppler effect, and

38

electromagnetic noise. Path loss is when the path may become interrupted due
to line of sight differences along the path that our rotating microcontroller will
travel through. Multipath fading could happen if the microcontroller receives the
same signal from different paths at the same time. The Doppler effect is most
known for the frequency distortion of sound waves, but will have the same effect
on electromagnetic waves as well. Electromagnetic noise could be caused by our
mechanical components such as our motor, we probably do not need to consider
electromagnetic noise for our project. According to the research paper,
electromagnetic noise generated by mechanical components is usually in
frequency ranges less than 1.5GHz. We will be using either WiFi or Bluetooth,
both of which operated at the 2.4GHz frequency. It is safe to conclude that any
electromagnetic noise introduced to our system from the mechanical components
should not interfere with our wireless communications.

4.5 Motor:

In order to create the illusion of motion through the phenomena known as
persistence of vision it comes to no surprise that we need some sort of motor.
This motor needs to be able to rotate whatever apparatus we design that houses
both the LEDs, processor, and any other circuit elements we need to implement
the system. It also needs to be able to rotate at the rpm needed to ‘trick’ the brain
into seeing motion. In addition, under the considerations that this project is being
designed for the use of advertisement we would also like to find a motor that is
as silent as possible so as to not be discomforting to those who either work
around it or potential customers whom are attracted to it

There are a variety of motors available for such a use but for the most part the
motors fall into two categories AC and DC motors. In the following sections we
will not only discuss the above design considerations but also discuss the pros
and cons for both the AC and DC motors for each consideration. This discussion
will eventually lead to which motor type we choose and the reasoning for the
choice. Finally, in the last two sections we will discuss the process of controlling
the motor we chose.

4.5.1 Torque Requirements:

As will be discussed further in the chassis design section it will show that we
would need about 0.5 to 1 horse power to get the motor to just initially spin the
LED apparatus. After that the torque requirements were much lower. This
however, is actually a pretty large requirement for motor standards considering
most cheap motors are rated for far lower ranges, somewhere in the 1/35 to 1/9
horse power range. This proved to be a bit of an issue since that means we
needed a high torque motor that also could maintain our revolutions per second
value.

4.5.1.1 AC Motor Application for Torque Requirements:

39

AC motors are perfect for this sort of activity. Our research showed that AC
motors tend to be used for high torque requirements and specifically maintained
high torque requirements.

4.5.1.2 DC Motor Application for Torque Requirements:

DC motors however, capable of getting high torque at start up but did not
maintain them as effectively as AC motors. This did show though that both
motors could be used for the application we desired it just seems that the DC
motors needed for this application were rather costly. These motors can range
from anywhere between two hundred dollars to a few thousand dollars. Used
motors that reach these requirements are seemingly difficult to acquire, with
none at the local Skycraft store available for purchase. Which meant our desire
to purchase a cheaper alternative if we decide to use a DC motor would be
difficult to accomplish.

4.5.2 RPM Requirements:

Under the consideration that the human eye is tricked into seeing motion at a
rate of about twenty-five frames per second and a single rotation of the device is
a frame we know we need a motor that can handle twenty-five rotations per
second. This is the bare minimum. We decided that we want to overshoot this
value by five frames or rotations in order to create a smoother image. Our group
thus decided that thirty rotations or frames per second would be adequate.

Thirty frames per second is equivalent to one-thousand-eight-hundred frames or
rotations per minute. This means we need a motor that can make one-thousand-
eight-hundred rotations per minute to accomplish the desired frame rate. This
rpm value cannot vary much and must be maintained at a constant rate
otherwise there may be distortions in the image due to the increasing and
decreasing of the delay between each flash of an LED.

4.5.2.1 AC Motor Application for RPM Requirements:

Through some research it became apparent that AC motors were quite capable
of reaching these rpm values required. However, the real problem came in the
control aspect of the motor, or more specifically the ability to keep the motor at a
constant rpm value. The rpm value of an AC motor can only be varied through
either the number of poles the motor is built with or through the electric frequency
of the voltage being applied to it. This can be done through an inverter also
known as a variable-frequency drive, and this is a plausible solution. It is
however, an expensive solution with some inverters ranging from two-hundred to
two-thousand dollars. According to further research it also seemed like this
problem could be solve by just buying a DC motor since many DC motors are
actually AC motors with these variable-frequency drives pre-built within them.

40

4.5.2.2 DC Motor Application for RPM Requirements:

In the case of DC motors our research revealed that DC motors are generally
used for our purposes, and the rpm requirements could be met easily with these
motors. Considering DC motors are highly controllable and designed for constant
rpm output it makes for a perfect fit with our application since our device would
be running under one speed consistently and that speed must have minimal
variations.

Controlling a DC motor is actually a relatively simple process. We can either
achieve it through a variable resistor albeit this can generate a lot of heat, or we
can use some form of PWM circuit to control the rpm of the motor. This leaves us
with some options and both are relatively inexpensive solutions.

4.5.3 Sound Requirements:

Considering this product is for in-person advertisement uses we want minimal
obstructive noise. Especially if we are planning on playing videos off this device
that include sound effects or music. This being the case there are two things that
can cause large amounts of obstructive sound and that is either the motor or
improper weighting. In the case of improper weighting the torque created by the
motor alone causes rattling since the device is not properly balanced or
fashioned down. This can be solved through the design of the chasse. However,
we still have to watch out for our motor being rather loud. Our research showed
that in this case DC motors trumped AC motors. AC motors tend to be much
louder than DC motors of all makes and models.

4.5.4 AC and DC Motor Comparison:

With the above considerations reviewed it seems that a DC motor is the best fit.
An AC motor, while capable of reaching the rpm values we need would
drastically increase our costs in order to control the speed of the motor. A DC
motor is much easier and cheaper to control requiring only a simple variable
resistor or PWM circuit. An AC motor also leans to the noisy side of the spectrum
of motors, which is something we want to limit within our device. As for the torque
requirements it seems that both would pass the needs of our device, but with two
thirds of the issues being solved either cheaper or better it comes down to a DC
motor being a better choice for our application.

4.5.5 Motor Control:

Since we decided that a DC motor was the best fit as a solution to our
mechanical needs, we needed to look further into the methods of controlling the
motor's rpm value. Luckily our needs for the motor were relatively simple. The
only thing we needed the motor to do was reach our desired rpm value and

41

maintain that value until the device was shut down. We did not need the POV
device to vary its speed which would have required more elaborate methods of
control.

There turned out to be two methods that were commonly used for DC motor
control and that is either using a variable resistor or potentiometer to control the
speed or to use a pulse with modulation circuit to control the speed of the motor
through the duty cycle. Both methods were found to be inexpensive but the
question was which one was better suited for our purposes.

4.5.5.1 Variable Resistance Method to Motor Control:

In the case of the variable resistance method we came to learn through our
research that it is the least liked method among motor users. There are quite a
few problems with this method, especially if you are looking to constantly vary the
speed of your motor or need to get a small speed but still turn on the motor.
Lucky for us we didn't want to do either of these so it was still a viable solution.

The main concept that turned us away from this solution though was the heating
issues that were common with it. In many cases the resistor had a chance of
burning out because of the high power strain on the resistor.

4.5.5.2 Pulse Width Modulation Method for Motor Control:

PWM turned out to be a little bit of an overkill for our project's design since we did
not need the motor to be highly controllable just stainable. Device only needed to
spin at a constant speed so there was no very high or very low speed
requirements for the device, just the ability to spin our apparatus and to spin it
consistently at the desired rpm value.

PWM was quite capable of doing this and has very low heating effects on the
system as long as you find the right components for the circuit. The biggest
drawback to this method however was the noise. When using PWM there is a
chance of causing mechanical noise within the system, or a humming sound.

4.5.5.3 Variable Resistance and Pulse Width Modulation Motor
Control Method Comparison:

In the end though we wanted to limit the noise and the PWM was capable of
doing far more then we needed the controller to do we decided that this was the
best method. With the motor spinning at a high rpm value heat dissipation was a
concern and this would help minimize any additional heat factors within the
circuit. In addition, for the sake of scalability having the motor more controllable
then our original purpose would leave the device open to any future upgrades to
the system that might desire a stricter control system.

42

4.5.5.4 Sensor Reading Applications for Motor Control:

The final concept we needed to think about for motor control though was actually
tracking the rpm values of the motor so we could send a signal back to our
controller to vary the input and adjust the speed of the motor to keep it constant.
This was very important and had to be particularly accurate so that there was no
distortions created within the image due to an increase or decrease in the rpm
value and the predicted display rate. We had a couple of things to consider when
deciding what form of sensing we were going to do to keep track of any changes
in the rotation speed.

The first being the structure of the device itself or in other words the chasse. If
the actual apparatus that we rotated was directly pivoting on the motors shaft
then the rpm value would sync closely with the motor and there would likely be
minimal lose in rpm value. However, if we decided a gearbox was required to
rotate it, such as in the case of using a wired transmission process, we would
lose some rpm value in the translation between the motor and the gearbox. If this
was the case then our sensing side would have to be able to measure the rpm
value of the apparatus and not the actual motor itself.

The second consideration is our sampling rate. Sense we are taking in a
snapshot of this device’s motion we are going to want to know how frequently we
want to take that snapshot. This is very important because we need to measure
the rpm value rather frequently so that within one second we don’t lose or gain
information. To put it in perspective one second is thirty frames and if we are
losing even one percent of those we are losing point three frames. That doesn’t
seem large but point three frames becomes eighteen frames in one minute and
ninety frames in five minutes. And each of those is a distortion in the animation or
image. This shows how important our sampling rate is to keep the integrity of the
image.

There are two options that seem to be rather common for rotational speed
sensing when it comes to motors. These methods are the Hall effect and infrared
sensing methods. Both have their pros and cons so we will look into those and
whether they fit well for our application.

4.5.5.4.1 Infrared Sensor:

In the case of using infrared as a method for sensing and controlling the motor
the process seemed relatively straight forward. We would have an infrared
emitter on the rotating side of the device and an infrared receiver on the
stationary side. When the emitter crossed the receiver we would get a “hit” which
we could then use to calculate an rpm value. We could then send this value to a
micro-controller where we would then determine whether to increase or decrease
our motor's rpm value.

43

This method is very effective for any design we decide to go with. It can work for
any motor type and is unaffected by the use of a gear-box, and in fact ideal for
such a use. The only concern for this method is the accuracy. Considering we
are using an infrared sensor there is a possibility for some fall trips or even failed
trips. This means we need to have a substantial number of samples in order to
prevent too many of these errors. This may mean we need more than one
infrared sensor in order to prevent these errors such as two or four sets of them.

As an added bonus, the use of this method is great for these projects for other
reasons. Since we would be using infrared sensors to create trip points along the
devices rotation we can use these trips points for other things besides just
calculating the apparatus' rpm value. We can also use this method to predict
points within its rotation and create finite starting points to our image, allowing
use to split the image where ever we want. This means we aren't just floating the
image anywhere the LED happens to start turning on in its trajectory. Uses of this
include splitting the “screen” of the device into two separate sides, or drifting
images or text in the opposite direction of our rotation.

4.5.5.4.2 Hall Effect Sensor:

The Hall Effect method for measuring and calculating the rpm value of the motor
is very efficient for this application. This process is both relatively inexpensive
and easy to implement and from our research seems to also have a very small
error rate. There are however, a few issues with this method based on how we
choose to use it.

The first issue with this sensing method is it’s motor limitations. If we decide to
use this on the motor side, such as in the case of direct motor-apparatus rotation,
it is limited to motors that have a rotating magnetic pole within. This means AC
motors or certain DC motors are a better fit for this sensing method. Since we
have already ruled out AC motors because of the expense associated with
controlling them among other issues, that leaves us with a limited number of DC
motor types that can be applied to this sensing method. The most obvious type is
a brush-less DC motor. This however, is not actually that hindering to our design
since brush-less DC motors are actually good for this application and are
generally very silent running motors.

The second Issue with these sensors is kind of alluded to with the above
paragraph in that they require a moving magnetic pole to measure. This means it
would be difficult to implement this sensing method in the case of a gearbox
design. We would have to create some form of moving magnetic pole on the
rotating apparatus side that would cross the hall effect sensor in its rotation. This
is possible but there are some unforeseen issues that could occur with the
introduction of a moving magnetic field on the rotating side that is not being
produced naturally by the components that are there.

44

4.5.5.4.3 Motor Sensor Comparison:

After looking at both sensing methods and our over-arching design it seemed like
the most effective form of controlling our motor would be through infrared
sensing. While the accuracy of this method could prove to be an issue, with
enough sample points we would be able to make up for any errors that could
appear in our measurements. Considering we had already determined we were
going to do a wired design it seemed like the best method for solving the issue of
tracking the apparatus' rpm value instead of just the motor's rpm value. In
addition, it gave us some additional control over our display and flexibility in what
we could do with it.

4.6 Chassis:

In the following sections we will research the requirements for the chassis of the
POV display. Two topics that will require research include what types of materials
will be best suited to construct the POV display and how best to transfer the
rotational power from the motor to the POV display.

4.6.1 Chassis Materials:

The chassis of the POV display will be where a majority of the weight is located.
In order to maintain the portability of the POV display some materials we will
eliminate from our research simply because their excessive weight. However,
some weight from the chassis is required and preferred as the chassis must not
twist or move while the POV display is running. As well, strength is an important
factor as the chassis will but put through a range of forces as the display goes
from stationary to full rotation speed. Steel and stainless steel both have high
strength values but weigh more than is desired for portable device. Wood and
plastics would reduce the weight of the display but do not offer the flexibility to
make a customer design that the display most likely would require. As well, wood
and plastics may be more susceptible to twisting and moving while the display is
running. Therefore, we will focus our research on aluminum as it provides the
best mix characteristics to meet the requirements of the chassis. Table 4.6.1
below list several commonly used aluminum pieces, the type of aluminum and
their weight. The information in Table 4.6.1 will be used to calculate the torque
requirements of the POV display during the design phase of the chassis.

45

Type of Aluminum Weight
1/4" Plate (Type 6061-T6) 1.764 lbs per square ft.
1/4" x 1/4" Square Tubing (Type 6061 EXT) 0.294 lbs per lineal ft.
1" Solid Rounds (Type 6061 EXT) 0.924 lbs per lineal ft.

Table 4.6.1 Typical Aluminum Pieces and Weight

4.6.2 Chassis Rotating Interface:

The most challenging portion of the chassis design will be determining the best
solution to rotate the POV display. At this time we do not know if we will use
wired or wireless communications to connect to the rotating side of the POV
display. We will need to research feasible solutions that will work with both forms
of communications. If we use wired communications, the center point of rotation
must be left available to allow for the mounting of either the fiber rotary joint or
the coaxial rotary joint. Wireless communications will not require the center of
rotation to be left available but will not be hindered from operation if the center
was left available. Therefore, we will be researching options to allow for high
speed rotation using some form of a bearing allowing free access to the center of
rotation.

To research possible solutions for rotating the POV display with the center of
rotation left free, we will turn to an online distributor, McMaster-Carr. McMaster-
Carr offers a wide range of industrial products at reasonable prices. One such
product, and the first feasible solution for rotating the POV display, is a plain
bearing turntable. Turntables allow for the rotation of devices mounted on top
while working on the device. One particular turntable, part number 8700K1,
rotates with the center free and available to be used by the wired
communications joint. The 8700K1 turntable can support loads up to 337 pounds,
well above the weight requirements of the POV display. As well, there are 8 inner
ring mounting holes and 8 outer ring mounting holes providing an adequate
surface to mount not only the rotating display but also station supports. However,
the turntable has two downsides that make it a less than desirable solution. The
first downsides is the cost of the turntable is about $215. The second downside
of the turntable is there are no posted maximum rotating speeds. These means
that the turntable may be capable of rotating at the required speed of the POV
display but no document exists to support it either way.

The second feasible solution from McMaster-Carr, and more promising than the
turntable, is an extended-ring steel ball bearing, Type ER. The extended-ring ball
bearings have an extended inner ring making installing the bearings easier.
Although the extended-ring ball bearing does not have any inner or outer
mounting holes, it does have two knurled cup set screws on the extended inner
ring that could be used to secure the rotating side of the POV display to the
bearing. As well, the bearings have a dynamic load capacity of 2,860 pounds and
more depending on the part number selected. All Type ER extended-ring

46

bearings have a max operating speed of 5,000 rpm, far extending the
requirements of the POV display. As well, the cost of the bearings start at about
$30 and go up to about $80 depending on the part number and size. Table 4.6.2
below shows some available extended-ring ball bearings, there size and cost.

Bearing
No.

Shaft
Dia.

OD Wd. Load Part # Cost

ER10 5/8" 1.85" 1 7/32" 2,860 lbs 8090T11 $29.67
ER12 3/4" 1.85" 1 7/32" 2,860 lbs 8090T12 $32.61
ER16 1" 2.05" 1 3/8" 3,145 lbs 8090T13 $33.79
ER24 1 1/2" 3.15" 1 15/16" 6,535 lbs 8090T17 $59.40

Table 4.6.2 Extended-Ring Ball Bearings

4.7 Graphical User Interface:

We will be developing a GUI for use on a PC and possibly also an android device
which will allow us to send either a text message or image to be displayed on the
POV display. If sending an image to be displayed then the image will have to be
in the correct resolution and format. If time permits we may be able to have the
software handle some basic image formatting. First we will discuss the
requirements of the application and the method of communication. Last we will
consider multiple programming languages that will allow us to create the
application effectively and efficiently.

4.7.1 Required Functions:

Part of the research for the GUI is the identification of the requirements. The
requirements must be identified before the design can begin. We are going to
use a simplified waterfall model for our software development life cycle. We are
going to list the requirements, design the software, and then finally implement
and test the software. In this section we will focus on the requirements
identification only. The design and testing portion will be discussed in the
corresponding section later in the paper. The following Figure 4.7.1.a shows a
diagram showing the simplified waterfall model we will be using for developing
the GUI.

47

Figure 4.7.1.a Software Development Life Cycle – Waterfall Model

The GUI must provide an easy to understand and user friendly interface. The
interface should have very few elements to avoid confusion. The GUI should be
operable by anyone and not require any technical knowledge of our display. No
training should be necessary, and everything in the GUI should be properly
labeled and intuitive. The only functions necessary are to allow the user to enter
a text message to display, and to allow the user to select an image file to display.
The text field should support multiple lines of text and offer the user multiple color
choices. There should also be color options that the user can use to select the
color of the entire message and possibly of individual letters. Depending on our
time constraints there are certain features that may not be necessary such a
changing the color of individual letters. The text message input is discussed in
more detail in the design section for the GUI.

The image input will only accept the correct format and resolution images to
display. If the selected image file is smaller than the maximum size than it will still
be accepted and the image will display centered in the LED display. This can
possibly be done by analyzing the size of the input image and calculating where
to put the image so that the space to the left and right of the image is equal, and
the same for the space above and below the image. If time permits we may
further increase the functionality of our software to properly scale images that are
too large to be fully displayed. This would be a simple algorithm that simply picks
and chooses every other pixel to display or something similar. The image input,
like the text input, is also discussed in more detail in the design section for the
GUI. A simple use case diagram is shown in Figure 4.7.1.b to highlight the main
requirements of the GUI.

48

Figure 4.7.1.b Use case diagram for GUI

4.7.2 Programming Language:

We must choose a programming language to build the communication
application. We should consider multiple programming languages and choose
the best one suited to our task and also choose one which we are familiar with.
This application will have a user friendly GUI and allow simple serial
communications. All of the requirements listed above must be considered when
choosing the appropriate language. In order to efficiently create a GUI the
language will be required to have built in libraries that support agile GUI
development. The IDE should provide tools that will allow most of the
development to focus on coding the core functions of the application and not on
the GUI’s appearance and layout. We will be considering C++, Visual Basic, and
Java.

The C++ programming language is something that we are all familiar with. C
programming is where we started our programming education and is where C++
is derived. This is an object oriented language with wide support and plenty of
documentation. We have no experience creating a GUI in C++ so further
research was needed in order to determine whether or not C++ would be worth
considering for the user friendly application that we are striving for. After some
research it was found that there are GUI libraries available to assist in developing
a GUI in C++ but there are multiple GUI libraries to choose from. Multiple choices
for a GUI library further complicates things since further research must be
conducted in order to determine which would be the best library to use. There
does not seem to be a visual GUI editor for C++ available, and it seems that for
most GUI applications, C++ is not the language of choice. We believe it is safe to
say that C++ should not be the language we use to build our communications
GUI application. Even though C++ is not the best choice for developing the GUI,

49

C++ may be better suited to interface with the hardware for USB
communications. We will be searching for libraries to solve this problem once a
language has been decided on.

Visual Basic is a programming language that is specifically designed to allow
agile development of GUI applications. The IDE, Visual Studio, has a visual GUI
editor for programs using Visual Basic. It is very easy to drag and drop text
boxes, labels, buttons, etc. onto each form of the application. Programming the
functions of the elements placed in the form becomes as simple as double
clicking that item and the IDE will jump to the code that controls it. This could be
a good choice for quickly developing a GUI based application, but only one
member in our group is familiar with this programming language which may not
be adequate. It will most likely be more efficient to have more than one group
member to assist in the development of this application and having to learn a
new language may decrease productivity.

The Java programming language will probably be the best language for both
developing a GUI for a PC and for an android device if we are able. The
Netbeans IDE has a built in visual GUI editor for Java which greatly simplifies
GUI design and implementation. The Netbeans GUI editor will allow us to
develop a GUI application in a similar way that Visual Basic would have allowed
us to. Java is a high level object oriented language and has many built in classes
to support agile development. There are also many open source Java libraries
available for download to provide further features and functionality. We are also
already familiar with the Java programming language. Java is the obvious choice
for a high level programming language that we already possess enough
knowledge to code in and has enough built in features and tools to allow us to
rapidly build the tools we need for our project. The only drawback to using Java
is the limited functionality when it comes to accessing connected hardware. This
can become an issue for us since we are planning on using communications
through USB, or a connected wireless adapter. In order for us to implement USB
communications using Java we are going to have to find a suitable driver for our
desired operating system and find a Java library that is capable of interfacing
with that driver. Assuming we can find such a driver and software library
combination it can be safe to say that we will be using java for our GUI
application development.

4.7.2.1 Image Format Conversion and Resizing:

Our GUI will allow users to select an image to be displayed and load it onto the
rotating processor. Without being too restrictive on the user, we want our
program to accept virtually any image file format that is common. The primary
information we need from the image are the RGB values contained within it so
that we can format an output file that our device will understand. Each image
format is different and must be decoded via some method in order for us to
obtain this data.

50

In order to handle the various image types that the user could select, we have
determined that functions within the java library will be able to handle this.
Several java classes will be used in order to do this, ImageIO, BufferedImage,
and indirectly ImageReader. Using the java ImageIO class, we open an image
file by using ImageIO.read() and supply an argument of a name/path. The
ImageIO class on its own will then search for an ImageReader that claims to be
able to read that type of image, and decode it. ImageIO.read() will return a java
BufferedImage, from which we can easily obtain the RGB values by calling the
function BufferedImage.getRGB() and supplying an x and y coordinate. Using
this library the user will not need to be concerned with the image file format, and
we will not need to code the tedious functions that would be required to decode
the many image format possibilities.

Another concern involves image resizing. Using the simplest solution we would
require that the user resize the image manually using image editing programs
before trying to upload it. However, because the BufferedImage class will tell us
the size of the image that has been selected by called BufferedImage.getHeight()
and BufferedImage.getWidth(), we could handle the scenarios where the image
is too small or too large in specific ways. In the case where it’s too large, we
could simply truncate the image, or offer various methods of cropping the image.
If the image is too small, it could be padded and centered, depending on user
specifications.

4.7.3 GUI Communications to Microcontroller:

The program will have to communicate with the microcontroller in order to get the
correct image to display on the LED array. The communication should either be
the wireless communication that we choose to use (WiFi or Bluetooth) or it
should be through a USB cable. The preferred method of communication would
be through WiFi or Bluetooth since this is also supported by android devices and
would allow us to send images to be displayed on the LED’s with our mobile
phones. It would be very convenient as well if we did not have to connect a
laptop to our display with any wires. If we use WiFi we will have to use the ad-
hoc mode of networking since it would not be very practical for this project to
require a wireless router as well. If Bluetooth is used then Bluetooth will be the
communication method when using the mobile application, but when using a PC
a cable will be required. This is because most PC’s do not have Bluetooth built in
so it would be counter-productive to develop a PC application that utilizes
Bluetooth communications. If we have additional time we may be able to include
Bluetooth communication support for the PC application as well.

4.7.3.1 Serial Communication Software Library:

At first it seemed that Java would not have a way to access USB devices. There
are no built in methods to allow Java hardware access for serial communications.
There is a library created by Sun which allows serial communications, but it is

51

only supported on the Linux operating system. Further research allowed us to
find a community created Java library called RxTx which supports serial
communications on multiple platforms including Windows. In order for the RxTx
library to work however, we need to find a valid USB driver that will allow
windows to recognize the connected device for serial communications. If the
Digilent Atlys board does not include USB drivers for this purpose, we have
found a driver download as well. The driver is for the Universal Asynchronous
Receiver/Transmitter or UART chip that is on the Atlys board. The UART chip
allows the USB to function as a serial communication interface. With the proper
drivers installed communicating with the Atlys board using USB should be no
different than using the older RS-232 method. Once the RxTx Library is properly
added to the JDK we can than import the methods and use them for our project.
There are methods in the library to handle listing the available serial
communication ports. The library will then allow us to choose an available port
and use it for communication. Input and output streams will need to be declared
in order to send and receive data. Overall the library seems to make it rather
easy to send and receive serial communications. More details on how the serial
programming works are provided in the design section.

4.8 Microcontrollers:

There are many microcontrollers available with many different feature sets. This
research will focus on the different microcontrollers available and which ones we
should use in our POV display. We are going to need two microcontrollers, one is
going to have to deal with the video input and remain stationary in order to be
able to plug in a device such as a laptop or DVD player. The other
microcontroller will rotate along with the LED’s and provide all of the information
to the LED controllers so that they can send the PWM signals to each LED.

The stationary microcontroller is most likely going to be an FPGA since this has
been the only solution we have been able to find regarding a board that accepts
HDMI input. The cost of the FPGA is going to be considerable since it is a board
designed to take HDMI input and possibly process that video signal. HDMI is
most likely a high definition signal and therefore would require a powerful board
in order to effectively process that amount of data efficiently. We all have
academic experience programming an FPGA using Verilog so our biggest
challenge is going to be figuring out how to process the video input.

Our rotating microcontroller will be considerably cheaper; this microcontroller
does not have any special requirements other than having enough outputs to
service the latches and LED’s. For our rotating microcontroller we will focus on a
combination of cost, and ease of use. Ease of use is a factor because we do not
have the same experience working with microcontrollers that we do with FPGA
devices. We would want a microcontroller that will be easy to learn and easy to
work with. Because of the large number of LED’s we plan on using, we may also

52

have to consider the number of outputs that each microcontroller is able to
support.

4.8.1 Digilent Atlys (Stationary FPGA):

The Xilinx Spartan 6 FPGA available on the Digilent Atlys board. The Atlys board
has onboard HDMI input. The main reason for choosing this board is for the
HDMI input which will allow us to receive a video input in order to display it on the
LED array. The HDMI input on the Atlys board will automatically take care of the
TMDS decoding for us. We will have to figure out how to represent the video data
in such a way that our secondary microcontroller will be able to split up the data
and send it to the proper latches to control the LED’s. The Atlys board does not
seem to have built in pins in order to connect directly to the FPGA’s I/O’s. There
is a VMOD peripheral that would take care of this problem and allow us to
connect wires to any of the I/O’s, but this will increase the cost of an already
expensive board.

4.8.2 TI Launchpad (Rotating Microcontroller):

TI offers a very cheap microcontroller that we may be able to take advantage of.
The MSP-EXP430G2 or Launchpad is a development board for the
MSP430G2XXX series of microcontrollers. The board only costs $4.30 and
includes two MSP430 microcontrollers, and a USB cable. The board will allow us
to program the microcontrollers using the USB interface. This microcontroller has
very widespread support, documentation, and example projects. Possible
limitations include the limited number of I/O ports, 2KB of program memory, and
128B of SRAM. The microcontrollers that come with the Launchpad board only
have 10 available I/O pins. If we were to purchase a separate higher end
compatible microcontroller we can increase the number of outputs to 16. The low
number of I/O pins may require us to use more than 1 microcontroller, but as
stated earlier the Launchpad comes with 2 of them already, and the higher end
MSP430 controllers with 16 I/O ports are less than $2 each.

4.8.3 Arduino Uno REV 3 (Rotating Microcontroller):

The Arduino Uno board is another alternative to the TI Launchpad. This board
comes with an ATmega328 microcontroller on it. The Arduino Uno board takes
care of the USB interfacing and programming. This board is more expensive than
the TI Launchpad at $35. The higher price may be justified by the increased
performance and memory of the microcontroller included. The ATmega328 has
31.5KB available for program memory (0.5KB is used by the boot loader), 2KB of
SRAM, and 1KB of EEPROM. The ATmega328 also has 14 I/O pins, 6 of which
can be used for PWM. Another feature that may be useful is I2C support. I2C will
allow us to have serial communications to possibly another IC that will expand
the number of I/O’s available to us. This board is also widely available and
supported. There are many hobbyist projects with open source documentation
and examples for helping us get familiar with programming this board. The

53

additional program memory and RAM may not be necessary, but the additional
outputs that this board provides may make a difference. Another thing to
consider is the programming language. The Arduino Uno board allows the use of
a C-like language to program the ATmega328 microprocessor. If we were to use
the TI Launchpad we would have to use assembly. It may be easier and more
time efficient to use the Arduino Uno board.

4.8.4 Digilent Cerebot MX7cK (Rotating Microcontroller):

The Digilent Cerebot MX7cK development board has a 32-bit PIC32
microprocessor. This is an expensive choice for the rotating microcontroller but it
has a much higher clock speed of 80MHz. This higher clock speed may be
required for our project if we are to process full motion video in real time. This
board also has a built in Ethernet interface which we can possibly use for
communications between the stationary FPGA and the rotating microcontroller.
Programming the Cerebot board should be similar to programming the Arduino.
Digilent advertises the fact that Arduino projects and code should be compatible
with their Cerebot boards. Although the Cerebot board seems to outperform the
other boards in every category it is much more expensive at $99. It may also be
necessary for us to buy additional Pmod accessories in order to access some of
the I/O pins further increasing the cost. We hope to find a microcontroller for the
rotating part of our project that can keep costs to a minimum while having the
required performance needed for a live video feed. The following Table 4.8.4
shows a simple comparison between all of the previously discussed
microcontrollers being considered for the rotating part of our project.

Microcontroller Comparison

 Digilent Atlys TI Launchpad Arduino Uno Cerebot
MX7cK

Program
Memory 64MB 2KB 31.5KB 512KB

SRAM 128MB 128B 2KB 128KB
EEPROM 0B 0B 1KB 0B
I/O 48 10 14 85
Frequency 500MHz 16MHz 16MHz 80MHz
Programming Verilog HDL Assembly High-level High-level
Cost $199 $4.30 $35 $99

Table 4.8.4 Microcontroller Comparison

4.8.5 Additional Microcontroller Concerns:

This project is highly dependent on sponsorship funding in order to include all of
our intended features. Video input is not normally a feature found in a POV
display. Our research has indicated that the reason for this may be the costs
involved. The Atlys board described above is absolutely necessary for us to

54

consider live video input for our POV display but there are other considerations
that must be addressed as well. At first we decided that our secondary
microcontroller which will spin along with all of the LED’s need not be as complex
and expensive as the Atlys board. After much research it became apparent that
although we do not need an HDMI input on the rotating board, we do need a
substantial clock frequency in order to properly sample the large amounts of data
required for a live video feed. In previous sections we have mentioned possible
data rates that would be required to be sent through communications between
the two microcontroller boards. Regardless of the communication method we
choose, we must not consider if these microcontrollers can properly sample the
data at the required speeds to display a live video feed. Table 4.8.5 shows
possible resolutions we may consider for our display and the required data bit
rate necessary. The values in the table assume that the video data is not
compressed.

Resolution Data Rate
640x480 73.728 Mbit/s
320x240 18.432 Mbit/s
160x120 4.608 Mbit/s
80x60 1.152 Mbit/s
40x30 0.288 Mbit/s

Table 4.8.5 Possible Resolutions and Corresponding Data Rates

The data rate values in table 4.8.5.a are calculated using the simple formula HP
× VP × BPP × FPS where HP is Horizontal Pixels, VP is Vertical Pixels, BPP its
Bits Per Pixel, and FPS is Frames Per Second. According to the data sheet for
the ATmega328 microcontroller, the maximum data rate that the microcontroller
is capable of sampling with its 16MHz crystal is 2Mbit/s. This means that the
Arduino Uno and TI Launchpad development boards would only be able to
support a display with a resolution up to 80x60. The calculation to determine the
maximum data rate given the frequency of the microcontroller is given in the data
sheet for the ATmega328. The formula is shown next for reference.

�� �
����
�

Although formula above came from the ATmega328 data sheet it can still be
used as an approximation for the capabilities of the other processors too. The
baud rate for the ATmega328 is measured in bits per second which is why the
maximum data rate for the ATmega328 mentioned previously was in the units of
Mbit/s. Using formula 3.8.4-1 for an 80MHz clock frequency it can be said that
the maximum practical data rate that the Cerebot MX7cK microcontroller should
be able to effectively sample should be about 10Mbit/s. The higher clock speed
allows for a much higher data rate. The maximum resolution that we are
considering that can be implemented with 10Mbit/s maximum data rates is

55

160x120. This leads us to the conclusion that if we intend to implement any
resolution higher that 160x120 then we will have to use two of the Digilent Atlys
boards, one which will remain stationary to receive the video input, and the
second one to spin with the LED’s and send all of the data to the LED controllers.
Only the 500MHz clock on the Atlys board would be able to effectively sample
the high amounts of data associated with uncompressed high resolution video.

5 Hardware Design:

The hardware of this device is broken into four major sections. That is the input
section of the device which encompasses both the computer input such as HDMI
and USB. It also includes the power supply of the entire device. Then on the
stationary side of the device is the stationary control system. This section
includes the motor control system, such as the pulse width modulation circuit and
the tachometer. It also includes the stationary FPGA board. Then the next
section is the data transfer section. This portion of the device includes both the
slip ring design, Ethernet and coaxial rotational joint conversion. Finally the last
section of the device is the rotational control section. This section of the device
includes the rotating FPGA board and the LED array including the LED
controllers. Figure 4 gives a good visual representation of the flow of the
hardware and how they will be connected together.

56

Figure 5 Hardware Flow Chart

Each of these sections of the device have a variety of different hardware
components needed in order to achieve the ultimate goal of creating this
persistence of vision device. The following sections will discuss more thoroughly
our final decisions on the hardware design of each portion of this device and the
actual hardware design themselves. This will include the specific components we
intend to use to implement each of these designs. Also within this section will be
a layout of the structural construction of the chassis which will house all of the
electrical hardware for this device.

57

5.1 Chassis Hardware Design:

As discussed during the research section for the chassis, we will be constructing
the chassis from aluminum using a combination of aluminum plate, square tubing
and solid round rods.

5.1.1 Chassis Dimensions:

Before we can finalize our chassis design, some basic dimension requirements
must be identified. The first, and most critical dimension requirement will be for
the physical size of the LED array. We will then need to determine the size of the
chassis base and the space required to mount the motor.

5.1.1.1 Dimensions of LED Array:

We will be using Multicomp's SMD Super Bright LED, part number OVS-3309.
The LED has a vertical dimension of 2.8mm and a horizontal dimension of
3.2mm. The horizontal dimension will be required to properly mount the LEDs on
a printed circuit board but are not a dimension required or even necessary to
determine the size of the LED array and will therefore be ignored for the chassis
design. Assuming we will mount the LEDs with a spacing of 1mm between each
LED, we can determine that the spacing between each LED, as measured from
center to center, will be 2.85mm. Therefore, the total vertical length of the LED
array will be 2.85mm x 480 LEDs or 1,368mm. Converting the total vertical length
to inches gives a final dimension of 53.858 inches.

Next, we will need to determine the diameter of the LED array. When the POV
display is running, we can simplify the LED array to cylinder. As well, since we
will want the horizontal spacing of the LEDs to be the same as the vertical
spacing of the LEDs, we can use the known pixel ratio of 480 to 640 to determine
the length required. Dividing 640 by 480 gives the ratio of horizontal pixels to
vertical pixels, which equals 1.333 or 5:3. For accuracy, we will initially calculate
the required horizontal length in millimeters. Taking the ratio of 5:3 and
multiplying by the known vertical length of 1,368mm we get a required horizontal
length of 1,824mm. Since the LED array can be simplified to a cylinder, we now
know the circumference of the LED array. Using the formula of C = 2πr, we can
calculate the radius of the LED array which is equal to 290.299mm. Converting
the radius to inches, we get a final dimension of 11.429 inches.

In summary, the required dimensions of the LED array when the POV display is
running will be equal to a cylinder with a radius of 11.429 inches and a height of
53.858 inches. If we convert the circumference to inches, as seen below, we can
verify that our results due match the desired aspect ratio of 480 x 640.

������
���

� ����� � �
������
���

58

5.1.1.2 Dimensions of Chassis Base:

Now that we know the size of the LED array when the POV display is spinning,
we can determine an appropriate size for the chassis base. The chassis base will
serve two purpose for the POV display. The first and most obvious purpose is to
provide an adequate foundation for the display. The second purpose and more
important than the first, will be to provide a visually marker to signify where the
limit is to approach the display while it is running. This will be especially important
if, for example, the display is running but displaying an image. Therefore, we will
construct the base of the POV display to extend two inches past the fast rotating
LED array. Since we now know the radius of the spinning LED array, we can
determine that the base will need to be at least a 27 inch by 27 inch square. To
simplify the fabrication process and for extra precaution, we will construct the
base to be an even 28 inch square. Since we will be constructing the chassis out
of 1/4 inch aluminum plate, a 28 inch square base should provide plenty of
weight and strength to fully support the POV display while it is running.

The last dimension required before we can determine the final design of the
chassis will be to know the physical size of the motor. Size the motor will be
mounted on the base, it will determine the height of the base. The motor we will
be using is a wound field DC motor manufactured by Prestolite Motors. The
overall length of the motor is 6.8 inches. To allow room to mount and secure the
motor to the base, we will design the base with an internal height of 8 inches.
Taking into account the thickness of the aluminum plate, the total height for the
base will be 8.5 inches. Therefore, the total size of the chassis base will be 27
inches x 27 inches x 8.5 inches.

5.1.2 Chassis Assembly:

Now that we know the required dimensions of the chassis we can begin to design
the assembly of the chassis. A complete chassis model can be seen in Figure
5.1.2.c below.

The first step to putting together our final design of the chassis will be to
determine which rotating interface we will use to transfer the rotating power of the
motor to the LED array. As discussed in our research, we have two options. The
first option of the turntable provides the easiest solution for mounting the LED
array and base to the rotating interface. However, due to cost and no defined
specification of the maximum rotating speed, we will choose to use the extended-
ring bearing. In order to provide the most space for feeding the power supply
cable and communications cable through the rotating interface, we will choose to
use the extended-ring bearing with a one inch shaft diameter, part number
8090T13. We will secure the bearing to the base of the chassis by welding the
extended-ring portion of the bearing to the top of the base. Although welding
does not allow for easy modifications, it will provide a strong and secure method
that will hold the bearing in place during operation of the POV display. In order to

59

secure the LED array to the bearing, we will insert a aluminum pipe through the
inner ring of the bearing. The pipe will be secured to the bearing using the two
set screws that come installed on the bearing. This will allow for the POV display
to be easily disassembled when moving between locations. Using this design
allows the pipe to be used to mount a slip ring for electrical power transfer as well
as a pulley system from transferring the rotationally power from the motor. Lastly,
the pipe will be notched on the top to allow the LED array support bar to be
secured to the pipe. Figure 5.1.2.a below shows a model of the bearing and pipe
assembly. The chassis base and LED array support frame are removed for
clarity.

Figure 5.1.2.a Bearing Assembly

Next we will design the chassis base. As discussed, the chassis base will be 28
inches x 28 inches x 8.5 inches. The base will be constructed out of two 1/4 inch
pieces of aluminum plate creating a top plate and a bottom plate. The two plates
will be secured together by four solid aluminum rods, one in each corner, cut to 8
inches lengths. The plates will have counter sunk holes drilled in each corner,
three inches from each side. The rods will be drilled and tapped in the center to
accept a 1/4-20 screw. The rods and plates will be assembled by screwing the
plates and rods together. The counter sunk holes on the plates will allow for the
screws to be flush with the surface. In order to mount the bearing, a hole will be
cut out from the center of the top plate. The diameter of the hole will be larger
than the diameter of the inner ring of the bearing but smaller than the extended
flange of the bearing. This will allow for the bearing to rest on the top plate and
provide a surface for the bearing to be welded to the plate. Figure 5.1.2.b below

60

shows a model of the base assembly, including the cut out on the top plate for
the bearing.

Figure 5.1.2.b Chassis Base Assembly

The LED array support frame will be constructed from 1/8 inch square tubing.
From the calculations for dimension requirements of the LED array, we know that
the horizontal LED array support bar, the piece that will be connected to the
notched pipe, needs to be 22.585 inches long. This dimension needs to be exact
as it will directly affect the aspect ratio of the display. At each end of the
horizontal LED array support bar, vertical LED array support bars will be welded.
We know from the LED array dimension requirements that the vertical support
bars must be at least 53.585 inches long. However, because the actual length of
the vertical bar does not determine the aspect ratio of the display, to simplify the
fabrication process we will construct the vertical support bars to be 55 inches
long. The vertical support bars will be drilled and tapped to accept 10-32 screws
every two inches. This will provide enough mounting holes to mount the printed
circuit boards for the LED array. The number of mounting holes will help reduce
vibration and securely fasten the LED array to the chassis while the display is
running. We will determine if diagonal support bars are required after testing the
chassis.

61

Figure 5.1.2.c Chassis Base Assembly

5.1.3 Motor Interface:

As briefly mentioned during the chassis assembly section, to transfer the power
from the motor to the chassis, we will purchase a pulley to be mounted to the
shaft of the motor. Since the outer diameter of the pipe is one inch, to maintain a
1:1 rotational transfer, we will use a pulley with a one inch outer diameter and a
bore size appropriate to fit on the motor shaft. If we use a flat belt pulley system,
for the chassis side we would be able to attached the belt directly to the pipe. To
minimize the belt from slipping we would increase the friction on the section of
pipe where the belt would touch.

62

5.1.4 Chassis Torque Calculations:

Now that we have a finalized design for the POV display chassis, we will need to
estimate the torque requirements. This will only be an estimate to help decide the
size of motor we will require and not an exact calculation. To help simplify the
problem we broke the chassis into several pieces for which we can calculated the
moment of inertia for each piece. Adding together the moment of inertia for each
piece gave use a total inertia of 0.757 kg-m2. Using a frequency of rotation of 44
Hz, we calculated the angular acceleration. Multiplying the total moment of inertia
by the angular acceleration gave us an estimated torque value of 0.876 N-m.
Therefore, the motor must be capable of providing 1 N-m of torque at 2,640
RPMs.

5.2 LED Array Hardware Design:

As discussed during the research section for the LED array, there are two
options for controlling the LEDs. One option was to use a latch control system
and the second option was to use pulse width modulation LED controllers
manufactured by Texas Instruments. Due to the easy integration of the LED
controllers into the microcontroller outputs and the built-in latch control we will
choose to control the LED array using the PWM controllers. In particular, we will
be using the TLC5940 16 channel LED driver. The reason for choosing to use
the TLC5940 is due to its high data transfer rate of 30 MHz. As well, the
TLC5940 allows for dot correction of individual LEDs if we find, during testing of
the LED array, that one or more LEDs appear dimmer or brighter than all other
LEDs. However, there is one very important design restriction that we must
overcome in order to use the TLC5940. If we maintain our current design criteria
of 30 fps and 640 horizontal pixels, our frequency of updating the LED array will
be 30 x 640 or 19,200 times per second. As well, we will cascade all the red
LEDs together, all the green LEDs together and all the blue LEDs together. This
will mean we will require (3) groups of (30) cascaded TLC5940 controllers. By
applying the characteristic equations below to our requirement of an updating
frequency of 19.2 KHz and cascaded controllers, we will find that we will exceed
the max serial data transfer rate of 30 MHz.

����	��� � ��� ��!���"#$%&'� � �� �!� ��� � ��(���(����)* � ������+)*��
���	��� � � ��!���"#$%&'�!�, � � �!� ���!�� � ���(���(����)* � ������+)*�

-.'�'/�
����	����'0"%12�&.'��3,3�"����'0"',45�,''$'$��6��&.'�7�%5�24%1'�41648��

���	����'0"%12�&.'��3,3�"����'0"',45�,''$'$��6���	���%,$��9:�
,�'0%"12�&.'�,"�;'��6��4%24%$'$�46,&�611'�2�

Initially, some additional research was done to determine if another controller
was available that could operate at a maximum data transfer rate of 111 MHz. It
was quickly discovered that no other option, at least at the cost we require, that

63

could handle this high data rate transfer. The data rate transfer restriction was
due to the shift register inside the TLC5940 controller. Therefore, to overcome
the restrictions of the TLC5940 controller we will make two changes to the POV
display. The first change will be the frame rate. Essentially, we will use a variant
of vertical interlacing. Instead of operating at 30 fps and 640 horizontal pixels, we
will have two groups of LED controllers operating at 22 fps and 320 horizontal
pixels. The two groups of LED controllers will be called Group A and Group B.
Group A will operate while Group B is being addressed. Then, while Group B is
operating, Group A will be addressed. Both groups of LED controllers will still
output to the same vertical array of LEDs (so no additional LEDs are required)
but now each group can be individually addressed at a much slower rate. The
total frames per second as seen by a user will now be 44 fps but still maintaining
the 640 pixels. Therefore, the new frequency of updating for each group of LED
controllers will be 22 x 320 or 7,040 times per second. The only disadvantage to
adding a secondary group of LED controllers is we now require double the
amount of controllers or a total of (180).

However, we still exceed the maximum transfer rate of the SCLK and SIN. To
overcome this restriction we will change the number of cascaded controllers.
Similar to the solution of vertical interlacing, we will break the vertical LED into
two groups, a top group and a bottom group. The top group will be called Group
A and the bottom group will be called Group B. Each group will have a total of
(15) cascaded LED controllers. However, unlike the vertical interlacing, both of
these groups will operate at the same time. Therefore, we will now have four
groups of LEDs. As seen in Figure 5.2, we will have a Group AA, AB, BA and BB.
As well, if we recalculate the minimum frequency requirements of the GSCLK,
SCL and SIN signals, we will find that we now operate well within the maximum
data rate transfer of 30 MHz.

����	��� � ��� ��!���"#$%&'� � �� �!���� � ��(���(����)* � ������<=>�
���	��� � �� ��!���"#$%&'�!�, � � �!����!�� � ��(���(����)* � ������+)*

64

Vertical
Group A

Pixel
Column

1

Vertical
Group B

Pixel
Column

2

Vertical
Group A

Pixel
Column

3

Vertical
Group B

Pixel
Column

4

…

Vertical
Group A

Pixel
Column

637

Vertical
Group B

Pixel
Column

638

Vertical
Group A

Pixel
Column

639

Vertical
Group B

Pixel
Column

640

H
or

iz
on

ta
l G

ro
up

 A

Group
AA

Group
BA

Group
AA

Group
BA … Group

AA
Group

BA
Group

AA
Group

BA

H
or

iz
on

ta
l G

ro
up

 B

Group
AB

Group
BB

Group
AB

Group
BB … Group

AB
Group

BB
Group

AB
Group

BB

Figure 5.2 LED Array Group Layout

5.2.1 TLC5940 Pin Out and Wiring:

Now that we have a handle on the number of LED controllers required and their
configuration, we can determine the pin out and wiring of the LED controllers. As
previous discussed, we will have four groups of LEDs. However, to simplify the
design we can consider Group AA to be indicial in design to BA and AB to BB.
This is because essentially the two vertical interlaced groups will be the same.
The pin out information for a TLC5940 in a NT case can be seen in Figure
5.2.1.a below. Table 5.2.1 below shows all pins and their functions.

Figure 5.2.1.a TLC5940 LED Controller Pin Out

65

Pin # Name Description
1 Out 1 Current Output to LED
2 Out 2 Current Output to LED
3 Out 3 Current Output to LED
4 Out 4 Current Output to LED
5 Out 5 Current Output to LED
6 Out 6 Current Output to LED
7 Out 7 Current Output to LED
8 Out 8 Current Output to LED
9 Out 9 Current Output to LED
10 Out 10 Current Output to LED
11 Out 11 Current Output to LED
12 Out 12 Current Output to LED
13 Out 13 Current Output to LED
14 Out 14 Current Output to LED
15 Out 16 Current Output to LED

16 XERR Error Output
Low = Error

17 SOUT Serial Data Output
18 GSCLK Reference Clock for PWM Control

19 DCPRG
Dot Correction Switch
Low = DC Connected to EEPROM
High = DC Connection to DC Register

20 IREF Reference Current Terminal
21 VCC Power Input Terminal
22 GND Ground

23 BLANK
Turns all outputs on or off
Low = Outputs are controlled by PWM
High = All outputs forced off, GSCLK is reset

24 XLAT

Latch Signal
Low = Data in registers held constant
High = writes from shift register to DC or GS
register

25 SCLK Serial Data Shift Clock
26 SIN Serial Data Input

27 VPRG

Input Pin
GND = Controller is in GS Mode
VCC = Controller is in DC Mode
V(vprg) = DC register data can be programmed
into DC EEPROM

28 Out 0 Current Output to LED

Table 5.2.1 TLC5940 LED Controller Pin Information

66

To cascade the controllers together requires the SIN and SOUT pins to be wired
together in series. Meaning the SOUT from one controller will be wired to the SIN
pin on another controller. The wiring required for the controllers of Group AA and
BA can be seen in Figure 5.2.1.b. Wiring of Out0 thru Out15 was left off for clarity
but it should be noted these will be the pins connecting to the LEDs. Wiring for
Groups AB and BB will be the as Figure 5.2.1.b.

Figure 5.2.1.b LED Controller Wiring

67

A wiring scheme for the LEDs of array Group A can be seen in Figure 5.2.1.c
below. The wiring for Group B will be the same but the first LED will start at
number 240.

Figure 5.2.1.c LED Wiring

5.2.2 LED Array for Text Display:

The design for the LED array required for displaying text will use the same LED
controller but we will only be using mono-color LEDs. The text display will contain
16 LEDs so only one controller will be required. The wiring of the controller and
LEDs will be similar to Figures 5.2.1.b and 5.2.1.c.

68

5.3 Motor Hardware Design:

Our specific motor design encompasses a six stage process that covers how to
both run and maintain the motors revolutions per second to prevent any image
distortion. This process is cyclical in essence beginning and ending with the
motor. Figure 5.3 will give a visual representation of exactly how this process will
flow.

Figure 5.3 Motor Control Flow Chart

As seen in the flow chart we will begin discussing our motor operation process
with the Tachometer. While in essence the motor and shaft rotations is truly the
beginning of this process, the data gathered by the tachometer is the beginning
of our motor controlling process, which is the purpose of most of this hardware
and software. The whole process is cyclical in nature and should repeat
indefinitely until the micro-processor sends a shut down signal to the tachometer
and motor. Each section of this portion of the design will discuss in further detail
the hardware and software of this process, beginning with the tachometer and
ending with the motor.

5.3.1 Motor Control Sensor Design:

As we discussed in the research portion of the motor control process we knew
that we had to find a way of determining the revolutions per minute of the
apparatus. During that discussion we determined that the best method to solve
this issue was through the use of infrared. Specifically these sort of devices are
called tachometers. In our case we are going to create this tachometer using a
pair of infrared LEDs. Figure 5.3.1.a best shows the flow of this process.

We are going to rely on a property common to LEDs in which when subjected to
light they produce a voltage deference across their leads. However, this value is
very small and can barely be detected. So in order to detect it we are going to
use an op-amp to detect these small voltage changes. The intention is to send an
infrared signal to the shaft of our display apparatus. Figure 5.3.1.b gives a visual
representation of what is happening.

69

Mounted on the shaft will be some form of reflective surface such as white tape,
that will bounce the infrared beam back to the other LED. This beam will cause a

Figure 5.3.1.a Motor Control Sensor Flow Chart

voltage difference in the LED. This difference in voltage on the LED causes the
voltage difference within the op-amp to show a voltage on the output, expected to
be around 5 volts. This is instead of the usual zero volts. This pulse of voltage
will then be detected by the micro-processor and recorded as a one. In order to
shield this process from unwanted ambient lighting we will most likely house
these two LEDs in some form of cylindrical tube so that the infrared beams can
escape the tubing and reflect back into it but the interior is mostly protected from
unwanted lighting.

70

Figure 5.3.1.b Motor Control Sensor Mounting

5.3.1.1 Motor Control Sensor Hardware:

Two circuits are required to implement this tachometer. The first circuit, displayed
in Figure 5.3.1.1.a, is the sending circuit. As seen in this circuit we will be using
the LM358 op-am to implement this circuit. In this case a 5 volts Vin and Vcc is
required to turn the circuit on. The minus terminal of the comparator will read 2.5
volts. The CTRL line will be connected to the FPGA on the rotating side and will
in essence go high when the device starts spinning. This high value will be above
the 2.5 volts on the minus terminal and cause the output of this op-amp to go
high, 5 volts, and this will turn the infrared LED on and begin to send signals.

71

Figure 5.3.1.1.a Motor Control Sending Circuit

The second circuit required to implement this design is the receiving circuit, seen
in Figure 5.3.1.1.b. This circuit will be similar in design as the first one except that
the infrared LED will be feeding into the minus terminal of the op-amp. The
positive terminal will have a potentiometer that will be preset to read 1.6 volts on
the positive terminal of the LM358 comparator. When the infrared LED is hit by
the beams of its sister LED it will create a voltage drop on the LED. This
deference will cause the minus terminal to fall lower than 1.6 volts and cause the
output of the op-amp to go high. When the op-amp goes high it will send a
voltage drop, 5V, to the processor. Since we are using infrared lights and this
whole process will be invisible to the human eye, a Red LED has been added to
the circuit to blink when a “hit” is read in the receiver allowing us to see whether
the tachometer is working or not.

72

Figure 5.3.1.1.b Motor Control Receiving Circuit

5.3.2 Motor Speed Controller:

As said in section 4.5 when we discussed motor control we decided that a pulse
width modulation circuit would be best for implementing a control element to our
motor. It has the least amount of power consumption and is far more accurate.
However, since we require a large motor to rotate our LED apparatus and to
reach the revolutions per second that we desire we needed to work a little with
our control circuit to get it to work effectively. Figure 5.3.2.a shows the circuit
design of our pulse width modulation circuit. This circuit is based off a reference
circuit Figure 10.4.3.a that can be seen in the appendix.

The circuit runs off the concept of using two LM339 comparators to create a
pulse width modulation whose frequency and duty cycle can be controlled by the
two voltage controlled resistors R9 and R8. R9 controls the frequency of the
PWM and can range from 400 hertz to 3 kilo-hertz. R8 controls the duty cycle of
the circuit which also means it controls the effective rpm value of the motor. This
can range from 0 to 100% of its rated rpm value. The circuit is broken into two
components the motor side and the pulse width modulation circuit logic. These
two components are connected through a cascade of MOSFETs. For our
purposes we needed to disconnect the power supplied to the DC motor and the
MOSFET from the pulse width modulation circuit because of our high voltage
requirements of the motor. In addition, the circuit will most likely need to be

73

mounted on some form of cooling system to prevent overheating, most likely a
radiator.

In order to make these resistance values change without having to physically
change the circuit or a potentiometer we decided to use a component that can
create the same effect of what a resistor can and that is a JFET. Since a resistor
decreases current flow in the circuit as its resistance increases and a JFET's

Figure 5.3.2.a PWM Circuit

channel becomes pinched as the voltage increases which essentially creates a
similar effect of impeding current flow. After some quick research it turned out
that this is actually a common application of JFETs. The VCR circuit we will use
is shown in Figure 5.3.2.b. This circuit runs on the principle that Vout will
effectively be controlled by a voltage divider using a JFET instead of a resistor.
From these basic principles as we increase the voltage on this circuit our voltage
controlled resistor will increase the resistance thus allowing us to control the duty
cycle of the pulse width modulation circuit and in turn the revolutions per second
of the motor. We can also use this same principle for the frequency control of the
pulse width modulation so we will need two of these circuits, one for R9 and one
for R8.

74

Figure 5.3.2.b Voltage Controlled Resistor Circuit

5.4 Primary Microcontroller Hardware Design
(Stationary):

We will use the Atlys Spartan 6 microcontroller to process the incoming HDMI
video signal. The controller will also communicate via USB port with the graphical
user interface on the computer. The controller will also send and receive data
from a sensor used to control the rotation speed of the POV display. The
processed video stream, sensor data, and USB data, will all be forwarded to the
rotating controller via Ethernet communication using the built in Ethernet port on
the Atlys Spartan 6. Figure 5.4.a shows the various communication ports used by
the controller.

Stationary FPGAHDMI Input
Ethernet

Communication

USB
Communication

Sensor I/O

Figure 5.4.a Communication Hardware Used by Stationary Controller

A Vmod Bread Board attachment will be required in order to make I/O pins
available to the microcontroller. Three I/O pins will be used to send and receive
data from a sensor. The sensor will supply rotational position data and can be

75

used by the controller to calculate the rotational speed of the POV display. The
sensor will also receive a signal from the controller which will alter the rotational
speed for the POV display. Figure 5.4.b shows the pin out assignments on the
Vmod Bread Board.

Sensor Pin Assignment

Pin Assignment

I/O 1 Enable

I/O 2 S_INPUT

I/O 3 S_OUTPUT

I/O 4 - 28 Unused

Figure 5.4.b Sensor Pin Assignment on Stationary VmodBB

76

5.5 Secondary Microcontroller Hardware Design
(Rotating):

In order to use the IO pins of the Atlys Spartan 6, we will need to connect a
Vmod breadboard to the Atlys board via the VHDC connection, which will provide
us with 28 I/O pins. These pins are located on two 32 pin breadboards, BB1 and
BB2. Figure 5.5.a shows a summary of the pin configuration on BB1 and BB2.
Each LED controller requires various signals from the rotating microcontroller, in
several cases though entire groups of LED controllers can share the same signal
as the other controllers in the same group. For example, on I/O pin 3, A_XLAT
sends a latching signal to all controllers in the A column, which is made up of 90
LED controllers. The signal names have been appended with a prefix, either
ALL_, A_, B_, AA_, AB_, BA_, or BB_, which refers to the group of LED
controllers that will receive that signal.

Pin Assignments

BB1 BB2 BB1 BB2

Pin Assignment Pin Assignment Pin Assignment Pin Assignment

I/O 1 ALL_VPRG I/O 15 B_XLAT I/O 8 AA_SIN_G I/O 22 BA_XERR

I/O 2 ALL_DCPRG I/O 16 B_GSCLK I/O 9 AA_SIN_B I/O 23 BB_SIN_R

I/O 3 A_XLAT I/O 17 B_BLANK I/O 10 AA_XERR I/O 24 BB_SIN_G

I/O 4 A_GSCLK I/O 18 B_SCLK I/O 11 AB_SIN_R I/O 25 BB_SIN_B

I/O 5 A_BLANK I/O 19 BA_SIN_R I/O 12 AB_SIN_G I/O 26 BB_XERR

I/O 6 A_SCLK I/O 20 BA_SIN_G I/O 13 AB_SIN_B I/O 27 Unused

I/O 7 AA_SIN_R I/O 21 BA_SIN_B I/O 14 AB_XERR I/O 28 Unused

Figure 5.5.a Pin Assignments on VmodBB

One design feature that might be implemented would be a text display which
would consist of 3 LED controllers outputting to 16 LEDs. This would in essence
be a miniature of the full miniature LED array. If in fact we implement this text
display we would need to modify the pin arrangement to make room for the
outputs that would be required from the FPGA.

With the current configuration, we are using 26 of the 28 available I/O pins. It is
possible for us to do without the XERR input from the 4 groups of LED controllers
and possibly use a completely different error checking mode when we would like
to receive that input. Removing the for XERR inputs frees up in total 6 pins for
the text display. The text display requires at minimum 7 pins though to be
implemented: XLAT, BLANK, GSCLK, SCLK, SIN_RED, SIN_GRN, and

77

SIN_BLU. Figure 5.5.b shows this pin configuration. In order to get around this
issue, we will use the 6 available pins for all of the text displays input except for
XLAT, which will be handled via other means. Figure 5.5.1.b shows this pin
configuration, and notice the loss of the XERR pin inputs. I/O pins used for the
text display will all be prefixed with T_ and can be seen on pins 12, 13, 25, 26,
27, and 28.

The issue of the missing pin for XLAT can be resolved by using the XLAT pulse
from both the A and B columns tied together as input into the text display. In
effect this will flash the Text Array at 44 frames per second, because it will
receive 22 pulses per second from the A columns XLAT, and 22 pulses per
second from the B columns XLAT at a 180 degree phase difference. It would also
be possible to consider using the BLANK signal from A and B tied together as
well, however the remaining 5 pins for GSCLK, SCLK, and RGB SOUT pins
would remain necessary.

Pin Assignments with Text Display

BB1 BB2 BB1 BB2

Pin Assignment Pin Assignment Pin Assignment Pin Assignment

I/O 1 ALL_VPRG I/O 15 B_XLAT I/O 8 AA_SIN_G I/O 22 BB_SIN_R

I/O 2 ALL_DCPRG I/O 16 B_GSCLK I/O 9 AA_SIN_B I/O 23 BB_SIN_G

I/O 3 A_XLAT I/O 17 B_BLANK I/O 10 AB_SIN_R I/O 24 BB_SIN_B

I/O 4 A_GSCLK I/O 18 B_SCLK I/O 11 AB_SIN_G I/O 25 T_BLANK

I/O 5 A_BLANK I/O 19 BA_SIN_R I/O 12 AB_SIN_B I/O 26 T_SIN_R

I/O 6 A_SCLK I/O 20 BA_SIN_G I/O 13 T_GSCLK I/O 27 T_SIN_G

I/O 7 AA_SIN_R I/O 21 BA_SIN_B I/O 14 T_SCLK I/O 28 T_SIN_B

Figure 5.5.b Pin Assignments with Text Display Implementation

5.6 Power Supply Hardware Design:

The power for the POV display will come from a standard AC wall outlet. As
shown on the hardware flow chart, we will divide the incoming AC power into two
circuits. One will be used to power the stationary side of the POV display. The
second circuit will be used to power the rotating side of the display. The choice to
transfer power to the rotating side through the slip ring using AC instead of DC
was in an effort to reduce the number of connections required. We will transfer
the positive AC line through the slip ring. We will then terminate the neutral and
ground wires together to the metal chassis. Since the chassis will be constructed

78

out of aluminum, this should provide an adequate amount of conduction for the
neutral. We will then pick up the neutral on the rotating side from the metal
chassis. The only drawback to this will be with the bearing. However, since the
bearing is constructed from metal as well, there should still be enough conductive
material to allow the power to be transferred. Additional, since the slip ring will be
bare conductor, we will step the incoming AC voltage down from 120 V to 24 V in
an effort to reduce the potential danger associated with using exposed
connections.

5.6.1 Stationary Power Supply:

The stationary power supply will be designed to power the motor and the
stationary side FPGA board. We will use two rectifier circuits. One rectifier will be
dedicated to power the power. The second rectifier circuit will be used to power
the FPGA board and the Ethernet converter.

5.6.2 Rotating Power Supply:

The rotating power supply will be designed to power the LED array and the
rotating side FPGA board. We will use one rectifier circuit dedicated to the FPGA
board. We will then use two rectifier circuits to power the LED array. One rectifier
for the Group A of LEDs and one for Group B LEDs.

5.6.3 Slip Ring Design:

In order to transfer power to the rotating side of the device we need a slip ring.
This ring will consist of a copper washer attached to the shaft of the bottom
section of the LED apparatus. Here a frayed copper wire will be mounted and just
touching the washer. An insulating material will separate the washer from the
shaft, and another wire will be connected to the inner side of the washer and a
hole within the shaft will feed the wire from the washer up to the LED apparatus
to power the system. Power will effectively be applied to the copper washer from
the wire as the device rotates. There the power will travel from the washer to the
rest of the device.

Figure 5.6.3 is a visual representation of this set-up created in DraftSight. Our
construction of this device will be dependent on the requirements of the rotating
apparatus Before we discuss exactly what is needed to create this slip ring we
need to discuss these power requirements of the rotating apparatus. Since the
basic element will be LEDs we need to figure out the power usage of a single
LED and then the whole array itself. Since each LED requires about 100 mA to
operate and will have a 5 voltage drop across them a single LED will require
about 0.5 watts, multiply that by four-hundred-eighty LEDs and we have 240
watts. We will assume a high 30 watt requirement for the Xilinx Atlys Spartan 6
development board. However, it is best to give a 20% margin of error over the
possibility of loss within the slip ring due to thermal dissipation. This puts us up to
a total power requirement of 324 watts. Since we estimate to need about 24 volts

to power the rotating apparatus we will also need around 13.5 amps. This means
we need materials that can
of power being transferred and whatever thermal power that will be applied to the
slip ring as it is grinding against the washer. For this reason a 10 GA wire will be
effective for this use. These wires
which is 1.5 amps above our needs, and its melting point is well above these
power requirements.

Figure 5.6.3 Slip Ring side and top view

On the opposite end of the slip ring, right before the rest of the devic
bridge rectifier and a voltage regulator to convert from AC to DC an
over voltage. Figure 5.6.3

5.7 Wired Ethernet Communications:

The POV display will require wired Ethernet communications to tr
information from the stationary board to the rotating board. We determined that
the Ethernet communications must be design to meet the standard 100 Mbps
transfer rate. This is less than what was we initially thought would be required.
Therefore, we will be using the Enconn EOC
Coax Extender. Since only the EOC
can be mounted on the rotating side of the POV display without requiring any
additional inputs or power. Additional, sin
transmit the Ethernet communications, we will be using the Model 205 rotary joint
from Mercotac. Due to the increase rotation speed of the POV display, we must
use the high speed models of the 205. Additional, to increa
of the rotary joint we will be using the mode
part number 205-HS. To mount the rotary joint, we will attach a plate to t
bottom of the support pipe on
run the coaxial wire coming from the rotating side of the joint up through the
center of the pipe to the LED array.

to power the rotating apparatus we will also need around 13.5 amps. This means
we need materials that can handle not only the 13.5 amps but both the 325 watts
of power being transferred and whatever thermal power that will be applied to the
slip ring as it is grinding against the washer. For this reason a 10 GA wire will be
effective for this use. These wires are rated at a maximum current of 15 amps
which is 1.5 amps above our needs, and its melting point is well above these

Figure 5.6.3 Slip Ring side and top view

On the opposite end of the slip ring, right before the rest of the devic
bridge rectifier and a voltage regulator to convert from AC to DC an
over voltage. Figure 5.6.3 shows the circuit design of both of these.

Wired Ethernet Communications:

The POV display will require wired Ethernet communications to tr
information from the stationary board to the rotating board. We determined that
the Ethernet communications must be design to meet the standard 100 Mbps
transfer rate. This is less than what was we initially thought would be required.

we will be using the Enconn EOC-AN and EOC-IN Ethernet over
Coax Extender. Since only the EOC-AN requires additional power, the EOC
can be mounted on the rotating side of the POV display without requiring any
additional inputs or power. Additional, since we will be using coaxial cable to
transmit the Ethernet communications, we will be using the Model 205 rotary joint
from Mercotac. Due to the increase rotation speed of the POV display, we must
use the high speed models of the 205. Additional, to increase the life expectancy
of the rotary joint we will be using the model with stainless steel ball bearings,

HS. To mount the rotary joint, we will attach a plate to t
bottom of the support pipe on the chassis at the center of rotation. We w
run the coaxial wire coming from the rotating side of the joint up through the
center of the pipe to the LED array.

79

to power the rotating apparatus we will also need around 13.5 amps. This means
handle not only the 13.5 amps but both the 325 watts

of power being transferred and whatever thermal power that will be applied to the
slip ring as it is grinding against the washer. For this reason a 10 GA wire will be

are rated at a maximum current of 15 amps
which is 1.5 amps above our needs, and its melting point is well above these

On the opposite end of the slip ring, right before the rest of the device will be a
bridge rectifier and a voltage regulator to convert from AC to DC and prevent

shows the circuit design of both of these.

The POV display will require wired Ethernet communications to transfer the
information from the stationary board to the rotating board. We determined that
the Ethernet communications must be design to meet the standard 100 Mbps
transfer rate. This is less than what was we initially thought would be required.

IN Ethernet over
AN requires additional power, the EOC-IN

can be mounted on the rotating side of the POV display without requiring any
ce we will be using coaxial cable to

transmit the Ethernet communications, we will be using the Model 205 rotary joint
from Mercotac. Due to the increase rotation speed of the POV display, we must

se the life expectancy
with stainless steel ball bearings,

HS. To mount the rotary joint, we will attach a plate to the
the chassis at the center of rotation. We will then

run the coaxial wire coming from the rotating side of the joint up through the

80

6 Software Design:

There is a significant amount of software which must be designed for this project.
We will be focusing on the software design for each individual part of the project
here. This will include the design of the GUI application, the software functions of
each of the FPGA’s to receive input and display output, and the Ethernet
communications between the two FPGA boards. These designs will serve as
outlines for how we expect the implementation to be executed. These designs
will not be a definitive method of implementation since many changes may come
up during development. Figure 6 shows a simple overall flowchart of the
communication between our software designs.

Figure 6 Software Flowchart

In the GUI design we will be discussing the design section of our software
development lifecycle. This section will focus on organizing the set of
requirements and specifications, deciding on a suitable architecture, and visually
designing the GUI. No implementation will be done here. This section serves as
a plan of action for the implementation and to answer all questions that may arise
during development. An effective design will make all of the decisions that need
to be made in order to make implementation straightforward and agile.

We will be using the Atlys FPGA’s for both the rotating FPGA’s and stationary
one. This is largely because of the real time requirements that 44 frames per
second demands. The stationary FPGA must process an incoming HDMI frame
buffer and convert it into a format that will be useful to the rotating FPGA. The
rotating FPGA will dedicate its available clock cycles to reading this incoming
frame buffer that arrived via Ethernet communication and output the data to the
LED controllers on the LED array. Both FPGA’s will be operating at 500 MHz.

The stationary FPGA will receive HDMI input frames at a rate of 60Hz into a
frame buffer. It will also receive infrared sensor input and perform calculations to
determine the rotating speed of the device, and send feedback to the sensor
which will ultimately increase or decrease the rotating speed of the motor. The

81

stationary FPGA also receives data via USB port which can include
preprocessed images, processed text information to be displayed on the text
display, and display commands which will then be passed to the rotating FPGA
via Ethernet.

The rotating FPGA will receive the processed HDMI frames via Ethernet and
begin writing the data to the LED controllers column by column and signaling for
them to flash each time. There are very specific timing requirements under which
the various signals from the FPGA to the Array must be sent. The software will
make use of the Atlys boards 100 MHz clock from which sub clocks can be
derived though the use of phase shifting and division, allowing for extremely finite
timing. The rotating board must also control a small text array, and respond to
various control signals telling it to start or stop displaying.

Our FPGA’s will be communicating with each other using the built in Ethernet
ports. This communication plays a key role in making this project feasible. We
must create a design that is fast enough to transmit a live video feed. We most
likely will not be using a standard Ethernet protocol because of the unnecessary
overhead involved. In our software design for Ethernet communications we will
decide on our communication protocols and outline our method of sending the
data. We will be viewing the Ethernet communication as a hardware interface
between the two boards. When programming an FPGA it is often advantageous
to view the design as a hardware design instead of a software design to
complement the Verilog HDL.

6.1 Primary Microcontroller Software Design
(Stationary):

This section will cover the software design requirements for the stationary FPGA
board. Software requirements include processing the incoming HDMI signal and
formatting the data to be transmitted via Ethernet to the rotating FPGA board.

6.1.1 Processing HDMI Signals:

The Atlys board has several registers used to initialize HDMI input and view the
status of the connection. Figure 6.1.1 contains detailed bit information and a
description of these registers. Upon plugging a source into the HDMI port of the
FPGA, the ICC core, which is dedicated to handling HDMI input and output, will
begin receiving interrupts with the HDMI source looking for EDID information
about the FPGA, which the source views as a display. An interrupt service
routine will send EDID information, stored in DDR2 memory whenever this
interrupt occurs. The status register’s Bit(30) will read a 1 if the frame dimensions
of the incoming video are determined.

Before the flow of HDMI input frames can begin being received, both the Frame
Base Address and the Line Stride registers must be set. The Frame Base

82

Address is the starting location in the DDR2 memory where the frames will begin
to be stored. The Line Stride is defined as the number of pixels in a single
horizontal line of a frame, in our case 640.

Control
Register:

0x00 : R/W

Bits (0 :
30)

Reserved

Bit(31) Write Enable – Enables the core to begin writing video data to the
frame buffer. Default is ‘0’.

Status
Register:

0x04 : R

Bits (0 :
29)

Reserved

Bit(30) Frame Locked – Reading a value of ‘1’ means that the frame
dimensions of the incoming video signal have been determined.

Bit(31) PLL Locked – Reading a value of ‘1’ means that a valid clock
signal is detected on the TMDS lines.

Frame
Width
Register:

0x08 : R

Bits (0 :
15)

Reserved

Bits (16 :
31)

Unsigned value that represents the width of the input frame in
pixels

Frame
Height
Register:

0x0C : R

Bits (0 :
15)

Reserved

Bits (16 :
31)

Unsigned value that represents the height of the input frame in
lines, minus 1

Line
Stride
Register:

0x10 : R/W

Bits (0 :
15)

Reserved

Bits (16 :
31)

Unsigned value that defines the line stride of the frame in pixels
(described below). This value must have bits 26 to 31 equal to
zero in order to be 128 byte aligned. Default value is 0 and must
be set before enabling the core.

Frame
Base Add.
Reg.:

0x14 : R/W

Bits (0 :
31)

 Unsigned value that defines the physical address of the frame
buffer. This address must fall somewhere within the DDR2

83

memory space and have enough trailing memory to fit the entire
frame. This value must have bits 25 to 31 equal to zero in order to
be 128 byte aligned. Default value is 0 and must be set before
enabling the core.

Figure 6.1.1 HDMI Registers

6.1.2 Frame Buffer Format:

The frame buffer will begin receiving frames starting at the Frame Base Address.
The frame will be stored linearly starting with the pixel in the upper left hand
corner, going from left to right, and then down. Each pixel contains two bytes of
color data. Figure 6.1.2.a shows the arrangement of pixels in memory. The size
of a single frame in memory can be calculated by multiplying the number of
pixels by the number of bytes per pixel: 480*640 pixels/frame * 2 bytes/pixel =
614400 bytes/frame.

Pixels Stored in Memory
Pixel 0 1 ... 639
0 0 1 2 3 … 1278 1279
1 1280 1281 1282 1283 … 2558 2559
2 2560 2561 2562 2563 … 3838 3839
.
.
479 613120 613121 614398 614399

Figure 6.1.2.a Arrangement of Pixel Values in Memory

Each pixel is stored in memory as two bytes, containing the RGB color data. Red
and Blue both have a color depth of 5 bits, stored in Bits(11:15) and Bits(0:4),
respectively. Green has 6 bits of color depth, stored in Bits(5:10). Figure 6.1.2.b
shows the ordering of the two byte pixel data, as well as which bit is the most
significant for each color.

Figure 6.1.2.b 16 Bit RGB Arrangement

Each pixel, although stored linearly in memory, can be referred to by an X and Y
coordinate. X will refer to the column of a pixel and Y to the row. Figure 6.1.2.c

84

shows the arrangement of pixels in a frame and how they will be referred to. In
order to calculate the memory location of a given point P(X,Y), we will use the
equation Pixel_Addr = Base_Frame_address + 2*x + 2*Line_Stride*y.

Arrangement of Pixel Values In a frame
Pixel 0 1 ... 639
0 P(0,0) P(0,1) … P(639,0)
1 P(0,1) P(1,1) P(639,1)
2 P(0,2) P(1,2) P(639,2)
. . . .
. . . .
479 P(0,479) P(1,479) ... P(639,479)

Figure 6.1.2.c Arrangement of Pixel Coordinates in a Frame

6.1.3 Output Format Specification:

The format the RGB frames are received in must be changed into a format that
will be useful to the rotating processor which will talk to the LED array controllers.
The LED controllers required Grayscale information as opposed to RGB data. A
Grayscale value is a 12 bit value between 0 and 4095 which will determine the
duration of time, and therefore the brightness, that an LED will be on for one of
its colors. Three Grayscale values can be correlated easily from the RGB color
data.

There are 4 groups of 45 LED controllers, for a total of 180. Each of those 4
groups is responsible for displaying the output of various sections of the screen.
Within each section of 45 controllers, 15 are dedicated to the Red outputs for that
section, 15 for the Green, and 15 for the blue. Figure 6.1.3.a shows the
arrangement of each of these sections, referred to as AA, AB, BA, and BB.

Arrangement of Sections
Pixel 0 1 2 3 … 638 639
0

AA BA AA BA … AA BA
1
.
.
239
240

AB BB AB BB … AB BB
241
.
.
479

85

Figure 6.1.3.a Arrangement of Frame Sub-divisions

It would be ideal if each section of controllers had all of the data that it needs
stored in order in memory as to minimize having to move any pointers around.
Because of this, 12 output bins will be created where the processed data will be
stored, which will allow the data to be accessed in a sequential manner. Figure
6.1.3.b shows these 12 bins and their starting and ending memory addresses
relative to some base address. The size of each bin can be calculated by first
determining the total size of a Grayscale frame. For each pixel, there are 3
Grayscale values, each of size 1.5 bytes; Size of frame in Grayscale = 480 * 640
* 3 * 1.5 = 1382400 Bytes. The size of one of the 4 sections would be 1/4th that,
and then broken up into 3 subsections for each color. So the size of a single
subsection or bin is: 1382400 * ¼ * 1/3 = 125200 Bytes.

Frame Output Format In Memory

Section/Color
Starting
Addr. …

Final
Addr.

AA_RED 0 … 115199
AA_GRN 115200 … 230399
AA_BLU 230400 … 345599
AB_RED 345600 … 460799
AB_GRN 460800 … 575999
AB_BLU 576000 … 691199
BA_RED 691200 … 806399
BA_GRN 806400 … 921599
BA_BLU 921600 … 1036799
BB_RED 1036800 … 1151999
BB_GRN 1152000 … 1267199
BB_BLU 1267200 … 1382399

Figure 6.1.3.b Memory locations of the 12 output Bins

6.1.4 Frame Processing:

This section will cover the various steps involved with converting a frame from
the input HDMI format to the output format that we have specified. The
TranslateFrame() function will translate a frame at a specified address and store
the output in 12 bins as described in the output specification. TranslateFrame()
begins by initializing the output pointers for each of the 12 bins. The memory
address for each bin can be calculated by adding an offset value together with
the base address in DDR2 memory where output is to be written. The required
calculation can be seen below:

86

BinPointer = FRAME_OUTPUT_BASE_ADDR+i*115200 where I = 1-11

TranslateFrame() has one outer loop and two inner loops. The outer loop counter
increments by two every iteration because we will be processing two columns of
the frame each pass through the loop. The columns include all for pixel sections
AA, AB, BA and BB.

The first inner loop handles the translation of pixels P(X,0)-P(X,239), which are
sections AA and BA. The second inner loop handles the translation of pixels
P(X,240)-P(X,480) which are sections AB and BB. Within each inner loop,
TranslateAndOutput is called on the current P(X,Y) pixel and P(X,Y+1) pixel. In
the first inner loop P(X,Y) is always part of section AA and P(X, Y+1) is always a
pixel from section BA. Figure 6.1.4.a shows what section of the frame each look
handles.

Translate Frame Loop
Pixel 0 1

 Inner Loop 1
0

AA BA
.
.
.

239
 Inner Loop 2

240

AB BB

.

.

.

479

Figure 6.1.4.a: The Translate Frame Loop

Similarly, TranslateAndOutput is twice called in the second inner loop for each in
pixel, each call corresponding to a pixel in section AB and BB. The inner loops
increment by 2 because each call to TranslateAndOutput will look at two pixels at
a time, which will be described in more detail in the description for
TranslateAndOutput(). Figure 6.1.4.b shows which inner loop L is responsible for
building up the contents of the bins, and what pixel data ends up in those bins.

Each Section Written to Memory
L StartAddr. Grayscale Data
1 AA_RED 0 P(0,0)-P(0,239) P(2,0)-P(2,239) … P(638,0)-P(638,239)

87

1 AA_GRN 115200 P(0,0)-P(0,239) P(2,0)-P(2,239) … P(638,0)-P(638,239)
1 AA_BLU 230400 P(0,0)-P(0,239) P(2,0)-P(2,239) … P(638,0)-P(638,239)
1 AB_RED 345600 P(0,240)-P(0,479) P(2,240)-P(2,479) … P(638,240)-P(638,479)
1 AB_GRN 460800 P(0,240)-P(0,479) P(2,240)-P(2,479) … P(638,240)-P(638,479)
1 AB_BLU 576000 P(0,240)-P(0,479) P(2,240)-P(2,479) … P(638,240)-P(638,479)
2 BA_RED 691200 P(1,0)-P(1,239) P(3,0)-P(3,239) … P(639,0)-P(639,239)
2 BA_GRN 806400 P(1,0)-P(1,239) P(3,0)-P(3,239) … P(639,0)-P(639,239)
2 BA_BLU 921600 P(1,0)-P(1,239) P(3,0)-P(3,239) … P(639,0)-P(639,239)
2 BB_RED 1036800 P(1,240)-P(1,479) P(3,240)-P(3,479) … P(639,240)-P(639,479)
2 BB_GRN 1152000 P(1,240)-P(1,479) P(3,240)-P(3,479) … P(639,240)-P(639,479)
2 BB_BLU 1267200 P(1,240)-P(1,479) P(3,240)-P(3,479) … P(639,240)-P(639,479)

Figure 6.1.4.b Range of pixel data as it is stored in memory

The TranslateAndOutput() function starts by obtaining the two pixels values
adjacent to each other in the same column. Figure 6.1.4.c shows pixel one and
two on the left side of the image. Three combined Grayscale values are then
obtained for each color, red, green, and blue from those two pixels. A combined
Grayscale value is a 3 byte data structure than contains two 12 bit Grayscale
values that have been melded together. The 3 byte combined Grayscale values
are then written to memory, stored in their appropriate bin, and following that the
output pointers are incremented by 3. Figure 6.1.4.b shows how the combined
Grayscale values are stored in memory as they are output.

Figure 6.1.4.c Combining Grayscale values and storing in memory

GetRedCombinedGS() is used to obtain the combined red Grayscale value for
the two pixels it is called with as arguments. The red data is stored entirely in the
first byte of the pixel data, Figure 6.1.2.c in the section HDMI Input and Frame
Buffer Format shows the 16 bit RGB configuration. The first byte of the color data
contains the red values. Using a logical shift right function with an argument of 3,
the unwanted green data is pushed out. The process of isolating the red value
can be seen visually in Figure 6.1.4.d.

88

The red value is then converted to a grayscale value by calling a function to
convert the byte. The red data isolation process is then repeated for the second
pixel, and then also converted to grayscale. Following this, the two grayscale
values for each pixel are combined into a three byte structure using a combine
grayscale function which returns a 3 byte structure.

Two Byte RGB color:
R5 R4 R3 R2 R1 G6 G5 G4 G3 G2 G1 B5 B4 B3 B2 B1
First Byte Obtained:
R5 R4 R3 R2 R1 G6 G5 G4
Logical Right Shift x 3:

0 0 0 R5 R4 R3 R2 R1

Figure 6.1.4.d Visualization of Isolating Red RGB Value

Obtaining the green pixel values entails a little more effort since its values are
spread across two bytes. The first byte of the pixel is obtained, which is then has
the logcal AND performed on it with 0x07, which zeros out any red data in that
byte. The first byte is then shifted left 3, so that its three LSB are zero and able to
be combined with the 3 bits of green data from the second byte. The second byte
is obtained in a temporary variable and shifted to the right by 5. Combining the
first byte and the temp variable with a logical OR operation gives the complete
green data. Figure 6.1.4.e gives a visualization of the logic used to isolate green.

The color isolation process can then be repeated for the second pixel. The two
green RGB values are then converted to grayscale on lines 8 and 16. Following
this, they are combined into a single 3 byte structure that is then returned on
lines 18 and 19.

Two Byte RGB color:
R5 R4 R3 R2 R1 G6 G5 G4 G3 G2 G1 B5 B4 B3 B2 B1
First Byte Obtained in Temp:
R5 R4 R3 R2 R1 G6 G5 G4
AND with 0xF8:
0 0 0 0 0 G6 G5 G4
Logical Left Shift x 3:
0 0 G6 G5 G4 0 0 0
Obtain Second Byte in Temp2:
G3 G2 G1 B5 B4 B3 B2 B1
Logical Right Shift x 5:
0 0 0 0 0 G3 G2 G1
Combine Temp1 and Temp2 with AND
0 0 G6 G5 G4 G3 G2 G1

89

Figure 6.1.4.e Visualization of Isolating Green RGB Value

The blue color data can be obtained from the second byte of the pixel data.
Because blue is already completely to the right, isolating it is as simple as
performing a logical AND on it with 1F, zeroing out any green data present. The
grayscale values are obtained using ToGrayscaleRB() and then combined.
Figure 6.1.4.e provides a visualization of the logic for isolating the blue RGB
value from the pixel data. Figure 6.1.4.f shows a visualization of this function.

 Two Byte RGB color:

R5 R4 R3 R2 R1 G6 G5 G4 G3 G2 G1 B5 B4 B3 B2 B1
Obtain Second Byte
G3 G2 G1 B5 B4 B3 B2 B1
AND with 0x1F

0 0 0 B5 B4 B3 B2 B1

Figure 6.1.4.f Visualization of Isolating Green RGB Value

Converting pixel data to Grayscale is accomplished using ToGrayscaleRB() and
ToGrayscaleG(). The need for a separate function for green is because green
contains an extra bit of color depth, and can be mapped to a more precise
grayscale value. A grayscale value ranges from 0 to 4095, represented by 12
bits. Figure 5.1.1.3.g shows the mapping of values for both Red/Blue and Green.

Figure 6.1.4.f Grayscale Mapping Diagram

The CombineGrayscale() function is used to combine two grayscale values into a
3 byte data type and then return those 3 bytes. A grayscale value is stored in 2
bytes even though it only contains 12 bits worth of information. Because of this,
the first 4 bits of every grayscale value are 0b0000, which is why it would be nice
to compact 2 of these grayscale values together to eliminate the wasted bits and
decrease the overall size of the date. The CombineGrayscale() functions
behavior can be visualized in Figure 6.1.4.h.

Grayscale Value 1 Grayscale Value 2
0 0 0 0 24 23 22 21 0 0 0 0 12 11 10 9
20 19 18 17 16 15 14 13 8 7 6 5 4 3 2 1

90

Logical Left Shift x 4 Grayscale Value 1 Byte 1
24 23 22 21 0 0 0 0
Logical Right Shift x 4 on a copy of Grayscale Value 1 Byte 2
0 0 0 0 20 19 18 17
AND Grayscale Value 1 Byte 1 with the copy
24 23 22 21 20 19 18 17
Logical Left Shift x 4 GS1 Byte 2
16 15 14 13 0 0 0 0
AND Byte 2 with GS2 Byte 1
16 15 14 13 12 11 10 G9
Return GS1 Byte 1 and 2, and GS2 Byte 2
24 23 22 21 20 19 18 17
16 15 14 13 12 11 10 9
8 7 6 5 4 3 2 1

Figure 6.1.4.g Visualization of Combining Grayscale Values

6.1.5 Stationary FPGA Ethernet Communications:

The stationary FPGA will have to send messages to the rotating FPGA. For this
we will be using the built in Ethernet ports. Although we are using the Ethernet
ports we will not be using a standard Ethernet protocol. We will be designing our
own simple communication protocol that it suitable for our purpose. It must be
fast and it must have a way of differentiating between types of data. Since we will
be sending different types of data we will have to add a header to each data
stream. The possible types of data that we may send are: video, image, text
(main), text (small), command, and sensor data. With six different possibilities we
will need 3 bits for the header. The first three bits of each data stream will be our
header and they will be assigned as shown in Table 6.1.5

Header Bits Data Type
000 Video
001 Image
010 Text (Small)
011 Command
100 Sensor Data

Table 6.1.5 Header Information

As seen in Table 6.1.5 there is no text data type for the main display. This is due
to the fact that when text is sent, it will be sent in the same format as an image.
The small text data is meant to appear on the secondary smaller display which
will give the effect of text on top of the current image or video. Even though the
data type is labeled text, it can also be an image. The header simply decides
which display to send the data. The video header will herald an incoming stream

91

of frames. To signal the end of a video feed there will be a separate signal that
we will call CommEnable. When this signal is high there will be active
communication, and when this signal is low, communication will cease. The video
feed will be the only data type that will require us to specify when the data ends.
When the CommEnable signal goes low during a video feed then the FPGA will
clear the screen image. All non-video data types will have a fixed size that is
expected to be sent. These data types with fixed sizes will hold their image when
the CommEnable signal goes low. The image data type will be a single frame
that will be displayed constantly on each rotation. A command signal can include
commands to clear the main screen image or the text screen image. Lastly
sensor data is from the IR sensors that will detect each revolution of the display.
This data will help control the motor speeds. A simple Ethernet transmission is
shown in Figure 6.1.5. The figure assumes the appropriate header is added
either from the PC application or from the HDMI processing.

Figure 6.1.5 Ethernet Transmission Flowchart

6.1.6 Motor Control Sensor Software:

Software will be required to process the information from the motor control circuit.
The software is required to read in these voltage pulses and determine the
revolutions per second of the device through this data. It will also then need to
make a decision of whether to maintain, decrement, or increment the speed of
the motor based on this device. This will all have to be done with software within
the processor. Figure 6.1.5 best shows the flow of this process. In this process
when a pulse is detected the current value of time tc will be subtracted from the
previously recorded clock value tp. This value will then be stored as the time
between that pulse Tn. Once a second passes each of these pulse values will
then be averaged out using the following equation: [T1+T2+...+Tn]/n = Ta. This
will be compared with the expected Ta value with a 1% allowable error margin.
Since we want to have around thirty revolutions per second we need a 0.033
period. So this Ta needs to be within 0.03267 and 0.03333. If it is above this
margin then we will have to decrement the resistance in the pulse width
modulator and if it is below this margin we will have to increment the resistance

92

in the pulse width modulator. Our incremented and decremented value should be
around 1%. This should be enough that we won't overshoot our margin if we
increment or decrement just outside the margin.

When we compare our Ta we will have to make one of three choices based on
this comparison. Our choice will be used to send out a voltage signal to a voltage
controlled resistance that will raise, decrease, or maintain its value. This change
in resistance will trigger the PWM circuit to change the speed of the motor by 1%.

Figure 6.1.6 Control Program Flow Chart for Motor Control

6.2 Secondary Microcontroller Software Design:

This section will cover the software design requirements for the rotating FPGA
board. Software requirements include reading the preprocessed data and HDMI
frames arriving at the board via Ethernet connection, and outputting this data to
the LED array.

6.2.1 Modes of Operation:

The secondary controller will have various modes of operation and will also be
receiving various data and commands via Ethernet from the stationary controller.
Data includes HDMI processed frames, which are to be stored in a frame buffer,
processed still images, and text data which will be displayed on a small text
array. Sensor data will also be received which is used to determine when to start
displaying the device, giving it a tap dead center. Additionally, commands will be
received that change the operation modes of the POV display.

93

The main LED array can either be displaying data from the HDMI buffer or data
that corresponds to a single image that has been stored in memory. The main
array output can either be in HDMI_MODE, IMAGE_MODE, or OFF_MODE. In
the case of OFF_MODE the main LED array will not display anything, however
the text array could still be in use.

The text array is in use, it will be operating in TEXT_MODE. While in
TEXT_MODE various commands will alter the way in which text is being
displayed. For instance scrolling text can be enabled and the speed at which the
text scrolls can be calibrated via commands being received from the stationary
controller, which received those commands via USB from the GUI interface on
the computer. The text array can also be in an off mode when it is not in use
which is simply OFF_MODE. Figure 6.2.1 shows the various state combinations
the Main Array and Text Array can be in after receiving a single state change
command

Figure 6.2.1 State Chart for Modes of Operation

6.2.2 Outputting Data to LED Array:

The rotating microcontroller will be responsible for outputting the color data the
LED controllers. There are 180 LED controllers, 90 represented an A column,
and 90 representing a B column, although both columns output to the same
LEDs. Both the A column and B column will output to the LEDs at 22 frames per
second, staggered such that the LEDs will flash at 44 frames per second. Two
clock driven interrupt handlers will tell the A and B columns of LED controllers to
display at the appropriate times. After a column is displayed all of the controllers
in that column require a blanking pulse of 20ns in length. On lines 6 and 14 of the
interrupt handler pseudocode, the Column Written flag is set to false so that a

94

separate loop can begin writing the new pixel data to be displayed to the LED
controllers.

The A column has been instructed to start displaying by calling
DisplayAColumn(). A pulse is sent on the XLAT pin for the A column of duration
20 ns, which moves the data written in the controllers shift register to the
grayscale register. The controllers now require the GSCLK signal to tick 4096
times at 30 MHz. The values in the grayscale register will determine how long the
outputs from the LED controllers to the LEDs stay on, effectively determining the
color that will be displayed. On lines 2 and 13, XLAT is pulsed, and on lines 3
and 14 a grayscale counter is initialized. A loop is then entered that the program
will remain in until pulseGS has been set to true 4096 times. A clock interrupt
handler sets pulseGS to true at a rate of 30MHz, and each time it’s true, the
GSCLK for the column is pulsed for 16ns.

A loop will be running which writes the data to the LED controllers after each time
a column is displayed, because that column now requires new data. Lines 2 and
6 of this pseudocode check the Column Written flag to see if new data has been
written since the last flash of that column. If the new data has not been written
yet, a function is called on lines 3 and 7 which will write the new data to the LED
controllers. The Column Written flag is then set to true.

The Write Column functions handle writing data to the controllers one bit at a
time. There are 90 controllers in total used in column A. This is divided into two
groups, AA and AB, each with 45 controllers. AA and AB are each divided into 3
groups of 15 controllers for red, green, and blue. This makes for a total of 6
groups of 15 controllers. A single controller requires 192 bits and with each group
containing 15 controllers, 2880 bits will be written to each group. In line 2, a loop
will be entered that will continue until 2880 bits have been written to all 6 groups.
The rate at which the data can be written to the controllers is limited to 30MHz,
because of this a clock interrupt will set SCLKpulse to true at a rate of 30MHz.
Whenever this pulse occurs, the bits to be written for each group will be obtained
as seen on lines 4-9, and then written into memory at the addresses associated
with the A columns SOUT pins on lines 11-16. An SCLK pulse is then required so
that the LED controls read the new bit into their shift registers.

ObtainBit() returns either 0xFF or 0xFE depending upon whether the next bit of
data was a 1 or a 0. When a logical AND is performed between that byte and the
output pin address, only the last bit will be altered. The first loop lines up a 1 bit in
the temp variable with the index we are interested in, and then a logical AND is
performed zeroing out all other bits. In the second loop, the bit we are interested
in is shifted right until it is the LSB. A logical OR is then performed on that value
and 0xFE, which will guarantee the return value is either 0xFF or 0xFE.

6.2.3 Outputting Data to Text Array:

95

One design feature to be implemented is a text array which consists of 16 RGB
LEDs controlled by 3 LED controllers. This would in essence be a miniature of
the full miniature LED array. The addition of this display required modification of
the pin I/O's available to the full array, specifically the loss or XERR input. This
also requires that we use the A and B array columns latching signal which both
pulse at 7040 Hz to be combined into a separate output pin that pulses at 14080.
14080 Hz allows the text display to be flashed at 22 frames per second.

In order for this implementation to work, the interrupt handlers displaying column
A and column B of the primary array would effectively also be flashing the text
display at the same time. In the primary loop which handles writing to each
column, the text display would also need to be written to and made ready before
each of the display interrupts occur.

The text display will be capable of displaying text with various settings, such as
scrolling text left or right at different speeds, and color alteration. Allowing the text
to scroll involves incrementing certain pointers into memory while always keeping
track of the base pointer for the text data. After a certain amount of rotations of
the POV display, a pointer that points to the text data is incremented and
becomes the new reference base pointer. When writing the data, the reference
base pointer is incremented and a modulo operation is performed to wrap it back
around to the true base address of the text data. The speed at which the text will
rotate depends on how many rotations of the POV device are required before the
pointer is moved.

6.2.4 Rotating FPGA Ethernet Communications:

The rotating FPGA will receive communications through the built in Ethernet port.
This board will act as a server waiting for a client to connect. Header information
will have to be deciphered on this board so that this board knows where to send
the data. There will be a 3 bit register to hold the header data. This register will
become active at every positive edge of the CommEnable signal. After the
positive edge of the CommEnable signal the header register will receive the data
stream for three clock cycles to obtain the header information. Once the first
three data bits have been read into this register the FPGA will then know what
kind of data is about to be sent. This should only happen at the beginning of a
data stream which is why the positive edge of the CommEnable signal should
suffice. Figure 6.2.4.a shows a simple three bit register that will obtain the header
information. The actual implementation will be done using Verilog HDL.

96

Figure 6.2.4.a Simplified Ethernet Header Register

If we use an implementation as shown in Figure 6.2.4.a then we will have to read
the header information exactly on the fourth clock cycle. If this turns out not to be
possible we can add multiplexers to the inputs that will have the register hold the
values so that they can be read at a later time. The three header bits will then be
sent to a comparator which will test the values against each of the acceptable
values shown in Table 6.1.5. Once the header has been decoded the rotating
FPGA will then expect a certain amount of data. Video data will be expected
constantly until there is a new positive edge on the CommEnable signal. In the
case of an image file being sent the FPGA will expect 640x480x8 bits of data or
2457600 bits. After the required number of bits has been read the FPGA will hold
the image on the display, and will not expect any more data until the next
CommEnable positive edge. The text signals will be similar to the image signal.
For the main display the text signal will have the same number of bits as the
image signal. This is because all of the pixel data will still be sent. For the small
text display the data required will be 640x16x8 or 81920 bits. For the command
signals the number of bits will be very small in comparison. The commands will
be hard coded and we will assign 4 bits for commands. We do not need 4 bits for
now with only two clear commands, but this will allow us to add more commands
without making many changes to our design. Figure 6.2.4.b shows a simple
flowchart detailing Ethernet communications on the receiving end. The header
register in Figure 6.2.4.a will have its outputs fed into the header comparator
shown in Figure 6.2.4.b.

97

Figure 6.2.4.b Ethernet Receiving Flowchart

6.3 Computer GUI Software Design:

The GUI may be implemented on a PC, an android device, or possibly both. This
design will focus on designing the GUI for a PC but regardless of the device the
GUI is implemented on, the design remains the same. The following bulleted list
will show a formal enumeration of the requirements which must be implemented
in the final application. Most of the items in the list are repeated from the
requirements analysis in the research section. Some of the requirements are new
and have been discovered while executing the design.

Intuitive user interface
Multiple line text message entry
Color options for text messages
Animation options for text messages
Image import with simple image processing
Image positioning
Image cropping option
Image clear button
Communications port selection
Loading bar or visual progress indicator

A pipe and filter architecture will be suitable for this application. The user input
will be either the text message or image which will then pass through a software
“filter” before being output in the proper format. The following architecture
diagram better illustrates the pipe and filter model we will be using:

98

Figure 6.3 Pipe and Filter Software Architecture

The GUI will be designed using Java in the Netbeans IDE. This IDE was chosen
for its robust GUI editor which will allow us to quickly create an interface before
completing any coding. Designing the interface first also helps to serve as an
outline to facilitate the implementation. Creating the first visual draft of the GUI’s
appearance will be the next step in the design. We will be considering the
detailed designs involved in both sending a text message and sending an image
in order to create a draft of the GUI’s appearance.

6.3.1 Text Message Input:

According to the requirements there should be either a single multi-line text box,
or multiple text boxes to accommodate multiple lines of text entry. Near the text
input areas there should be obvious labeled color options, which should include
preset colors as well as user defined colors. These colors will be applied to the
entire text message. It should also be noted that if the user were to choose black
as the text color (RGB values all zero) then we may consider having the
background show up as white. This is a special case and we are not considering
allowing the user to choose a background color at this time. The text should also
have alignment options to determine the position of the text on the display. These
options should include left, center, and right alignments. The alignment options
should also be applied to all or some of the lines of text. Changes in the
alignment options should also be directly visible in the GUI to help the user
visualize how it will appear on the display. The initial GUI design for text input is
shown in the following Figure 6.3.1. This initial design takes all of the previously
mentioned requirements for text input into consideration.

99

Figure 6.3.1 Text Input GUI Draft

The text input will be stored in a string array. The string array will have three
index values from 0-2 representing the line number for that string. This
information will then be sent to the FPGA using the RxTx library. The text will
actually be converted into an image that the FPGA can interpret. The information
will be 640x480 pixels sent one at a time, with the text message lines inserted
where appropriate. The text lines will be displayed within rows of 150 pixels
which is slightly less than 480/3. These rows will be 150 pixels high in order to
allow a gap between the lines of text to make it look better. Each row will then be
divided into a certain number of columns. We will wait to decide on how many
columns to divide the pixel rows until we have the display working. We will
experiment with different values until we find the greatest number of characters
we can fit without having the characters look distorted. Since each row will be
divided into a set number of columns, we will have a set number of characters
per line. This will simplify the formatting since we can hard code each letter.
There will be a method for each letter which will return an integer array
representing the pixel data for that letter. There will be an array of letters for each
line of text. Finally when the data is sent, the pixel data will be sent from each
letter array in the proper order.

6.3.2 Image Input:

The image input option will allow the user to select an image from the hard disk
to display. The Image input should appear on the GUI as a button that will then
open the file chooser dialog allowing the user to select an image from the hard

100

disk. Any common image format should be acceptable. The only image formats
that should be restricted are the ones that the built in ImageIO Java class is not
capable of parsing. The primary focus during implementation will be to have the
image selection only work for images of the proper size. Depending on the
complexity of image processing, other sizes may be supported as well. The
options for images include whether or not to crop the image (when the image is
too large). If the crop option is selected then only the portion of the image that
can fit on the screen will be shown, otherwise the image will be shrunk to fit.
Another option for image input should be the position where the image I
displayed, this is for images that are too small. There should be nine choices
available in a box shape from top left to bottom right. Images will be sent to be
displayed on top of each other. If there is a small image sent to the bottom left
portion of the display, and then another small image is sent to the top right, both
images should be visible simultaneously. Because of this a clear button will be
necessary to clear the image on the display. Figure 6.3.2 shows a draft of the
GUI design for the image input. The final GUI design will contain a combination
of both the text input draft shown in figure 6.3.1 and the image input draft in
figure 6.3.2.

Figure 6.3.2 Image Input GUI Draft

The Image will be read using built in classes and methods for image handling.
These classes include ImageIO, BufferedImage, and ImageReader. We will be
using an ImageReader to interpret the image format and translate it. This will
allow ImageIO to read the image into a BufferedImage. We will then use the
getRGB method of the BufferedImage class to get the pixel color values. The
pixel color values should be very easy to convert to our format (if any conversion
is necessary at all) so that we can send the image using serial communications.
Any blank pixels (no image data) will be represented with a special value that will
let the FPGA know not overwrite any previous value in the FPGA memory for that
pixel. This will allow us to overlay multiple images if they are small enough. This
is also the reason for the clear image button in the GUI. When the clear image
button is pressed, a special clear instruction will be sent to the FPGA. This can

101

be done by sending an entirely black image, or by a unique clear signal that will
have the FPGA overwrite all pixels with black values. The loading bar shown in
Figure 6.3.2 will most likely be used for sending text messages and images. The
loading bar will be updated through the USB communications which will be
discussed next.

6.3.3 FPGA GUI Communications:

In this section we will consider how to communicate with the FPGA using serial
communications through the USB port. We will also be considering how to
properly format the user input so that the FPGA has all of the necessary data to
update the display. We will be using the Java RxTx library to do USB serial
communications between the PC and the Atlys board. The first step in serial
communications is enumerating the available serial communication ports. This
will add another element to our GUI, either list box or a combo box that will list all
available ports. The user should be able to select which port to use when
attempting to send data. The selected port will be stored in a private string
named “port”. This brings us to the GUI design draft that combines all
requirements discussed so far. The following Figure 6.3.3 shows the first
complete GUI design draft.

Figure 6.3.3 Complete GUI Design Draft

102

6.3.3.1 Serial Communication Thread:

Serial communications should be done in a separate thread than the rest of the
program. This is due to the fact that serial communications is a type of blocking
I/O. This means that if the communications took place in the same thread as the
main program then when communication is taking place the entire program may
hang while waiting for I/O. The most common method used to solve this problem
is to handle the serial communications in a separate thread. This can be done by
creating a new class that extends the built in Thread class. We will be creating a
class called USBComm which will extend the Thread class. Any class that
extends the Thread class must have a run method. The run method will execute
within a new thread when the start method is called. We will have to put all
communication code within the run method of the USBComm class and start the
thread each time we want to send a data payload to the FPGA. A new instance
of the USBComm class will be created each time communications are needed
and the arguments passed into the constructor will include the data to be sent.
We will also only allow one thread (besides the main program) to exist at a time,
this will prevent multiple messages being interleaved in the serial communication
stream. For this we will have to create a Boolean variable to indicate the
existence of a current active communication stream.

6.3.3.2 Serial Communication I/O:

The serial communications I/O operations will take place within the USBComm
class. The USBComm class will contain instances of the serial communication
classes from the RxTx library. These classes from the library will handle the
communications and allow the USBComm class to send a payload to the FPGA,
as well as receive acknowledgements. The acknowledgements received will
allow the updating of a loading bar. A simple sequence diagram shown next in
Figure 6.3.3.2.a should help to illustrate the planned data flow for the USBComm
class.

103

Figure 6.3.3.2.a USBComm Sequence Diagram

Before serial communication can occur the port must be acquired and initialized.
In order to acquire the port, the open method must be called on the SerialPort
object. The open method will throw a PortInUseException if the port is already in
use by some other process. Once the port has been opened it can then
initialized. Initializing a port includes setting the initial values for baud rate, data
bits, stop bits, and parity. These values will most likely be hard coded to the best
settings for the Atlys board. After the port initialization we will have to initialize a
ReadStream and PrintStream object in order to serve as the input and output
handlers of the serial communication. The ReadStream and PrintStream objects
will be initialized using the SerialPort’s getInputStream and getOutPutStream
methods. After the streams are initialized then serial communication can finally
begin. Simply print items to the PrintStream object and read items from the
ReadStream object. When all reading and writing is complete, the port and both
streams must be closed. This is simple to do and simply requires a call to the
close method for each object. The operating system will then have that port back
in a usable state and all resourced devoted to the streams will be freed. The
following Figure 6.3.3.2.b will illustrate how to use each of the serial
communications related classes and methods described so far.

104

Figure 6.3.3.2.b

6.3.4 GUI Class Summary:

In this section we will consider all of the class interactions throughout all parts of
the GUI application. Classes that we will have to create include: POVGUI,
USBComm, TextMessage, and ImageMessage. Image reading classes include
ImageReader, and BufferedImage, which will be used by the ImageMessage
class. The text message class will not need helper classes since it is dealing with
simple text data. The USBComm class will need to contain classes from the
RxTx library including SerialPort and CommPortIdentifier. The SerialPort will also
contain PrintStream and ReadStream classes for the I/O operations. A class
diagram showing these classes and their relationships to each other is shown in
the next figure. It should be noted that either a text message is sent or an image
message is sent, but not both. Also the multiplicity shown for each class is one,
because only one of them should exist at a time. If multiple messages are to be
sent, the same class will be used with different values.

105

Figure 6.3.4 Class Diagram for the GUI

7 Prototyping:

In order to determine if our design will work under our specific conditions we
need to test them. We may expect them to work theoretically but theory doesn't
always work practically. This being the case we will need to create a variety of
prototypes of each section of the device that we feel may be prone to failure.
These prototypes will be used in the test procedure chapter to create and
describe both the process and the purpose of the tests that will be applied to
each of these prototypes.

7.1 Slip Ring Power Transmission Prototype:

While testing the slip ring we will need a prototype circuit that can be used to tell
if the slip ring is properly transferring the amount of power we need to power the
LED apparatus and microprocessor without actually connecting the processor so
as to not cause any damage to either the processor or the LEDs. That being the
case we created a prototype circuit using three 120 watt bulbs. Since the
expected amount of power needed on the opposite side of the device is 324
watts of power then if the slip ring can power while in motion 360 watts worth of
power then we know that we should have no problem powering the 324. In
addition, we can tell what the minimum amount of power is needed to power the

106

360 watts so we can get an idea of the loss in the system. The circuit for this
prototype is shown in Figure 7.1.

Figure 7.1 Power Transmission Pro

7.2 Scaled LED Array Prototype:

In order to verify our LED array design works, we will build a prototype of the
LED array. We will build a LED array for 16 RGB LEDs controlled by LED
controllers.

7.2.1 Scaled LED Array Hardware Prototype Design:

The design for the LED array prototype will be similar to the full
The only difference will be that number of cascaded LED controllers. For the
prototype version of the LED array will not have any controllers cascaded.
Although this will not test the speed at which we will be able to address the
cascaded controllers, f(sclk), this will provided a test of the grayscale clock,
f(gsclk).

7.2.2 Scaled LED Array Software Prototype Design:

We would like to use the Atlys board to send data to the prototype LED array and
have the LED array display various different
have the LED array display its full range of color values in an endless loop. The
FPGA will need to write to each of the 3 LED controllers in the prototype
controlling red, blue, and green, the grayscale data that will cor
RGB combination. In our actual device we only have 16 bits worth of color depth
since we use image frames as a source, but for this prototype we will be able to
use 24 bits of color depth since the 12 bit grayscale values will not be trans
from RGB data. This amount of color depth is known as true color and

360 watts so we can get an idea of the loss in the system. The circuit for this
prototype is shown in Figure 7.1.

Figure 7.1 Power Transmission Prototype

Scaled LED Array Prototype:

our LED array design works, we will build a prototype of the
LED array. We will build a LED array for 16 RGB LEDs controlled by LED

Scaled LED Array Hardware Prototype Design:

The design for the LED array prototype will be similar to the full scale LED array.
The only difference will be that number of cascaded LED controllers. For the
prototype version of the LED array will not have any controllers cascaded.
Although this will not test the speed at which we will be able to address the

controllers, f(sclk), this will provided a test of the grayscale clock,

Scaled LED Array Software Prototype Design:

We would like to use the Atlys board to send data to the prototype LED array and
have the LED array display various different test data. One of the tests would
have the LED array display its full range of color values in an endless loop. The
FPGA will need to write to each of the 3 LED controllers in the prototype
controlling red, blue, and green, the grayscale data that will correspond to every
RGB combination. In our actual device we only have 16 bits worth of color depth
since we use image frames as a source, but for this prototype we will be able to
use 24 bits of color depth since the 12 bit grayscale values will not be trans
from RGB data. This amount of color depth is known as true color and 16777216

360 watts so we can get an idea of the loss in the system. The circuit for this

our LED array design works, we will build a prototype of the
LED array. We will build a LED array for 16 RGB LEDs controlled by LED

scale LED array.
The only difference will be that number of cascaded LED controllers. For the
prototype version of the LED array will not have any controllers cascaded.
Although this will not test the speed at which we will be able to address the

controllers, f(sclk), this will provided a test of the grayscale clock,

We would like to use the Atlys board to send data to the prototype LED array and
test data. One of the tests would

have the LED array display its full range of color values in an endless loop. The
FPGA will need to write to each of the 3 LED controllers in the prototype

respond to every
RGB combination. In our actual device we only have 16 bits worth of color depth
since we use image frames as a source, but for this prototype we will be able to
use 24 bits of color depth since the 12 bit grayscale values will not be translated

16777216

107

unique colors will be displayed by the LEDs. We can vary the color depth and
attempt to determine when the color transition loses its smoothness.

In this example Pseudocode, the colordepth can be specified and using 3 for
loops every color combination can be iterated through. Determining the grayscale
values would depend on the colordepth and a function that determines those
values is called on lines 6, 7 and 8. A function used for writing to the LED
controllers would be called with the address for the pin to write to as an argument
as well as the grayscale value to write. Write() would write that grayscale value
16 times since each of the controllers is connected to 16 LEDs. Finally on line 12
the display() function is called, which will wait for a clock pulse before proceeding
to flash.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

while(1) {
int r = 0, g = 0, b = 0;
 for(r=0; g<colordepth/3; r++) {
 for(g=0; g<colordepth/3; g++){
 for(b=0; b<colordepth/3; b++) {
 redgrayval = tograyscale(r, colordepth)
 grngrayval = tograyscale(g, colordepth)
 blugrayval = tograyscale(b, colordepth)
 write(red_controller, redgrayval)
 write(grn_controller, grngrayval)
 write(blu_controller, blugrayval)
 display()
 }
 }
 }
}

Another test would involve varying the flashing speed of the LED array, and use
that information to determine if the LED controllers can indeed be updated at the
rate we need them to. In order to display the 640x480 image, each controller will
need to be able to update 320 times at 44 frames per second, or 14080 times per
second. We may be able to use this information to determine if we can display
multiple copies of the same frame, which would require that the controllers flash
the LEDs at a faster rate. There is also a limit as to how fast the controllers
themselves can be written to and we can attempt to transfer data at this limit and
even exceed.

8 Testing:

Since like any project it is unlikely to work exactly like we designed it the first time
we turn the device on it is best to create some testing procedures to fully
experiment with certain software and hardware features of the device that could

108

prove to not model exactly like the theoretical design. These testing procedures
will also help us calibrate certain components of the device so that they work
effectively.

In the following sections of this chapter there are a series of tests that will be
implemented with the prototypes described in the prototype chapter before. Each
test will identify the objective of the test, the prototype being used for the test and
a short paragraph of desired results and the modifications to the design that may
occur based on the results of the test.

8.1 Video Signal Processing Testing:

The primary objective of the video processing on the stationary microcontroller is
to turn frames of RGB data into frames of Grayscale data as described in section
6.1.1.2 Output Format Specification. Specifically, RGB frames consisting of
640x480 pixels, each 2 bytes, are to be processed and turned into grayscale
data which is then deposited into 12 bins. For each of the four sections AA, AB,
BA, and BB, there are 3 bins for the RGB grayscale data. In order to test the
various functions used in the video processing, we will create a test frame with
known RGB values and process it. The memory contents of the processed image
can then compared to a table of expected contents. Figure 8.1.a shows the
layout of the test frame. The test frame contains 10 sections of 2 byte RGB
colors and has been designed to test the various functions used in video
processing.

109

Video Processing Test Frame

Pixel 0 - 127
128 -
255

256 -
383

384 -
511 512 - 639

0
Section
1:
0xFFFF

Section
3:
0x0000

Section
5:
0xF800

Section
7:
0x07E0

Section 9:
0x8010

1
.
.
239
240

Section
2:
0x0000

Section
4:
0xFFFF

Section
6:
0x001F

Section
8:
0xFD00

Section
10:
0xFFE0

.

.
478
479

Figure 8.1.a Video Processing Test Frame Layout

Sections 1-4 of the test frame will test frame which are solid white and solid black
will test the TranslateAndOutput() function which is given the pointers of the
output bins it should write to and handles converting pixel by pixel. This function
is called 4 times in each loop of the main TranslateFrame() functions, each time
converting either an AA, AB, BA, or BB section of pixels. The expected memory
output from converting these 4 sections can be seen in Figure 8.2.b, from
memory offset addresses 0 to 46079.

Sections 5 6 and 7 of the test frame are the colors solid red, blue, and green, and
verify that each of the functions GetRedCombinedGS(), GetBluCombinedGS(),
and GetGrnCombinedGS() each successfully isolate their respective colors from
the RGB pixel data. The memory contents for converting section 5 can be seen
in the expected memory contents table in the address range 46080-69119 in the
AA and BA bins. Similarly, the results for section 6 can be seen in the memory
range 46080 – 69119 in the bins for AB and BB. Section 7 results are located at
memory addresses 69120-92159 in bins AA and AB.

The final 3 sections, 8 9 and 10 are composite colors each containing a mix of
RGB values. These sections will further ensure that RGB colors are being
isolated correctly, and also test the CombineGrayscale() function which
combines two 12 bit grayscale values into 3 bytes. For example, in section 8 the
grayscale memory contents for AB_GRN in the 69120 – 92159 memory range is
0xA3FA3F, which are the bytes A3 FA and 3F. This sequence of 3 bytes is the
result of combining 0x0A3F with 0x0A3F.

110

Expected Memory Contents
 Memory Offset

 0 - 23039
23040 -
46079

46080 -
69119

69120 -
92159

92160 -
115199

Bin
Start
Add.

AA_RE
D 0

0xFFFFF
F 0x000000

0xFFFFF
F 0x000000 0x87F87F

AA_GR
N 115200

0xFFFFF
F 0x000000 0x000000

0xFFFFF
F 0x000000

AA_BLU 230400
0xFFFFF
F 0x000000 0x000000 0x000000 0x87F87F

BA_RE
D 691200

0xFFFFF
F 0x000000

0xFFFFF
F 0x000000 0x87F87F

BA_GR
N 806400

0xFFFFF
F 0x000000 0x000000

0xFFFFF
F 0x000000

BA_BLU 921600
0xFFFFF
F 0x000000 0x000000 0x000000 0x87F87F

Bin
Start
Add.

AB_RE
D 345600 0x000000

0xFFFFF
F 0x000000

0xFFFFF
F 0xFFFFFF

AB_GR
N 460800 0x000000

0xFFFFF
F 0x000000

0xA3FA3
F 0xFFFFFF

AB_BLU 576000 0x000000
0xFFFFF
F

0xFFFFF
F 0x000000 0x000000

BB_RE
D

103680
0 0x000000

0xFFFFF
F 0x000000

0xFFFFF
F 0xFFFFFF

BB_GR
N

115200
0 0x000000

0xFFFFF
F 0x000000

0xA3FA3
F 0xFFFFFF

BB_BLU
126720
0 0x000000

0xFFFFF
F

0xFFFFF
F 0x000000 0x000000

Figure 8.1.b Expected Memory Contents of Processed Test Frame

If the memory contents of the processed test frame exactly match the data in the
Expected Memory Contents table then we can be pretty confident that the
TranslateFrame() function is working as desired. If we find that the contents
differ, we will be able to approximate the cause of the problem based on where in
memory the differences are occurring.

8.2 LED Array Testing:

We will be testing the LED array using the same frame layout as described in the
test section for Video Signal Processing. After the we complete the testing of the

111

video signal processing, we can use the known frame information to verify that
the correct LEDs are addressed and the correct sections display the correct
color. As well, this test will allow us to determine if the image is shifting across
the display. If we find the image is shifting, we will need to make adjustments to
the motor to increase or decrease the rotation speed of the POV display.

8.3 GUI Testing:

In order to test the GUI we will be using the requirements specified in the
research, and refined in the design. These requirements will serve as the basis
for our testing procedures. There are three basic main requirements that we will
address: text message formatting, image message formatting, and
communications. The formatting of the messages will focus on verifying that the
user input is properly transformed into the proper pixel image data.
Communications will be tested by connecting the computer to the FPGA using a
USB interface and verifying that the data is sent and acknowledged correctly. We
will look at each of these three features individually for testing. If each one is
tested individually and verified to be working correctly, then the application as a
whole will be considered complete.

8.3.1 Test Messaging Testing:

The text message format testing will include all of the features of the text
message area of the GUI. This includes the number of text lines to be sent, the
alignment of the individual text lines, and the color of the text to be displayed. All
of the mentioned features must then be combined and converted to the proper
format to be sent to the FPGA. We will begin with the easiest part of testing and
work our way to the more complex tests. First we will test the number of text lines
sent. Then we will test the color of text and the alignment. Lastly we will test the
animation option. All tests can be performed by either reading the data in
memory using a debugger, or having the program output to a text file.

The first test will verify that the correct number of text lines is sent to the FPGA.
We will start by choosing one line of text. We can then verify that the text is
converted to the proper format. We should only see one line of text sent and no
others. Once we verify that one line works, we will then try two and three lines.
Each time we will verify that the data shows the correct number of lines, and that
they are displayed in the correct order. We will also want to make sure that all of
the characters and symbols that we want to support appear correctly. After the
line numbers have been tested we will move on to color and alignment.

When it comes to color and alignment there isn’t one that is harder to test than
the other so the order does not matter. We may also be able to test them at the
same time. The data should show how the text is aligned. The easiest way to test
the alignment is by typing in a single letter. This will make it very obvious where
the text is located and how it is aligned. The color will also be easy to test
because again we can use a single letter. We can then look at the information to

112

verify that different colors produce the desired results. Ideally we would test all
256 color combinations. We will then combine this with the previous test and
verify that different number of text lines can also be shown with the correct
alignments and colors. After all the tests up to this point have been verified we
can then move on to animation testing.

Animation is the last thing we will test for the text messages. The animation
requires a combination of the software on the FPGA and the GUI. The GUI side
of testing will actually be very easy. We will simply send an animation signal
telling the FPGA which animation to use. The FPGA should have pre coded
animations that it will use to display the text. We will verify that the animations
work as intended and we will combine this final test with all the previous tests as
well. The animations should work with all of the combinations of text line
numbers, alignments, and colors. Once all previous tests have been verified then
the text messaging will be considered fully implemented.

8.3.2 Image Messaging Testing:

Next we will test sending an image message to the FPGA. Testing the image
message formatting is going to be more complicated than testing the text
messages will be. The complexity is due to the fact that we have to analyze
specific pixels to make sure that the data matches. This can be very tedious if we
test with large images. I think most of the testing will be done with a simple low
resolution image. When testing the image messaging we must consider the crop
function, the position choices, and the clear image button. As in the text
messaging testing we will be testing the easiest functions first before we move on
to the more complex scenarios.

The clear image button will obviously be the easiest test to perform. We will
simply press the button and verify that the information sent is the clear signal. On
the FPGA side we will have to test and verify that this clear signal is received and
properly clears the screen. Our next image test will be the position chooser. This
will most likely be easier to test than the crop function. We will use a small simple
image, possibly even just one color. We will see if the pixel data matches the
location that we choose from the position radio buttons. After we verify that the
basic position function is working we can then verify it with more complex images
as well. This will also be a good time for us to test multiple image formats. Java’s
built in functions are supposed to handle all common image formats, and we will
put that to the test. If we find certain formats cause trouble we may change the
design to not allow the faulty formats.

Lastly we will test the crop function. We expect this to be the hardest part of the
image messaging testing. It will be fairly easy to determine what the correct
output should be when the crop option is checked. When the crop option is not
checked it will be much more challenging to properly determine what the output
should be. When the crop option is unchecked the image will be resized and the
easiest way to see if this is done properly is going to be when the entire system

113

is working and we will be able to see the image displayed. Before then we will
have to estimate the correctness. When the crop option is checked we will be
able to compare sections of the image with the data being sent. This should be
similar to verifying our position tests, except now the image will take up the entire
display.

8.4 Tachometer Testing:

This section will cover the hardware and software test required to verify the
correct and desired operation of the motor control circuit.

8.4.1 Tachometer Hardware Test:

There are a few things that we must determine about the tachometer's hardware
that we must determine through testing to insure that it will best track the
revolutions per second of the LED apparatus so that we can effectively control
the motor. The objective of the first test is to determine if the tachometer will
correctly show a voltage pulse when it registers a movement change. The
second test's objective is to determine if varying the CTRL signal to the sending
circuit will have an impact on the efficiency of the sending and receiving process
of the infrared LEDs. Finally the third test's objective is to determine whether the
output of the receiver circuit has a noticeable enough pulse or change in voltage.

For all three of these tests we will need to use both circuits of the infrared sensor
outlined in the design section for the tachometer, Section 5.3.1. The circuit will be
left disconnected from the microprocessor for the purposes of this test.

8.4.1.1 Sending/Receiving Signal Hardware Test:

For the first test a voltmeter should be connected to the out location on the circuit
design figure 4.3.1.1b also known as the receiver circuit. We will then connect a
voltage source to the CTRL pin. This source will be used to turn on the sender
circuit. The tachometer will be placed such that it will be directed toward a
surface with some reflectivity, preferably the same type of surface that will be
used on the LED apparatus in the final design. Then the CTRL pin will be
increased slowly until a hit is registered on the receiving circuit. This will be
noticeable by tracking whether the LED turns on or off and whether a voltage is
registered on the voltmeter. Once a hit is received we will then remove the
reflective surface and watch to see if the LED turns off or stays on and whether
the voltage drops or raises on the voltmeter. If it stays on, we will slowly
decrease the CTRL until it turns off.

The desired result of this test is to have the LED turn on when the CTRL is
turned on and reaches a voltage above 2.5 volts, a value that would be higher
than the minus terminal of the op-amp. Then to have the LED turn off
immediately upon removal of the reflective surface. Failure on both of these

114

accounts could mean that the infrared circuit is too sensitive to ambient light, or
the op-amp connections need to be reworked.

8.4.1.2 CTRL Signal Calibration:

For this test the set-up will be the same as the test in section 8.6.1. After the
circuit is set up and the tachometer is directed away from the reflective surface,
the voltage supply connected to the control pin will be slowly increased. Starting
at 0V the voltage from the power supply should be increased by 0.5 volts up to
5V. During each increase in voltage the reflective surface should be passed in
front of the infrared sensor slowly. The voltage change on the voltmeter should
be recorded also during each increment.

The desired result of this test is to determine that the strength of the CTRL signal
is irrelevant when it comes to the effects of the strength of the receiver “hit”
signal. If this is not the case then we would like to determine with this test what
CTRL signal creates the strongest and most noticeable receiver “hit” signal.

8.4.1.3 Tachometer Hardware Test Conclusion:

Both test results can be used to determine the third final objective and that is
whether the signal is strong enough to determine when a hit is received or when
ambient light is scrambling the signal some. The results of these tests as stated
in each test will allow us to calibrate the CTRL signal and determine if an analog
to digital conversion will be needed to determine when a true voltage pulse is
received instead of ambient light interference.

8.4.2 Tachometer Software Test:

While a lot of debugging will obviously go into making of the software for the
processor the tachometer debugging may take a little work in order to determine
that it is effectively maintaining the revolutions per second of the motor. There
will be two stages to this test. The first part is to determine whether the processor
is effectively increasing or decreasing the voltage correctly with respect to an
increase or decrease in the revolutions per second of the motor. The second part
is to see if the motor's speed is maintained when connected to the processor. In
both cases the full control circuit as outlined in the motor control section 4.3 will
be needed.

In the first step of the test the microprocessor should remain disconnected from
the pulse width modulation control circuit. The tachometer should be connected
to the processor and set to record the revolutions per second of the motor shaft.
A voltmeter should be connected to the out pin that will be connected to the
voltage controlled resistors on the control circuit. A power supply should be
connected to the voltage controlled resistors R8 and R9. In this portion of the test

115

the motor's speed should be varied from high to low revolutions per second
values and the voltage on the out pin of the microprocessor recorded.

The second step of this test is then to connect the microprocessor to the control
circuit and to watch the revolutions per second of the motor and see if the motor
settles at a speed and maintains that speed until stopped.

The desire of this test is to show that not only does the program react correctly to
an increase or decrease in revolutions per second in the motor but will also
maintain the speed of the motor.

If the program cannot maintain the speed then a new algorithm may be needed
to effectively control the motor better, or an error in the programs logic may be
causing some form of interference with the control circuit.

8.5 Pulse Width Modulation Circuit Test:

The pulse width modulation circuit is integral to sustain a motor speed in order to
prevent image distortion. This means that it is very important that we test it
thoroughly. There are also some calibrations that will need to be done with this
circuit to determine what best operates with the motor. The first test's objective is
to determine the best resistance to have in series with the JFET for the voltage
controlled resistors. The second test will also be used to determine the actual
relationship between the perceived resistance value and both the frequency and
duty cycle of the circuit. The third test's objective is to determine the best
frequency that this circuit will run on in order to best control the motor. The final
test will be to determine if the pulse width modulation circuit can effectively
control the motor's revolutions per second from 0 to 100% of its rated value. The
circuit that will be used for this test is the circuit outlined in Figure 5.3.2.a. For the
purposes of these tests the circuit will not be integrated yet with the
microprocessor.

8.5.1 Voltage Controlled Resistance Calibration:

In this test we will need a potentiometer to take place of the R resistor in the
design of the voltage controlled resistor figure 4.3.2b. A voltage source should be
connected to the Vin while a voltmeter should be connected to the Vout. Starting
with 1 kilo-ohm the voltage in the Vin should be increased incrementally to 12
volts. The Vout voltage should be recorded during each incremental step. Then
using the voltage divider principles the effective resistance should be determined.
This should be repeated for multiple resistances until a resistance on the
potentiometer creates the perceived range of resistances along the JFET.

The desired outcome of this test is to either determine that this R resistance is
irrelevant with respects to the perceived resistance ranges of the voltage
controlled resistance or what is the best resistance to gain the largest range of
resistance.

116

8.5.2 VCR Frequency/Duty Cycle Relationship:

For this test the pulse width modulation circuit from Figure 4.3.2a will be
connected to an oscilloscope at the M2 MOSFET. A power supply will be
connected to both the voltage controlled resistances. The first portion of this test
is to incrementally increase the voltage of the R8 voltage controlled resistor and
track the change in the duty cycle. The second stage of the test will be to then
increase the voltage of the R9 voltage controlled resistor incrementally, during
each increment varying the voltage of R9 up and down. The frequency should be
tracked during each change in R8 and R9's voltage.

The desired result of this test is to determine how much voltage in R8 changes
the duty cycle of the waveform, and how much voltage in R9 changes the
frequency of the waveform. This can be used to accurately assume the
relationship of the voltage controlled resistance and the change in these two
variables of the circuit.

8.5.3 Frequency Calibrations:

This test will be completed with the Figure 4.3.2a with an oscilloscope connected
to the M2 MOSFET. The motor will be connected to the circuit for this test. The
voltage controlled resistors will be connected to a power supply instead of the
microprocessor. The first step of this test is to set the voltage of the R8 voltage
controlled resistor to a value that noticeably rotates the motor. Then to
incrementally increase the R9 voltage controlled resistor's voltage and watch for
any disturbance in the motor speed. The desire of this test is to determine
whether the frequency even has a factor in the revolutions per second of our
motor, and if they do what is the best frequency to control our motor with.

8.5.4 Motor Control Test:

This test will be conducted with the Figure 4.3.2a pulse width modulation circuit.
The motor will be connected to the circuit for this test. The voltage controlled
resistors will be connected to a power supply instead of the microprocessor. In
this test the frequency of the pulse width modulation circuit will be maintained at
a steady value as the R8 voltage controlled resistance is varied. Starting with a
very small perceived resistance and increasing to the voltage controlled
resistance's maximum value the revolutions per second of the motor will be
observed.

The desire of this test is to have the motor start from a stationary position and
raise all the way up to its maximum revolutions per second and then back down
again all through just the variation of the R8 voltage controlled resistance.

8.5.5 PWM Test Conclusions:

117

The hopeful results of these test is to have the best frequency for the pulse width
modulation circuit to run on and to have a mathematical model of the voltage
controlled resistors and both the duty cycle and the revolutions per second of the
motor. If one or all of these are not accomplished then an alternate motor control
method may be needed. Such as a variable resistance method or a pulse width
modulation circuit using a 555 timer circuit design that we have prepared as an
alternate possibility.

8.6 Slip Ring Test:

It can't be stated enough the importance of getting the slip ring to work for this
specific project. Without proper power management the rotating side with be
unable to do anything we desire it to. This is why we have come up with a few
tests to insure that the slip ring design we came up with will work under our
desired conditions. The first test is nothing more than a durability test of the slip
ring to determine if it can handle both the electrical and physical demands of the
device. The second test is the power transfer test, it is to determine that under
the most ideal of conditions that power is at least properly transferred through the
slip ring. The final test is to determine if the slip ring can transfer power during
rotation and how much power loss is suffered due to thermal dissipation in the
junction.

8.6.1 Slip Ring Durability Test:

This test will require a completed motor and motor control circuit so that the
motor's speed can be varied. This means that most likely the Figure 4.3.2a pulse
width modulation circuit and the motor will be used for this test in addition to the
slip ring as shown in Figure 5.6.2.a. In essence, the slip ring, attached to the
motor and LED apparatus with the LEDs not installed yet will be at first begin
stationary. Then the motor's revolutions per second will slowly be increased and
then maintained at its maximum rotations. After a number of minutes have
passed the motor's revolutions per second will be slowly decreased and then the
motor will be shut down. After the device has been powered down the slip ring
will be checked for damage.

The desire of this test is to have the slip ring capable of handling the maximum
possible revolutions per second that the motor can obtain and any variations in
this rotational speed. While it would be ideal to not have to worry about any
structural damage to the slip ring we want to at least see minimal damage.

8.6.2 Ideal Power Transfer Test:

This test will require only the power supply, the slip ring shown in Figure 4.6.2a,
and a voltmeter. The slip ring will be connected to the power supply on the
outside, and the voltmeter will be connected to the wire of the slip ring that is
expected to be threaded through the shaft of the LED apparatus. The power

118

supplies voltage will be varied from a low to high AC value while the amount on
the voltmeter side will be recorded.

The desire of this test is to see that all or a majority of the power applied to the
non-rotating side is seen on the side that will be rotating. Since this would be
optimal conditions, neither rotating, for obvious reasons if the power is not seen
on the other side of the slip ring or there is a large amount of loss then this
design for the slip ring is no good.

8.6.3 Rotational Power Transfer and Thermal Dissipation Test:

For this test we will need the motor control circuit, the motor, the slip ring design
and the prototype circuit in Figure 6.1 of the prototype section. In this test the slip
ring will be connected to the power supply. Since we don't have a way to directly
measure the rotational side during its rotation we will use this prototype circuit to
get an idea of how much power is being supplied to the rotational side. To begin
we will start with a power input of around 300 watts and begin rotating the device
with the prototype circuit connected to the rotational portion of the device.. We
will then gradual increase the AC power supply until we get the light to just turn
on and record this value. Since the bulbs require 360 watts to power whatever
the difference in what is being inputted into the slip ring and the expected 360
watts will be a portion of our dissipation loss in the circuit during rotational
conditions.

The desire of this test is to have the slip ring handle the physical and electrical
demands of the device with minimal power loss.

8.6.4 Slip Ring Test Conclusions:

If the wire is unable to handle the physical demands of the device then we may
have to add more wire taps into the ring or choose a more durable material for
the wire. If the slip ring itself can't handle the demands of the device, which we
believe is less likely, then we will have to come up with a more durable design or
we may only need to choose a better material. In the case of high thermal loss
we may need to then adjust our input power to the slip ring and alter our rectifier
circuit on the opposite side so that it can handle these changes.

9 Conclusion:

The process of designing a persistence of vision device turned out to be a far
more complicated endeavor then our team expect. While we had already
expected some complications in the power transmission process of this device a
whole slew of issues revealed themselves in other areas of the device that we
had initially thought to be simplistic. The process of choosing a motor and
controlling it seemed at first to be a simple idea but when we began to research

119

further into the process it turned out to be far more complex than expected,
specifically for the high rotational and torque requirements of our system. The
design presented hopefully should accomplish our goals for this. However, motor
control was not the only unexpected challenge. The design of the LED array
turned into a rigorous design challenge when it turned out that trying to address
each and every LED would send our data transfer rates into the nine digit figures.
Which the FPGA board was capable of handling, the problem is the LED
controllers available to us were not. This meant having to come up with an
ingenious method for refreshing our display that our controllers could handle.
Which lead into an increase in our revolutions per second for the whole device,
which in turn raised the requirements of our motor again. Power transmission as
expected gave us many issue, since the process of transferring power over a
rotating wire is difficult. Since we didn't want to just transfer power but also
wanted to transfer data from our computer interface, we also needed a process
that would not lose information or very little at least. In the end, this meant
sending two different signals, our power signal through a slip ring and our data
through a coaxial rotational joint. However, in order to do this we wanted a
medium that was common for our FPGA so it would be easy to transfer and
receive data. This turned out to be Ethernet since both FPGAs would have an
Ethernet input. However, needed the Ethernet connection meant we needed to
convert to coaxial with a converter in order to then use the rotational joint.

These design challenges discussed above or overcome but at a substantial
increase in our first projected costs. This means that the need for sponsorship
has tremendously increased. The entire design is under the expectation of an
almost limitless budget, however the loss of sponsorship would require some
rather extreme reductions in scale of the design. Specifically our team has
discuss that the HDMI instantaneous streaming of the display device would most
likely have to be cut. This is primarily for two reasons. The first reason is that the
loss of a sponsor would most likely require us to drop the LED count and thus
dropping the resolution to a level that would not be cohesive with the idea of
displaying a computer screen for video playback. The second reason for this
design cut is the ability to purchase less powerful and thus less expensive FPGA
boards for image processing. Without the demands of the high data transfer
associated with the instantaneous streaming of the display device our display
would most likely project much more simplistic animations and text, thus needed
much less data transfer and processing. Hopefully the cutting of both the HDMI
and the more expansive FPGA options we would also be able to cut our motor
demands which would allow us to purchase a far less expensive motor then the
one outlined in the design. This would be because we could probably redesign
our controller and LED array for a less demanding refresh rate. However, with
these cuts it would not spell the end for scalability for the device. Since even with
a reduction in hardware features there would still be a vast amount of room for
software features to more than make up for the loss of the instantaneous
streaming of the display device.

120

For the future of this device our entire group is looking forward to the construction
of it in Senior Design II. Within the first two weeks of class we are hoping to learn
whether sponsorship will be a definite possibility or whether rescaling of the
project should begin. While we are still planning to order many of the parts
associated with the portions of the project that we do not expect to change with a
scaling change of the project, such as some of the LEDs for the prototypes, the
pulse width modulation circuit, and the tachometer components. We do need to
know whether we are changing gears of this project so ideally we do not
purchase any components that will not be used since this has turned into an
expensive endeavor. This will all be based on whether we obtain sponsorship
from either the navy as originally desired or whether the University of Central
Florida takes on our sponsorship needs as we had discussed with our
supervising professor for the Senior Design I. Hopefully we will get sponsored
and we can begin the process of creating this device which our entire group is
very excited about seeing realized.

9.1 Bill of Materials:

As seen in Table 9.1, is a list of major items required to build the POV display.

Bill of Materials
Item
Number Part Number Mfr. Description Qty

Microprocessor
101 Spartan-6 Atlys FPGA Development Board 2

102 VMODBB Atlys VHDC Breadboard I/O
Extender 2

Motor and Chassis

201 MUV-6301S Prestolite Motor, DC, Wound Field, 12
Volts, 1.6 HP, 2800 RPMs. 1

202 8090T13 McMaster-
Carr

Bearing, Extended-Ring Type
ER, rated for 3,145 dynamic
load pounds and 5,000 RPMs

1

203 Custom
Metal Work

KEMCO
Industries

Custom Aluminum Metal to
include top plate, base plate
and support rods.

1

LED Array
301 OVS-3309 Multicomp LED, Type OVS, RGB, SMD 480
302 TLC5940 TI LED Controller, 16-Channel 180
Ethernet Communications

401 EOC-AN/IN EnConn Ethernet of Coax Converter,
100 Mbps 1

402 205-HS Mercotac Rotary Joint, 2 Conductor 1

Table 9.1 Bill of Materials

121

10 Appendix:

Figure 10.a Infrared Sensor Reference Circuit

Figure 10.b Pulse Width Modulation Reference Circuit

122

11 Bibliography:

"802.11 Wireless Standards." About.com. Web.

<http://compnetworking.about.com/od/wireless80211/80211_Wireless_S

tandards.htm>.

"Arduino - Ethernet." Arduino.cc. Web.

<http://arduino.cc/en/Reference/Ethernet>.

"BIT DEPTH TUTORIAL." Cambridgeincolour.com. Web.

<http://www.cambridgeincolour.com/tutorials/bit-depth.htm>.

"Bluetooth." Wikipedia. Wikimedia Foundation, 30 July 2012. Web.

<http://en.wikipedia.org/wiki/Bluetooth>.

"BufferedImage (Java 2 Platform SE V1.4.2)." Docs.oracle.com. Web.

<http://docs.oracle.com/javase/1.4.2/docs/api/java/awt/image/BufferedI

mage.html>.

"Color Depth." Wikipedia. Wikimedia Foundation, 08 Jan. 2012. Web.

<http://en.wikipedia.org/wiki/Color_depth>.

"A Comparative Study of Wireless Protocols: Bluetooth, UWB, ZigBee, and Wi-

Fi." Http://eee.guc.edu.eg. Web.

<http://eee.guc.edu.eg/Announcements/Comparaitive_Wireless_Standa

rds.pdf>.

"Digilent Inc. - Atlys Spartan 6." Digilent Inc. Web.

<http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,836>.

"Digilent Inc. - VMOD-BB." Digilent Inc. Web.

<http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,648,847>.

http://compnetworking.about.com/od/wireless80211/80211_Wireless_Standards.htm
http://compnetworking.about.com/od/wireless80211/80211_Wireless_Standards.htm
http://arduino.cc/en/Reference/Ethernet
http://www.cambridgeincolour.com/tutorials/bit-depth.htm
http://en.wikipedia.org/wiki/Bluetooth
http://docs.oracle.com/javase/1.4.2/docs/api/java/awt/image/BufferedImage.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/awt/image/BufferedImage.html
http://en.wikipedia.org/wiki/Color_depth
http://eee.guc.edu.eg/
http://eee.guc.edu.eg/Announcements/Comparaitive_Wireless_Standards.pdf
http://eee.guc.edu.eg/Announcements/Comparaitive_Wireless_Standards.pdf
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2%2C400%2C836
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2%2C648%2C847

123

"Effects of Mobile Rotational Movements in Wireless Propagation Channels."

Http://ieeexplore.ieee.org. Oct. 2008. Web.

<http://ieeexplore.ieee.org/xpl/login.jsp?reload=true&tp=&arnumber=463

5902&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp

%3Fisnumber%3D4635901%26arnumber%3D4635902>.

"HANDBOOK OF WIRELESS NETWORKS AND MOBILE COMPUTING."

Http://www.nettech.in. Web.

<http://www.easybib.com/cite/edit/134383789490cd7ed2-3cfb-42ec-

8f8c-d156a560a67a>.

"How Bluetooth Works." HowStuffWorks. Web.

<http://www.howstuffworks.com/bluetooth.htm>.

"How WiFi Works." HowStuffWorks. Web.

<http://computer.howstuffworks.com/wireless-network.htm>.

"IEEE 802.11." Wikipedia. Wikimedia Foundation, 31 July 2012. Web.

<http://en.wikipedia.org/wiki/IEEE_802.11>.

"ImageIO (Java 2 Platform SE V1.4.2)." Docs.oracle.com. Web.

<http://docs.oracle.com/javase/1.4.2/docs/api/javax/imageio/ImageIO.ht

ml>.

"ImageReader (Java 2 Platform SE V1.4.2)." Docs.oracle.com. Web.

<http://docs.oracle.com/javase/1.4.2/docs/api/javax/imageio/ImageRead

er.html>.

Jeffay, Kevin. "Coding and Compression Basics." Http://www.cs.odu.edu. Web.

<http://www.cs.odu.edu/~cs778/jeffay/Lecture3.pdf>.

http://ieeexplore.ieee.org/
http://ieeexplore.ieee.org/xpl/login.jsp?reload=true&tp=&arnumber=4635902&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Fisnumber%3D4635901%26arnumber%3D4635902
http://ieeexplore.ieee.org/xpl/login.jsp?reload=true&tp=&arnumber=4635902&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Fisnumber%3D4635901%26arnumber%3D4635902
http://ieeexplore.ieee.org/xpl/login.jsp?reload=true&tp=&arnumber=4635902&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Fisnumber%3D4635901%26arnumber%3D4635902
http://www.nettech.in/
http://www.easybib.com/cite/edit/134383789490cd7ed2-3cfb-42ec-8f8c-d156a560a67a
http://www.easybib.com/cite/edit/134383789490cd7ed2-3cfb-42ec-8f8c-d156a560a67a
http://www.howstuffworks.com/bluetooth.htm
http://computer.howstuffworks.com/wireless-network.htm
http://en.wikipedia.org/wiki/IEEE_802.11
http://docs.oracle.com/javase/1.4.2/docs/api/javax/imageio/ImageIO.html
http://docs.oracle.com/javase/1.4.2/docs/api/javax/imageio/ImageIO.html
http://docs.oracle.com/javase/1.4.2/docs/api/javax/imageio/ImageReader.html
http://docs.oracle.com/javase/1.4.2/docs/api/javax/imageio/ImageReader.html
http://www.cs.odu.edu/
http://www.cs.odu.edu/~cs778/jeffay/Lecture3.pdf

124

"The New Wi-Fi Protocol." Suite101.com. Web.

<http://suite101.com/article/wifi-protocols-a42024>.

"NXVGA." Digilent Inc. 9 Nov. 2006. Web.

<http://www.digilentinc.com/Data/Products/NXVGA/NXVGA_rm.pdf>.

"RGB Video Out." Eecg.toronto.edu. Web.

<http://www.eecg.toronto.edu/~tm4/rgbout.html>.

"A Robotic Wireless and Sensor Network Testbed." Cs.utah.edu. Web.

<http://www.cs.utah.edu/flux/papers/robots-infocom06.pdf>.

"Serial Port on Atlys." Danielbit.com. Web.

<http://www.danielbit.com/blog/microblaze/serial-port-on-atlys>.

"Serial Programming/Serial Java." En.wikibooks.org. Web.

<https://en.wikibooks.org/wiki/Serial_Programming/Serial_Java>.

"VGA Video." MIT.edu. Web.

<http://web.mit.edu/6.111/www/s2004/NEWKIT/vga.shtml>.

"VGA Video Signal Format and Timing Specifications." Javier Valcarce's

Personal Website. Web.

<http://www.javiervalcarce.eu/wiki/VGA_Video_Signal_Format_and_Tim

ing_Specifications>.

"VGA." Wikipedia. Wikimedia Foundation, 24 July 2012. Web.

<http://en.wikipedia.org/wiki/VGA>.

Westrelin, Roland. "TCP and Real-time." Blogs.oracle.com. Web.

<https://blogs.oracle.com/roland/entry/tcp_and_real_time>.

http://suite101.com/article/wifi-protocols-a42024
http://www.digilentinc.com/Data/Products/NXVGA/NXVGA_rm.pdf
http://www.eecg.toronto.edu/~tm4/rgbout.html
http://www.cs.utah.edu/flux/papers/robots-infocom06.pdf
http://www.danielbit.com/blog/microblaze/serial-port-on-atlys
https://en.wikibooks.org/wiki/Serial_Programming/Serial_Java
http://web.mit.edu/6.111/www/s2004/NEWKIT/vga.shtml
http://www.javiervalcarce.eu/wiki/VGA_Video_Signal_Format_and_Timing_Specifications
http://www.javiervalcarce.eu/wiki/VGA_Video_Signal_Format_and_Timing_Specifications
http://en.wikipedia.org/wiki/VGA
https://blogs.oracle.com/roland/entry/tcp_and_real_time

125

"Wi-Fi: The Most Commonly Used Wireless Technology." About.com. Web.

<http://voip.about.com/od/mobilevoip/p/wifi.htm>.

"Wi-Fi." Wikipedia. Wikimedia Foundation, 08 Jan. 2012. Web.

<http://en.wikipedia.org/wiki/Wi-Fi>.

"WIRELESS NETWORK COMMUNICATIONS OVERVIEW FOR SPACE

MISSION OPERATIONS." Public.ccsds.org. Web.

<http://public.ccsds.org/publications/archive/880x0g1.pdf>.

"Wireless Sensors on Rotating Structures: Performance Evaluation and Radio

Link Characterization." Http://dl.acm.org. Web.

<http://dl.acm.org/citation.cfm?id=1287770>.

"AC Motor." Wikipedia. Wikimedia Foundation, 30 July 2012. Web. 01 Aug.

2012. <http://en.wikipedia.org/wiki/AC_motor>.

"MICROMO." Micro Drive Systems- Brushless, Coreless & Linear DC Motors.

N.p., n.d. Web. 01 Aug. 2012. <http://www.micromo.com/>.

"DC Motor." Wikipedia. Wikimedia Foundation, 24 July 2012. Web. 01 Aug.

2012. <http://en.wikipedia.org/wiki/DC_motor>.

"DC Motor Calculations, Part 1." - Developer Zone. N.p., n.d. Web. 01 Aug.

2012. <http://zone.ni.com/devzone/cda/ph/p/id/46>.

"Go Green, Go Electric." DC Motor Speed Controller PWM 0-100% 400Hz-

3khz Freq., N.p., n.d. Web. 01 Aug. 2012.

<http://www.masinaelectrica.com/dc-motor-speed-controller-pwm-0-

100-400hz-3khz-freq/>.

http://voip.about.com/od/mobilevoip/p/wifi.htm
http://en.wikipedia.org/wiki/Wi-Fi
http://public.ccsds.org/publications/archive/880x0g1.pdf
http://dl.acm.org/
http://dl.acm.org/citation.cfm?id=1287770

126

"Passive Infrared Sensor." Wikipedia. Wikimedia Foundation, 30 July 2012.

Web. 01 Aug. 2012.

<http://en.wikipedia.org/wiki/Passive_infrared_sensor>.

"IKA-TACH." IKALOGIC. N.p., n.d. Web. 01 Aug. 2012.

<http://www.ikalogic.com/ika-tach/>.

"99 000 RPM Contact-Less Digital Tachometer." IKALOGIC. N.p., n.d. Web.

01 Aug. 2012. <http://www.ikalogic.com/99-000-rpm-contact-less-

digital-tachometer/>.

"Infra-Red Proximity Sensor Part 1." IKALOGIC. N.p., n.d. Web. 01 Aug.

2012. <http://ikalogic.cluster006.ovh.net/infra-red-proximity-sensor-

part-1/>.

"Carl Pisaturo - Electrical Notes: Slip Rings." Carl Pisaturo - Electrical Notes:

Slip Rings. N.p., n.d. Web. 01 Aug. 2012.

<http://www.carlpisaturo.com/_ElNo_SLIP.html>.

"Lighting and Display Solutions." TLC5940. Texas Instruments.

 N.p., n.d. Web. 01 Aug. 2012. <http://www.ti.com/product/tlc5940>.

"Lighting and Display Solutions." TLC5971. Texas Instruments.

 N.p., n.d. Web. 01 Aug. 2012. <http://www.ti.com/product/tlc5971>.

"Low Cost Slip Ring." Model 205. Mercotac.

 N.p., n.d. Web. 01 Aug. 2012.

<http://www.mercotac.com/html/205.html>.

	1
	1 Executive Summary:
	2 Project Description:
	2.1 Motivation:
	2.1.1 Sponsorship:
	2.1.2 Skill Sets:
	2.1.3 Creativity:

	2.2 Objectives:
	2.2.1 Frame Rate:
	2.2.2 Computer Interfacing:
	2.2.3 High Resolution:
	2.2.4 Portability:
	2.2.5 Programmability:

	2.3 Specifications:

	3 Administrative Content:
	3.1 Budget:
	3.2 Finance:
	3.3 Schedule and Milestones:

	4 Research:
	4.1 Power Supply:
	4.1.1 AC Input:
	4.1.1.1 Circuit Protection:
	4.1.1.1.1 Fuse Blocks and Fuses for Circuit Protection:

	4.1.2 AC to DC Converter:
	4.1.2.1 Diodes:
	4.1.2.2 Resistors:
	4.1.2.3 Potentiometers and Variable Resistors:
	4.1.2.4 Capacitors:

	4.2 Video and Signal Processing:
	4.2.1 VGA
	4.2.1.1 VGA Signal Standards:
	4.2.1.2 .Signal Sampling:
	4.2.1.3 Analog to Digital Conversion:

	4.2.2 HDMI:
	4.2.2.1 HDMI Signal Standards:
	4.2.2.2 Signal Sampling:

	4.2.3 Video Processing (Stationary Controller):
	4.2.3.1 Color Depth Reduction:
	4.2.3.2 Frame Resizing:
	4.2.3.3 Frame Skipping:
	4.2.3.4 Video Compression:

	4.3 LED Array:
	4.3.1 LEDs:
	4.3.2 LED RGB Control:
	4.3.2.1 Pulse Width Modulation:
	4.3.2.1.1 TLC5971 LED Controller:
	4.3.2.1.2 TLC5940 LED Controller:

	4.3.2.2 Latch Control:

	4.4 Communications:
	4.4.1 Requirements
	4.4.2 Wired Communications:
	4.4.2.1 Fiber Optic Communications:
	4.4.2.1.1 Fiber to Ethernet Conversion:
	4.4.2.1.2 Fiber Optic Rotary Joints:

	4.4.2.2 Coaxial Copper Communications:
	4.4.2.2.1 Coaxial to Ethernet Conversion:
	4.4.2.2.2 Coax Rotating Joint:

	4.4.2.3 Ethernet Protocols:
	4.4.2.3.1 Ethernet Software Library:

	4.4.2.4 Microprocessor Ethernet Hardware:

	4.4.3 Wireless Communications:
	4.4.3.1 WiFi:
	4.4.3.1.1 WiFi Protocols:

	4.4.3.2 Bluetooth
	4.4.3.2.1 Bluetooth Protocols:

	4.4.3.3 Effects of Rotational Speed:

	4.5 Motor:
	4.5.1 Torque Requirements:
	4.5.1.1 AC Motor Application for Torque Requirements:
	4.5.1.2 DC Motor Application for Torque Requirements:

	4.5.2 RPM Requirements:
	4.5.2.1 AC Motor Application for RPM Requirements:
	4.5.2.2 DC Motor Application for RPM Requirements:

	4.5.3 Sound Requirements:
	4.5.4 AC and DC Motor Comparison:
	4.5.5 Motor Control:
	4.5.5.1 Variable Resistance Method to Motor Control:
	4.5.5.2 Pulse Width Modulation Method for Motor Control:
	4.5.5.3 Variable Resistance and Pulse Width Modulation Motor Control Method Comparison:
	4.5.5.4 Sensor Reading Applications for Motor Control:
	4.5.5.4.1 Infrared Sensor:
	4.5.5.4.2 Hall Effect Sensor:
	4.5.5.4.3 Motor Sensor Comparison:

	4.6 Chassis:
	4.6.1 Chassis Materials:
	4.6.2 Chassis Rotating Interface:

	4.7 Graphical User Interface:
	4.7.1 Required Functions:
	4.7.2 Programming Language:
	4.7.2.1 Image Format Conversion and Resizing:

	4.7.3 GUI Communications to Microcontroller:
	4.7.3.1 Serial Communication Software Library:

	4.8 Microcontrollers:
	4.8.1 Digilent Atlys (Stationary FPGA):
	4.8.2 TI Launchpad (Rotating Microcontroller):
	4.8.3 Arduino Uno REV 3 (Rotating Microcontroller):
	4.8.4 Digilent Cerebot MX7cK (Rotating Microcontroller):
	4.8.5 Additional Microcontroller Concerns:

	5 Hardware Design:
	5.1 Chassis Hardware Design:
	5.1.1 Chassis Dimensions:
	5.1.1.1 Dimensions of LED Array:
	5.1.1.2 Dimensions of Chassis Base:

	5.1.2 Chassis Assembly:
	5.1.3 Motor Interface:
	5.1.4 Chassis Torque Calculations:

	5.2 LED Array Hardware Design:
	5.2.1 TLC5940 Pin Out and Wiring:
	5.2.2 LED Array for Text Display:

	5.3 Motor Hardware Design:
	5.3.1 Motor Control Sensor Design:
	5.3.1.1 Motor Control Sensor Hardware:

	5.3.2 Motor Speed Controller:

	5.4 Primary Microcontroller Hardware Design (Stationary):
	5.5 Secondary Microcontroller Hardware Design (Rotating):
	5.6 Power Supply Hardware Design:
	5.6.1 Stationary Power Supply:
	5.6.2 Rotating Power Supply:
	5.6.3 Slip Ring Design:

	5.7 Wired Ethernet Communications:

	6 Software Design:
	6.1 Primary Microcontroller Software Design (Stationary):
	6.1.1 Processing HDMI Signals:
	6.1.2 Frame Buffer Format:
	6.1.3 Output Format Specification:
	6.1.4 Frame Processing:
	6.1.5 Stationary FPGA Ethernet Communications:
	6.1.6 Motor Control Sensor Software:

	6.2 Secondary Microcontroller Software Design:
	6.2.1 Modes of Operation:
	6.2.2 Outputting Data to LED Array:
	6.2.3 Outputting Data to Text Array:
	6.2.4 Rotating FPGA Ethernet Communications:

	6.3 Computer GUI Software Design:
	6.3.1 Text Message Input:
	6.3.2 Image Input:
	6.3.3 FPGA GUI Communications:
	6.3.3.1 Serial Communication Thread:
	6.3.3.2 Serial Communication I/O:

	6.3.4 GUI Class Summary:

	7 Prototyping:
	7.1 Slip Ring Power Transmission Prototype:
	7.2 Scaled LED Array Prototype:
	7.2.1 Scaled LED Array Hardware Prototype Design:
	7.2.2 Scaled LED Array Software Prototype Design:

	8 Testing:
	8.1 Video Signal Processing Testing:
	8.2 LED Array Testing:
	8.3 GUI Testing:
	8.3.1 Test Messaging Testing:
	8.3.2 Image Messaging Testing:

	8.4 Tachometer Testing:
	8.4.1 Tachometer Hardware Test:
	8.4.1.1 Sending/Receiving Signal Hardware Test:
	8.4.1.2 CTRL Signal Calibration:
	8.4.1.3 Tachometer Hardware Test Conclusion:

	8.4.2 Tachometer Software Test:

	8.5 Pulse Width Modulation Circuit Test:
	8.5.1 Voltage Controlled Resistance Calibration:
	8.5.2 VCR Frequency/Duty Cycle Relationship:
	8.5.3 Frequency Calibrations:
	8.5.4 Motor Control Test:
	8.5.5 PWM Test Conclusions:

	8.6 Slip Ring Test:
	8.6.1 Slip Ring Durability Test:
	8.6.2 Ideal Power Transfer Test:
	8.6.3 Rotational Power Transfer and Thermal Dissipation Test:
	8.6.4 Slip Ring Test Conclusions:

	9 Conclusion:
	9.1 Bill of Materials:

	10 Appendix:
	11 Bibliography:

