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1 Executive Summary: 
 
Persistence of vision is a phenomena that has motivated engineers for years to 
create a variety of inventions. This has not changed even to this day. There are 
still devices using this visual trick being constructed with a wealth of internet 
examples available to show for it. These spinning devices that utilize LEDs to 
create the illusion of one solid image come in a variety of shapes and sizes from 
spheres and discs, to cylinders. 

2 Project Description: 
 
This chapter encompasses the motivations for why we chose one of these 
devices as our project. It also touches on the objectives or goals for this project, 
and the specifications for the device that we planned on implementing. 

2.1 Motivation: 
 
The construction of these devices encompass a large spectrum of computer and 
electrical engineering knowledge from embedded systems and electronics, to 
digital systems processing and even electric machinery. Which our team felt 
allowed us to effectively test and display our grasp of knowledge. 
 
In the case of our group project, when determining which of our groups ideas we 
wanted to tackle we found that the group had a split in interests. While some of 
the group wanted to create something that displayed a level of creativity other 
members wanted something within the scope of the group's skill sets. Finally, we 
all desired a project that was either inexpensive enough for the group to fund on 
their own or a project that was capable of acquiring sponsorship to fund it for us. 
After some deliberation we all agreed on the persistence of vision project as the 
best fit for all these concepts. The following sections help elaborate on why this 
project was such a good fit for our group. 

2.1.1 Sponsorship: 
 
As mentioned above our team was seeking a project that was inexpensive or 
capable of sponsorship. Since there are a variety of groups or organizations that 
rely on public advisement and these displays require attention getting gimmicks 
out team felt that a persistence of vision device is a perfect fit. These devices 
have adequate levels of scalability, visual attractiveness, and portability that 
make it perfect for such a use. 
 
A persistence of vision device is incredibly visually attractive with its various 
colorful and active displays. They are great at pulling people's attention and 
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keeping it, and in a scenario where a group is seeking to be both noticed and 
remembered it is quite a useful device. In the case that we were adequately 
funded we could make this device extremely attractive through high resolutions 
of LEDs and wide ranges of colors. This would also allow us to create simplistic 
to complex animations for the device that would draw people's attention. 
 
These devices are also extremely scalable. We wanted to make the device easily 
programmed and accessible to both the experienced and inexperienced. This 
would allow someone experienced with programming to make a variety of their 
own custom displays and animations on the device. Someone inexperienced with 
programming would be capable of inputting various functions such as text inputs 
for banners. Both of these functions are excellent for sponsorship since they 
allow the user to easily set the device for any advertisement they desire. 
 
Portability is obviously a concern for organizations that are advertising at booths 
or displays. These devices are extremely portable and our design is to not only 
make it portable but outlet friendly allowing you to plug it in to any standard 
outlet. 

2.1.2 Skill Sets: 
 
With a group made up of two students of electrical engineering and two students 
of computer engineering, we wanted a project that adequately displayed all of our 
skill sets. This project not only has a significant level of electrical design in both 
advanced and intermediate levels of electrical engineering but it has a significant 
level of both advanced and intermediate levels of programming and computer 
architecture requirements. This means that all four of the team members working 
on the project would find adequate amount of both familiarity and challenge 
within the project. 

2.1.3 Creativity: 
 
To be completely honest, if you are not interested in a project it is very difficult to 
work on it. This is a very true statement and most of our group members wanted 
a project that was entertaining enough to really keep their attention in addition to 
test their knowledge. This project seemed entertaining to our team. It is as simple 
as that. Not only would we be developing our skills as engineers but we would 
also get to flex our creativity by programming and designing a variety of 
interesting displays for this device. The final product would be bright, exciting, 
and interesting to see once it was complete; which our team was very excited to 
experience. 
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2.2 Objectives: 
 
While in concept a persistence of vision device is good we needed to put to 
words specifically what our objectives for this device were. Since we had some 
ideas of what we wanted when choosing this project we also had a variety of 
features we wanted to add besides the basic features these devices generally 
come with. The following sections identify and describe these features in further 
detail. 

2.2.1 Frame Rate: 
 
Since human vision is tricked to perceive motion around the rate of twenty-five 
frames per second we needed a device to spin at a rate capable of recreating 
this illusion. Since twenty-five was the bare minimum we decided to overshoot to 
thirty frames per second, this would hopefully either make a more seamless 
image or account for any variations that may occur within the device. 

2.2.2 Computer Interfacing: 
 
One of our group members brought up the thought that if we can make this 
device not only display images and do simple animations then why can't we 
make the device also display a video such as from a DVD or CD played from 
your computer. Since we wanted the project to be sponsored allowing the 
eventual sponsor to display a prerecorded advertisement on this device from 
such a media, seemed like a great idea. So our group set out to implement it 
through computer interfacing. We chose an HDMI connection between the 
computer and the POV device since this would create an almost monitor like 
relationship with the POV device and the computer. While this was the largest 
challenge for this project it also seemed like its biggest feature. 

2.2.3 High Resolution: 
 
Since we wanted to create the above mention monitor relationship between the 
computer and the POV device we needed to design the project with a high pixel 
count in order to effectively display the computer's desktop or HUD. We 
specifically chose 640x480 as our target resolution since it seemed to be a 
relatively universal one. This meant we needed a total of 480 LEDs. This also 
meant each LED had to be capable of a large scale of colors in order to recreate 
the image being sent each frame. 

2.2.4 Portability: 
 
Since we had decided the device needed to be portable it could be no heavier 
than a small television and only about as bulky. This meant the materials we 
chose to build this device out of need to be durable and light weight. 
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2.2.5 Programmability: 
 
We wanted the device to be easily programmable and capable of at least simple 
marquee text displays that would be implemented with our own self developed 
program. This would allow the user to simply input a text banner or the time, and 
have it displayed on the device instead of just the computer interface. In addition, 
we also wanted the device to be complex enough that someone with experience 
in programming could also program to the processor and create their own 
custom images and animations. This would allow for a lot of space for user 
development which seemed desirable to someone looking to advertise with the 
device. 

2.3 Specifications: 
 
The following is a list of specifications that we have come up with based on both 
our research, assumptions, and components that we have chosen during the 
development of this product. 
 
480 LEDs 
256 colors per LED 
60 Hz refresh rate for LEDs 
30 rps or 1800 rpm 
61 cm diameter (cylinder) 
80 cm height (cylinder) 
12 - 15 lbs 
Operates on 120V AC or 90V DC 
HDMI input via computer connection 
USB input via computer connection 
2Mbits/s data transmission 
Data Rates up to 800 Mb/s (12.8 GB/s peak bandwidth) 
Up to 1,080 Mb/s data transfer rate per differential I/O 
128 megabits of storage space for images and animations. 

3 Administrative Content: 
 
Having a strong plan for administrating the budget and making due dates is 
essential for completing any project successfully. Our senior design project is by 
no means an exception. Our goal will be to layout an administrative plan to 
govern and guide our project through the varies stages and will be the foundation 
that will support our work. Our administrative plan will be laid out in three 
sections - budget, finance and schedule and milestones. 
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3.1 Budget:  
 
Understanding the cost associated with any project helps separate what is 
feasible from what is unrealistic. To better understand the cost associated with 
our senior design project we will need to estimate our total material cost and any 
cost associated with prototyping and testing.  
 
As stated in our specifications section, the POV display will require 480 LED's 
each with a 256 color range. This will require us to procure 480 RGB capably 
LED's which we can estimate to be about $1.25 each. In addition to the LED's, 
we will also need to procure some way to control the LED's. If we estimated an 
additional $1.00 per LED to control it we have a total cost per LED of $2.25 or 
$1,080. 
 
The POV display must be capable of rotating at 30 RPS or 1800 RPM. This will 
require a sizable motor to insure we can operate at the required toque values. As 
well, we will require a chassis or frame to support the LED array and on board 
controllers. We can estimate the cost of the motor and chassis frame at $80.00 
 
In order to process the incoming video signals and control the LED's we will 
require two microcontrollers. One microcontroller, which we can refer to as the on 
board controller, will process the video signal coming from the main 
microcontroller. The on board controller will require less functionality and can be 
estimated at a cost of $250. The main controller will require additional 
functionality to interface with the user. We will estimate the cost of the main 
controller at $300. Therefore, the overall cost for both the on board and main 
controller will be $550. 
 
In order to tie the on board controller to the LED array we will need to procure 
PCB boards. We will also need to procure additional wire and cable to make all 
the miscellaneous connections required. For estimating purposes we will lump all 
the cost associated with procuring PCB boards and wire as required will cost 
$100 but not to exceed to $200.  
 
The final piece of the budget will be any cost associated with prototyping and 
testing. Currently we are anticipating we will require a scaled LED array, motor 
control and slip ring prototypes. If we estimated approximately 1:60 scaled LED 
array or about 8 LED's and using the previous estimate of $2.25 per LED the cost 
for the LED array prototype is about $18. The slip ring and motor control we can 
estimate about $25 each in cost for prototyping. That brings the total estimated 
cost for prototyping to $68 but not to exceed $150. 
 
The total cost associated with this project is estimated to be $1,878 but  not to 
exceed a total cost of $2,060. As seen in Table 3.1, a detailed summary of the 
budget and distributed cost can be complied.  Based on this estimated, we have 
determined that the cost associated with this project is realistic and feasible. 
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Description Est. Qty 
Req. 

Cost (Each) Ext. Price 

LED's and Controller 480 $2.25 $1,080.00 

Motor and Frame 1 $80.00 $80.00 

On Board Controller 1 $250.00 $250.00 

Main Controller 1 $300.00 $300.00 

Misc. Equipment 1 $100.00 - 
$200.00 

$100.00 - 
$200.00 

Prototyping 1 $68.00 - 
$150.00 

$68.00 - 
$150.00 

  Total: $1,878 to 2,060 

 
Table 3.1 Project Budget 

3.2 Finance: 
 
The second portion of our administrative plan is to determine where the financial 
backing will come from to support the design and development of our POV 
display. As discussed in our motivation for working on this project, we are 
interested in finding sponsorship to support our work. Currently we have two 
potential sponsors. The first and preferred sponsorship will come from the United 
States Navy. The idea of the POV display grew from the Navy's desire for a 
device to aid in their recruitment of new cadets. As our sponsors, the Navy will 
acquire the POV display after the completion of fabrication, testing and final 
review by the University of Central Florida to take between various recruitment 
opportunities. 
 
If the U.S. Navy elects to sponsor another project, the second potential 
sponsorship will come from the University of Central Florida's Department of 
Electrical Engineering and Computer Science or Department of EECS. If the 
Department of EECS sponsors the design and development of the POV display, 
the application of the display will remain vastly the same. The Department would 
use the POV display to showcase the Department of EECS and the capabilities 
their students possess. 
 
The final, and least preferred option, would be to split the cost of the project 
equally between all four group members. In the event that we do not acquire any 
sponsorship, the project design maybe be scaled back slightly to account for the 
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smaller budget we will be working worth but the overall functionality and 
operation of the POV display will remain the same. The ownership of the POV 
display after completion of the project will be up to the group. One potential 
outcome would be to donate the POV display to the University of Central 
Florida's Department of Electrical Engineering and Computer Science. Another 
potential outcome of ownership could be one ground member takes ownership of 
the POV display by means of voting or by means of additional finical 
responsibility beyond the other ground members.  

3.3 Schedule and Milestones: 
 
The final portion of our administrative plan will be to develop a schedule, which 
will include major and minor milestones, to be a guide for keeping the production 
of the project on time and finished by the due date. Before a schedule can be 
developed, the major and minor milestones of the project must be defined. 
 
Major milestones will be defined as events or task that must be completed before 
the project can continue. A complete list of major milestones for the project is 
below. 
Senior Design I Documentation Due  
Prototyping Completed 
Project Design Finalized  
Project Fabrication Completed 
Testing 
Senior Design II Documentation and Final Project Due 
 
Minor milestones will be defined as events or task that are less critical on an 
individual basis but must be completed before a Major milestone can be 
completed.  
Project Research 
Project Preliminary Design Review (Prior to Senior Design I Documentation 
Completed) 
Senior Design I Documentation Review 
Prototype Fabrication 
Prototype Testing 
Project Design Review from Prototype Results 
Fabrication of Chassis 
Fabrication of LED Array 
Project Assembly 
Preliminary Mechanical Operational Test 
Senior Design II Documentation Review 
 
Finally, as seen in Table 3.3, a completed schedule can be put together. The 
schedule contains all predefined major and minor milestones as well as 
completion by dates. 
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Milestone(Major/Minor) 
Start 
Date 

Duration 
(Days) 

Finish 
Date 

Project Research (Minor): 05/27/12 46 07/12/12 

Project Design Review (Minor): 07/15/12 4 07/19/12 

Senior Design 1 Doc. Draft Review (Minor): 07/25/12 4 07/29/12 

Senior Design 1 Documentation Printing (Minor): 07/30/12 1 07/31/12 

Senior Design 1 Documentation Final (Major): 05/27/12 67 08/02/12 

Prototype Fabrication (Minor): 08/19/12 14 09/02/12 

Prototype Testing (Minor): 09/02/12 7 09/09/12 

Project Design Review from Proto Results (Minor): 09/09/12 7 09/16/12 

Project Design Finalized (Major): 09/16/12 7 09/23/12 

Procurement of Equipment (Minor): 09/23/12 56 11/18/12 

Fabrication of Chassis (Minor): 10/29/12 18 11/16/12 

Fabrication of LED Array (Minor): 11/16/12 14 11/30/12 

Programming of Processors (Minor): 11/16/12 14 11/30/12 

Assembly of POV Display (Minor): 11/18/12 12 11/30/12 

Preliminary Mechanical Operational Test (Minor): 11/16/12 14 11/30/12 

Project Fabrication Completed (Major): 09/23/12 68 11/30/12 

Complete Functional and Operational Testing (Major): 11/30/12 7 12/07/12 

Senior Design 1 Doc. Draft Review    (Minor): 09/23/12 75 12/07/12 

Senior Design II Doc. and Final Project Due (Major): 12/07/12 3 12/10/12 
 

Table 3.3 Project Schedule 
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4 Research: 
 
Designing is both a matter of applying the best known solution for a problem and 
creating new methods when the problem’s solution isn’t well known. In addition, 
many times a solution has multiple methods that fit well for solving a problem. In 
these cases we need to effectively narrow down the list and determine the 
solution our group feels will work best for us. In the case of our project there were 
eight key issues that we needed solutions to for our project that kept appearing in 
our discussions of this project. 
 
The first problem was supplying power to this device. We needed to know 
whether we were going to use AC or DC power or some combination of both. Did 
we need to do some sort of AC to DC conversion? Which one was best for the 
purposes of our project? Section 4.1 discusses this topic and which one best 
suits our needs. 
 
The second issue was signal processing. Our group new we wanted to allow for 
some way for this device to communicate with a computer. The question was 
which medium was best for our purposes? Since none of us had any experience 
in video processing this also meant we needed to figure out which format was 
best suited for our project. Would it be better to process an HDMI signal, VGA 
signal, or just do some form of file transfer through USB? Section 4.2 discusses 
this topic and compares each of these signals and the processing method 
needed to implement them for our project. 
 
The third issue was LED implementation and control. Since we needed to blink 
these LEDs at a rapid speed we needed to know how this would affect the LED. 
What LED is best suited for this application? Will using pulse with modulation 
effect our display rate? How do we effectively control over four hundred LEDs? 
Section 4.3 will discuss these questions and determine the best fitting solution for 
each of these problems. 
 
The forth issue was communications. Since this device has two sides to it, a 
stationary side and a rotating side, we need to determine how we are going to 
send the above signal across these kinetic state changes. Is there a wired 
solution for this problem? Would wireless be an effective solution to this 
problem? Are there issues with wireless when dealing with a rapidly rotating 
receiver? Section 4.4 discusses these issues and compares each of these 
communication solutions. 
 
The fifth issue is the motor itself. None of us had much experience with motors 
so we needed to research specifically which motor would work best for our 
purposes. Would a DC motor bet best or an AC motor? What is the most 
effective way of controlling the motor for our purpose? How can we minimize the 
noise commonly associated with motors? Section 4.5 discusses these topics and 
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compares both motor types, and which method of controlling the device is best 
for our purposes. 
 
The sixth issue is the actual structure of this project. This device is going to rotate 
at a very fast rpm value and that means it needs to be both very stable and 
balanced. What material is best suited for this project then? How do we balance 
it? What will be the torque requirements of this device? Section 4.6 discusses 
these questions and determines the best solution to each of them. 
 
The seventh and final issue is our GUI. Since we want to develop a user 
interface for communicating with our device we need to know the best way of 
going about creating it. Would it be better to create it in C language or Java? 
What classes, functions, and variables will we need to implement the project? 
Section 4.7 will further discuss these concepts answering these questions and 
more. 

4.1 Power Supply: 
 
Just like any machine, the POV display will require a source of power to operate. 
As discussed in the motivation, the POV display will need to be portable to 
require movement between events and shows. However, due to the size of the 
POV display and the power requirements of the motor, to operate the POV 
display from a battery supply would require a significantly large battery. A large 
battery deters from the portability of the POV display. As such, the  power supply 
research will focus on utilizing power from an AC outlet. 

4.1.1 AC Input: 
 
As previously stated, the POV display will draw all of its power from a standard 
AC outlet. In the United States, the standard power for an outlet is 120 Vac at 60 
Hz. In addition, the standard wiring practices for AC power in the United States 
for wiring of a 120V system is for the black wire to be the hot or line, the white 
wire to be the neutral and the green or bare cooper wire to be the ground. 

4.1.1.1  Circuit Protection: 
 
One additional design requirement for the AC input to the POV display that will 
require research is circuit protection. Since we will be accepting 120V AC from a 
wall outlet which is most likely rated for 15 to 20 amps into the POV display, a 
good design criteria will be to protect the POV display from potential damaged 
cause by surge in current. Over current can occur anytime there is a short circuit 
and since we will be most likely working with a metal chassis, adequate 
protection against short circuits should be taken.  
 
Currently two commonly used forms of over current protection are available, 
fuses and circuit breakers. One disadvantage fuses have compared to circuit 
breakers is once fuses are used or blown, they must be replaced with a new 
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fuse. In the case of circuit breakers, the breaker only needs to be reset and not 
completely replaced. However, the upfront cost of circuit breakers generally is 
greater than the initial cost of fuses. Two additional advantage fuses have over 
circuit breakers is their size tends to be smaller than circuit breakers and the 
flexibility to easily change a fuse to a higher or lower current rating without the 
need to re-wire any equipment. Therefore, we will focus our research on 
available fuse blocks or holders and fuses. 

4.1.1.1.1 Fuse Blocks and Fuses for Circuit Protection: 
 
Cooper Bussmann is a well known and commonly used manufacturer of fuse 
blocks. The Bussmann Type BC and BCCM Series Class CC fuse blocks offer a 
compact but reliable solution for fused circuit requirements. The BC and BCCM 
series fuse blocks accept Class CC size fuses. As well, the fuse blocks are rated 
for operations at 600 Volts and up to 30 Amps. Since we will be protecting the 
incoming AC power, only the positive or line side of the AC power supply needs 
protection. This means we will only require a single pole fuse block. The part 
number for a single pole Bussmann type BC fuse block with screw connections is 
BC6031S. As well, Table 4.1.1.1.1 shows some of the available Type CC fuses 
offered by Bussmann and their corresponding current rating. 
 
Part Number Current Ratings 
LP-CC-1 1 Amps 
LP-CC-2 2 Amps 
LP-CC-3 3 Amps 
LP-CC-4 4 Amps 
LP-CC-5 5 Amps 
LP-CC-10 10 Amps 
LP-CC-15 15 Amps 
LP-CC-20 20 Amps 
 

Table 4.1.1.1.1 Type LP-CC Fuses and Current Ratings 

4.1.2 AC to DC Converter: 
 
The POV display will require conversion of the AC power coming from the wall 
outlet to DC in order to power the motor, the LED array and the microprocessors. 
A simple full wave rectifier circuit as seen in Figure 4.2, will be used.  



 

12 

 

 
 

Figure 4.1.2 Full Wave Rectifier Circuit 
 
Although the exact voltage required for the motor, LED array and 
microprocessors is not known at this time, we do know that we will most likely 
require the functionality to change the voltage output of the DC converter based 
on the requirements. In order to change the DC output voltage of the converter, 
we will vary the AC input by using a simple voltage divider circuit with a 
potentiometer or variable resister. Therefore we will focus our research on 
determining what variety of parts are available and their characteristics. In 
particular, we will be researching for diodes, resisters, variable resisters and 
capacitors  that have a maximum operating voltage of at least 150 volts and for 
the diodes, a power rating of at least 1500 to watts. The equation below, where 
Vr equals the ripple voltage and Vm equals the maximum voltage output, will be 
used to determine the ripple voltage of the rectifier circuit and help to determine 
the correct combination of resistance and capacitance. 
 

�� � �
��
���	

 

4.1.2.1  Diodes: 
 
As previously stated, the diodes required for the AC to DC converter will need to 
operate at a maximum of 150 volts and 1500 watts. This design criteria will allow 
for a maximum of 10 amps to flow through the diodes and provide adequate 
power to the motor and other circuits. One such diode is the MUR Series diode 
manufactured by Multicomp. The diode was design with the purpose to be used 
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in inverting and rectifying circuits. Part number MUR1560 has the maximum 
ratings of 420 Vrms and 15 A forward current. The diode comes in TO-220A case 
allowing for easy integration into bread boards or PCB boards. As well, the 
MUR1560 is readily available with over 3,000 available to ship at a cost of less 
than $1.00 each. 

4.1.2.2  Resistors: 
 
The voltage requirements of the converter do not necessarily directly apply to the 
resistor. The most important characteristic of the resistor will be the power rating. 
Although the power rating for the resistors is less critical than the diodes, we will 
still require resistors with a power rating of at least 5 watts to allow for proper 
heat dissipation. Vishay, a well known resistor manufacture, provides a type RS 
resistor that is wirewound with axial leads that will work well the bread boards 
and PCB boards. Although the exact resistor requirements are not known at this 
time, one example of a complete resistor part number is RS00510K00FE12, 
which is a resistor rated for 10 kohm, 5 watts and a tolerance of +/- 1 percent. 

4.1.2.3  Potentiometers and Variable Resistors: 
 
After during some initial research, it was discovered that potentiometers and 
variable resistors do not come readily available at the power ratings required for 
the converter. Therefore, we will use fixed valued resistors similar to the type RS 
resistor previously discussed.  

4.1.2.4  Capacitors: 
 
One available capacitor that meets the required specifications is manufactured 
by Vishay. Vishay offers an aluminum electrolytic type 53D capacitor that can 
operate at 200 Volts. Although the tolerance is only +/- 10%, the capacitor is 
available at rated capacitance range of 15 uF to 220,000 uF. Just like the 
resistor, the capacitor has axial leads to allow for easy integration into bread 
boards and PCB boards. Once again, the exact capacitance requirements are 
not know at this time, but an example of a completed capacitor part number rated 
for 350 uF is 53D351F200JL6. 

4.2 Video and Signal Processing: 
 
We intend to receive a live video stream from a laptop and display this video on 
our LED array. There are two primary formats that computers output video data 
in, VGA and HDMI. The research into these two different formats will be used to 
determine which format will be most appropriate for our needs and what would 
be required to use that format. This section will also look at various means of 
video data compression and alteration. 
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4.2.1 VGA 
 
We are considering using the VGA output available from a computer as the video 
source for our display. This section will focus on the VGA signal format and will 
describe how video data is transmitted via VGA. 

4.2.1.1 VGA Signal Standards: 
 
In order for a computer to know what types of signal a display can handle, the 
computer communicates with the display through the Data Display Channel. The 
protocol used most commonly today is E-EDID, which has been defined by the 
organization VESA. With the E-EDID protocol, the computer reads a binary file in 
the display to determine what signal to send. It seems possible that we will need 
to write or edit our own E-EDID or file. 
 
The EDID file is 128 bytes and contains basic information such as the vendor ID, 
serial number, manufacturing date of the display, and which EDID version is 
being used. It also contains a Video Input Definition, which specifies analog or 
digital. In the case of analog it contains several bits specify which types of 
syncing the display supports, as there are several ways of doing this. A section of 
bits specify which of 16 predefined standard modes the display supports. 
Detailed timing information is contained within the last section. The second to last 
bit is a flag indicating whether or not there are any extensions to the file. 

4.2.1.2 .Signal Sampling: 
 
The video frames to be transmitted via VGA first start in a digital format on the 
PC and are converted to analog though the use of DAC’s. Figure 4.2.1.2.a shows 
the pin configuration for the VGA DB15 connector and a summary of each pins 
function. The pins for Red, Green, and Blue (1 2 and 3) each carry a signal that 
ranges between 0V and 7V referenced from their respective ground pins (6 7 and 
8).  
 

 

Figure 4.2.1.2.a VGA DB15 connector and pin assignment 
 

Figure 4.2.1.2.b shows how the red voltage value could be generated from 4 bits, 
allowing for 16 distinct voltages and therefore 16 colors of red. Combined with 
Blue and Green, this allows for the representation of 212 different colors. There 
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are many color modes, each with varying amounts of bits defining red, green and 
blue. The voltage range does not change, and when each RGB pin is read at the 
same time, a single pixel’s color is defined. 
 

 
 

Figure 4.2.1.2.b Resistor circuit providing 16 colors from 4 inputs 
 
The VGA signal transmits pixels one by one, starting in the top left of the frame, 
going from left to right, and then down. This process is timed using two 
synchronization pulses, HSYNC and VSYNC. The HSYNC pulse indicates the 
start and end of a row of pixels being transmitted, and the VSYNC indicates the 
start and end of a frame. 
  
In addition to the VSYNC and HSYNC pulses, there are periods of time in which 
no pixel data is transmitted, which are known as the blinking and blanking 
intervals. As can be seen in Figure 4.2.1.2.c, these occur starting just before the 
VSYNC and HSYNC signals and last longer, making them a little wider. The 
period of blinking/blanking time before the SYNC signals is referred to as the 
front door, and the period after the back door.  
 

 
 

Figure 4.2.1.2.c VGA timing for V-SYNC and H-SYNC windows 
 
The VGA signal was designed to be displayed on CRT monitors, which is the 
reason the blinking and blanking intervals exist, giving the monitor time for its 
electron gun to realign itself. Additionally, because RGB values transmitted 
through VGA are a continuous waveform after the initial DAC from the PC, the 
number of horizontal pixels displayed by the CRT must be determined by a pixel 
clock. The clock timing is determined based on which video display mode is 
currently being used. 
 
There are 3 other important VGA pins, the DDC clock, DDC data, and DDC 
return, which allows the display to comminute with the PC and determine which 
display mode will be used to transmit the data. Figure 4.2.1.2.d shows the timing 
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specifications of various video modes defined by the original IMB standard and 
VESA standards.  
 
As seen in Figure 4.2.1.2.c, a
length A, which is the distance between the front edge of each HSYNC pulse. B 
specifies the width of the HSYNC pulse. C and E are the front door and back 
door times, respectively, which surround the HSYNC pulse signal.  D is the time 
during which actual pixel data is transmitted. The vertical timings can be 
interpreted similarly to the horizontal timings, O being the time for a full frame, P 
the VSYNC width, Q and S the front and back door times, and R the actual time it 
takes to transmit the frame. 
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which actual pixel data is transmitted. The vertical timings can be 
interpreted similarly to the horizontal timings, O being the time for a full frame, P 
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Figure 4.2.1.2.d Precise Timing Specifications for VGA Display Modes 

 

4.2.1.3 Analog to Digital Conversion: 
 
In order to display frames transmitted through VGA on our LED array, we will 
need to first obtain the signal in a digital format and build each frame. This is 
because the VGA format transmits data in horizontal lines and our display needs 
the data in vertical lines. After each frame is constructed, the data must then be 
retransmitted a single column at a time. Additionally, this will allow us to perform 
processing on each frame, which might include cropping and resizing. Pre-
buffered data can also be accommodated easier if we convert the signal to digital 
because the VGA stream and pre-buffered frames would be able to use the 
same output to the LED array. 
 
For these reasons, ADCs will be required. From timing diagrams in Section 
4.2.1.2, we can see that the pixel clock runs at 25.175 MHz at a resolution of 
640x48. At each of these pulses the analog RGB lines need to be read so 3 
ADCs would be needed in total. The voltage on each pin ranges from 0 to 7 volts. 
With these factors considered, the ADC0801S040 seems to be a good choice for 
an ADC. The ADC0801S040, has an 8 bit output and operates between 2.7 V 
and 5.5 V, so the input signal will need to be scaled before going into the ADC It 
also has a maximum speed of 40MHz, and a clock input which could be tied to 
the pixel clock. This ADC costs around $4, however, it seems likely that enough 
could be obtained with free samples. 

4.2.2 HDMI: 
 
HDMI or High Definition Multimedia Interface is one of the possible inputs we are 
considering supporting in our POV display project. HDMI input will allow us to 
receive a signal in a format that is quickly gaining popularity and is currently 
available on many devices. The main reason we are considering HDMI support is 
because Digilent has a Xilinx FPGA based board available with built in HDMI 
support, and most modern DVD players and laptop computers have HDMI 
outputs. This research is mainly focused on how we would go about receiving the 
HDMI signal on the Digilent Atlys board and then translate that signal into a 
format we can use to display it on our LED array.  

4.2.2.1 HDMI Signal Standards: 
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The HDMI standard indicates that the term used to describe HDMI inputs is 
“HDMI sink”, and the term used to describe HDMI outputs is “HDMI source”. Our 
POV display is therefore going to be the HDMI sink and any device connected to 
our display will be the HDMI source. HDMI has two separate communication 
channel protocols that we must become familiar with: DDC, and TMDS. Another 
important signal that must be considered is the TMDS clock signal. HDMI 
provides content protection capabilities through HDCP or High-bandwidth Digital 
Content Protection. HDCP will not be necessary for our project so we will not 
consider it in our research. HDMI is also capable of sending control signals in 
both directions, allowing the connected devices to send commands to each 
other. We will most likely not be taking advantage of HDMI control signals. Our 
main focus for HDMI signal standards will be on the DDC and TMDS 
communication channels. The pin configuration for an HDMI cable is shown in 
the following Table 4.2.2.1.a. 
 

PIN Signal Assignment PIN Signal Assignment 
1 TMDS Data2+ 2 TMDS Data2 Shield 
3 TMDS Data2- 4 TMDS Data1+ 
5 TMDS Data1 Shield 6 TMDS Data1- 
7 TMDS Data0+ 8 TMDS Data0 Shield 
9 TMDS Data0- 10 TMDS Clock+ 
11 TMDS Clock Shield 12 TMDS Clock- 
13 CEC 14 Reserved 
15 SCL 16 SDA 
17 DDC/CEC Ground 18 +5V Power 
19 Hot Plug Detect   

 
Table 4.2.2.1.a HDMI Pin Configuration 

 
 DDC or Display Data Channel provides a way for the display to communicate 
which resolutions are supported to the graphics output device.  HDMI uses a 
DDC protocol named Enhanced Extended Display Identification Data or E-EDID. 
This is represented by a 256 byte binary file stored in ROM on the display. Since 
we are creating the display we may have to create our own EDID data file in 
order to properly have a device such as a DVD player send the correct resolution 
picture. Creating a compatible EDID file may prove beneficial to use since it may 
eliminate the need for downscaling the resolution of the input since the file will 
communicate to the HDMI source which resolution it should be sending to the 
sink. Table 4.2.2.1.b below shows the structure and requirements of EDID 
information. 
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Description Required 
Block “0” Header Yes 
ID Manufacturer Yes 
ID Product Code Yes 
ID Serial Number No 
Week of Manufacture No 
Year of Manufacture or Model Year Yes 
EDID Version Yes 
EDID Revision Yes 
Basic Display Parameters and Features Yes 
Display x, y Chromaticity Coordinates Yes 
Established Timings No 
Standard Timing Identifications No 
Preferred Timing Descriptor Block Yes 
Range Limits Descriptor Block No 
Monitor Name Descriptor Block No 
Other Descriptor Blocks No 
Extension flag Yes 
Checksum Yes 

 
Table 4.2.2.1.b EDID Information and Requirements 

 
TMDS or Transition Minimized Differential Signaling is an encoding protocol that 
takes place for the HDMI audio and video data. “Transition Minimized” means 
that the number of transitions in the digital signal is reduced as low as possible. 
This means that the transition from 0 to 1 or vice versa will happen as few times 
as possible in the transmitted signal. The reason for this is to minimize the 
chance of the signal degrading along the transmission line. “Differential 
Signaling” means that there are two different signals being sent, one on each 
cable in a twisted pair. One of the signals is the audio and video data, and the 
other signal is the inverse of the first. The receiving end compares the first signal 
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with the second and calculates the difference between the two; this data is then 
used to make corrections when possible. There are three TMDS channels in an 
HDMI cable; each channel has its own twisted pair. There is also a TMDS clock 
signal, which itself is not a TMDS signal, but simply a digital signal to help 
synchronize the TMDS signals and allow for the differential calculations needed 
for error correction. The following Figure 4.2.2.1 shows a simple flowchart of how 
we will be handling the HDMI TMDS signal with the HDMI input on an FPGA. 
 

 

Figure 4.2.2.1 TMDS Input Flowchart 
 

4.2.2.2 Signal Sampling: 
 
If we are to use HDMI input we will be using the Atlys board by Digilent. The 
Atlys board is based on the Xilinx Spartan 6 FPGA, and has built in HDMI inputs 
and outputs. The HDMI inputs and outputs on the Atlys board automatically 
encode or decode the TMDS signals for input or output. There is a given 
reference design available which uses the onboard switches to choose which 
video mode to use (resolution and refresh rate). We will be using the Atlys board 
exclusively as an HDMI sink. All of the data received from the HDMI port will then 
be sent by some communication method to the secondary spinning 
microcontroller which will organize the data into the appropriate latches for 
display on the LED array.  
 

4.2.3 Video Processing (Stationary Controller): 
 
Various forms video processing may be required depending upon the required 
format of the frames we build in the stationary controller, and how these frames 
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are obtained. The format in which we need the frame data is dependent on the 
specifications for the LED array, including its size and how precise it can 
represent RGB colors. This will likely be determined by our choice of LED 
controllers, which will in turn determine what types of image processing will be 
required. 
 

4.2.3.1  Color Depth Reduction: 
 
When building each frame, there will be an RGB value for each pixel in that 
frame. It is quite likely that these RGB values will have a much higher color depth 
than our display is capable of handling.  In code, we will need to convert these 
RGB values into a lower color depth. The simplest way of doing this is to truncate 
off the least significant bits. If we expect that the RGB color data we obtain will be 
in ‘true color’, or 24 bit color, then to reduce it to 8 bit color we would truncate the 
Red and Green data to their 3 most significant bits each, and for the Blue data, to 
its 2 most significant bits. Since we only want 8 bits for the color, Blue is picked 
to be the color with fewer bits because the human eye is less sensitive to 
changes in blues when compared to red and green. Figure 4.2.3.1 shows the 
same picture in various color resolutions. 
 

 
Figure 4.2.3.1 Example of image shown in 4 bit and 8 bit color depth  

4.2.3.2  Frame Resizing: 
 
Since the possibility exists that we may not be able to receive the exact 
resolution we desire for our display, we may need to resize the frames as they 
are buffered. This can be accomplished most simply by truncating sections of the 
frame and displaying a cropped version. In the most ideal scenario, we will 
receive frames at a resolution of 640 x 480, which can then be easily cut in half 
to a resolution of 320 x 240. It may also be possible to employ algorithms on the 
entire 640 x 480 frame which would reduce it to 320 x 240 by using blurring 
techniques, but this could have an effect on how nicely the images look on the 
display, and they also come with a heavy processing cost. 
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4.2.3.3  Frame Skipping: 
 
Assuming there is a certain amount of image buffering and that we are receiving 
frames into this buffer at a particular rate, it is possible that we may receive more 
frames than we need and might need. Our display is intended to show 30 frames 
per second, and most video modes provide frames at around 60 Hz.  In this 
simple case we receive frames at twice the frequency we need them, we could 
simply use every other frame. A more complicated frame skipping algorithm may 
be needed frequency at which frames are buffered can’t simply be cut in half.  
 
There is also the possibility of increasing or decreasing the rotation speed of the 
display, which determines our number frames per second, to a value such that 
that it even divides evenly with the frequency of frames being received. As an 
example, if the video mode we are in is providing frames at 70 frames per 
second, we could display this nicely if we changed our rotation speed to 35 
frames per second and then simply used every other frame. It seems likely 
however that we can receive 60 frames per second and display at the desired 30 
frames per second. 

4.2.3.4  Video Compression: 
 
The real time requirement of transferring the frames between the stationary 
board and the rotating board is of some concern. Calculations for the required 
data rate seem to suggest that the amount of data we are transferring is small 
compared to the bandwidth, if it does become an issue due to overhead from 
various transfer protocols it would be good to have an efficient solution for 
minimizing the amount of data that needs to be transferred.  
 
Video compression is possible because within each frame exists redundant data 
that could be described more efficiently, with or without loss of information. 
Redundant data can exist in two forms, spatial and temporal. Spatial redundancy 
occurs when there are repeated pixels in a single frame. Temporal redundancy 
occurs when pixels values do not change from frame to frame.  
 
One of the simplest forms of compression involves simply throwing away the 
least significant bits of each RGB color, which would allow each pixel to be 
represented by fewer bits. Since our display is a 256 color display, this form of 
compression will almost certainly occur, and is discussed in more detail in 
section 4.2.3.1 dealing with Color Depth Reduction. 
 
Run length encoding is a very simple compression method that deals with spatial 
redundancy. With run length compression, when a pixel color value C is identical 
for some sequence of length L, it can be represented by (C, L). The type of 
compression works best on computer generated images because of the 
increased likelihood of unvarying pixels. Combined with the color depth reduction 
that is to occur, the likelihood of identical pixels in sequence is increased and 
could greatly reduce the size of the data. 
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Often in transferring the signal between the source and display, composite 
formats are used instead of having 3 separate outputs for RGB. In the composite 
format, instead of RGB values, a Luminance “Y” value and a Chrominance is 
used to represent each pixel. Chrominance is represented by two signals, I and 
Q if using NTSC video, or U and V if using PAL video. Figure 4.2.3.4.a shows 
how the luminance and chrominance are calculating using the NTSC and PAL 
video standards. This in it of itself does not compress the video, it merely 
combines the RGB values into a single stream and it also allows compression 
algorithms to take advantage of the properties of Luminance and Chrominance. 
A simpler composite would involve concatenating the individual RGB values into 
a single byte, since we are using 8-bit color. 
 

NTSC video PAL video/Digital recorders 
Y = 0.30R + 0.59G + 0.11B Y = 0.3R + 0.6G + 0.1B 
I  = 0.60R – 0.28G – 0.32B U = (B – Y) x 0.493 
Q = 0.21R – 0.52G + 0.31B V = (R – Y) x 0.877 

 
Figure 4.2.3.4.a NTSC and PAL Calc. for Luminance and Chrominance 

 
One form of compression relies on the premise that the human eye has poor 
detection of changes in chrominance values, with heavier importance placed on 
Luminance. Based on this nature, we could use a compression technique that 
involves throwing away much of the chrominance data and uses interpolation to 
determine the chrominance value at each pixel location instead. This method of 
compression is referred to as an Interpolative compression scheme. As an 
example of this method, we will throw out 3 out of 4 columns of chrominance 
values and 3 out of 4 rows of chrominance values, reducing the total amount of 
values by a factor of 4. Figure 4.2.3.4.b shows a matrix of chrominance values, 
the blue dots representing values thrown out, and black dots representing values 
to remain in the matrix. Shown also is a sample calculation using interpolation to 
approximate the missing chrominance values. 
 

 
Figure 4.2.3.4.b Method for Interpolating Chrominance Values 
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Using only spatial compression methods, the amount of data that is required to 
be transferred can be vastly reduced, as has been seen. This helps to reduce 
any issues involving the data transfer rate between the two microcontrollers 
being too slow. It is important to note that using video compression involves a 
significant tradeoff between the required processing time and data size. Some 
forms of compression require additional processing power at the transmitting and 
receiving side because of the mathematical calculations that would need to be 
performed.  
 
In our real time application, the right balance between compression and data rate 
is critical. On the stationary processor, where we have a faster clock speed, we 
can perform color depth reduction and combine the RGB values into a single 
byte before transmitting. Using those two techniques alone, the rotating 
processor would not need to perform any calculations to decode the video. The 
rotating processor avoids any extra processing because it will receive the data in 
the format that it ultimately needs. The rotating processor would be able to 
dedicate its cycles fully to reading the frame buffer and writing to the LED array. 

4.3 LED Array: 
 
This section of research will cover the exploring the different possibilities of not 
only what type of LEDs to use but different possibilities to control the LEDs as 
well. 

4.3.1 LEDs: 
 
There are a several available RGB LEDs all with different characteristics and  
specifications. Some important unique characteristics required by the POV 
display include size and mounting options. In order to reduce the appearance of 
streaking when the POV display is running, the distance between each vertical 
LED needs to be minimized. This eliminates the most common and popular case 
style of LEDs, T-1 3/4 package. The T-1 3/4 style LEDs have a width (as viewed 
from the top) of 5.9mm. Therefore, we will turn to researching available surface 
mount LEDs. In general, surface mount devices or SMDs offer a much smaller 
package and are design for use and easy integration into printed circuit boards. 
One available surface mount type LED is manufactured by Multicomp. 
Multicomp's OVS-33 Series SMD Super Bright LED is only 2.8mm wide as 
viewed from the top. This is about half the size of the T-1 3/4 style LEDs. This will 
allow us to group the LEDs on the array much closer reducing the appearance of 
streaking as the POV display spins. Figure 4.3.1 shows the pin information for 
the OVS-33 Series SMD Super Bright LED. 
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Figure 4.3.1 OVS-33 Pin Information 

4.3.2 LED RGB Control: 
 
There are several different methods for controlling RGB LEDs. Two methods that 
we will be focusing our research on will be Pulse Width Modulated Controllers 
and using latches with a resistor network. 

4.3.2.1 Pulse Width Modulation: 
 
The brightness of an LED is determined based on the amount of current the LED 
receives during a sample period. Pulse Width Modulation is a form of controlling 
the brightness of an LED by controlling the average current a LED receives 
during one cycle or period by varying the width of a pulse. Several manufactures 
offer a variety of LED controllers but during some preliminary research, it was 
discovered that Texas Instruments offered the best selection and supporting 
material for their line of LED controllers. Two LED controllers we will focus our 
research on will be the TLC5971 and the TLC5940. 

4.3.2.1.1  TLC5971 LED Controller: 
 
Texas Instruments TLC5971 LED Driver offers 12 Channel, 16 Bit pulse width 
modulated control of LEDs. TI defines the design application of the TLC5971 is 
for RGB LED cluster lamp displays. The TLC5971 allows control of up to 12 
LEDs broken into groups of (4). Each group containing controls for (3) LEDs or 
the RGB values of each LED. Each LED has individually adjustable output with 
65,536 steps. As well, the TLC5971 allows for serial data communications and 
cascading of an n number of controllers together with a maximum data rate 
transfer of 20 MHz. 

4.3.2.1.2 TLC5940 LED Controller: 
 
Texas Instruments TLC5940 LED Driver offers 16 Channel, 12 Bit pulse width 
modulated control of LEDs. TI defines the design application of the TLC5940 is 
for full-color LED displays, LED signboards and a general high current LED 
driver. The TLC5940 allows control of up to 16 LEDs but unlike the TLC5971, the 
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outputs are not broken into RGB groups. With the TLC5940, the 12 bit pulse 
width allows for each LED to be individually adjusted with 4,096 steps. Like the 
TLC5971, the TLC5940 allows for serial data communications and cascading of 
an n number of controllers together with a maximum data rate transfer of 30 
MHz. One additional useful feature of the TLC5940 is its XERR output. The 
XERR output allows for notification if an LED goes out through its LED Open 
Detection. As well, XERR also allows for notification of an over temperature. Both 
features that may benefit the functionality of the POV display. 

4.3.2.2 Latch Control: 
 
Each LED in our LED array needs to flash its appropriate color at the exact same 
time as all of the others, so the colors that each LED is to display must be stored 
before outputting to that LED. One way of accomplishing this would involve using 
latches. Each LED has 4 inputs, RGB colors and ground. One LED that we are 
considering using has a color depth of up to 256 colors. Each LED would then 
require 8 bits of color data to determine which color it should output. If we are 
displaying at 320 x 240 resolution, our LED array will have 240 individual LEDs, 
and a latch will be required for each one of them. 
 
Each latch would need to be able to contain 8 bits. We can use a resistor 
scheme the VGA signal was generated in section 3.2.1.2 on VGA Signal 
Sampling, which would reduce the 8 bits of information down 3 lines which would 
connect directly to the LEDs. In order to address each of the 240 latches, we 
could use an 8 to 256 decoder, or combination of decoders. This approach 
requires 8 addressing lines from the rotating processor, and 8 data lines, as well 
as a line that would be used to update the output of the latches all at the same 
time, requiring 17 output lines in total. One possible way to reduce the number of 
required outputs from the rotating microcontroller would be to use a counter to 
address the decoders, as seen in Figure 4.3.1.2. An 8 bit counter would require 2 
output lines from the controller, one to increment it and one to reset it. Its output 
would be used to address each decoder one by one. The 8 data lines will still be 
required, plus the two counter lines, and one final line used to activate the latch 
output, so in total 11 outputs would be required from the processor. 
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Figure 4.3.1.2 Latch control Implementation 
 
The resistor network would use the 8 outputs from each of the latches, which are 
8 voltages, and would be convert the 8 bits of data into 4 lines with specific 
voltage and current for the RGB and Ground connections LEDs have. Overall 
this scheme involves the huge dilemma of wiring all of these connections. In total 
there are 240 resistor networks which convert the 8 bits down to 4, and then 
4*240 (960) connections to the LEDs. Additionally, there are 240 connections 
from the decoder to the latches, and an 8 bit data bus which must connect to 
each of the 240 latches.  

4.4 Communications: 
 
Since one of our objectives with this POV device is to send a signal encoded with 
an image or frame of a video, we need a way to transfer data from the stationary 
side of the device to the rotating side of the device. For obvious reasons the 
simple solution of a wire is not applicable without some special configurations. 
There are two options we came up with to solve this issue: a co-axel wire that is 
strung through the point of rotation with a rotatable joint or wireless transmission 
via a medium like Wi-Fi or Bluetooth.  
 
The following sections will cover our findings for both methods, and a comparison 
of both methods and their pros and cons for our specifications. The final section 
will sum up our eventual decision and explore the reasons for our choice. 

4.4.1 Requirements 
 
Before we can even discuss either method of communication to our rotating device we 
need to discuss the data requirements that we will need in order to implement the 
system. This is so we can effectively decide the best fit for our POV display.  
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First we need to determine the number of bits it will require for one LED to display a 
single color. Since we decided we wanted two
will need about eight bits of information to display a specific color on a sin
However, we don't want to display on just a single LED so we need to be able to 
determine which LED we want to send this color to. Since we planned on having four
hundred-eighty LEDs as our vertical dimension we know we will need nine bits of 
information to tell the processor which LED we are addressing. That is seventeen bits 
total that is needed to turn a single LED in the array a specific color, the eight bits 
needed for the color plus the nine bits needed for the specific LED in the array. Figu
3.4.1 gives a visual representation of this concept.

        

Figure 4.4.1 Data Array
 
This only turns a single LED in the array a specific color though,
all four-hundred-eighty LEDs a variety of colors, that means we need to send a 
seventeen bit word to each LED at once for a single vertical line of our frame. We 
also need to tell the device when a new line should be displayed, so we shoul
add two bits for an end of line message and a beginning of line message. For the 
sake of discussion and since it is better  generally to 
estimate we will say two bits. This means we need to multiply the seventeen bit 
word by four-hundred-eighty LEDs and add two bits to the end of that to get the 
total bits needed for a single vertical line. In other words we need 8162 bits to 
display a single vertical line of our frame. Now to display the full frame we need 
to multiply this word by six-hundred
This brings the data we need to transfer up to about   5.3 megabytes. We aren't 
done yet since we also need end and beginning of frame bits for this word, which 
brings us up two more bits. This is
these frames reliably at thirty frames per second. This means we need to send 
the above frame data thirty times per second. This means in one second we are 
sending a little over a hundred
156,710,460 megabytes.  
 
This means no matter what form of communication we choose to use it has to be 
at minimum capable of sending this much information reliably. That being the 
case we will probably want a data transfer rate a little 
even twice as high as this to make it reasonable that with errors we will still be 
able to maintain a steady transmission.
 

First we need to determine the number of bits it will require for one LED to display a 
single color. Since we decided we wanted two-hundred-fifty-six colors we know that we 
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However, we don't want to display on just a single LED so we need to be able to 
determine which LED we want to send this color to. Since we planned on having four
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This only turns a single LED in the array a specific color though, we need to turn 
eighty LEDs a variety of colors, that means we need to send a 

seventeen bit word to each LED at once for a single vertical line of our frame. We 
also need to tell the device when a new line should be displayed, so we shoul
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estimate we will say two bits. This means we need to multiply the seventeen bit 
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hundred-forty, since this is our horizontal dimension. 
This brings the data we need to transfer up to about   5.3 megabytes. We aren't 
done yet since we also need end and beginning of frame bits for this word, which 
brings us up two more bits. This is just a single frame and we need to display 
these frames reliably at thirty frames per second. This means we need to send 
the above frame data thirty times per second. This means in one second we are 
sending a little over a hundred-fifty-six megabytes, or more specifically: 

This means no matter what form of communication we choose to use it has to be 
at minimum capable of sending this much information reliably. That being the 
case we will probably want a data transfer rate a little higher than this, maybe 
even twice as high as this to make it reasonable that with errors we will still be 
able to maintain a steady transmission. 

First we need to determine the number of bits it will require for one LED to display a 
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will need about eight bits of information to display a specific color on a single LED. 
However, we don't want to display on just a single LED so we need to be able to 
determine which LED we want to send this color to. Since we planned on having four-
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needed for the color plus the nine bits needed for the specific LED in the array. Figure 
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4.4.2 Wired Communications: 
 
There are many  forms of wired communications currently being implemented on 
a daily basis in today's high speed world. There are several design criteria which 
will restrict some of the available forms of wired communications. From our 
specifications and project design criteria, we know that our platform will be 
spinning at a rate of 1800 rotations per minute. Through some preliminary 
research, it was found that the larger number of conductors being transmitted to 
a rotating platform resulted in a smaller maximum allowed RPM's. In other short, 
any conductor larger for four strands will be unpractical for this application. 
Therefore, the researched will be focused on two types of wired communications, 
Fiber Optics and Cooper Coaxial Cable. In both situations, the wired 
communications will need to convert existing Ethernet communications ports on 
the microprocessors to a form that can be transmitted over their respective 
medium. With the idea of using the existing Ethernet ports and protocols of the 
microprocessors one additional criteria of the wired communications will be 
transmission rates. Currently the standard threshold requirements for Ethernet 
communications is 10 Mbs, 100 Mbs, and 1000 Mbs or 1 Gbs. An additional 
design criteria for wired communications will be to implement the 
communications with inducing the minimal amount of interference to the signal. 
The last design criteria for wired communications will be to evaluate cost benefits 
between coaxial cable and fiber optic cable. Below a summary of the design 
criteria is listed and will be a guide for determining the vitality of each type of 
wired communications. 
 
Rotating Speed: 1800 RPM's 
Transmission Rates: 10/100/1000 Mbs 
Little to no induced interference  
Cost 

4.4.2.1  Fiber Optic Communications: 
 
In the following section we will research the requirements for using fiber optic 
communications to transfer the data from the stationary side of the POV display 
to the rotating side of the POV display. 

4.4.2.1.1  Fiber to Ethernet Conversion: 
 

The first portion of research on fiber optic communications will be to determine 
the requirements for converting Ethernet communications to fiber 
communications. Fiber optic communications use either single mode or 
multimode fiber cable. Therefore, in addition to determining how to convert 
Ethernet to fiber, a review of single mode verse multimode is required to 
determine which is preferred for Ethernet communications. 
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Single mode fiber optic communications have a smaller core size than multimode 
fiber cables and, as the name implies, single mode fiber cables only operate with 
one optical light. Generally, most single mode fiber systems operate at 1300 nm 
or 1550 nm wavelengths. As well, single mode fiber systems require very strict 
mechanical connections due to the smaller core size. Multimode fiber systems 
operate at 850 nm or 1300 nm wavelengths and have a larger core size than 
single mode fiber cables. However, due to the larger size of the multimode core, 
multimode systems suffer from high attenuation can therefore cannot operate at 
the same distance as single mode systems. One advantage the larger core size 
of multimode systems is the high capacity and transmission data rates. 
Multimode systems can transmit data at rates of 10 Mbs to 10 Gbs. As well, in 
general, the cost of multimode fiber systems is less than the cost of single mode 
fiber systems. 
 
Upon reviewing the differences between multimode and singe mode fiber cable, 
the research on fiber to Ethernet conversions will focus in multimode fiber 
communications only. The difference in transmission length between multimode 
and single mode is negligible for the application of the POV display as the 
maximum transmission distance will not exceed more than ten feet. As well, the 
higher cost and lower transmission rates of single mode fiber cable make 
multimode fiber a clear choice for the application and use of the POV display. 
 
Various Ethernet to fiber solutions exist on the market today. Ethernet to fiber 
converters or media converters are used in various industries from substation 
communications to bringing internet to homes across the nation. Several 
manufactures provide fiber to Ethernet solutions all within the design criteria of 
the POV display. Table 4.4.2.1.1 below list a few available solutions including 
product specifications and cost. 
 
Part 
Number Mfr. Supported 

Data Rates 
Fiber 
Connector 

Ethernet 
Connector Cost 

EIR102-MT B&B 
Electronics 

10/100 
Mbps MM ST RJ-45 $199.00 

FCU-
100SC Aaxeon 200 Mbps MM SC RJ-45 $62.00 

ME-1600-
MM2-ST 

Support 
Systems 
Int. 

10/100 
Mbps MM ST RJ-45 $69.50 

 
Table 4.4.2.1.1 Fiber to Ethernet Converters 

 
 
 

4.4.2.1.2  Fiber Optic Rotary Joints: 
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Fiber optic rotary joints or FORJs are used to make the junction between a 
stationary fiber cable and a rotating fiber cable. As discussed in the main section, 
the fiber optic rotary joints must be cable of rotating at speeds of 1800 RPM's 
while not inducing a significant amount of inference. Several fiber optic rotary 
joints are available on the market. One company providing a wide range of fiber 
optic rotary joints is the Moog Components Group. Almost all available rotary 
joints can support either multimode or single mode fiber cable and a wide 
wavelength range. Therefore, the research on fiber optic rotary joints will focus 
on the maximum rotating speed and minimum induced noise  into the signal. 
 
Although Moog provides a variety of fiber optic rotary joints, the manufacture 
however does not provide any FORJs that have a maximum rotating of 1800 
RPMs or higher. Fortunately, other manufactures do provided FORJs that can 
operate at the rotating speed required for the POV display. One alternative to 
Moog is Princetel and their line-up of available FORJs. In particular, Princetel 
offers the MJX series product line. The MJX series fiber optic rotary joints are 
capable of rotating at speeds up to 2000 RPMs. In addition to a maximum 
rotating speed of 2000 RPMs, Princetel's MJX series fiber optic rotary joints have 
an insertion loss of less than 2 dB (less than 0.5 dB typical) with an insertion loss 
ripple of less than plus/minus 0.25 dB. 
 
It is evident that the MJX series fiber optic rotating joint meets and exceeds all 
design criteria for the POV display. Depending on what fiber connector and 
wavelength is required to connected to the Ethernet convert, Table 4.4.2.1.2 
below shows available MJX rotating joints and their respective part number. 
 
Part Number Fiber Connector Wavelength 
MJX-850-ST ST 850 
MJX-850-SC SC 850 
MJX-131-ST ST 1310 
MJX-131-SC SC 1310 
 

Table 4.4.2.1.2 MJX Part Numbers 

4.4.2.2  Coaxial Copper Communications: 
 
In this section we will research the requirements for using a copper coaxial cable 
to transfer the data from the stationary side of the POV display to the rotating 
side of the POV display. 

4.4.2.2.1  Coaxial to Ethernet Conversion: 
 
Coaxial to Ethernet conversion is the back bone to modern cable modem 
internet. Coaxial communications relay on a single copper core that is shield by 
an equal but opposite current. This provides one fundamental advantage over 
fiber communications, the ability to conduct power over the same line as the data 
signal. This allows the conversion of signals to coaxial using simple in-line 
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converters that do not require any additional power supply. One such in-line 
convert is provided by EnConn. The EnConn EOC-IN-B Ethernet over Coax 
allows for the transmission of Ethernet of coaxial cable at transmission rates up 
to 10 Mbs. As stated early, the EOC-IN-B is an in-line or passive device. This 
means the EOC-IN-B does not require any additional power. In addition, the 
EOC-IN-B is a compact design allowing the device to be installed using less 
space not only on the stationary platform but the rotating chassis of the POV 
display. However, the EnConn EOC-IN-B only supports Ethernet 
communications up to 10 Mbs. In the case that the communications to the LED 
array will require a higher bandwidth additional research is required to determine 
the best alternative.  
 
One alternative from EnConn is their EOC-AN and EOC-IN Ethernet over Coax 
extender allows for transmission of Ethernet at rates of 10 Mbps up to 100 Mbps. 
The EOC-AN converter requires a DC power input of 12V but the EOC-IN does 
not require any power input. This means we could use the EOC-AN converter on 
the stationary side of the POV display and power the converter from the power 
supply. We would then install the more compact EOC-IN on the rotating side of 
the POV display. Another alternative would be Pulse Link's PL3302 Ethernet over 
Coax bridge. The PL3302 allows Ethernet communications of 10 Mbps, 100 
Mpbs and 1000 Mbps. Although the PL3302 allows for Ethernet communications 
up to 1000 Mbps, the Ethernet bridge will require DC power on both the 
stationary and the rotating side of the POV display. Another downside to the 
PL3302 is its size. The PL3302 dimensions are 6" wide x 1.75" high x 4.75" 
deep. Table 4.4.1.2.1 compares the differences between all converters. 
 

Part 
Number Mfr. Supported 

Data Rates 
Coax 
Connector 

Ethernet 
Connector 

EIR102-MT EnConn 10 Mbps BNC RJ-45 
EOC-
AN/IN EnConn 10/100 

Mbps MM SC RJ-45 

PL3302 Pulse 
Link 

10/100/1000 
Mbps MM ST RJ-45 

 
Table 4.4.2.2.1 Coax to Ethernet Converters 

4.4.2.2.2  Coax Rotating Joint: 
 
Once the Ethernet is converted to Coax, just like with fiber, the coax will require a 
rotating joint to make the bridge between the stationary side and the rotating 
side. Although extensive research was done, only one practical solution was 
found. Mercotac manufactures a variety of rotating joints and slip rings. Included 
Mercotac's product line is a two conductor Model 205 high speed, low torque 
rotating joint. The joint is not explicitly design for coaxial communications but due 
to the extremely low electrical noise induced by the joint and the fact that a 
coaxial cable can be simplified to two conductor cable makes the Model 205 a 
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feasible solution for transmitting the coax cable from the stationary side to the 
rotating side. Some other advantages of Mercotac's rotary joints are life 
expectancy and maintenance requirements. The Model 205 rotary joint is 
manufactured with a life expectancy of several hundred million revolutions. If a 
rotary joint is installed and operated under all specified conditions, Mercotac 
claims the joint can even last for over a billion revolutions. As well, the joints are 
manufactured for to be maintenance free, meaning they will not deteriorate the 
signal over the lifetime of the joint. Figure 4.4.1.2.2 below shows a typical 
mounting and wiring of a Model 205 joint. As well, Table 4.4.1.2.2 list all models 
and their corresponding specifications for the 205 joint. All Model 205 joints have 
two terminals, operate at a voltage range of 0-250 V AC/DC and a current rating 
of 4 Amps at 240 V AC. 
 

 
 

Figure 4.4.2.2.2 Model 205 Rotary Joint for Rotary Interfaces 
 
 
Part Number Max. Freq Max RPM Ball Bearing Cost 
205 200 MHz 2000 Steel $28.52 
205-SS 200 MHz 2000 Stainless Steel $37.68 
205-H 200 MHz 3600 Steel $29.62 
205-HS 200 MHz 3600 Stainless Steel $38.37 
 

Table 4.4.1.2.2: Coax to Ethernet Converters 

4.4.2.3  Ethernet Protocols: 
 
In order to determine which protocol is most appropriate for our purposes we will 
look at the protocols TCP, UDP, and using our own. TCP is protocol that is 



 

34 

 

designed to reliability transmit a stream of bytes between two programs running 
on separate systems. TCP allows a program to request the transmission of data 
with a single request and then takes care of segmenting it into IP sized packets, 
which contain a sequence of bytes and a header. TCP handles the scenarios 
such as out of order transmission, duplicate packets, and lost packets. Out of 
order packets are rearranged and lost packets and be requested to be resent. 
Reassembly of the stream of bytes is handled by the TCP receiver, which then 
passes the data to the program. The TCP protocol favors the accuracy of the 
data over timely delivery, and uses positive acknowledgement to guarantee 
reliability. In positive acknowledgement method, the receiver sends an 
acknowledgement for each packet it receives, and the sender expects to receive 
the acknowledgement within a certain amount of time, or it will resend the packet 
because it may have been lost or corrupt.  The favoring of accuracy over 
transmission speed makes TCP generally a poor choice for a real time 
application.  
 
Another protocol option is to consider is UDP. UDP doesn’t use any handshaking 
and does not guarantee that data is in order and not missing. Any reliability and 
accuracy checking, as well as error handling must be performed at the 
application level if it is a concern. In our case we could probably implement these 
checks at the application level. For instance after each frame is transmitted to the 
rotating board we could send a UDP datagram back to the stationary one 
confirming its receipt. UDP is often used for real time systems where losing a 
packet is preferable to waiting on it, which might make it lend itself better to our 
application. This does require that we handle the scenario losing a packet 
appropriately at the application level however, although ideally there will not be 
any packet loss. Packet loss is unlikely because our two systems are connected 
back to back via cross-over Ethernet cable, and the communication is limited to 
those two systems.  A UDP packet consists of a header which contains the 
source port number, destination port number, length, and a checksum, all of 
which is followed by the actual data. 

4.4.2.3.1  Ethernet Software Library: 
 
The stationary FPGA will communicate with the rotating FPGA using Ethernet 
wired communications. In this section we will be considering how the Ethernet 
communications work. This includes software library identification, and protocol 
selection. Software library identification for the FPGA was more challenging than 
expected. The Atlys board was expected to come with built in Ethernet 
functionality but it seems that this is not the case. Xilinx offers software in the 
form of Intellectual Property (IP) cores to support Ethernet communications but 
this core is not free. Licensing fees would cost us over $1,000. To keep the costs 
of this project low we searched for alternate solutions. There is a website 
opencores.org which has open source “cores” available for FPGA’s. Cores are 
FPGA software packages that program the FPGA to function like a certain 
hardware design. We were able to find a core which implements a 10/100 
Ethernet MAC on the FPGA. Using this core we should be able to use the 
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Ethernet ports on the FPGA’s for communication. If we use the Ethernet core 
then we will use the UDP protocol because flow control and acknowledgements 
are unnecessary for our application. A live video feed cannot afford to retransmit 
packets. It makes more sense to simply drop any lost packets and continue 
transmitting the next frames. 
 
Another alternative may possibly be to use the Ethernet ports in a non-standard 
way. We can use the pins on the RJ-45 connector to send the data using our 
own design. If we choose this route we will not be using any Ethernet protocols 
but simply sending raw data through a wire. This will be the simplest method to 
design and implement because it will not require any complicated software library 
or IP cores. After looking at example code using the Xilinx Ethernet MAC core it 
was obvious that many hours would be required just to understand the example. 
The core available through the opencores.org website was even more complex 
because it lacked documentation and examples. Another fact worth mentioning is 
that the cores do not work in a straightforward way like C programming. They are 
actual hardware implementations and should be viewed as such. If we create our 
own method of using the output pins for the RJ-45 connector we may be able to 
simplify communication greatly. We will create our own header for the data being 
sent to identify what is being sent. We will most likely use a clock speed of 
100MHz for a 100Mbit/s data sampling rate. 

4.4.2.4  Microprocessor Ethernet Hardware: 
 
A possible component to implement Ethernet communication on our boards is 
the Arduino Ethernet Shield, which would require that we use Arduino boards for 
the rotating and stationary controllers. The board has a 16 kilobyte buffer and 
has a connection speed of 10/100 Mb. The board supports both TCP and UDP 
connections as well as simply transferring single bytes at a time without any 
protocol. The board contains a library of functions including a server class, client 
class, and an EthernetUDP class, as well as the main Ethernet class and 
IPAddress class which allows you to assign the board an IP address. 

4.4.3 Wireless Communications: 
 
We will be considering wireless communications in order to send information 
from the stationary FPGA to the rotating microcontroller. The wireless 
communication must support a high enough bit rate to send a 320x240 color 
video signal. The color video signal will have 256 possible colors per pixel, so 8 
bits per pixel will be needed. We would also like to transmit 30 frames per 
second. The minimum required bitrate that we will need in order to achieve the 
desired frame rate will be 320x240x8x30 which is 18.432Mbps. We are also 
possibly considering a 480 LED array supporting a 640x480 resolution. If we 
were to use the higher resolution then our bandwidth requirements would be 
640x480x8x30 which is 73.728 Mbps. Both WiFi and Bluetooth are capable of 
these speeds so we will be considering both technologies. Generic RF 
communication will not be considered because we do not believe that it will 
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support the bandwidth that will be required for real time video. We will also be 
researching if the rotation of the microcontroller will hinder wireless 
communications. 

4.4.3.1 WiFi: 
 
WiFi is the common name for the IEEE 802.11 wireless communication standard. 
This technology most often uses a 2.4GHz frequency. A large advantage to using 
WiFi for our wireless communications is that all modern laptop computers have 
built in WiFi communication capabilities. It may be possible for us to write 
software for a PC that will allow direct WiFi communication between a PC and 
the rotating microcontroller in order to send text messages or images to be 
displayed.  

4.4.3.1.1 WiFi Protocols: 
 
The specific WiFi protocol we will be considering is 802.11g. Devices that use 
this protocol are commonly available and are capable of up to 54Mbps data 
transfer rates, which is more than enough for our application. WiFi has two 
possible modes of operation: infrastructure and ad-hoc. Infrastructure is the most 
commonly used mode, but it requires an existing infrastructure including wireless 
routers and/or wireless access points. We will be considering the ad-hoc mode 
for this project since it does not require any other external hardware. Ad-hoc will 
allow us to set up a direct wireless connection between the FPGA and the 
microcontroller for bi-directional communication. Although bi-directional 
communication will be supported we will probably only have to communicate in 
one direction. The following Figure 4.4.3.1.1 shows a comparison between 
infrastructure and ad-hoc modes of operation. 
 

 
 

Figure 4.4.3.1.1 Infrastructure/Ad-hoc Comparison. 
 
Because of WiFi’s popularity there are many options for WiFi hardware. Digilent 
offers a WiFi adapter for their boards although it only supports 2Mbps data rates. 
Arduino shields are also available to add WiFi support. All modern laptop 
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computers and cell phones have WiFi built in. With WiFi supported by so many 
devices it would be a convenient communication method for us to choose. 

4.4.3.2  Bluetooth 
 
Bluetooth may possibly provide an alternative to WiFi. A possible advantage that 
Bluetooth may have is that it is a low power, short range method of 
communication. Short range for our application may be desirable for security 
purposes. Anyone communicating with our display would have to be within about 
30 feet of the device. Bluetooth also works on the 2.4GHz frequency, and with 
the v3.0 specification can achieve data rates of up to 24Mbps. All modern cell 
phones have built in Bluetooth communication capabilities and allow us the 
option of creating a mobile application to interface with our POV display. If we 
can find suitable Bluetooth hardware compatible with our FPGA and 
microcontroller then this will most likely be our preferred method of wireless 
communication. 

4.4.3.2.1 Bluetooth Protocols: 
 
Bluetooth protocols are divided into two categories: controller stack and host 
stack. The controller stack protocols are protocols built into the Bluetooth 
module. The host stack protocols are what we will use to deal with our video data 
to be sent. We will be looking at both the controller and the host stack protocols 
relevant to our project in order to help facilitate communication programming 
during the design phase. First we will consider the relevant controller stack 
protocols which are: Link Management Protocol (LMP), and Asynchronous 
Connection-oriented Logical transport (ACL). The LMP protocol’s function is 
related to the name of the protocol, it manages the links. More specifically the 
LMP protocol deals with how Bluetooth devices can scan and discover each 
other and set up a link in order to exchange data. Once a link has been set up, a 
new protocol can take over communications between the devices, in our case 
this will most likely be ACL. The ACL protocol is designed to transmit general 
data packets on a previously set up Bluetooth link. ACL supports Enhanced Data 
Rate or EDR for increased bandwidth by changing the modulation technique. 
Theoretically Bluetooth is capable of achieving 24Mbps data rates using EDR. As 
far as hardware availability, the Digilent boards have a Bluetooth adapter 
available. There are also shields available for Arduino boards to add Bluetooth 
support. Adapters for PC’s are easy to find and affordable, if the PC doesn’t 
already have a built in solution. All modern cell phones have built in Bluetooth 
support. 
 

4.4.3.3 Effects of Rotational Speed: 
 
According to a research paper concerning wireless sensor networks, rotational 
speed is a factor in wireless signal quality. Some of the possible effects that we 
may have to consider are path loss, multipath fading, the Doppler effect, and 
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electromagnetic noise.  Path loss is when the path may become interrupted due 
to line of sight differences along the path that our rotating microcontroller will 
travel through. Multipath fading could happen if the microcontroller receives the 
same signal from different paths at the same time. The Doppler effect is most 
known for the frequency distortion of sound waves, but will have the same effect 
on electromagnetic waves as well. Electromagnetic noise could be caused by our 
mechanical components such as our motor, we probably do not need to consider 
electromagnetic noise for our project. According to the research paper, 
electromagnetic noise generated by mechanical components is usually in 
frequency ranges less than 1.5GHz. We will be using either WiFi or Bluetooth, 
both of which operated at the 2.4GHz frequency. It is safe to conclude that any 
electromagnetic noise introduced to our system from the mechanical components 
should not interfere with our wireless communications. 

4.5 Motor: 
 
In order to create the illusion of motion through the phenomena known as 
persistence of vision it comes to no surprise that we need some sort of motor. 
This motor needs to be able to rotate whatever apparatus we design that houses 
both the LEDs, processor, and any other circuit elements we need to implement 
the system. It also needs to be able to rotate at the rpm needed to ‘trick’ the brain 
into seeing motion. In addition, under the considerations that this project is being 
designed for the use of advertisement we would also like to find a motor that is 
as silent as possible so as to not be discomforting to those who either work 
around it or potential customers whom are attracted to it 
 
There are a variety of motors available for such a use but for the most part the 
motors fall into two categories AC and DC motors. In the following sections we 
will not only discuss the above design considerations but also discuss the pros 
and cons for both the AC and DC motors for each consideration. This discussion 
will eventually lead to which motor type we choose and the reasoning for the 
choice. Finally, in the last two sections we will discuss the process of controlling 
the motor we chose. 

4.5.1 Torque Requirements: 
 
As will be discussed further in the chassis design section it will show that we 
would need about 0.5 to 1 horse power to get the motor to just initially spin the 
LED apparatus. After that the torque requirements were much lower. This 
however, is actually a pretty large requirement for motor standards considering 
most cheap motors are rated for far lower ranges, somewhere in the 1/35 to 1/9 
horse power range. This proved to be a bit of an issue since that means we 
needed a high torque motor that also could maintain our revolutions per second 
value. 

4.5.1.1 AC Motor Application for Torque Requirements: 
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AC motors are perfect for this sort of activity. Our research showed that AC 
motors tend to be used for high torque requirements and specifically maintained 
high torque requirements. 

4.5.1.2 DC Motor Application for Torque Requirements: 
 
DC motors however, capable of getting high torque at start up but did not 
maintain them as effectively as AC motors. This did show though that both 
motors could be used for the application we desired it just seems that the DC 
motors needed for this application were rather costly. These motors can range 
from anywhere between two hundred dollars to a few thousand dollars. Used 
motors that reach these requirements are seemingly difficult to acquire, with 
none at the local Skycraft store available for purchase. Which meant our desire 
to purchase a cheaper alternative if we decide to use a DC motor would be 
difficult to accomplish. 

4.5.2 RPM Requirements: 
 
Under the consideration that the human eye is tricked into seeing motion at a 
rate of about twenty-five frames per second and a single rotation of the device is 
a frame we know we need a motor that can handle twenty-five rotations per 
second. This is the bare minimum. We decided that we want to overshoot this 
value by five frames or rotations in order to create a smoother image. Our group 
thus decided that thirty rotations or frames per second would be adequate.  
 
Thirty frames per second is equivalent to one-thousand-eight-hundred frames or 
rotations per minute. This means we need a motor that can make one-thousand-
eight-hundred rotations per minute to accomplish the desired frame rate. This 
rpm value cannot vary much and must be maintained at a constant rate 
otherwise there may be distortions in the image due to the increasing and 
decreasing of the delay between each flash of an LED. 

4.5.2.1 AC Motor Application for RPM Requirements: 
 
Through some research it became apparent that AC motors were quite capable 
of reaching these rpm values required. However, the real problem came in the 
control aspect of the motor, or more specifically the ability to keep the motor at a 
constant rpm value. The rpm value of an AC motor can only be varied through 
either the number of poles the motor is built with or through the electric frequency 
of the voltage being applied to it. This can be done through an inverter also 
known as a variable-frequency drive, and this is a plausible solution. It is 
however, an expensive solution with some inverters ranging from two-hundred to 
two-thousand dollars. According to further research it also seemed like this 
problem could be solve by just buying a DC motor since many DC motors are 
actually AC motors with these variable-frequency drives pre-built within them. 
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4.5.2.2  DC Motor Application for RPM Requirements: 
 
In the case of DC motors our research revealed that DC motors are generally 
used for our purposes, and the rpm requirements could be met easily with these 
motors. Considering DC motors are highly controllable and designed for constant 
rpm output it makes for a perfect fit with our application since our device would 
be running under one speed consistently and that speed must have minimal 
variations. 
 
Controlling a DC motor is actually a relatively simple process. We can either 
achieve it through a variable resistor albeit this can generate a lot of heat, or we 
can use some form of PWM circuit to control the rpm of the motor. This leaves us 
with some options and both are relatively inexpensive solutions. 

4.5.3 Sound Requirements: 
 
Considering this product is for in-person advertisement uses we want minimal 
obstructive noise. Especially if we are planning on playing videos off this device 
that include sound effects or music. This being the case there are two things that 
can cause large amounts of obstructive sound and that is either the motor or 
improper weighting. In the case of improper weighting the torque created by the 
motor alone causes rattling since the device is not properly balanced or 
fashioned down. This can be solved through the design of the chasse. However, 
we still have to watch out for our motor being rather loud. Our research showed 
that in this case DC motors trumped AC motors. AC motors tend to be much 
louder than DC motors of all makes and models. 

4.5.4 AC and DC Motor Comparison: 
 
With the above considerations reviewed it seems that a DC motor is the best fit. 
An AC motor, while capable of reaching the rpm values we need would 
drastically increase our costs in order to control the speed of the motor. A DC 
motor is much easier and cheaper to control requiring only a simple variable 
resistor or PWM circuit. An AC motor also leans to the noisy side of the spectrum 
of motors, which is something we want to limit within our device. As for the torque 
requirements it seems that both would pass the needs of our device, but with two 
thirds of the issues being solved either cheaper or better it comes down to a DC 
motor being a better choice for our application. 
 
 

4.5.5 Motor Control: 
 
Since we decided that a DC motor was the best fit as a solution to our 
mechanical needs, we needed to look further into the methods of controlling the 
motor's rpm value. Luckily our needs for the motor were relatively simple. The 
only thing we needed the motor to do was reach our desired rpm value and 
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maintain that value until the device was shut down. We did not need the POV 
device to vary its speed which would have required more elaborate methods of 
control. 
 
There turned out to be two methods that were commonly used for DC motor 
control and that is either using a variable resistor or potentiometer to control the 
speed or to use a pulse with modulation circuit to control the speed of the motor 
through the duty cycle. Both methods were found to be inexpensive but the 
question was which one was better suited for our purposes. 

4.5.5.1 Variable Resistance Method to Motor Control: 
 
In the case of the variable resistance method we came to learn through our 
research that it is the least liked method among motor users. There are quite a 
few problems with this method, especially if you are looking to constantly vary the 
speed of your motor or need to get a small speed but still turn on the motor. 
Lucky for us we didn't want to do either of these so it was still a viable solution. 
 
The main concept that turned us away from this solution though was the heating 
issues that were common with it. In many cases the resistor had a chance of 
burning out because of the high power strain on the resistor. 

4.5.5.2  Pulse Width Modulation Method for Motor Control: 
 
PWM turned out to be a little bit of an overkill for our project's design since we did 
not need the motor to be highly controllable just stainable. Device only needed to 
spin at a constant speed so there was no very high or very low speed 
requirements for the device, just the ability to spin our apparatus and to spin it 
consistently at the desired rpm value.  
 
PWM was quite capable of doing this and has very low heating effects on the 
system as long as you find the right components for the circuit. The biggest 
drawback to this method however was the noise. When using PWM there is a 
chance of causing mechanical noise within the system, or a humming sound. 

4.5.5.3 Variable Resistance and Pulse Width Modulation Motor 
Control Method Comparison: 

 
In the end though we wanted to limit the noise and the PWM was capable of 
doing far more then we needed the controller to do we decided that this was the 
best method. With the motor spinning at a high rpm value heat dissipation was a 
concern and this would help minimize any additional heat factors within the 
circuit. In addition, for the sake of scalability having the motor more controllable 
then our original purpose would leave the device open to any future upgrades to 
the system that might desire a stricter control system. 
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4.5.5.4  Sensor Reading Applications for Motor Control: 
 
The final concept we needed to think about for motor control though was actually 
tracking the rpm values of the motor so we could send a signal back to our 
controller to vary the input and adjust the speed of the motor to keep it constant. 
This was very important and had to be particularly accurate so that there was no 
distortions created within the image due to an increase or decrease in the rpm 
value and the predicted display rate. We had a couple of things to consider when 
deciding what form of sensing we were going to do to keep track of any changes 
in the rotation speed.  
 
The first being the structure of the device itself or in other words the chasse. If 
the actual apparatus that we rotated was directly pivoting on the motors shaft 
then the rpm value would sync closely with the motor and there would likely be 
minimal lose in rpm value. However, if we decided a gearbox was required to 
rotate it, such as in the case of using a wired transmission process, we would 
lose some rpm value in the translation between the motor and the gearbox. If this 
was the case then our sensing side would have to be able to measure the rpm 
value of the apparatus and not the actual motor itself. 
 
The second consideration is our sampling rate. Sense we are taking in a 
snapshot of this device’s motion we are going to want to know how frequently we 
want to take that snapshot. This is very important because we need to measure 
the rpm value rather frequently so that within one second we don’t lose or gain 
information. To put it in perspective one second is thirty frames and if we are 
losing even one percent of those we are losing point three frames. That doesn’t 
seem large but point three frames becomes eighteen frames in one minute and 
ninety frames in five minutes. And each of those is a distortion in the animation or 
image. This shows how important our sampling rate is to keep the integrity of the 
image. 
 
There are two options that seem to be rather common for rotational speed 
sensing when it comes to motors. These methods are the Hall effect and infrared 
sensing methods. Both have their pros and cons so we will look into those and 
whether they fit well for our application. 

4.5.5.4.1  Infrared Sensor: 
 
In the case of using infrared as a method for sensing and controlling the motor 
the process seemed relatively straight forward. We would have an infrared 
emitter on the rotating side of the device and an infrared receiver on the 
stationary side. When the emitter crossed the receiver we would get a “hit” which 
we could then use to calculate an rpm value. We could then send this value to a 
micro-controller where we would then determine whether to increase or decrease 
our motor's rpm value. 
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This method is very effective for any design we decide to go with. It can work for 
any motor type and is unaffected by the use of a gear-box, and in fact ideal for 
such a use. The only concern for this method is the accuracy. Considering we 
are using an infrared sensor there is a possibility for some fall trips or even failed 
trips. This means we need to have a substantial number of samples in order to 
prevent too many of these errors. This may mean we need more than one 
infrared sensor in order to prevent these errors such as two or four sets of them. 
 
As an added bonus, the use of this method is great for these projects for other 
reasons. Since we would be using infrared sensors to create trip points along the 
devices rotation we can use these trips points for other things besides just 
calculating the apparatus' rpm value. We can also use this method to predict 
points within its rotation and create finite starting points to our image, allowing 
use to split the image where ever we want. This means we aren't just floating the 
image anywhere the LED happens to start turning on in its trajectory. Uses of this 
include splitting the “screen” of the device into two separate sides, or drifting 
images or text in the opposite direction of our rotation. 

4.5.5.4.2 Hall Effect Sensor: 
 
The Hall Effect method for measuring and calculating the rpm value of the motor 
is very efficient for this application. This process is both relatively inexpensive 
and easy to implement and from our research seems to also have a very small 
error rate. There are however, a few issues with this method based on how we 
choose to use it. 
 
The first issue with this sensing method is it’s motor limitations. If we decide to 
use this on the motor side, such as in the case of direct motor-apparatus rotation, 
it is limited to motors that have a rotating magnetic pole within. This means AC 
motors or certain DC motors are a better fit for this sensing method. Since we 
have already ruled out AC motors because of the expense associated with 
controlling them among other issues, that leaves us with a limited number of DC 
motor types that can be applied to this sensing method. The most obvious type is 
a brush-less DC motor. This however, is not actually that hindering to our design 
since brush-less DC motors are actually good for this application and are 
generally very silent running motors. 
 
The second Issue with these sensors is kind of alluded to with the above 
paragraph in that they require a moving magnetic pole to measure. This means it 
would be difficult to implement this sensing method in the case of a gearbox 
design. We would have to create some form of moving magnetic pole on the 
rotating apparatus side that would cross the hall effect sensor in its rotation. This 
is possible but there are some unforeseen issues that could occur with the 
introduction of a moving magnetic field on the rotating side that is not being 
produced naturally by the components that are there. 
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4.5.5.4.3  Motor Sensor Comparison: 
 
After looking at both sensing methods and our over-arching design it seemed like 
the most effective form of controlling our motor would be through infrared 
sensing. While the accuracy of this method could prove to be an issue, with 
enough sample points we would be able to make up for any errors that could 
appear in our measurements. Considering we had already determined we were 
going to do a wired design it seemed like the best method for solving the issue of 
tracking the apparatus' rpm value instead of just the motor's rpm value. In 
addition, it gave us some additional control over our display and flexibility in what 
we could do with it. 

4.6 Chassis: 
 
In the following sections we will research the requirements for the chassis of the 
POV display. Two topics that will require research include what types of materials 
will be best suited to construct the POV display and how best to transfer the 
rotational power from the motor to the POV display. 

4.6.1 Chassis Materials: 
 
The chassis of the POV display will be where a majority of the weight is located. 
In order to maintain the portability of the POV display some materials we will 
eliminate from our research simply because their excessive weight. However, 
some weight from the chassis is required and preferred as the chassis must not 
twist or move while the POV display is running. As well, strength is an important 
factor as the chassis will but put through a range of forces as the display goes 
from stationary to full rotation speed. Steel and stainless steel both have high 
strength values but weigh more than is desired for portable device. Wood and 
plastics would reduce the weight of the display but do not offer the flexibility to 
make a customer design that the display most likely would require. As well, wood 
and plastics may be more susceptible to twisting and moving while the display is 
running. Therefore, we will focus our research on aluminum as it provides the 
best mix characteristics to meet the requirements of the chassis. Table 4.6.1 
below list several commonly used aluminum pieces, the type of aluminum and 
their weight. The information in Table 4.6.1 will be used to calculate the torque 
requirements of the POV display during the design phase of the chassis.  
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Type of Aluminum Weight 
1/4" Plate (Type 6061-T6) 1.764 lbs per square ft. 
1/4" x 1/4" Square Tubing (Type 6061 EXT) 0.294 lbs per lineal ft. 
1" Solid Rounds (Type 6061 EXT) 0.924 lbs per lineal ft. 
 

Table 4.6.1 Typical Aluminum Pieces and Weight 

4.6.2 Chassis Rotating Interface: 
 
The most challenging portion of the chassis design will be determining the best 
solution to rotate the POV display. At this time we do not know if we will use 
wired or wireless communications to connect to the rotating side of the POV 
display. We will need to research feasible solutions that will work with both forms 
of communications. If we use wired communications, the center point of rotation 
must be left available to allow for the mounting of either the fiber rotary joint or 
the coaxial rotary joint. Wireless communications will not require the center of 
rotation to be left available but will not be hindered from operation if the center 
was left available. Therefore, we will be researching options to allow for high 
speed rotation using some form of a bearing allowing free access to the center of 
rotation. 
 
To research possible solutions for rotating the POV display with the center of 
rotation left free, we will turn to an online distributor, McMaster-Carr. McMaster-
Carr offers a wide range of industrial products at reasonable prices. One such 
product, and the first feasible solution for rotating the POV display, is a plain 
bearing turntable. Turntables allow for the rotation of devices mounted on top 
while working on the device. One particular turntable, part number 8700K1, 
rotates with the center free and available to be used by the wired 
communications joint. The 8700K1 turntable can support loads up to 337 pounds, 
well above the weight requirements of the POV display. As well, there are 8 inner 
ring mounting holes and 8 outer ring mounting holes providing an adequate 
surface to mount not only the rotating display but also station supports. However, 
the turntable has two downsides that make it a less than desirable solution. The 
first downsides is the cost of the turntable is about $215. The second downside 
of the turntable is there are no posted maximum rotating speeds. These means 
that the turntable may be capable of rotating at the required speed of the POV 
display but no document exists to support it either way. 
 
The second feasible solution from McMaster-Carr, and more promising than the 
turntable, is an extended-ring steel ball bearing, Type ER. The extended-ring ball 
bearings have an extended inner ring making installing the bearings easier. 
Although the extended-ring ball bearing does not have any inner or outer 
mounting holes, it does have two knurled cup set screws on the extended inner 
ring that could be used to secure the rotating side of the POV display to the 
bearing. As well, the bearings have a dynamic load capacity of 2,860 pounds and 
more depending on the part number selected. All Type ER extended-ring 
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bearings have a max operating speed of 5,000 rpm, far extending the 
requirements of the POV display. As well, the cost of the bearings start at about 
$30 and go up to about $80 depending on the part number and size. Table 4.6.2 
below shows some available extended-ring ball bearings, there size and cost. 
 
 
 
Bearing 
No. 

Shaft 
Dia. 

OD Wd. Load Part # Cost 

ER10 5/8" 1.85" 1 7/32" 2,860 lbs 8090T11 $29.67 
ER12 3/4" 1.85" 1 7/32" 2,860 lbs 8090T12 $32.61 
ER16 1" 2.05" 1 3/8" 3,145 lbs 8090T13 $33.79 
ER24 1 1/2" 3.15" 1 15/16" 6,535 lbs 8090T17 $59.40 
 

Table 4.6.2 Extended-Ring Ball Bearings 

4.7 Graphical User Interface: 
 
We will be developing a GUI for use on a PC and possibly also an android device 
which will allow us to send either a text message or image to be displayed on the 
POV display. If sending an image to be displayed then the image will have to be 
in the correct resolution and format. If time permits we may be able to have the 
software handle some basic image formatting. First we will discuss the 
requirements of the application and the method of communication. Last we will 
consider multiple programming languages that will allow us to create the 
application effectively and efficiently. 
 

4.7.1 Required Functions: 
 
Part of the research for the GUI is the identification of the requirements. The 
requirements must be identified before the design can begin. We are going to 
use a simplified waterfall model for our software development life cycle. We are 
going to list the requirements, design the software, and then finally implement 
and test the software. In this section we will focus on the requirements 
identification only. The design and testing portion will be discussed in the 
corresponding section later in the paper. The following Figure 4.7.1.a shows a 
diagram showing the simplified waterfall model we will be using for developing 
the GUI. 
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Figure 4.7.1.a Software Development Life Cycle – Waterfall Model 
 
The GUI must provide an easy to understand and user friendly interface. The 
interface should have very few elements to avoid confusion. The GUI should be 
operable by anyone and not require any technical knowledge of our display. No 
training should be necessary, and everything in the GUI should be properly 
labeled and intuitive. The only functions necessary are to allow the user to enter 
a text message to display, and to allow the user to select an image file to display. 
The text field should support multiple lines of text and offer the user multiple color 
choices. There should also be color options that the user can use to select the 
color of the entire message and possibly of individual letters. Depending on our 
time constraints there are certain features that may not be necessary such a 
changing the color of individual letters. The text message input is discussed in 
more detail in the design section for the GUI.  
 
The image input will only accept the correct format and resolution images to 
display. If the selected image file is smaller than the maximum size than it will still 
be accepted and the image will display centered in the LED display. This can 
possibly be done by analyzing the size of the input image and calculating where 
to put the image so that the space to the left and right of the image is equal, and 
the same for the space above and below the image. If time permits we may 
further increase the functionality of our software to properly scale images that are 
too large to be fully displayed. This would be a simple algorithm that simply picks 
and chooses every other pixel to display or something similar. The image input, 
like the text input, is also discussed in more detail in the design section for the 
GUI. A simple use case diagram is shown in Figure 4.7.1.b to highlight the main 
requirements of the GUI. 
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Figure 4.7.1.b Use case diagram for GUI 

4.7.2 Programming Language: 
 
We must choose a programming language to build the communication 
application. We should consider multiple programming languages and choose 
the best one suited to our task and also choose one which we are familiar with. 
This application will have a user friendly GUI and allow simple serial 
communications. All of the requirements listed above must be considered when 
choosing the appropriate language. In order to efficiently create a GUI the 
language will be required to have built in libraries that support agile GUI 
development. The IDE should provide tools that will allow most of the 
development to focus on coding the core functions of the application and not on 
the GUI’s appearance and layout. We will be considering C++, Visual Basic, and 
Java. 
 
The C++ programming language is something that we are all familiar with. C 
programming is where we started our programming education and is where C++ 
is derived. This is an object oriented language with wide support and plenty of 
documentation. We have no experience creating a GUI in C++ so further 
research was needed in order to determine whether or not C++ would be worth 
considering for the user friendly application that we are striving for. After some 
research it was found that there are GUI libraries available to assist in developing 
a GUI in C++ but there are multiple GUI libraries to choose from. Multiple choices 
for a GUI library further complicates things since further research must be 
conducted in order to determine which would be the best library to use. There 
does not seem to be a visual GUI editor for C++ available, and it seems that for 
most GUI applications, C++ is not the language of choice. We believe it is safe to 
say that C++ should not be the language we use to build our communications 
GUI application. Even though C++ is not the best choice for developing the GUI, 
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C++ may be better suited to interface with the hardware for USB 
communications. We will be searching for libraries to solve this problem once a 
language has been decided on. 
 
Visual Basic is a programming language that is specifically designed to allow 
agile development of GUI applications. The IDE, Visual Studio, has a visual GUI 
editor for programs using Visual Basic. It is very easy to drag and drop text 
boxes, labels, buttons, etc. onto each form of the application. Programming the 
functions of the elements placed in the form becomes as simple as double 
clicking that item and the IDE will jump to the code that controls it. This could be 
a good choice for quickly developing a GUI based application, but only one 
member in our group is familiar with this programming language which may not 
be adequate. It will most likely be more efficient to have more than one group 
member to assist in the development of this application and having to learn a 
new language may decrease productivity. 
 
The Java programming language will probably be the best language for both 
developing a GUI for a PC and for an android device if we are able. The 
Netbeans IDE has a built in visual GUI editor for Java which greatly simplifies 
GUI design and implementation. The Netbeans GUI editor will allow us to 
develop a GUI application in a similar way that Visual Basic would have allowed 
us to. Java is a high level object oriented language and has many built in classes 
to support agile development. There are also many open source Java libraries 
available for download to provide further features and functionality. We are also 
already familiar with the Java programming language. Java is the obvious choice 
for a high level programming language that we already possess enough 
knowledge to code in and has enough built in features and tools to allow us to 
rapidly build the tools we need for our project. The only drawback to using Java 
is the limited functionality when it comes to accessing connected hardware. This 
can become an issue for us since we are planning on using communications 
through USB, or a connected wireless adapter. In order for us to implement USB 
communications using Java we are going to have to find a suitable driver for our 
desired operating system and find a Java library that is capable of interfacing 
with that driver. Assuming we can find such a driver and software library 
combination it can be safe to say that we will be using java for our GUI 
application development. 
 

4.7.2.1  Image Format Conversion and Resizing: 
 
Our GUI will allow users to select an image to be displayed and load it onto the 
rotating processor. Without being too restrictive on the user, we want our 
program to accept virtually any image file format that is common. The primary 
information we need from the image are the RGB values contained within it so 
that we can format an output file that our device will understand. Each image 
format is different and must be decoded via some method in order for us to 
obtain this data.  
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In order to handle the various image types that the user could select, we have 
determined that functions within the java library will be able to handle this.  
Several java classes will be used in order to do this, ImageIO, BufferedImage, 
and indirectly ImageReader. Using the java ImageIO class, we open an image 
file by using ImageIO.read() and supply an argument of a name/path. The 
ImageIO class on its own will then search for an ImageReader that claims to be 
able to read that type of image, and decode it. ImageIO.read() will return a java 
BufferedImage, from which we can easily obtain the RGB values by calling the 
function BufferedImage.getRGB() and supplying an x and y coordinate. Using 
this library the user will not need to be concerned with the image file format, and 
we will not need to code the tedious functions that would be required to decode 
the many image format possibilities.  
 
Another concern involves image resizing. Using the simplest solution we would 
require that the user resize the image manually using image editing programs 
before trying to upload it. However, because the BufferedImage class will tell us 
the size of the image that has been selected by called BufferedImage.getHeight() 
and BufferedImage.getWidth(), we could handle the scenarios where the image 
is too small or too large in specific ways. In the case where it’s too large, we 
could simply truncate the image, or offer various methods of cropping the image. 
If the image is too small, it could be padded and centered, depending on user 
specifications. 

4.7.3  GUI Communications to Microcontroller: 
 
The program will have to communicate with the microcontroller in order to get the 
correct image to display on the LED array. The communication should either be 
the wireless communication that we choose to use (WiFi or Bluetooth) or it 
should be through a USB cable. The preferred method of communication would 
be through WiFi or Bluetooth since this is also supported by android devices and 
would allow us to send images to be displayed on the LED’s with our mobile 
phones. It would be very convenient as well if we did not have to connect a 
laptop to our display with any wires. If we use WiFi we will have to use the ad-
hoc mode of networking since it would not be very practical for this project to 
require a wireless router as well. If Bluetooth is used then Bluetooth will be the 
communication method when using the mobile application, but when using a PC 
a cable will be required. This is because most PC’s do not have Bluetooth built in 
so it would be counter-productive to develop a PC application that utilizes 
Bluetooth communications. If we have additional time we may be able to include 
Bluetooth communication support for the PC application as well. 

4.7.3.1  Serial Communication Software Library: 
 
At first it seemed that Java would not have a way to access USB devices. There 
are no built in methods to allow Java hardware access for serial communications. 
There is a library created by Sun which allows serial communications, but it is 
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only supported on the Linux operating system. Further research allowed us to 
find a community created Java library called RxTx which supports serial 
communications on multiple platforms including Windows. In order for the RxTx 
library to work however, we need to find a valid USB driver that will allow 
windows to recognize the connected device for serial communications. If the 
Digilent Atlys board does not include USB drivers for this purpose, we have 
found a driver download as well. The driver is for the Universal Asynchronous 
Receiver/Transmitter or UART chip that is on the Atlys board. The UART chip 
allows the USB to function as a serial communication interface. With the proper 
drivers installed communicating with the Atlys board using USB should be no 
different than using the older RS-232 method. Once the RxTx Library is properly 
added to the JDK we can than import the methods and use them for our project. 
There are methods in the library to handle listing the available serial 
communication ports. The library will then allow us to choose an available port 
and use it for communication. Input and output streams will need to be declared 
in order to send and receive data. Overall the library seems to make it rather 
easy to send and receive serial communications. More details on how the serial 
programming works are provided in the design section. 

4.8 Microcontrollers: 
 
There are many microcontrollers available with many different feature sets. This 
research will focus on the different microcontrollers available and which ones we 
should use in our POV display. We are going to need two microcontrollers, one is 
going to have to deal with the video input and remain stationary in order to be 
able to plug in a device such as a laptop or DVD player. The other 
microcontroller will rotate along with the LED’s and provide all of the information 
to the LED controllers so that they can send the PWM signals to each LED. 
 
The stationary microcontroller is most likely going to be an FPGA since this has 
been the only solution we have been able to find regarding a board that accepts 
HDMI input. The cost of the FPGA is going to be considerable since it is a board 
designed to take HDMI input and possibly process that video signal. HDMI is 
most likely a high definition signal and therefore would require a powerful board 
in order to effectively process that amount of data efficiently. We all have 
academic experience programming an FPGA using Verilog so our biggest 
challenge is going to be figuring out how to process the video input. 
 
Our rotating microcontroller will be considerably cheaper; this microcontroller 
does not have any special requirements other than having enough outputs to 
service the latches and LED’s. For our rotating microcontroller we will focus on a 
combination of cost, and ease of use. Ease of use is a factor because we do not 
have the same experience working with microcontrollers that we do with FPGA 
devices. We would want a microcontroller that will be easy to learn and easy to 
work with. Because of the large number of LED’s we plan on using, we may also 
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have to consider the number of outputs that each microcontroller is able to 
support. 

4.8.1 Digilent Atlys (Stationary FPGA): 
 
The Xilinx Spartan 6 FPGA available on the Digilent Atlys board. The Atlys board 
has onboard HDMI input. The main reason for choosing this board is for the 
HDMI input which will allow us to receive a video input in order to display it on the 
LED array. The HDMI input on the Atlys board will automatically take care of the 
TMDS decoding for us. We will have to figure out how to represent the video data 
in such a way that our secondary microcontroller will be able to split up the data 
and send it to the proper latches to control the LED’s. The Atlys board does not 
seem to have built in pins in order to connect directly to the FPGA’s I/O’s. There 
is a VMOD peripheral that would take care of this problem and allow us to 
connect wires to any of the I/O’s, but this will increase the cost of an already 
expensive board. 

4.8.2 TI Launchpad (Rotating Microcontroller): 
 
TI offers a very cheap microcontroller that we may be able to take advantage of. 
The MSP-EXP430G2 or Launchpad is a development board for the 
MSP430G2XXX series of microcontrollers. The board only costs $4.30 and 
includes two MSP430 microcontrollers, and a USB cable. The board will allow us 
to program the microcontrollers using the USB interface. This microcontroller has 
very widespread support, documentation, and example projects. Possible 
limitations include the limited number of I/O ports, 2KB of program memory, and 
128B of SRAM. The microcontrollers that come with the Launchpad board only 
have 10 available I/O pins. If we were to purchase a separate higher end 
compatible microcontroller we can increase the number of outputs to 16. The low 
number of I/O pins may require us to use more than 1 microcontroller, but as 
stated earlier the Launchpad comes with 2 of them already, and the higher end 
MSP430 controllers with 16 I/O ports are less than $2 each. 

4.8.3 Arduino Uno REV 3 (Rotating Microcontroller): 
 
The Arduino Uno board is another alternative to the TI Launchpad. This board 
comes with an ATmega328 microcontroller on it. The Arduino Uno board takes 
care of the USB interfacing and programming. This board is more expensive than 
the TI Launchpad at $35. The higher price may be justified by the increased 
performance and memory of the microcontroller included. The ATmega328 has 
31.5KB available for program memory (0.5KB is used by the boot loader), 2KB of 
SRAM, and 1KB of EEPROM. The ATmega328 also has 14 I/O pins, 6 of which 
can be used for PWM. Another feature that may be useful is I2C support. I2C will 
allow us to have serial communications to possibly another IC that will expand 
the number of I/O’s available to us. This board is also widely available and 
supported. There are many hobbyist projects with open source documentation 
and examples for helping us get familiar with programming this board. The 
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additional program memory and RAM may not be necessary, but the additional 
outputs that this board provides may make a difference. Another thing to 
consider is the programming language. The Arduino Uno board allows the use of 
a C-like language to program the ATmega328 microprocessor. If we were to use 
the TI Launchpad we would have to use assembly. It may be easier and more 
time efficient to use the Arduino Uno board. 

4.8.4 Digilent Cerebot MX7cK (Rotating Microcontroller): 
 
The Digilent Cerebot MX7cK development board has a 32-bit PIC32 
microprocessor. This is an expensive choice for the rotating microcontroller but it 
has a much higher clock speed of 80MHz. This higher clock speed may be 
required for our project if we are to process full motion video in real time. This 
board also has a built in Ethernet interface which we can possibly use for 
communications between the stationary FPGA and the rotating microcontroller. 
Programming the Cerebot board should be similar to programming the Arduino. 
Digilent advertises the fact that Arduino projects and code should be compatible 
with their Cerebot boards. Although the Cerebot board seems to outperform the 
other boards in every category it is much more expensive at $99. It may also be 
necessary for us to buy additional Pmod accessories in order to access some of 
the I/O pins further increasing the cost. We hope to find a microcontroller for the 
rotating part of our project that can keep costs to a minimum while having the 
required performance needed for a live video feed. The following Table 4.8.4 
shows a simple comparison between all of the previously discussed 
microcontrollers being considered for the rotating part of our project. 
 
Microcontroller Comparison 

 Digilent Atlys TI Launchpad Arduino Uno Cerebot 
MX7cK 

Program 
Memory 64MB 2KB 31.5KB 512KB 

SRAM 128MB 128B 2KB 128KB 
EEPROM 0B 0B 1KB 0B 
I/O 48 10 14 85 
Frequency 500MHz 16MHz 16MHz 80MHz 
Programming Verilog HDL Assembly High-level High-level 
Cost $199 $4.30 $35 $99 

 
Table 4.8.4 Microcontroller Comparison 

4.8.5 Additional Microcontroller Concerns: 
 
This project is highly dependent on sponsorship funding in order to include all of 
our intended features. Video input is not normally a feature found in a POV 
display. Our research has indicated that the reason for this may be the costs 
involved. The Atlys board described above is absolutely necessary for us to 
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consider live video input for our POV display but there are other considerations 
that must be addressed as well. At first we decided that our secondary 
microcontroller which will spin along with all of the LED’s need not be as complex 
and expensive as the Atlys board. After much research it became apparent that 
although we do not need an HDMI input on the rotating board, we do need a 
substantial clock frequency in order to properly sample the large amounts of data 
required for a live video feed. In previous sections we have mentioned possible 
data rates that would be required to be sent through communications between 
the two microcontroller boards. Regardless of the communication method we 
choose, we must not consider if these microcontrollers can properly sample the 
data at the required speeds to display a live video feed. Table 4.8.5 shows 
possible resolutions we may consider for our display and the required data bit 
rate necessary. The values in the table assume that the video data is not 
compressed. 
 

Resolution Data Rate 
640x480 73.728 Mbit/s 
320x240 18.432 Mbit/s 
160x120 4.608 Mbit/s 
80x60 1.152 Mbit/s 
40x30 0.288 Mbit/s 

 
Table 4.8.5 Possible Resolutions and Corresponding Data Rates 

 
The data rate values in table 4.8.5.a are calculated using the simple formula HP 
× VP × BPP × FPS where HP is Horizontal Pixels, VP is Vertical Pixels, BPP its 
Bits Per Pixel, and FPS is Frames Per Second. According to the data sheet for 
the ATmega328 microcontroller, the maximum data rate that the microcontroller 
is capable of sampling with its 16MHz crystal is 2Mbit/s. This means that the 
Arduino Uno and TI Launchpad development boards would only be able to 
support a display with a resolution up to 80x60. The calculation to determine the 
maximum data rate given the frequency of the microcontroller is given in the data 
sheet for the ATmega328. The formula is shown next for reference. 
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Although formula above came from the ATmega328 data sheet it can still be 
used as an approximation for the capabilities of the other processors too. The 
baud rate for the ATmega328 is measured in bits per second which is why the 
maximum data rate for the ATmega328 mentioned previously was in the units of 
Mbit/s. Using formula 3.8.4-1 for an 80MHz clock frequency it can be said that 
the maximum practical data rate that the Cerebot MX7cK microcontroller should 
be able to effectively sample should be about 10Mbit/s. The higher clock speed 
allows for a much higher data rate. The maximum resolution that we are 
considering that can be implemented with 10Mbit/s maximum data rates is 
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160x120. This leads us to the conclusion that if we intend to implement any 
resolution higher that 160x120 then we will have to use two of the Digilent Atlys 
boards, one which will remain stationary to receive the video input, and the 
second one to spin with the LED’s and send all of the data to the LED controllers. 
Only the 500MHz clock on the Atlys board would be able to effectively sample 
the high amounts of data associated with uncompressed high resolution video. 

5 Hardware Design: 
 
The hardware of this device is broken into four major sections. That is the input 
section of the device which encompasses both the computer input such as HDMI 
and USB. It also includes the power supply of the entire device. Then on the 
stationary side of the device is the stationary control system. This section 
includes the motor control system, such as the pulse width modulation circuit and 
the tachometer. It also includes the stationary FPGA board. Then the next 
section is the data transfer section. This portion of the device includes both the 
slip ring design, Ethernet and coaxial rotational joint conversion. Finally the last 
section of the device is the rotational control section. This section of the device 
includes the rotating FPGA board and the LED array including the LED 
controllers. Figure 4 gives a good visual representation of the flow of the 
hardware and how they will be connected together. 
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Figure 5 Hardware Flow Chart 
 

Each of these sections of the device have a variety of different hardware 
components needed in order to achieve the ultimate goal of creating this 
persistence of vision device. The following sections will discuss more thoroughly 
our final decisions on the hardware design of each portion of this device and the 
actual hardware design themselves. This will include the specific components we 
intend to use to implement each of these designs. Also within this section will be 
a layout of the structural construction of the chassis which will house all of the 
electrical hardware for this device. 
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5.1 Chassis Hardware Design: 
 
As discussed during the research section for the chassis, we will be constructing 
the chassis from aluminum using a combination of aluminum plate, square tubing 
and solid round rods. 

5.1.1 Chassis Dimensions: 
 
Before we can finalize our chassis design, some basic dimension requirements 
must be identified. The first, and most critical dimension requirement will be for 
the physical size of the LED array. We will then need to determine the size of the 
chassis base and the space required to mount the motor. 

5.1.1.1  Dimensions of LED Array: 
 
We will be using Multicomp's SMD Super Bright LED, part number OVS-3309. 
The LED has a vertical dimension of 2.8mm and a horizontal dimension of 
3.2mm. The horizontal dimension will be required to properly mount the LEDs on 
a printed circuit board but are not a dimension required or even necessary to 
determine the size of the LED array and will therefore be ignored for the chassis 
design. Assuming we will mount the LEDs with a spacing of 1mm between each 
LED, we can determine that the spacing between each LED, as measured from 
center to center, will be 2.85mm. Therefore, the total vertical length of the LED 
array will be 2.85mm x 480 LEDs or 1,368mm. Converting the total vertical length 
to inches gives a final dimension of 53.858 inches. 
 
Next, we will need to determine the diameter of the LED array. When the POV 
display is running, we can simplify the LED array to cylinder. As well, since we 
will want the horizontal spacing of the LEDs to be the same as the vertical 
spacing of the LEDs, we can use the known pixel ratio of 480 to 640 to determine 
the length required. Dividing 640 by 480 gives the ratio of horizontal pixels to 
vertical pixels, which equals 1.333 or 5:3. For accuracy, we will initially calculate 
the required horizontal length in millimeters. Taking the ratio of 5:3 and 
multiplying by the known vertical length of 1,368mm we get a required horizontal 
length of 1,824mm. Since the LED array can be simplified to a cylinder, we now 
know the circumference of the LED array. Using the formula of C = 2πr, we can 
calculate the radius of the LED array which is equal to 290.299mm. Converting 
the radius to inches, we get a final dimension of 11.429 inches. 
 
In summary, the required dimensions of the LED array when the POV display is 
running will be equal to a cylinder with a radius of 11.429 inches and a height of 
53.858 inches. If we convert the circumference to inches, as seen below, we can 
verify that our results due match the desired aspect ratio of 480 x 640. 
 

������
���

� ����� � �
������
���

 



 

58 

 

5.1.1.2  Dimensions of Chassis Base: 
 
Now that we know the size of the LED array when the POV display is spinning, 
we can determine an appropriate size for the chassis base. The chassis base will 
serve two purpose for the POV display. The first and most obvious purpose is to 
provide an adequate foundation for the display. The second purpose and more 
important than the first, will be to provide a visually marker to signify where the 
limit is to approach the display while it is running. This will be especially important 
if, for example, the display is running but displaying an image. Therefore, we will 
construct the base of the POV display to extend two inches past the fast rotating 
LED array. Since we now know the radius of the spinning LED array, we can 
determine that the base will need to be at least a 27 inch by 27 inch square. To 
simplify the fabrication process and for extra precaution, we will construct the 
base to be an even 28 inch square. Since we will be constructing the chassis out 
of 1/4 inch aluminum plate, a 28 inch square base should provide plenty of 
weight and strength to fully support the POV display while it is running. 
 
The last dimension required before we can determine the final design of the 
chassis will be to know the physical size of the motor. Size the motor will be 
mounted on the base, it will determine the height of the base. The motor we will 
be using is a wound field DC motor manufactured by Prestolite Motors. The 
overall length of the motor is 6.8 inches. To allow room to mount and secure the 
motor to the base, we will design the base with an internal height of 8 inches. 
Taking into account the thickness of the aluminum plate, the total height for the 
base will be 8.5 inches. Therefore, the total size of the chassis base will be 27 
inches x 27 inches x 8.5 inches. 

5.1.2 Chassis Assembly: 
 
Now that we know the required dimensions of the chassis we can begin to design 
the assembly of the chassis. A complete chassis model can be seen in Figure 
5.1.2.c below.  
 
The first step to putting together our final design of the chassis will be to 
determine which rotating interface we will use to transfer the rotating power of the 
motor to the LED array. As discussed in our research, we have two options. The 
first option of the turntable provides the easiest solution for mounting the LED 
array and base to the rotating interface. However, due to cost and no defined 
specification of the maximum rotating speed, we will choose to use the extended-
ring bearing. In order to provide the most space for feeding the power supply 
cable and communications cable through the rotating interface, we will choose to 
use the extended-ring bearing with a one inch shaft diameter, part number 
8090T13. We will secure the bearing to the base of the chassis by welding the 
extended-ring portion of the bearing to the top of the base. Although welding 
does not allow for easy modifications, it will provide a strong and secure method 
that will hold the bearing in place during operation of the POV display. In order to 
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secure the LED array to the bearing, we will insert a aluminum pipe through the 
inner ring of the bearing. The pipe will be secured to the bearing using the two 
set screws that come installed on the bearing. This will allow for the POV display 
to be easily disassembled when moving between locations. Using this design 
allows the pipe to be used to mount a slip ring for electrical power transfer as well 
as a pulley system from transferring the rotationally power from the motor. Lastly, 
the pipe will be notched on the top to allow the LED array support bar to be 
secured to the pipe. Figure 5.1.2.a below shows a model of the bearing and pipe 
assembly. The chassis base and LED array support frame are removed for 
clarity. 
 

 
 

Figure 5.1.2.a Bearing Assembly 
 

Next we will design the chassis base. As discussed, the chassis base will be 28 
inches x 28 inches x 8.5 inches. The base will be constructed out of two 1/4 inch 
pieces of aluminum plate creating a top plate and a bottom plate. The two plates 
will be secured together by four solid aluminum rods, one in each corner, cut to 8 
inches lengths. The plates will have counter sunk holes drilled in each corner, 
three inches from each side. The rods will be drilled and tapped in the center to 
accept a 1/4-20 screw. The rods and plates will be assembled by screwing the 
plates and rods together. The counter sunk holes on the plates will allow for the 
screws to be flush with the surface. In order to mount the bearing, a hole will be 
cut out from the center of the top plate. The diameter of the hole will be larger 
than the diameter of the inner ring of the bearing but smaller than the extended 
flange of the bearing. This will allow for the bearing to rest on the top plate and 
provide a surface for the bearing to be welded to the  plate. Figure 5.1.2.b below 
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shows a model of the base assembly, including the cut out on the top plate for 
the bearing. 
 

 
 

Figure 5.1.2.b Chassis Base Assembly 
 
The LED array support frame will be constructed from 1/8 inch square tubing. 
From the calculations for dimension requirements of the LED array, we know that 
the horizontal LED array support bar, the piece that will be connected to the 
notched pipe, needs to be 22.585 inches long. This dimension needs to be exact 
as it will directly affect the aspect ratio of the display. At each end of the 
horizontal LED array support bar, vertical LED array support bars will be welded. 
We know from the LED array dimension requirements that the vertical support 
bars must be at least 53.585 inches long. However, because the actual length of 
the vertical bar does not determine the aspect ratio of the display, to simplify the 
fabrication process we will construct the vertical support bars to be 55 inches 
long. The vertical support bars will be drilled and tapped to accept 10-32 screws 
every two inches. This will provide enough mounting holes to mount the printed 
circuit boards for the LED array. The number of mounting holes will help reduce 
vibration and securely fasten the LED array to the chassis while the display is 
running. We will determine if diagonal support bars are required after testing the 
chassis.  
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Figure 5.1.2.c Chassis Base Assembly 

5.1.3 Motor Interface: 
 
As briefly mentioned during the chassis assembly section, to transfer the power 
from the motor to the chassis, we will purchase a pulley to be mounted to the 
shaft of the motor. Since the outer diameter of the pipe is one inch, to maintain a 
1:1 rotational transfer, we will use a pulley with a one inch outer diameter and a 
bore size appropriate to fit on the motor shaft. If we use a flat belt pulley system, 
for the chassis side we would be able to attached the belt directly to the pipe. To 
minimize the belt from slipping we would increase the friction on the section of 
pipe where the belt would touch. 
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5.1.4 Chassis Torque Calculations: 
 
Now that we have a finalized design for the POV display chassis, we will need to 
estimate the torque requirements. This will only be an estimate to help decide the 
size of motor we will require and not an exact calculation. To help simplify the 
problem we broke the chassis into several pieces for which we can calculated the 
moment of inertia for each piece. Adding together the moment of inertia for each 
piece gave use a total inertia of 0.757 kg-m2. Using a frequency of rotation of 44 
Hz, we calculated the angular acceleration. Multiplying the total moment of inertia 
by the angular acceleration gave us an estimated torque value of 0.876 N-m. 
Therefore, the motor must be capable of providing 1 N-m of torque at  2,640 
RPMs. 

5.2 LED Array Hardware Design: 
 
As discussed during the research section for the LED array, there are two 
options for controlling the LEDs. One option was to use a latch control system 
and the second option was to use pulse width modulation LED controllers 
manufactured by Texas Instruments. Due to the easy integration of the LED 
controllers into the microcontroller outputs and the built-in latch control we will 
choose to control the LED array using the PWM controllers. In particular, we will 
be using the TLC5940 16 channel LED driver. The reason for choosing to use 
the TLC5940 is due to its high data transfer rate of 30 MHz. As well, the 
TLC5940 allows for dot correction of individual LEDs if we find, during testing of 
the LED array, that one or more LEDs appear dimmer or brighter than all other 
LEDs. However, there is one very important design restriction that we must 
overcome in order to use the TLC5940. If we maintain our current design criteria 
of 30 fps and 640 horizontal pixels, our frequency of updating the LED array will 
be 30 x 640 or 19,200 times per second. As well, we will cascade all the red 
LEDs together, all the green LEDs together and all the blue LEDs together. This 
will mean we will require (3) groups of (30) cascaded TLC5940 controllers. By 
applying the characteristic equations below to our requirement of an updating 
frequency of 19.2 KHz and cascaded controllers, we will find that we will exceed 
the max serial data transfer rate of 30 MHz. 
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Initially, some additional research was done to determine if another controller 
was available that could operate at a maximum data transfer rate of 111 MHz. It 
was quickly discovered that no other option, at least at the cost we require, that 
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could handle this high data rate transfer. The data rate transfer restriction was 
due to the shift register inside the TLC5940 controller. Therefore, to overcome 
the restrictions of the TLC5940 controller we will make two changes to the POV 
display. The first change will be the frame rate. Essentially, we will use a variant 
of vertical interlacing. Instead of operating at 30 fps and 640 horizontal pixels, we 
will have two groups of LED controllers operating at  22 fps and 320 horizontal 
pixels. The two groups of LED controllers will be called Group A and Group B. 
Group A will operate while Group B is being addressed. Then, while Group B is 
operating, Group A will be addressed. Both groups of LED controllers will still 
output to the same vertical array of LEDs (so no additional LEDs are required) 
but now each group can be individually addressed at a much slower rate. The 
total frames per second as seen by a user will now be 44 fps but still maintaining 
the 640 pixels. Therefore, the new frequency of updating for each group of LED 
controllers will be 22 x 320 or 7,040 times per second. The only disadvantage to 
adding a secondary group of LED controllers is we now require double the 
amount of controllers or a total of (180). 
 
However, we still exceed the maximum transfer rate of the SCLK and SIN. To 
overcome this restriction we will change the number of cascaded controllers. 
Similar to the solution of vertical interlacing, we will break the vertical LED into 
two groups, a top group and a bottom group. The top group will be called Group 
A and the bottom group will be called Group B. Each group will have a total of 
(15) cascaded LED controllers. However, unlike the vertical interlacing, both of 
these groups will operate at the same time. Therefore, we will now have four 
groups of LEDs. As seen in Figure 5.2, we will have a Group AA, AB, BA and BB. 
As well, if we recalculate the minimum frequency requirements of the GSCLK, 
SCL and SIN signals, we will find that we now operate well within the maximum 
data rate transfer of 30 MHz. 
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Figure 5.2 LED Array Group Layout 

5.2.1 TLC5940 Pin Out and Wiring: 
 
Now that we have a handle on the number of LED controllers required and their 
configuration, we can determine the pin out and wiring of the LED controllers. As 
previous discussed, we will have four groups of LEDs. However, to simplify the 
design we can consider Group AA to be indicial in design to BA and AB to BB. 
This is because essentially the two vertical interlaced groups will be the same. 
The pin out information for a TLC5940 in a NT case can be seen in Figure 
5.2.1.a below. Table 5.2.1 below shows all pins and their functions. 
  

 
 

Figure 5.2.1.a TLC5940 LED Controller Pin Out 
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Pin # Name Description 
1 Out 1 Current Output to LED 
2 Out 2 Current Output to LED 
3 Out 3 Current Output to LED 
4 Out 4 Current Output to LED 
5 Out 5 Current Output to LED 
6 Out 6 Current Output to LED 
7 Out 7 Current Output to LED 
8 Out 8 Current Output to LED 
9 Out 9 Current Output to LED 
10 Out 10 Current Output to LED 
11 Out 11 Current Output to LED 
12 Out 12 Current Output to LED 
13 Out 13 Current Output to LED 
14 Out 14 Current Output to LED 
15 Out 16 Current Output to LED 

16 XERR Error Output 
Low = Error 

17 SOUT Serial Data Output 
18 GSCLK Reference Clock for PWM Control 

19 DCPRG 
Dot Correction Switch 
Low = DC Connected to EEPROM 
High = DC Connection to DC Register 

20 IREF Reference Current Terminal 
21 VCC Power Input Terminal 
22 GND Ground 

23 BLANK 
Turns all outputs on or off 
Low = Outputs are controlled by PWM 
High = All outputs forced off, GSCLK is reset 

24 XLAT 

Latch Signal 
Low = Data in registers held constant 
High = writes from shift register to DC or GS 
register 

25 SCLK Serial Data Shift Clock 
26 SIN Serial Data Input 

27 VPRG 

Input Pin 
GND = Controller is in GS Mode 
VCC = Controller is in DC Mode 
V(vprg) = DC register data can be programmed 
into DC EEPROM 

28 Out 0 Current Output to LED 
 

Table 5.2.1 TLC5940 LED Controller Pin Information 
 



 

66 

 

To cascade the controllers together requires the SIN and SOUT pins to be wired 
together in series. Meaning the SOUT from one controller will be wired to the SIN 
pin on another controller. The wiring required for the controllers of Group AA and 
BA can be seen in Figure 5.2.1.b. Wiring of Out0 thru Out15 was left off for clarity 
but it should be noted these will be the pins connecting to the LEDs. Wiring for 
Groups AB and BB will be the as Figure 5.2.1.b. 
 

 
 

Figure 5.2.1.b LED Controller Wiring 
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A wiring scheme for the LEDs of array Group A can be seen in Figure 5.2.1.c 
below. The wiring for Group B will be the same but the first LED will start at 
number 240. 
 

 
 

Figure 5.2.1.c LED Wiring 

5.2.2 LED Array for Text Display: 
 
The design for the LED array required for displaying text will use the same LED 
controller but we will only be using mono-color LEDs. The text display will contain 
16 LEDs so only one controller will be required. The wiring of the controller and 
LEDs will be similar to Figures 5.2.1.b and 5.2.1.c. 
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5.3 Motor Hardware Design: 
 
Our specific motor design encompasses a six stage process that covers how to 
both run and maintain the motors revolutions per second to prevent any image 
distortion. This process is cyclical in essence beginning and ending with the 
motor. Figure 5.3 will give a visual representation of exactly how this process will 
flow. 

 
 

Figure 5.3 Motor Control Flow Chart 
 
As seen in the flow chart we will begin discussing our motor operation process 
with the Tachometer. While in essence the motor and shaft rotations is truly the 
beginning of this process, the data gathered by the tachometer is the beginning 
of our motor controlling process, which is the purpose of most of this hardware 
and software. The whole process is cyclical in nature and should repeat 
indefinitely until the micro-processor sends a shut down signal to the tachometer 
and motor. Each section of this portion of the design will discuss in further detail 
the hardware and software of this process, beginning with the tachometer and 
ending with the motor. 

5.3.1 Motor Control Sensor Design: 
 
As we discussed in the research portion of the motor control process  we knew 
that we had to find a way of determining the revolutions per minute of the 
apparatus. During that discussion we determined that the best method to solve 
this issue was through the use of infrared. Specifically these sort of devices are 
called tachometers. In our case we are going to create this tachometer using a 
pair of infrared LEDs. Figure 5.3.1.a best shows the flow of this process. 
  
We are going to rely on a property common to LEDs in which when subjected to 
light they produce a voltage deference across their leads. However, this value is 
very small and can barely be detected. So in order to detect it we are going to 
use an op-amp to detect these small voltage changes. The intention is to send an 
infrared signal to the shaft of our display apparatus. Figure 5.3.1.b gives a visual 
representation of what is happening.  
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Mounted on the shaft will be some form of reflective surface such as white tape, 
that will bounce the infrared beam back to the other LED. This beam will cause a  

 

Figure 5.3.1.a Motor Control Sensor Flow Chart 
 

voltage difference in the LED. This difference in voltage on the LED causes the 
voltage difference within the op-amp to show a voltage on the output, expected to 
be around 5 volts. This is instead of the usual zero volts. This pulse of voltage 
will then be detected by the micro-processor and recorded as a one. In order to 
shield this process from unwanted ambient lighting we will most likely house 
these two LEDs in some form of cylindrical tube so that the infrared beams can 
escape the tubing and reflect back into it but the interior is mostly protected from 
unwanted lighting. 
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Figure 5.3.1.b Motor Control Sensor Mounting 

5.3.1.1  Motor Control Sensor Hardware: 
 
Two circuits are required to implement this tachometer. The first circuit, displayed 
in Figure 5.3.1.1.a, is the sending circuit. As seen in this circuit we will be using 
the LM358 op-am to implement this circuit. In this case a 5 volts Vin and Vcc is 
required to turn the circuit on. The minus terminal of the comparator will  read 2.5 
volts. The CTRL line will be connected to the FPGA on the rotating side and will 
in essence go high when the device starts spinning. This high value will be above 
the 2.5 volts on the minus terminal and cause the output of this op-amp to go 
high, 5 volts, and this will turn the infrared LED on and begin to send signals.  
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Figure 5.3.1.1.a Motor Control Sending Circuit 
 
The second circuit required to implement this design is the receiving circuit, seen 
in Figure 5.3.1.1.b. This circuit will be similar in design as the first one except that 
the infrared LED will be feeding into the minus terminal of the op-amp. The 
positive terminal will have a potentiometer that will be preset to read 1.6 volts on 
the positive terminal of the LM358 comparator. When the infrared LED is hit by 
the beams of its sister LED it will create a voltage drop on the LED. This 
deference will cause the minus terminal to fall lower than 1.6 volts and cause the 
output of the op-amp to go high. When the op-amp goes high it will send a 
voltage drop, 5V, to the processor. Since we are using infrared lights and this 
whole process will be invisible to the human eye, a Red LED has been added to 
the circuit to blink when a “hit” is read in the receiver allowing us to see whether 
the tachometer is working or not.  
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Figure 5.3.1.1.b Motor Control Receiving Circuit 

5.3.2 Motor Speed Controller: 
 
As said in section 4.5 when we discussed motor control we decided that a pulse 
width modulation circuit would be best for implementing a control element to our 
motor. It has the least amount of power consumption and is far more accurate. 
However, since we require a large motor to rotate our LED apparatus and to 
reach the revolutions per second that we desire we needed to work a little with 
our control circuit to get it to work effectively. Figure 5.3.2.a shows the circuit 
design of our pulse width modulation circuit. This circuit is based off a reference 
circuit Figure 10.4.3.a that can be seen in the appendix. 
 
The circuit runs off the concept of using two LM339 comparators to create a 
pulse width modulation whose frequency and duty cycle can be controlled by the 
two voltage controlled resistors R9 and R8. R9 controls the frequency of the 
PWM and can range from 400 hertz to 3 kilo-hertz. R8 controls the duty cycle of 
the circuit which also means it controls the effective rpm value of the motor. This 
can range from 0 to 100% of its rated rpm value. The circuit is broken into two 
components the motor side and the pulse width modulation circuit logic. These 
two components are connected through a cascade of MOSFETs. For our 
purposes we needed to disconnect the power supplied to the DC motor and the 
MOSFET from the pulse width modulation circuit because of our high voltage 
requirements of the motor. In addition, the circuit will most likely need to be 
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mounted on some form of cooling system to prevent overheating, most likely a 
radiator. 
 
In order to make these resistance values change without having to physically 
change the circuit or a potentiometer we decided to use a component that can 
create the same effect of what a resistor can and that is a JFET. Since a resistor 
decreases current flow in the circuit as its resistance increases and a JFET's 

 
Figure 5.3.2.a PWM Circuit 

 
channel becomes pinched as the voltage increases which essentially creates a 
similar effect of impeding current flow. After some quick research it turned out 
that this is actually a common application of JFETs. The VCR circuit we will use 
is shown in Figure 5.3.2.b. This circuit runs on the principle that Vout will 
effectively be controlled by a voltage divider using a JFET instead of a resistor. 
From these basic principles as we increase the voltage on this circuit our voltage 
controlled resistor will increase the resistance thus allowing us to control the duty 
cycle of the pulse width modulation circuit and in turn the revolutions per second 
of the motor. We can also use this same principle for the frequency control of the 
pulse width modulation so we will need two of these circuits, one for R9 and one 
for R8. 
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Figure 5.3.2.b Voltage Controlled Resistor Circuit 

5.4 Primary Microcontroller Hardware Design 
(Stationary): 

 
We will use the Atlys Spartan 6 microcontroller to process the incoming HDMI 
video signal. The controller will also communicate via USB port with the graphical 
user interface on the computer. The controller will also send and receive data 
from a sensor used to control the rotation speed of the POV display. The 
processed video stream, sensor data, and USB data, will all be forwarded to the 
rotating controller via Ethernet communication using the built in Ethernet port on 
the Atlys Spartan 6. Figure 5.4.a shows the various communication ports used by 
the controller. 
 

Stationary FPGAHDMI Input
Ethernet 

Communication

USB 
Communication

Sensor I/O

 

Figure 5.4.a Communication Hardware Used by Stationary Controller 
 

A Vmod Bread Board attachment will be required in order to make I/O pins 
available to the microcontroller. Three I/O pins will be used to send and receive 
data from a sensor. The sensor will supply rotational position data and can be 
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used by the controller to calculate the rotational speed of the POV display. The 
sensor will also receive a signal from the controller which will alter the rotational 
speed for the POV display. Figure 5.4.b shows the pin out assignments on the 
Vmod Bread Board.  
 

Sensor Pin Assignment 

Pin Assignment 

I/O 1 Enable 

I/O 2 S_INPUT 

I/O 3 S_OUTPUT 

I/O 4 - 28 Unused 

 
Figure 5.4.b Sensor Pin Assignment on Stationary VmodBB 
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5.5 Secondary Microcontroller Hardware Design 
(Rotating): 

 
In order to use the IO pins of the Atlys Spartan 6, we will need to connect a 
Vmod breadboard to the Atlys board via the VHDC connection, which will provide 
us with 28 I/O pins. These pins are located on two 32 pin breadboards, BB1 and 
BB2. Figure 5.5.a shows a summary of the pin configuration on BB1 and BB2. 
Each LED controller requires various signals from the rotating microcontroller, in 
several cases though entire groups of LED controllers can share the same signal 
as the other controllers in the same group. For example, on I/O pin 3, A_XLAT 
sends a latching signal to all controllers in the A column, which is made up of 90 
LED controllers. The signal names have been appended with a prefix, either 
ALL_, A_, B_, AA_, AB_, BA_, or BB_, which refers to the group of LED 
controllers that will receive that signal. 
 

Pin Assignments 

BB1   BB2   BB1   BB2   

Pin Assignment Pin Assignment Pin Assignment Pin Assignment 

I/O 1 ALL_VPRG I/O 15 B_XLAT I/O 8 AA_SIN_G I/O 22 BA_XERR 

I/O 2 ALL_DCPRG I/O 16 B_GSCLK I/O 9 AA_SIN_B I/O 23 BB_SIN_R 

I/O 3 A_XLAT I/O 17 B_BLANK I/O 10 AA_XERR I/O 24 BB_SIN_G 

I/O 4 A_GSCLK I/O 18 B_SCLK I/O 11 AB_SIN_R I/O 25 BB_SIN_B 

I/O 5 A_BLANK I/O 19 BA_SIN_R I/O 12 AB_SIN_G I/O 26 BB_XERR 

I/O 6 A_SCLK I/O 20 BA_SIN_G I/O 13 AB_SIN_B I/O 27 Unused 

I/O 7 AA_SIN_R I/O 21 BA_SIN_B I/O 14 AB_XERR I/O 28 Unused 

 
Figure 5.5.a Pin Assignments on VmodBB 

 
One design feature that might be implemented would be a text display which 
would consist of 3 LED controllers outputting to 16 LEDs. This would in essence 
be a miniature of the full miniature LED array. If in fact we implement this text 
display we would need to modify the pin arrangement to make room for the 
outputs that would be required from the FPGA.  
 
With the current configuration, we are using 26 of the 28 available I/O pins. It is 
possible for us to do without the XERR input from the 4 groups of LED controllers 
and possibly use a completely different error checking mode when we would like 
to receive that input. Removing the for XERR inputs frees up in total 6 pins for 
the text display. The text display requires at minimum 7 pins though to be 
implemented: XLAT, BLANK, GSCLK, SCLK, SIN_RED, SIN_GRN, and 
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SIN_BLU. Figure 5.5.b shows this pin configuration. In order to get around this 
issue, we will use the 6 available pins for all of the text displays input except for 
XLAT, which will be handled via other means. Figure 5.5.1.b shows this pin 
configuration, and notice the loss of the XERR pin inputs. I/O pins used for the 
text display will all be prefixed with T_ and can be seen on pins 12, 13, 25, 26, 
27, and 28. 
 
The issue of the missing pin for XLAT can be resolved by using the XLAT pulse 
from both the A and B columns tied together as input into the text display. In 
effect this will flash the Text Array at 44 frames per second, because it will 
receive 22 pulses per second from the A columns XLAT, and 22 pulses per 
second from the B columns XLAT at a 180 degree phase difference. It would also 
be possible to consider using the BLANK signal from A and B tied together as 
well, however the remaining 5 pins for GSCLK, SCLK, and RGB SOUT pins 
would remain necessary. 
 

Pin Assignments with Text Display 

BB1   BB2   BB1   BB2   

Pin Assignment Pin Assignment Pin Assignment Pin Assignment 

I/O 1 ALL_VPRG I/O 15 B_XLAT I/O 8 AA_SIN_G I/O 22 BB_SIN_R 

I/O 2 ALL_DCPRG I/O 16 B_GSCLK I/O 9 AA_SIN_B I/O 23 BB_SIN_G 

I/O 3 A_XLAT I/O 17 B_BLANK I/O 10 AB_SIN_R I/O 24 BB_SIN_B 

I/O 4 A_GSCLK I/O 18 B_SCLK I/O 11 AB_SIN_G I/O 25 T_BLANK 

I/O 5 A_BLANK I/O 19 BA_SIN_R I/O 12 AB_SIN_B I/O 26 T_SIN_R 

I/O 6 A_SCLK I/O 20 BA_SIN_G I/O 13 T_GSCLK I/O 27 T_SIN_G 

I/O 7 AA_SIN_R I/O 21 BA_SIN_B I/O 14 T_SCLK I/O 28 T_SIN_B 

         
Figure 5.5.b Pin Assignments with Text Display Implementation 

 

5.6 Power Supply Hardware Design: 
 
The power for the POV display will come from a standard AC wall outlet. As 
shown on the hardware flow chart, we will divide the incoming AC power into two 
circuits. One will be used to power the stationary side of the POV display. The 
second circuit will be used to power the rotating side of the display. The choice to 
transfer power to the rotating side through the slip ring using AC instead of DC 
was in an effort to reduce the number of connections required. We will transfer 
the positive AC line through the slip ring. We will then terminate the neutral and 
ground wires together to the metal chassis. Since the chassis will be constructed 
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out of aluminum, this should provide an adequate amount of conduction for the 
neutral. We will then pick up the neutral on the rotating side from the metal 
chassis. The only drawback to this will be with the bearing. However, since the 
bearing is constructed from metal as well, there should still be enough conductive 
material to allow the power to be transferred. Additional, since the slip ring will be 
bare conductor, we will step the incoming AC voltage down from 120 V to 24 V in 
an effort to reduce the potential danger associated with using exposed 
connections. 

5.6.1 Stationary Power Supply: 
 
The stationary power supply will be designed to power the motor and the 
stationary side FPGA board. We will use two rectifier circuits. One rectifier will be 
dedicated to power the power. The second rectifier circuit will be used to power 
the FPGA board and the Ethernet converter. 

5.6.2 Rotating Power Supply: 
 
The rotating power supply will be designed to power the LED array and the 
rotating side FPGA board. We will use one rectifier circuit dedicated to the FPGA 
board. We will then use two rectifier circuits to power the LED array. One rectifier 
for the Group A of LEDs and one for Group B LEDs. 

5.6.3 Slip Ring Design: 
 
In order to transfer power to the rotating side of the device we need a slip ring. 
This ring will consist of a copper washer attached to the shaft of the bottom 
section of the LED apparatus. Here a frayed copper wire will be mounted and just 
touching the washer. An insulating material will separate the washer from the 
shaft, and another wire will be connected to the inner side of the washer and a 
hole within the shaft will feed the wire from the washer up to the LED apparatus 
to power the system. Power will effectively be applied to the copper washer from 
the wire as the device rotates. There the power will travel from the washer to the 
rest of the device. 
 
Figure 5.6.3 is a visual representation of this set-up created in DraftSight. Our 
construction of this device will be dependent on the requirements of the rotating 
apparatus Before we discuss exactly what is needed to create this slip ring we 
need to discuss these power requirements of the rotating apparatus. Since the 
basic element will be LEDs we need to figure out the power usage of a single 
LED and then the whole array itself. Since each LED requires about 100 mA to 
operate and will have a 5 voltage drop across them a single LED will require 
about 0.5 watts, multiply that by four-hundred-eighty LEDs and we have 240 
watts. We will assume a high 30 watt requirement for the Xilinx Atlys Spartan 6 
development board. However, it is best to give a 20% margin of error over the 
possibility of loss within the slip ring due to thermal dissipation. This puts us up to 
a total power requirement of 324 watts. Since we estimate to need about 24 volts 



 

to power the rotating apparatus we will also need around 13.5 amps. This means 
we need materials that can 
of power being transferred and whatever thermal power that will be applied to the 
slip ring as it is grinding against the washer. For this reason a 10 GA wire will be 
effective for this use. These wires 
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to power the rotating apparatus we will also need around 13.5 amps. This means 
we need materials that can handle not only the 13.5 amps but both the 325 watts 
of power being transferred and whatever thermal power that will be applied to the 
slip ring as it is grinding against the washer. For this reason a 10 GA wire will be 
effective for this use. These wires are rated at a maximum current of 15 amps 
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Figure 5.6.3 Slip Ring side and top view 

On the opposite end of the slip ring, right before the rest of the devic
bridge rectifier and a voltage regulator to convert from AC to DC an
over voltage. Figure 5.6.3 shows the circuit design of both of these.

Wired Ethernet Communications: 

The POV display will require wired Ethernet communications to tr
information from the stationary board to the rotating board. We determined that 
the Ethernet communications must be design to meet the standard 100 Mbps 
transfer rate. This is less than what was we initially thought would be required. 

we will be using the Enconn EOC-AN and EOC-IN Ethernet over 
Coax Extender. Since only the EOC-AN requires additional power, the EOC
can be mounted on the rotating side of the POV display without requiring any 
additional inputs or power. Additional, since we will be using coaxial cable to 
transmit the Ethernet communications, we will be using the Model 205 rotary joint 
from Mercotac. Due to the increase rotation speed of the POV display, we must 
use the high speed models of the 205. Additional, to increase the life expectancy 
of the rotary joint we will be using the model with stainless steel ball bearings, 

HS. To mount the rotary joint, we will attach a plate to t
bottom of the support pipe on the chassis at the center of rotation. We w
run the coaxial wire coming from the rotating side of the joint up through the 
center of the pipe to the LED array. 
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6 Software Design: 
 
There is a significant amount of software which must be designed for this project. 
We will be focusing on the software design for each individual part of the project 
here. This will include the design of the GUI application, the software functions of 
each of the FPGA’s to receive input and display output, and the Ethernet 
communications between the two FPGA boards. These designs will serve as 
outlines for how we expect the implementation to be executed. These designs 
will not be a definitive method of implementation since many changes may come 
up during development. Figure 6 shows a simple overall flowchart of the 
communication between our software designs. 
 

 

Figure 6 Software Flowchart 
 

In the GUI design we will be discussing the design section of our software 
development lifecycle. This section will focus on organizing the set of 
requirements and specifications, deciding on a suitable architecture, and visually 
designing the GUI. No implementation will be done here. This section serves as 
a plan of action for the implementation and to answer all questions that may arise 
during development. An effective design will make all of the decisions that need 
to be made in order to make implementation straightforward and agile. 
 
We will be using the Atlys FPGA’s for both the rotating FPGA’s and stationary 
one. This is largely because of the real time requirements that 44 frames per 
second demands. The stationary FPGA must process an incoming HDMI frame 
buffer and convert it into a format that will be useful to the rotating FPGA. The 
rotating FPGA will dedicate its available clock cycles to reading this incoming 
frame buffer that arrived via Ethernet communication and output the data to the 
LED controllers on the LED array. Both FPGA’s will be operating at 500 MHz. 
 
The stationary FPGA will receive HDMI input frames at a rate of 60Hz into a 
frame buffer. It will also receive infrared sensor input and perform calculations to 
determine the rotating speed of the device, and send feedback to the sensor 
which will ultimately increase or decrease the rotating speed of the motor. The 
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stationary FPGA also receives data via USB port which can include 
preprocessed images, processed text information to be displayed on the text 
display, and display commands which will then be passed to the rotating FPGA 
via Ethernet. 
 
The rotating FPGA will receive the processed HDMI frames via Ethernet and 
begin writing the data to the LED controllers column by column and signaling for 
them to flash each time. There are very specific timing requirements under which 
the various signals from the FPGA to the Array must be sent. The software will 
make use of the Atlys boards 100 MHz clock from which sub clocks can be 
derived though the use of phase shifting and division, allowing for extremely finite 
timing. The rotating board must also control a small text array, and respond to 
various control signals telling it to start or stop displaying. 
 
Our FPGA’s will be communicating with each other using the built in Ethernet 
ports. This communication plays a key role in making this project feasible. We 
must create a design that is fast enough to transmit a live video feed. We most 
likely will not be using a standard Ethernet protocol because of the unnecessary 
overhead involved. In our software design for Ethernet communications we will 
decide on our communication protocols and outline our method of sending the 
data. We will be viewing the Ethernet communication as a hardware interface 
between the two boards. When programming an FPGA it is often advantageous 
to view the design as a hardware design instead of a software design to 
complement the Verilog HDL. 

6.1 Primary Microcontroller Software Design 
(Stationary): 

 
This section will cover the software design requirements for the stationary FPGA 
board. Software requirements include processing the incoming HDMI signal and 
formatting the data to be transmitted via Ethernet to the rotating FPGA board. 

6.1.1 Processing HDMI Signals: 
 
The Atlys board has several registers used to initialize HDMI input and view the 
status of the connection. Figure 6.1.1 contains detailed bit information and a 
description of these registers. Upon plugging a source into the HDMI port of the 
FPGA, the ICC core, which is dedicated to handling HDMI input and output, will 
begin  receiving interrupts with the HDMI source looking for EDID information 
about the FPGA, which the source views as a display. An interrupt service 
routine will send EDID information, stored in DDR2 memory whenever this 
interrupt occurs. The status register’s Bit(30) will read a 1 if the frame dimensions 
of the incoming video are determined. 
 
Before the flow of HDMI input frames can begin being received, both the Frame 
Base Address and the Line Stride registers must be set. The Frame Base 
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Address is the starting location in the DDR2 memory where the frames will begin 
to be stored. The Line Stride is defined as the number of pixels in a single 
horizontal line of a frame, in our case 640.  
 
Control 
Register: 

0x00 : R/W 

Bits (0 : 
30) 

Reserved 

Bit(31) Write Enable – Enables the core to begin writing video data to the 
frame buffer. Default is ‘0’. 

Status 
Register: 

0x04 : R 

Bits (0 : 
29) 

Reserved 

Bit(30)  Frame Locked – Reading a value of ‘1’ means that the frame 
dimensions of the incoming video signal have been determined. 

Bit(31) PLL Locked – Reading a value of ‘1’ means that a valid clock 
signal is detected on the TMDS lines. 

Frame 
Width 
Register: 

0x08 : R 

Bits (0 : 
15) 

Reserved 

Bits (16 : 
31) 

Unsigned value that represents the width of the input frame in 
pixels 

Frame 
Height 
Register: 

0x0C : R 

Bits (0 : 
15) 

Reserved 

Bits (16 : 
31) 

Unsigned value that represents the height of the input frame in 
lines, minus 1 

Line 
Stride 
Register: 

0x10 : R/W 

Bits (0 : 
15) 

Reserved 

Bits (16 : 
31) 

Unsigned value that defines the line stride of the frame in pixels 
(described below). This value must have bits 26 to 31 equal to 
zero in order to be 128 byte aligned. Default value is 0 and must 
be set before enabling the core. 

Frame 
Base Add. 
Reg.: 

0x14 : R/W 

Bits (0 : 
31) 

 Unsigned value that defines the physical address of the frame 
buffer. This address must fall somewhere within the DDR2 
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memory space and have enough trailing memory to fit the entire 
frame. This value must have bits 25 to 31 equal to zero in order to 
be 128 byte aligned. Default value is 0 and must be set before 
enabling the core. 

 
Figure 6.1.1 HDMI Registers 

6.1.2 Frame Buffer Format: 
 
The frame buffer will begin receiving frames starting at the Frame Base Address. 
The frame will be stored linearly starting with the pixel in the upper left hand 
corner, going from left to right, and then down. Each pixel contains two bytes of 
color data. Figure  6.1.2.a shows the arrangement of pixels in memory. The size 
of a single frame in memory can be calculated by multiplying the number of 
pixels by the number of bytes per pixel: 480*640 pixels/frame * 2 bytes/pixel = 
614400 bytes/frame. 
 
 
 
 

Pixels Stored in Memory 
Pixel 0 1 ... 639 
0 0 1 2 3 … 1278 1279 
1 1280 1281 1282 1283 … 2558 2559 
2 2560 2561 2562 2563 … 3838 3839 
. . .       . . 
. . .       . . 
479 613120 613121 . . ... 614398 614399 

 
Figure 6.1.2.a Arrangement of Pixel Values in Memory 

 
Each pixel is stored in memory as two bytes, containing the RGB color data. Red 
and Blue both have a color depth of 5 bits, stored in Bits(11:15) and Bits(0:4), 
respectively. Green has 6 bits of color depth, stored in Bits(5:10). Figure 6.1.2.b 
shows the ordering of the two byte pixel data, as well as which bit is the most 
significant for each color. 
 

 
 

Figure 6.1.2.b 16 Bit RGB Arrangement 
  
Each pixel, although stored linearly in memory, can be referred to by an X and Y 
coordinate. X will refer to the column of a pixel and Y to the row. Figure 6.1.2.c 
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shows the arrangement of pixels in a frame and how they will be referred to. In 
order to calculate the memory location of a given point P(X,Y), we will use the 
equation Pixel_Addr = Base_Frame_address + 2*x + 2*Line_Stride*y.  
 

Arrangement of Pixel Values In a frame 
Pixel 0 1 ... 639 
0 P(0,0) P(0,1) … P(639,0) 
1 P(0,1) P(1,1)   P(639,1) 
2 P(0,2) P(1,2)   P(639,2) 
. . .   . 
. . .   . 
479 P(0,479) P(1,479) ... P(639,479) 

 
Figure 6.1.2.c Arrangement of Pixel Coordinates in a Frame 

6.1.3 Output Format Specification: 
 
The format the RGB frames are received in must be changed into a format that 
will be useful to the rotating processor which will talk to the LED array controllers. 
The LED controllers required Grayscale information as opposed to RGB data. A 
Grayscale value is a 12 bit value between 0 and 4095 which will determine the 
duration of time, and therefore the brightness, that an LED will be on for one of 
its colors. Three Grayscale values can be correlated easily from the RGB color 
data. 
 
There are 4 groups of 45 LED controllers, for a total of 180. Each of those 4 
groups is responsible for displaying the output of various sections of the screen. 
Within each section of 45 controllers, 15 are dedicated to the Red outputs for that 
section, 15 for the Green, and 15 for the blue. Figure 6.1.3.a shows the 
arrangement of each of these sections, referred to as AA, AB, BA, and BB.  
 

Arrangement of Sections 
Pixel 0 1 2 3 … 638 639 
0 

AA BA AA BA … AA BA 
1 
. 
. 
239 
240 

AB BB AB BB … AB BB 
241 
. 
. 
479 

 



85 

 
 

Figure 6.1.3.a Arrangement of Frame Sub-divisions 
 
It would be ideal if each section of controllers had all of the data that it needs 
stored in order in memory as to minimize having to move any pointers around. 
Because of this, 12 output bins will be created where the processed data will be 
stored, which will allow the data to be accessed in a sequential manner. Figure 
6.1.3.b shows these 12 bins and their starting and ending memory addresses 
relative to some base address. The size of each bin can be calculated by first 
determining the total size of a Grayscale frame. For each pixel, there are 3 
Grayscale values, each of size 1.5 bytes; Size of frame in Grayscale = 480 * 640 
* 3 * 1.5 = 1382400 Bytes. The size of one of the 4 sections would be 1/4th that, 
and then broken up into 3 subsections for each color. So the size of a single 
subsection or bin is: 1382400 * ¼ * 1/3 = 125200 Bytes. 
 
 
 

Frame Output Format In Memory 

Section/Color 
Starting 
Addr. … 

Final 
Addr. 

AA_RED 0 … 115199 
AA_GRN 115200 … 230399 
AA_BLU 230400 … 345599 
AB_RED 345600 … 460799 
AB_GRN 460800 … 575999 
AB_BLU 576000 … 691199 
BA_RED 691200 … 806399 
BA_GRN 806400 … 921599 
BA_BLU 921600 … 1036799 
BB_RED 1036800 … 1151999 
BB_GRN 1152000 … 1267199 
BB_BLU 1267200 … 1382399 

 
Figure 6.1.3.b Memory locations of the 12 output Bins 

6.1.4 Frame Processing: 
 
This section will cover the various steps involved with converting a frame from 
the input HDMI format to the output format that we have specified. The 
TranslateFrame() function will translate a frame at a specified address and store 
the output in 12 bins as described in the output specification. TranslateFrame() 
begins by initializing the output pointers for each of the 12 bins. The memory 
address for each bin can be calculated by adding an offset value together with  
the base address in DDR2 memory where output is to be written. The required 
calculation can be seen below: 
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BinPointer = FRAME_OUTPUT_BASE_ADDR+i*115200 where I = 1-11 

TranslateFrame() has one outer loop and two inner loops. The outer loop counter 
increments by two every iteration because we will be processing two columns of 
the frame each pass through the loop. The columns include all for pixel sections 
AA, AB, BA and BB.  

The first inner loop handles the translation of pixels P(X,0)-P(X,239), which are 
sections AA and BA. The second inner loop handles the translation of pixels 
P(X,240)-P(X,480) which are sections AB and BB. Within each inner loop, 
TranslateAndOutput is called on the current P(X,Y) pixel and P(X,Y+1) pixel. In 
the first inner loop P(X,Y) is always part of section AA and P(X, Y+1) is always a 
pixel from section BA.  Figure 6.1.4.a shows what section of the frame each look 
handles. 
 

Translate Frame Loop 
Pixel 0 1 

  Inner Loop 1 
0 

AA BA 
. 
. 
. 

239 
  Inner Loop 2 

240 

AB BB 

. 

. 

. 

479 
 

Figure 6.1.4.a: The Translate Frame Loop 
 

Similarly, TranslateAndOutput is twice called in the second inner loop for each in 
pixel, each call corresponding to a pixel in section AB and BB. The inner loops 
increment by 2 because each call to TranslateAndOutput will look at two pixels at 
a time, which will be described in more detail in the description for 
TranslateAndOutput(). Figure 6.1.4.b shows which inner loop L is responsible for 
building up the contents of the bins, and what pixel data ends up in those bins. 

 
 
Each Section Written to Memory 
L   StartAddr. Grayscale Data 
1 AA_RED 0 P(0,0)-P(0,239) P(2,0)-P(2,239) … P(638,0)-P(638,239) 
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1 AA_GRN 115200 P(0,0)-P(0,239) P(2,0)-P(2,239) … P(638,0)-P(638,239) 
1 AA_BLU 230400 P(0,0)-P(0,239) P(2,0)-P(2,239) … P(638,0)-P(638,239) 
1 AB_RED 345600 P(0,240)-P(0,479) P(2,240)-P(2,479) … P(638,240)-P(638,479) 
1 AB_GRN 460800 P(0,240)-P(0,479) P(2,240)-P(2,479) … P(638,240)-P(638,479) 
1 AB_BLU 576000 P(0,240)-P(0,479) P(2,240)-P(2,479) … P(638,240)-P(638,479) 
2 BA_RED 691200 P(1,0)-P(1,239) P(3,0)-P(3,239) … P(639,0)-P(639,239) 
2 BA_GRN 806400 P(1,0)-P(1,239) P(3,0)-P(3,239) … P(639,0)-P(639,239) 
2 BA_BLU 921600 P(1,0)-P(1,239) P(3,0)-P(3,239) … P(639,0)-P(639,239) 
2 BB_RED 1036800 P(1,240)-P(1,479) P(3,240)-P(3,479) … P(639,240)-P(639,479) 
2 BB_GRN 1152000 P(1,240)-P(1,479) P(3,240)-P(3,479) … P(639,240)-P(639,479) 
2 BB_BLU 1267200 P(1,240)-P(1,479) P(3,240)-P(3,479) … P(639,240)-P(639,479) 
 

Figure 6.1.4.b Range of pixel data as it is stored in memory 
 
The TranslateAndOutput() function starts by obtaining the two pixels values 
adjacent to each other in the same column. Figure 6.1.4.c shows pixel one and 
two on the left side of the image. Three combined Grayscale values are then 
obtained for each color, red, green, and blue from those two pixels. A combined 
Grayscale value is a 3 byte data structure than contains two 12 bit Grayscale 
values that have been melded together. The 3 byte combined Grayscale values 
are then written to memory, stored in their appropriate bin, and following that the 
output pointers are incremented by 3. Figure 6.1.4.b shows how the combined 
Grayscale values are stored in memory as they are output. 
 

 
 

Figure 6.1.4.c Combining Grayscale values and storing in memory 
 
GetRedCombinedGS() is used to obtain the combined red Grayscale value for 
the two pixels it is called with as arguments. The red data is stored entirely in the 
first byte of the pixel data, Figure 6.1.2.c in the section HDMI Input and Frame 
Buffer Format shows the 16 bit RGB configuration. The first byte of the color data 
contains the red values. Using a logical shift right function with an argument of 3, 
the unwanted green data is pushed out. The process of isolating the red value 
can be seen visually in Figure 6.1.4.d. 
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The red value is then converted to a grayscale value by calling a function to 
convert the byte. The red data isolation process is then repeated for the second 
pixel, and then also converted to grayscale. Following this, the two grayscale 
values for each pixel are combined into a three byte structure using a combine 
grayscale function which returns a 3 byte structure.  
 

Two Byte RGB color: 
R5 R4 R3 R2 R1 G6 G5 G4   G3 G2 G1 B5 B4 B3 B2 B1 
First Byte Obtained: 
R5 R4 R3 R2 R1 G6 G5 G4                   
Logical Right Shift x 3: 

0 0 0 R5 R4 R3 R2 R1                   
 

Figure 6.1.4.d Visualization of Isolating Red RGB Value 
 
Obtaining the green pixel values entails a little more effort since its values are 
spread across two bytes. The first byte of the pixel is obtained, which is then has 
the logcal AND performed on it with 0x07, which zeros out any red data in that 
byte. The first byte is then shifted left 3, so that its three LSB are zero and able to 
be combined with the 3 bits of green data from the second byte. The second byte 
is obtained in a temporary variable and shifted to the right by 5. Combining the 
first byte and the temp variable with a logical OR operation gives the complete 
green data. Figure 6.1.4.e gives a visualization of the logic used to isolate green.  

The color isolation process can then be repeated for the second pixel. The two 
green RGB values are then converted to grayscale on lines 8 and 16. Following 
this, they are combined into a single 3 byte structure that is then returned on 
lines 18 and 19. 
 
Two Byte RGB color: 
R5 R4 R3 R2 R1 G6 G5 G4   G3 G2 G1 B5 B4 B3 B2 B1 
First Byte Obtained in Temp: 
R5 R4 R3 R2 R1 G6 G5 G4                   
AND with 0xF8: 
0 0 0 0 0 G6 G5 G4                   
Logical Left Shift x 3: 
0 0 G6 G5 G4 0 0 0                   
Obtain Second Byte in Temp2: 
G3 G2 G1 B5 B4 B3 B2 B1                   
Logical Right Shift x 5: 
0 0 0 0 0 G3 G2 G1                   
Combine Temp1 and Temp2 with AND 
0 0 G6 G5 G4 G3 G2 G1                   
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Figure 6.1.4.e Visualization of Isolating Green RGB Value 
 
The blue color data can be obtained from the second byte of the pixel data. 
Because blue is already completely to the right, isolating it is as simple as 
performing a logical AND on it with 1F, zeroing out any green data present. The 
grayscale values are obtained using ToGrayscaleRB() and then combined. 
Figure 6.1.4.e provides a visualization of the logic for isolating the blue RGB 
value from the pixel data. Figure 6.1.4.f shows a visualization of this function. 
 
 Two Byte RGB color: 

R5 R4 R3 R2 R1 G6 G5 G4   G3 G2 G1 B5 B4 B3 B2 B1 
Obtain Second Byte 
G3 G2 G1 B5 B4 B3 B2 B1                   
AND with 0x1F 

0 0 0 B5 B4 B3 B2 B1                   
 

 
Figure 6.1.4.f Visualization of Isolating Green RGB Value 

 
Converting pixel data to Grayscale is accomplished using ToGrayscaleRB() and 
ToGrayscaleG(). The need for a separate function for green is because green 
contains an extra bit of color depth, and can be mapped to a more precise 
grayscale value. A grayscale value ranges from 0 to 4095, represented by 12 
bits. Figure 5.1.1.3.g shows the mapping of values for both Red/Blue and Green. 

 

 
 

Figure 6.1.4.f Grayscale Mapping Diagram 
 
The CombineGrayscale() function is used to combine two grayscale values into a 
3 byte data type and then return those 3 bytes. A grayscale value is stored in 2 
bytes even though it only contains 12 bits worth of information. Because of this, 
the first 4 bits of every grayscale value are 0b0000, which is why it would be nice 
to compact 2 of these grayscale values together to eliminate the wasted bits and 
decrease the overall size of the date. The CombineGrayscale() functions 
behavior can be visualized in Figure 6.1.4.h. 
 
Grayscale Value 1   Grayscale Value 2 
0 0 0 0 24 23 22 21   0 0 0 0 12 11 10 9 
20 19 18 17 16 15 14 13   8 7 6 5 4 3 2 1 
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Logical Left Shift x 4 Grayscale Value 1 Byte 1 
24 23 22 21 0 0 0 0                   
Logical Right Shift x 4  on a copy of Grayscale Value 1 Byte 2 
0 0 0 0 20 19 18 17                   
AND Grayscale Value 1 Byte 1 with the copy 
24 23 22 21 20 19 18 17                   
Logical Left Shift x 4 GS1 Byte 2 
16 15 14 13 0 0 0 0                   
AND Byte 2 with GS2 Byte 1 
16 15 14 13 12 11 10 G9                   
Return GS1 Byte 1 and 2, and GS2 Byte 2 
24 23 22 21 20 19 18 17                   
16 15 14 13 12 11 10 9                   
8 7 6 5 4 3 2 1                   
 

Figure 6.1.4.g Visualization of Combining Grayscale Values 

6.1.5 Stationary FPGA Ethernet Communications: 
 
The stationary FPGA will have to send messages to the rotating FPGA. For this 
we will be using the built in Ethernet ports. Although we are using the Ethernet 
ports we will not be using a standard Ethernet protocol. We will be designing our 
own simple communication protocol that it suitable for our purpose. It must be 
fast and it must have a way of differentiating between types of data. Since we will 
be sending different types of data we will have to add a header to each data 
stream. The possible types of data that we may send are: video, image, text 
(main), text (small), command, and sensor data. With six different possibilities we 
will need 3 bits for the header. The first three bits of each data stream will be our 
header and they will be assigned as shown in Table 6.1.5 
 

Header Bits Data Type 
000 Video 
001 Image 
010 Text (Small) 
011 Command 
100 Sensor Data 

 
Table 6.1.5 Header Information 

 
As seen in Table 6.1.5 there is no text data type for the main display. This is due 
to the fact that when text is sent, it will be sent in the same format as an image. 
The small text data is meant to appear on the secondary smaller display which 
will give the effect of text on top of the current image or video. Even though the 
data type is labeled text, it can also be an image. The header simply decides 
which display to send the data. The video header will herald an incoming stream 
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of frames. To signal the end of a video feed there will be a separate signal that 
we will call CommEnable. When this signal is high there will be active 
communication, and when this signal is low, communication will cease. The video 
feed will be the only data type that will require us to specify when the data ends. 
When the CommEnable signal goes low during a video feed then the FPGA will 
clear the screen image. All non-video data types will have a fixed size that is 
expected to be sent. These data types with fixed sizes will hold their image when 
the CommEnable signal goes low. The image data type will be a single frame 
that will be displayed constantly on each rotation. A command signal can include 
commands to clear the main screen image or the text screen image. Lastly 
sensor data is from the IR sensors that will detect each revolution of the display. 
This data will help control the motor speeds. A simple Ethernet transmission is 
shown in Figure 6.1.5. The figure assumes the appropriate header is added 
either from the PC application or from the HDMI processing. 
 

 

 
Figure 6.1.5 Ethernet Transmission Flowchart 

6.1.6 Motor Control Sensor Software: 
 
Software will be required to process the information from the motor control circuit. 
The software is required to read in these voltage pulses and determine the 
revolutions per second of the device through this data. It will also then need to 
make a decision of whether to maintain, decrement, or increment the speed of 
the motor based on this device. This will all have to be done with software within 
the processor. Figure 6.1.5 best shows the flow of this process. In this process 
when a pulse is detected the current value of time tc will be subtracted from the 
previously recorded clock value tp. This value will then be stored as the time 
between that pulse Tn. Once a second passes each of these pulse values will 
then be averaged out using the following equation: [T1+T2+...+Tn]/n = Ta. This 
will be compared with the expected Ta value with a 1% allowable error margin. 
Since we want to have around thirty revolutions per second we need a 0.033 
period. So this Ta needs to be within 0.03267 and 0.03333. If it is above this 
margin then we will have to decrement the resistance in the pulse width 
modulator and if it is below this margin we will have to increment the resistance 
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in the pulse width modulator. Our incremented and decremented value should be 
around 1%. This should be enough that we won't overshoot our margin if we 
increment or decrement just outside the margin. 
 
When we compare our Ta we will have to make one of three choices based on 
this comparison. Our choice will be used to send out a voltage signal to a voltage 
controlled resistance that will raise, decrease, or maintain its value. This change 
in resistance will trigger the PWM circuit to change the speed of the motor by 1%. 
 

 

 
 

Figure 6.1.6 Control Program Flow Chart for Motor Control 

6.2 Secondary Microcontroller Software Design: 
 
This section will cover the software design requirements for the rotating FPGA 
board. Software requirements include reading the preprocessed data and HDMI 
frames arriving at the board via Ethernet connection, and outputting this data to 
the LED array.  

6.2.1 Modes of Operation: 
 
The secondary controller will have various modes of operation and will also be 
receiving various data and commands via Ethernet from the stationary controller. 
Data includes HDMI processed frames, which are to be stored in a frame buffer, 
processed still images, and text data which will be displayed on a small text 
array. Sensor data will also be received which is used to determine when to start 
displaying the device, giving it a tap dead center. Additionally, commands will be 
received that change the operation modes of the POV display. 
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The main LED array can either be displaying data from the HDMI buffer or data 
that corresponds to a single image that has been stored in memory. The main 
array output can either be in HDMI_MODE, IMAGE_MODE, or OFF_MODE. In 
the case of OFF_MODE the main LED array will not display anything, however 
the text array could still be in use. 
 
The text array is in use, it will be operating in TEXT_MODE. While in 
TEXT_MODE various commands will alter the way in which text is being 
displayed. For instance scrolling text can be enabled and the speed at which the 
text scrolls can be calibrated via commands being received from the stationary 
controller, which received those commands via USB from the GUI interface on 
the computer. The text array can also be in an off mode when it is not in use 
which is simply OFF_MODE. Figure 6.2.1 shows the various state combinations 
the Main Array and Text Array can be in after receiving a single state change 
command 
 

 

Figure 6.2.1 State Chart for Modes of Operation 

6.2.2 Outputting Data to LED Array: 
 
The rotating microcontroller will be responsible for outputting the color data the 
LED controllers. There are 180 LED controllers, 90 represented an A column, 
and 90 representing a B column, although both columns output to the same 
LEDs. Both the A column and B column will output to the LEDs at 22 frames per 
second, staggered such that the LEDs will flash at 44 frames per second. Two 
clock driven interrupt handlers will tell the A and B columns of LED controllers to 
display at the appropriate times. After a column is displayed all of the controllers 
in that column require a blanking pulse of 20ns in length. On lines 6 and 14 of the 
interrupt handler pseudocode, the Column Written flag is set to false so that a 
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separate loop can begin writing the new pixel data to be displayed to the LED 
controllers. 
 
The A column has been instructed to start displaying by calling 
DisplayAColumn(). A pulse is sent on the XLAT pin for the A column of duration 
20 ns, which moves the data written in the controllers shift register to the 
grayscale register. The controllers now require the GSCLK signal to tick 4096 
times at 30 MHz. The values in the grayscale register will determine how long the 
outputs from the LED controllers to the LEDs stay on, effectively determining the 
color that will be displayed. On lines 2 and 13, XLAT is pulsed, and on lines 3 
and 14 a grayscale counter is initialized. A loop is then entered that the program 
will remain in until pulseGS has been set to true 4096 times. A clock interrupt 
handler sets pulseGS to true at a rate of 30MHz, and each time it’s true, the 
GSCLK for the column is pulsed for 16ns. 
 
A loop will be running which writes the data to the LED controllers after each time 
a column is displayed, because that column now requires new data. Lines 2 and 
6 of this pseudocode check the Column Written flag to see if new data has been 
written since the last flash of that column. If the new data has not been written 
yet, a function is called on lines 3 and 7 which will write the new data to the LED 
controllers. The Column Written flag is then set to true.  
 
The Write Column functions handle writing data to the controllers one bit at a 
time. There are 90 controllers in total used in column A. This is divided into two 
groups, AA and AB, each with 45 controllers. AA and AB are each divided into 3 
groups of 15 controllers for red, green, and blue. This makes for a total of 6 
groups of 15 controllers. A single controller requires 192 bits and with each group 
containing 15 controllers, 2880 bits will be written to each group. In line 2, a loop 
will be entered that will continue until 2880 bits have been written to all 6 groups. 
The rate at which the data can be written to the controllers is limited to 30MHz, 
because of this a clock interrupt will set SCLKpulse to true at a rate of 30MHz. 
Whenever this pulse occurs, the bits to be written for each group will be obtained 
as seen on lines 4-9, and then written into memory at the addresses associated 
with the A columns SOUT pins on lines 11-16. An SCLK pulse is then required so 
that the LED controls read the new bit into their shift registers. 
 
ObtainBit() returns either 0xFF or 0xFE depending upon whether the next bit of 
data was a 1 or a 0. When a logical AND is performed between that byte and the 
output pin address, only the last bit will be altered. The first loop lines up a 1 bit in 
the temp variable with the index we are interested in, and then a logical AND is 
performed zeroing out all other bits. In the second loop, the bit we are interested 
in is shifted right until it is the LSB. A logical OR is then performed on that value 
and 0xFE, which will guarantee the return value  is either 0xFF or 0xFE. 
 
6.2.3 Outputting Data to Text Array: 
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One design feature to be implemented is a text array which consists of 16 RGB 
LEDs controlled by 3 LED controllers. This would in essence be a miniature of 
the full miniature LED array. The addition of this display required modification of 
the pin I/O's available to the full array, specifically the loss or XERR input. This 
also requires that we use the A and B array columns latching signal which both 
pulse at 7040 Hz to be combined into a separate output pin that pulses at 14080. 
14080 Hz allows the text display to be flashed at 22 frames per second.  
 
In order for this implementation to work, the interrupt handlers displaying column 
A and column B of the primary array would effectively also be flashing the text 
display at the same time. In the primary loop which handles writing to each 
column, the text display would also need to be written to and made ready before 
each of the display interrupts occur. 
 
The text display will be capable of displaying text with various settings, such as 
scrolling text left or right at different speeds, and color alteration. Allowing the text 
to scroll involves incrementing certain pointers into memory while always keeping 
track of the base pointer for the text data. After a certain amount of rotations of 
the POV display, a pointer that points to the text data is incremented and 
becomes the new reference base pointer. When writing the data, the reference 
base pointer is incremented and a modulo operation is performed to wrap it back 
around to the true base address of the text data. The speed at which the text will 
rotate depends on how many rotations of the POV device are required before the 
pointer is moved. 

6.2.4 Rotating FPGA Ethernet Communications: 
 
The rotating FPGA will receive communications through the built in Ethernet port. 
This board will act as a server waiting for a client to connect. Header information 
will have to be deciphered on this board so that this board knows where to send 
the data. There will be a 3 bit register to hold the header data. This register will 
become active at every positive edge of the CommEnable signal. After the 
positive edge of the CommEnable signal the header register will receive the data 
stream for three clock cycles to obtain the header information. Once the first 
three data bits have been read into this register the FPGA will then know what 
kind of data is about to be sent. This should only happen at the beginning of a 
data stream which is why the positive edge of the CommEnable signal should 
suffice. Figure 6.2.4.a shows a simple three bit register that will obtain the header 
information. The actual implementation will be done using Verilog HDL. 
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Figure 6.2.4.a Simplified Ethernet Header Register 
 
If we use an implementation as shown in Figure 6.2.4.a then we will have to read 
the header information exactly on the fourth clock cycle. If this turns out not to be 
possible we can add multiplexers to the inputs that will have the register hold the 
values so that they can be read at a later time. The three header bits will then be 
sent to a comparator which will test the values against each of the acceptable 
values shown in Table 6.1.5. Once the header has been decoded the rotating 
FPGA will then expect a certain amount of data. Video data will be expected 
constantly until there is a new positive edge on the CommEnable signal. In the 
case of an image file being sent the FPGA will expect 640x480x8 bits of data or 
2457600 bits. After the required number of bits has been read the FPGA will hold 
the image on the display, and will not expect any more data until the next 
CommEnable positive edge. The text signals will be similar to the image signal. 
For the main display the text signal will have the same number of bits as the 
image signal. This is because all of the pixel data will still be sent. For the small 
text display the data required will be 640x16x8 or 81920 bits. For the command 
signals the number of bits will be very small in comparison. The commands will 
be hard coded and we will assign 4 bits for commands. We do not need 4 bits for 
now with only two clear commands, but this will allow us to add more commands 
without making many changes to our design. Figure 6.2.4.b shows a simple 
flowchart detailing Ethernet communications on the receiving end. The header 
register in Figure 6.2.4.a will have its outputs fed into the header comparator 
shown in Figure 6.2.4.b. 
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Figure 6.2.4.b Ethernet Receiving Flowchart 

6.3 Computer GUI Software Design: 
 
The GUI may be implemented on a PC, an android device, or possibly both. This 
design will focus on designing the GUI for a PC but regardless of the device the 
GUI is implemented on, the design remains the same. The following bulleted list 
will show a formal enumeration of the requirements which must be implemented 
in the final application. Most of the items in the list are repeated from the 
requirements analysis in the research section. Some of the requirements are new 
and have been discovered while executing the design. 
 
Intuitive user interface 
Multiple line text message entry 
Color options for text messages 
Animation options for text messages 
Image import with simple image processing 
Image positioning 
Image cropping option 
Image clear button 
Communications port selection 
Loading bar or visual progress indicator 
 
A pipe and filter architecture will be suitable for this application. The user input 
will be either the text message or image which will then pass through a software 
“filter” before being output in the proper format. The following architecture 
diagram better illustrates the pipe and filter model we will be using: 
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Figure 6.3 Pipe and Filter Software Architecture 
 
The GUI will be designed using Java in the Netbeans IDE. This IDE was chosen 
for its robust GUI editor which will allow us to quickly create an interface before 
completing any coding. Designing the interface first also helps to serve as an 
outline to facilitate the implementation. Creating the first visual draft of the GUI’s 
appearance will be the next step in the design. We will be considering the 
detailed designs involved in both sending a text message and sending an image 
in order to create a draft of the GUI’s appearance. 

6.3.1 Text Message Input: 
 
According to the requirements there should be either a single multi-line text box, 
or multiple text boxes to accommodate multiple lines of text entry. Near the text 
input areas there should be obvious labeled color options, which should include 
preset colors as well as user defined colors. These colors will be applied to the 
entire text message. It should also be noted that if the user were to choose black 
as the text color (RGB values all zero) then we may consider having the 
background show up as white. This is a special case and we are not considering 
allowing the user to choose a background color at this time. The text should also 
have alignment options to determine the position of the text on the display. These 
options should include left, center, and right alignments. The alignment options 
should also be applied to all or some of the lines of text. Changes in the 
alignment options should also be directly visible in the GUI to help the user 
visualize how it will appear on the display. The initial GUI design for text input is 
shown in the following Figure 6.3.1. This initial design takes all of the previously 
mentioned requirements for text input into consideration. 
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Figure 6.3.1 Text Input GUI Draft 
 
The text input will be stored in a string array. The string array will have three 
index values from 0-2 representing the line number for that string. This 
information will then be sent to the FPGA using the RxTx library. The text will 
actually be converted into an image that the FPGA can interpret. The information 
will be 640x480 pixels sent one at a time, with the text message lines inserted 
where appropriate. The text lines will be displayed within rows of 150 pixels 
which is slightly less than 480/3. These rows will be 150 pixels high in order to 
allow a gap between the lines of text to make it look better. Each row will then be 
divided into a certain number of columns. We will wait to decide on how many 
columns to divide the pixel rows until we have the display working. We will 
experiment with different values until we find the greatest number of characters 
we can fit without having the characters look distorted. Since each row will be 
divided into a set number of columns, we will have a set number of characters 
per line. This will simplify the formatting since we can hard code each letter. 
There will be a method for each letter which will return an integer array 
representing the pixel data for that letter. There will be an array of letters for each 
line of text. Finally when the data is sent, the pixel data will be sent from each 
letter array in the proper order. 

6.3.2 Image Input: 
 
The image input option will allow the user to select an image from the hard disk 
to display. The Image input should appear on the GUI as a button that will then 
open the file chooser dialog allowing the user to select an image from the hard 
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disk. Any common image format should be acceptable. The only image formats 
that should be restricted are the ones that the built in ImageIO Java class is not 
capable of parsing. The primary focus during implementation will be to have the 
image selection only work for images of the proper size. Depending on the 
complexity of image processing, other sizes may be supported as well. The 
options for images include whether or not to crop the image (when the image is 
too large). If the crop option is selected then only the portion of the image that 
can fit on the screen will be shown, otherwise the image will be shrunk to fit. 
Another option for image input should be the position where the image I 
displayed, this is for images that are too small. There should be nine choices 
available in a box shape from top left to bottom right. Images will be sent to be 
displayed on top of each other. If there is a small image sent to the bottom left 
portion of the display, and then another small image is sent to the top right, both 
images should be visible simultaneously. Because of this a clear button will be 
necessary to clear the image on the display. Figure 6.3.2 shows a draft of the 
GUI design for the image input. The final GUI design will contain a combination 
of both the text input draft shown in figure 6.3.1 and the image input draft in 
figure 6.3.2. 
 

 
 

Figure 6.3.2 Image Input GUI Draft 
 
The Image will be read using built in classes and methods for image handling. 
These classes include ImageIO, BufferedImage, and ImageReader. We will be 
using an ImageReader to interpret the image format and translate it. This will 
allow ImageIO to read the image into a BufferedImage. We will then use the 
getRGB method of the BufferedImage class to get the pixel color values. The 
pixel color values should be very easy to convert to our format (if any conversion 
is necessary at all) so that we can send the image using serial communications. 
Any blank pixels (no image data) will be represented with a special value that will 
let the FPGA know not overwrite any previous value in the FPGA memory for that 
pixel. This will allow us to overlay multiple images if they are small enough. This 
is also the reason for the clear image button in the GUI. When the clear image 
button is pressed, a special clear instruction will be sent to the FPGA. This can 
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be done by sending an entirely black image, or by a unique clear signal that will 
have the FPGA overwrite all pixels with black values. The loading bar shown in 
Figure 6.3.2 will most likely be used for sending text messages and images. The 
loading bar will be updated through the USB communications which will be 
discussed next. 

6.3.3 FPGA GUI Communications: 
 
In this section we will consider how to communicate with the FPGA using serial 
communications through the USB port. We will also be considering how to 
properly format the user input so that the FPGA has all of the necessary data to 
update the display. We will be using the Java RxTx library to do USB serial 
communications between the PC and the Atlys board. The first step in serial 
communications is enumerating the available serial communication ports. This 
will add another element to our GUI, either list box or a combo box that will list all 
available ports. The user should be able to select which port to use when 
attempting to send data. The selected port will be stored in a private string 
named “port”. This brings us to the GUI design draft that combines all 
requirements discussed so far. The following Figure 6.3.3 shows the first 
complete GUI design draft. 
 

 
 

Figure 6.3.3 Complete GUI Design Draft 
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6.3.3.1  Serial Communication Thread: 
 
Serial communications should be done in a separate thread than the rest of the 
program. This is due to the fact that serial communications is a type of blocking 
I/O. This means that if the communications took place in the same thread as the 
main program then when communication is taking place the entire program may 
hang while waiting for I/O. The most common method used to solve this problem 
is to handle the serial communications in a separate thread. This can be done by 
creating a new class that extends the built in Thread class. We will be creating a 
class called USBComm which will extend the Thread class. Any class that 
extends the Thread class must have a run method. The run method will execute 
within a new thread when the start method is called. We will have to put all 
communication code within the run method of the USBComm class and start the 
thread each time we want to send a data payload to the FPGA. A new instance 
of the USBComm class will be created each time communications are needed 
and the arguments passed into the constructor will include the data to be sent. 
We will also only allow one thread (besides the main program) to exist at a time, 
this will prevent multiple messages being interleaved in the serial communication 
stream. For this we will have to create a Boolean variable to indicate the 
existence of a current active communication stream. 

6.3.3.2  Serial Communication I/O: 
 
The serial communications I/O operations will take place within the USBComm 
class. The USBComm class will contain instances of the serial communication 
classes from the RxTx library. These classes from the library will handle the 
communications and allow the USBComm class to send a payload to the FPGA, 
as well as receive acknowledgements. The acknowledgements received will 
allow the updating of a loading bar. A simple sequence diagram shown next in 
Figure 6.3.3.2.a should help to illustrate the planned data flow for the USBComm 
class.  
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Figure 6.3.3.2.a USBComm Sequence Diagram 
 
Before serial communication can occur the port must be acquired and initialized. 
In order to acquire the port, the open method must be called on the SerialPort 
object. The open method will throw a PortInUseException if the port is already in 
use by some other process. Once the port has been opened it can then 
initialized. Initializing a port includes setting the initial values for baud rate, data 
bits, stop bits, and parity. These values will most likely be hard coded to the best 
settings for the Atlys board. After the port initialization we will have to initialize a 
ReadStream and PrintStream object in order to serve as the input and output 
handlers of the serial communication. The ReadStream and PrintStream objects 
will be initialized using the SerialPort’s getInputStream and getOutPutStream 
methods. After the streams are initialized then serial communication can finally 
begin. Simply print items to the PrintStream object and read items from the 
ReadStream object. When all reading and writing is complete, the port and both 
streams must be closed. This is simple to do and simply requires a call to the 
close method for each object. The operating system will then have that port back 
in a usable state and all resourced devoted to the streams will be freed. The 
following Figure 6.3.3.2.b will illustrate how to use each of the serial 
communications related classes and methods described so far. 
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Figure 6.3.3.2.b 

6.3.4 GUI Class Summary: 
 
In this section we will consider all of the class interactions throughout all parts of 
the GUI application. Classes that we will have to create include: POVGUI, 
USBComm, TextMessage, and ImageMessage. Image reading classes include 
ImageReader, and BufferedImage, which will be used by the ImageMessage 
class. The text message class will not need helper classes since it is dealing with 
simple text data. The USBComm class will need to contain classes from the 
RxTx library including SerialPort and CommPortIdentifier. The SerialPort will also 
contain PrintStream and ReadStream classes for the I/O operations. A class 
diagram showing these classes and their relationships to each other is shown in 
the next figure. It should be noted that either a text message is sent or an image 
message is sent, but not both. Also the multiplicity shown for each class is one, 
because only one of them should exist at a time. If multiple messages are to be 
sent, the same class will be used with different values. 
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Figure 6.3.4 Class Diagram for the GUI 

7 Prototyping: 
 
In order to determine if our design will work under our specific conditions we 
need to test them. We may expect them to work theoretically but theory doesn't 
always work practically. This being the case we will need to create a variety of 
prototypes of each section of the device that we feel may be prone to failure. 
These prototypes will be used in the test procedure chapter to create and 
describe both the process and the purpose of the tests that will be applied to 
each of these prototypes. 
 
 

7.1 Slip Ring Power Transmission Prototype: 
 
While testing the slip ring we will need a prototype circuit that can be used to tell 
if the slip ring is properly transferring the amount of power we need to power the 
LED apparatus and microprocessor without actually connecting the processor so 
as to not cause any damage to either the processor or the LEDs. That being the 
case we created a prototype circuit using three 120 watt bulbs. Since the 
expected amount of power needed on the opposite side of the device is 324 
watts of power then if the slip ring can power while in motion 360 watts worth of 
power then we know that we should have no problem powering the 324. In 
addition, we can tell what the minimum amount of power is needed to power the 
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360 watts so we can get an idea of the loss in the system. The circuit for this 
prototype is shown in Figure 7.1.

Figure 7.1 Power Transmission Pro
 

7.2 Scaled LED Array Prototype:
 
In order to verify our LED array design works, we will build a prototype of the 
LED array. We will build a LED array for 16 RGB LEDs controlled by LED 
controllers. 

7.2.1 Scaled LED Array Hardware Prototype Design:
 
The design for the LED array prototype will be similar to the full
The only difference will be that number of cascaded LED controllers. For the 
prototype version of the LED array will not have any controllers cascaded. 
Although this will not test the speed at which we will be able to address the 
cascaded controllers, f(sclk), this will provided a test of the grayscale clock, 
f(gsclk).  
 

7.2.2 Scaled LED Array Software Prototype Design:
 
We would like to use the Atlys board to send data to the prototype LED array and 
have the LED array display various different 
have the LED array display its full range of color values in an endless loop. The 
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since we use image frames as a source, but for this prototype we will be able to 
use 24 bits of color depth since the 12 bit grayscale values will not be trans
from RGB data. This amount of color depth is known as true color and 

360 watts so we can get an idea of the loss in the system. The circuit for this 
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unique colors will be displayed by the LEDs. We can vary the color depth and 
attempt to determine when the color transition loses its smoothness. 
 
In this example Pseudocode, the colordepth can be specified and using 3 for 
loops every color combination can be iterated through. Determining the grayscale 
values would depend on the colordepth and a function that determines those 
values is called on lines 6, 7 and 8. A function used for writing to the LED 
controllers would be called with the address for the pin to write to as an argument 
as well as the grayscale value to write. Write() would write that grayscale value 
16 times since each of the controllers is connected to 16 LEDs. Finally on line 12 
the display() function is called, which will wait for a clock pulse before proceeding 
to flash. 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10
11
12
13
14
15
16

while(1) { 
int r = 0, g = 0, b = 0; 
  for(r=0; g<colordepth/3; r++) { 
    for(g=0; g<colordepth/3; g++){ 
      for(b=0; b<colordepth/3; b++) { 
        redgrayval = tograyscale(r, colordepth) 
        grngrayval = tograyscale(g, colordepth)
        blugrayval = tograyscale(b, colordepth) 
        write(red_controller, redgrayval) 
        write(grn_controller, grngrayval) 
        write(blu_controller, blugrayval) 
        display() 
      } 
    } 
  } 
} 

  
Another test would involve varying the flashing speed of the LED array, and use 
that information to determine if the LED controllers can indeed be updated at the 
rate we need them to. In order to display the 640x480 image, each controller will 
need to be able to update 320 times at 44 frames per second, or 14080 times per 
second. We may be able to use this information to determine if we can display 
multiple copies of the same frame, which would require that the controllers flash 
the LEDs at a faster rate. There is also a limit as to how fast the controllers 
themselves can be written to and we can attempt to transfer data at this limit and 
even exceed.  

8 Testing: 
 
Since like any project it is unlikely to work exactly like we designed it the first time 
we turn the device on it is best to create some testing procedures to fully 
experiment with certain software and hardware features of the device that could 
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prove to not model exactly like the theoretical design. These testing procedures 
will also help us calibrate certain components of the device so that they work 
effectively. 
 
In the following sections of this chapter there are a series of tests that will be 
implemented with the prototypes described in the prototype chapter before. Each 
test will identify the objective of the test, the prototype being used for the test and 
a short paragraph of desired results and the modifications to the design that may 
occur based on the results of the test. 

8.1 Video Signal Processing Testing: 
 
The primary objective of the video processing on the stationary microcontroller is 
to turn frames of RGB data into frames of Grayscale data as described in section 
6.1.1.2 Output Format Specification. Specifically, RGB frames consisting of 
640x480 pixels, each 2 bytes, are to be processed and turned into grayscale 
data which is then deposited into 12 bins. For each of the four sections AA, AB, 
BA, and BB, there are 3 bins for the RGB grayscale data. In order to test the 
various functions used in the video processing, we will create a test frame with 
known RGB values and process it. The memory contents of the processed image 
can then compared to a table of expected contents. Figure 8.1.a shows the 
layout of the test frame. The test frame contains 10 sections of 2 byte RGB 
colors and has been designed to test the various functions used in video 
processing. 
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Video Processing Test Frame 

Pixel 0 - 127 
128 - 
255 

256 - 
383 

384 - 
511 512 - 639 

0 
Section 
1: 
0xFFFF 

Section 
3: 
0x0000 

Section 
5: 
0xF800 

Section 
7: 
0x07E0 

Section 9: 
0x8010 

1 
. 
. 
239 
240 

Section 
2: 
0x0000 

Section 
4: 
0xFFFF 

Section 
6: 
0x001F 

Section 
8: 
0xFD00 

Section 
10: 
0xFFE0 

. 

. 
478 
479 

 
Figure 8.1.a Video Processing Test Frame Layout 

 
Sections 1-4 of the test frame will test frame which are solid white and solid black 
will test the TranslateAndOutput() function which is given the pointers of the 
output bins it should write to and handles converting pixel by pixel. This function 
is called 4 times in each loop of the main TranslateFrame()  functions, each time 
converting either an AA, AB, BA, or BB section of pixels. The expected memory 
output from converting these 4 sections can be seen in Figure 8.2.b, from 
memory offset addresses 0 to 46079. 
 
Sections 5 6 and 7 of the test frame are the colors solid red, blue, and green, and 
verify that each of the functions GetRedCombinedGS(), GetBluCombinedGS(), 
and GetGrnCombinedGS() each successfully isolate their respective colors from 
the RGB pixel data. The memory contents for converting section 5 can be seen 
in the expected memory contents table in the address range 46080-69119 in the  
AA and BA bins. Similarly, the results for section 6 can be seen in the memory 
range 46080 – 69119 in the bins for AB and BB. Section 7 results are located at 
memory addresses 69120-92159 in bins AA and AB.  
 
The final 3 sections, 8 9 and 10 are composite colors each containing a mix of 
RGB values. These sections will further ensure that RGB colors are being 
isolated correctly, and also test the CombineGrayscale() function which 
combines two 12 bit grayscale values into 3 bytes. For example, in section 8 the 
grayscale memory contents for AB_GRN in the 69120 – 92159 memory range is 
0xA3FA3F, which are the bytes A3 FA and 3F. This sequence of 3 bytes is the 
result of combining 0x0A3F with 0x0A3F.  
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Expected Memory Contents 
    Memory Offset 

    0 - 23039 
23040 - 
46079 

46080 - 
69119 

69120 - 
92159 

92160 - 
115199 

Bin 
Start 
Add.           

AA_RE
D 0 

0xFFFFF
F 0x000000 

0xFFFFF
F 0x000000 0x87F87F 

AA_GR
N 115200 

0xFFFFF
F 0x000000 0x000000 

0xFFFFF
F 0x000000 

AA_BLU 230400 
0xFFFFF
F 0x000000 0x000000 0x000000 0x87F87F 

BA_RE
D 691200 

0xFFFFF
F 0x000000 

0xFFFFF
F 0x000000 0x87F87F 

BA_GR
N 806400 

0xFFFFF
F 0x000000 0x000000 

0xFFFFF
F 0x000000 

BA_BLU 921600 
0xFFFFF
F 0x000000 0x000000 0x000000 0x87F87F 

Bin 
Start 
Add.           

AB_RE
D 345600 0x000000 

0xFFFFF
F 0x000000 

0xFFFFF
F 0xFFFFFF 

AB_GR
N 460800 0x000000 

0xFFFFF
F 0x000000 

0xA3FA3
F 0xFFFFFF 

AB_BLU 576000 0x000000 
0xFFFFF
F 

0xFFFFF
F 0x000000 0x000000 

BB_RE
D 

103680
0 0x000000 

0xFFFFF
F 0x000000 

0xFFFFF
F 0xFFFFFF 

BB_GR
N 

115200
0 0x000000 

0xFFFFF
F 0x000000 

0xA3FA3
F 0xFFFFFF 

BB_BLU 
126720
0 0x000000 

0xFFFFF
F 

0xFFFFF
F 0x000000 0x000000 

 
Figure 8.1.b Expected Memory Contents of Processed Test Frame 

 
If the memory contents of the processed test frame exactly match the data in the 
Expected Memory Contents table then we can be pretty confident that the 
TranslateFrame() function is working as desired. If we find that the contents 
differ, we will be able to approximate the cause of the problem based on where in 
memory the differences are occurring. 

8.2 LED Array Testing: 
 
We will be testing the LED array using the same frame layout as described in the 
test section for Video Signal Processing. After the we complete the testing of the 
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video signal processing, we can use the known frame information to verify that 
the correct LEDs are addressed and the correct sections display the correct 
color. As well, this test will allow us to determine if the image is shifting across 
the display. If we find the image is shifting, we will need to make adjustments to 
the motor to increase or decrease the rotation speed of the POV display. 

8.3 GUI Testing: 
 
In order to test the GUI we will be using the requirements specified in the 
research, and refined in the design. These requirements will serve as the basis 
for our testing procedures. There are three basic main requirements that we will 
address: text message formatting, image message formatting, and 
communications. The formatting of the messages will focus on verifying that the 
user input is properly transformed into the proper pixel image data. 
Communications will be tested by connecting the computer to the FPGA using a 
USB interface and verifying that the data is sent and acknowledged correctly. We 
will look at each of these three features individually for testing. If each one is 
tested individually and verified to be working correctly, then the application as a 
whole will be considered complete. 

8.3.1 Test Messaging Testing: 
 
The text message format testing will include all of the features of the text 
message area of the GUI. This includes the number of text lines to be sent, the 
alignment of the individual text lines, and the color of the text to be displayed. All 
of the mentioned features must then be combined and converted to the proper 
format to be sent to the FPGA. We will begin with the easiest part of testing and 
work our way to the more complex tests. First we will test the number of text lines 
sent. Then we will test the color of text and the alignment. Lastly we will test the 
animation option. All tests can be performed by either reading the data in 
memory using a debugger, or having the program output to a text file. 
 
The first test will verify that the correct number of text lines is sent to the FPGA. 
We will start by choosing one line of text. We can then verify that the text is 
converted to the proper format. We should only see one line of text sent and no 
others. Once we verify that one line works, we will then try two and three lines. 
Each time we will verify that the data shows the correct number of lines, and that 
they are displayed in the correct order. We will also want to make sure that all of 
the characters and symbols that we want to support appear correctly. After the 
line numbers have been tested we will move on to color and alignment.  
 
When it comes to color and alignment there isn’t one that is harder to test than 
the other so the order does not matter. We may also be able to test them at the 
same time. The data should show how the text is aligned. The easiest way to test 
the alignment is by typing in a single letter. This will make it very obvious where 
the text is located and how it is aligned. The color will also be easy to test 
because again we can use a single letter. We can then look at the information to 
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verify that different colors produce the desired results. Ideally we would test all 
256 color combinations. We will then combine this with the previous test and 
verify that different number of text lines can also be shown with the correct 
alignments and colors. After all the tests up to this point have been verified we 
can then move on to animation testing.  
 
Animation is the last thing we will test for the text messages. The animation 
requires a combination of the software on the FPGA and the GUI. The GUI side 
of testing will actually be very easy. We will simply send an animation signal 
telling the FPGA which animation to use. The FPGA should have pre coded 
animations that it will use to display the text. We will verify that the animations 
work as intended and we will combine this final test with all the previous tests as 
well. The animations should work with all of the combinations of text line 
numbers, alignments, and colors. Once all previous tests have been verified then 
the text messaging will be considered fully implemented. 

8.3.2 Image Messaging Testing: 
 
Next we will test sending an image message to the FPGA. Testing the image 
message formatting is going to be more complicated than testing the text 
messages will be. The complexity is due to the fact that we have to analyze 
specific pixels to make sure that the data matches. This can be very tedious if we 
test with large images. I think most of the testing will be done with a simple low 
resolution image. When testing the image messaging we must consider the crop 
function, the position choices, and the clear image button. As in the text 
messaging testing we will be testing the easiest functions first before we move on 
to the more complex scenarios. 
 
The clear image button will obviously be the easiest test to perform. We will 
simply press the button and verify that the information sent is the clear signal. On 
the FPGA side we will have to test and verify that this clear signal is received and 
properly clears the screen. Our next image test will be the position chooser. This 
will most likely be easier to test than the crop function. We will use a small simple 
image, possibly even just one color. We will see if the pixel data matches the 
location that we choose from the position radio buttons. After we verify that the 
basic position function is working we can then verify it with more complex images 
as well. This will also be a good time for us to test multiple image formats. Java’s 
built in functions are supposed to handle all common image formats, and we will 
put that to the test. If we find certain formats cause trouble we may change the 
design to not allow the faulty formats. 
 
Lastly we will test the crop function. We expect this to be the hardest part of the 
image messaging testing. It will be fairly easy to determine what the correct 
output should be when the crop option is checked. When the crop option is not 
checked it will be much more challenging to properly determine what the output 
should be. When the crop option is unchecked the image will be resized and the 
easiest way to see if this is done properly is going to be when the entire system 
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is working and we will be able to see the image displayed. Before then we will 
have to estimate the correctness. When the crop option is checked we will be 
able to compare sections of the image with the data being sent. This should be 
similar to verifying our position tests, except now the image will take up the entire 
display. 

8.4 Tachometer Testing: 
 
This section will cover the hardware and software test required to verify the 
correct and desired operation of the motor control circuit. 

8.4.1 Tachometer Hardware Test: 
 
There are a few things that we must determine about the tachometer's hardware 
that we must determine through testing to insure that it will best track the 
revolutions per second of the LED apparatus so that we can effectively control 
the motor. The objective of the first test is to determine if the tachometer will 
correctly show a voltage pulse when it registers a movement change. The 
second test's objective is to determine if varying the CTRL signal to the sending 
circuit will have an impact on the efficiency of the sending and receiving process 
of the infrared LEDs. Finally the third test's objective is to determine whether the 
output of the receiver circuit has a noticeable enough pulse or change in voltage. 
 
For all three of these tests we will need to use both circuits of the infrared sensor 
outlined in the design section for the tachometer, Section 5.3.1. The circuit will be 
left disconnected from the microprocessor for the purposes of this test. 

8.4.1.1 Sending/Receiving Signal Hardware Test: 
 
For the first test a voltmeter should be connected to the out location on the circuit 
design figure 4.3.1.1b also known as the receiver circuit. We will then connect a 
voltage source to the CTRL pin. This source will be used to turn on the sender 
circuit. The tachometer will be placed such that it will be directed toward a 
surface with some reflectivity, preferably the same type of surface that will be 
used on the LED apparatus in the final design. Then the CTRL pin will be 
increased slowly until a hit is registered on the receiving circuit. This will be 
noticeable by tracking whether the LED turns on or off and whether a voltage is 
registered on the voltmeter. Once a hit is received we will then remove the 
reflective surface and watch to see if the LED turns off or stays on and whether 
the voltage drops or raises on the voltmeter. If it stays on, we will slowly 
decrease the CTRL until it turns off. 
 
The desired result of this test is to have the LED turn on when the CTRL is 
turned on and reaches a voltage above 2.5 volts, a value that would be higher 
than the minus terminal of the op-amp. Then to have the LED turn off 
immediately upon removal of the reflective surface. Failure on both of these 
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accounts could mean that the infrared circuit is too sensitive to ambient light, or 
the op-amp connections need to be reworked. 

8.4.1.2 CTRL Signal Calibration: 
 
For this test the set-up will be the same as the test in section 8.6.1. After the 
circuit is set up and the tachometer is directed away from the reflective surface, 
the voltage supply connected to the control pin will be slowly increased. Starting 
at 0V the voltage from the power supply should be increased by 0.5 volts up to 
5V. During each increase in voltage the reflective surface should be passed in 
front of the infrared sensor slowly. The voltage change on the voltmeter should 
be recorded also during each increment. 
 
The desired result of this test is to determine that the strength of the CTRL signal 
is irrelevant when it comes to the effects of the strength of the receiver “hit” 
signal. If this is not the case then we would like to determine with this test what 
CTRL signal creates the strongest and most noticeable receiver “hit” signal. 
 

8.4.1.3 Tachometer Hardware Test Conclusion: 
 
Both test results can be used to determine the third final objective and that is 
whether the signal is strong enough to determine when a hit is received or when 
ambient light is scrambling the signal some. The results of these tests as stated 
in each test will allow us to calibrate the CTRL signal and determine if an analog 
to digital conversion will be needed to determine when a true voltage pulse is 
received instead of ambient light interference. 
 

8.4.2 Tachometer Software Test: 
 
While a lot of debugging will obviously go into making of the software for the 
processor the tachometer debugging may take a little work in order to determine 
that it is effectively maintaining the revolutions per second of the motor. There 
will be two stages to this test. The first part is to determine whether the processor 
is effectively increasing or decreasing the voltage correctly with respect to an 
increase or decrease in the revolutions per second of the motor. The second part 
is to see if the motor's speed is maintained when connected to the processor. In 
both cases the full control circuit as outlined in the motor control section 4.3 will 
be needed. 
 
In the first step of the test the microprocessor should remain disconnected from 
the pulse width modulation control circuit. The tachometer should be connected 
to the processor and set to record the revolutions per second of the motor shaft. 
A voltmeter should be connected to the out pin that will be connected to the 
voltage controlled resistors on the control circuit. A power supply should be 
connected to the voltage controlled resistors R8 and R9. In this portion of the test 



115 

 
 

the motor's speed should be varied from high to low revolutions per second 
values and the voltage on the out pin of the microprocessor recorded. 
 
The second step of this test is then to connect the microprocessor to the control 
circuit and to watch the revolutions per second of the motor and see if the motor 
settles at a speed and maintains that speed until stopped. 
 
The desire of this test is to show that not only does the program react correctly to 
an increase or decrease in revolutions per second in the motor but will also 
maintain the speed of the motor. 
 
If the program cannot maintain the speed then a new algorithm may be needed 
to effectively control the motor better, or an error in the programs logic may be 
causing some form of interference with the control circuit. 

8.5 Pulse Width Modulation Circuit Test: 
 
The pulse width modulation circuit is integral to sustain a motor speed in order to 
prevent image distortion. This means that it is very important that we test it 
thoroughly. There are also some calibrations that will need to be done with this 
circuit to determine what best operates with the motor. The first test's objective is 
to determine the best resistance to have in series with the JFET for the voltage 
controlled resistors. The second test will also be used to determine the actual 
relationship between the perceived resistance value and both the frequency and 
duty cycle of the circuit. The third test's objective is to determine the best 
frequency that this circuit will run on in order to best control the motor. The final 
test will be to determine if the pulse width modulation circuit can effectively 
control the motor's revolutions per second from 0 to 100% of its rated value. The 
circuit that will be used for this test is the circuit outlined in Figure 5.3.2.a. For the 
purposes of these tests the circuit will not be integrated yet with the 
microprocessor. 

8.5.1 Voltage Controlled Resistance Calibration: 
 
In this test we will need a potentiometer to take place of the R resistor in the 
design of the voltage controlled resistor figure 4.3.2b. A voltage source should be 
connected to the Vin while a voltmeter should be connected to the Vout. Starting 
with 1 kilo-ohm the voltage in the Vin should be increased incrementally to 12 
volts. The Vout voltage should be recorded during each incremental step. Then 
using the voltage divider principles the effective resistance should be determined. 
This should be repeated for multiple resistances until a resistance on the 
potentiometer creates the perceived range of resistances along the JFET. 
 
The desired outcome of this test is to either determine that this R resistance is 
irrelevant with respects to the perceived resistance ranges of the voltage 
controlled resistance or what is the best resistance to gain the largest range of 
resistance. 
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8.5.2 VCR Frequency/Duty Cycle Relationship: 
 
For this test the pulse width modulation circuit from Figure 4.3.2a will be 
connected to an oscilloscope at the M2 MOSFET. A power supply will be 
connected to both the voltage controlled resistances. The first portion of this test 
is to incrementally increase the voltage of the R8 voltage controlled resistor and 
track the change in the duty cycle. The second stage of the test will be to then 
increase the voltage of the R9 voltage controlled resistor incrementally, during 
each increment varying the voltage of R9 up and down. The frequency should be 
tracked during each change in R8 and R9's voltage. 
 
The desired result of this test is to determine how much voltage in R8 changes 
the duty cycle of the waveform, and how much voltage in R9 changes the 
frequency of the waveform. This can be used to accurately assume the 
relationship of the voltage controlled resistance and the change in these two 
variables of the circuit. 

8.5.3 Frequency Calibrations: 
 
This test will be completed with the Figure 4.3.2a with an oscilloscope connected 
to the M2 MOSFET. The motor will be connected to the circuit for this test. The 
voltage controlled resistors will be connected to a power supply instead of the 
microprocessor. The first step of this test is to set the voltage of the R8 voltage 
controlled resistor to a value that noticeably rotates the motor. Then to 
incrementally increase the R9 voltage controlled resistor's voltage and watch for 
any disturbance in the motor speed. The desire of this test is to determine 
whether the frequency even has a factor in the revolutions per second of our 
motor, and if they do what is the best frequency to control our motor with. 

8.5.4 Motor Control Test: 
 
This test will be conducted with the Figure 4.3.2a pulse width modulation circuit. 
The motor will be connected to the circuit for this test. The voltage controlled 
resistors will be connected to a power supply instead of the microprocessor. In 
this test the frequency of the pulse width modulation circuit will be maintained at 
a steady value as the R8 voltage controlled resistance is varied. Starting with a 
very small perceived resistance and increasing to the voltage controlled 
resistance's maximum value the revolutions per second of the motor will be 
observed. 
 
The desire of this test is to have the motor start from a stationary position and 
raise all the way up to its maximum revolutions per second and then back down 
again all through just the variation of the R8 voltage controlled resistance. 

8.5.5 PWM Test Conclusions: 
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The hopeful results of these test is to have the best frequency for the pulse width 
modulation circuit to run on and to have a mathematical model of the voltage 
controlled resistors and both the duty cycle and the revolutions per second of the 
motor. If one or all of these are not accomplished then an alternate motor control 
method may be needed. Such as a variable resistance method or a pulse width 
modulation circuit using a 555 timer circuit design that we have prepared as an 
alternate possibility. 

8.6 Slip Ring Test: 
 
It can't be stated enough the importance of getting the slip ring to work for this 
specific project. Without proper power management the rotating side with be 
unable to do anything we desire it to. This is why we have come up with a few 
tests to insure that the slip ring design we came up with will work under our 
desired conditions. The first test is nothing more than a durability test of the slip 
ring to determine if it can handle both the electrical and physical demands of the 
device. The second test is the power transfer test, it is to determine that under 
the most ideal of conditions that power is at least properly transferred through the 
slip ring. The final test is to determine if the slip ring can transfer power during 
rotation and how much power loss is suffered due to thermal dissipation in the 
junction. 

8.6.1 Slip Ring Durability Test: 
 
This test will require a completed motor and motor control circuit so that the 
motor's speed can be varied. This means that most likely the Figure 4.3.2a pulse 
width modulation circuit and the motor will be used for this test in addition to the 
slip ring as shown in Figure 5.6.2.a. In essence, the slip ring, attached to the 
motor and LED apparatus with the LEDs not installed yet will be at first begin 
stationary. Then the motor's revolutions per second will slowly be increased and 
then maintained at its maximum rotations. After a number of minutes have 
passed the motor's revolutions per second will be slowly decreased and then the 
motor will be shut down. After the device has been powered down the slip ring 
will be checked for damage. 
 
The desire of this test is to have the slip ring capable of handling the maximum 
possible revolutions per second that the motor can obtain and any variations in 
this rotational speed. While it would be ideal to not have to worry about any 
structural damage to the slip ring we want to at least see minimal damage. 

8.6.2 Ideal Power Transfer Test: 
 
This test will require only the power supply, the slip ring shown in Figure 4.6.2a, 
and a voltmeter. The slip ring will be connected to the power supply on the 
outside, and the voltmeter will be connected to the wire of the slip ring that is 
expected to be threaded through the shaft of the LED apparatus. The power 
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supplies voltage will be varied from a low to high AC value while the amount on 
the voltmeter side will be recorded. 
 
The desire of this test is to see that all or a majority of the power applied to the 
non-rotating side is seen on the side that will be rotating. Since this would be 
optimal conditions, neither rotating, for obvious reasons if the power is not seen 
on the other side of the slip ring or there is a large amount of loss then this 
design for the slip ring is no good. 

8.6.3 Rotational Power Transfer and Thermal Dissipation Test: 
 
For this test we will need the motor control circuit, the motor, the slip ring design 
and the prototype circuit in Figure 6.1 of the prototype section. In this test the slip 
ring will be connected to the power supply. Since we don't have a way to directly 
measure the rotational side during its rotation we will use this prototype circuit to 
get an idea of how much power is being supplied to the rotational side. To begin 
we will start with a power input of around 300 watts and begin rotating the device 
with the prototype circuit connected to the rotational portion of the device.. We 
will then gradual increase the AC power supply until we get the light to just turn 
on and record this value. Since the bulbs require 360 watts to power whatever 
the difference in what is being inputted into the slip ring and the expected 360 
watts will be a portion of our dissipation loss in the circuit during rotational 
conditions. 
 
The desire of this test is to have the slip ring handle the physical and electrical 
demands of the device with minimal power loss. 

8.6.4 Slip Ring Test Conclusions: 
 
If the wire is unable to handle the physical demands of the device then we may 
have to add more wire taps into the ring or choose a more durable material for 
the wire. If the slip ring itself can't handle the demands of the device, which we 
believe is less likely, then we will have to come up with a more durable design or 
we may only need to choose a better material. In the case of high thermal loss 
we may need to then adjust our input power to the slip ring and alter our rectifier 
circuit on the opposite side so that it can handle these changes. 

9 Conclusion: 
 
The process of designing a persistence of vision device turned out to be a far 
more complicated endeavor then our team expect. While we had already 
expected some complications in the power transmission process of this device a 
whole slew of issues revealed themselves in other areas of the device that we 
had initially thought to be simplistic. The process of choosing a motor and 
controlling it seemed at first to be a simple idea but when we began to research 
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further into the process it turned out to be far more complex than expected, 
specifically for the high rotational and torque requirements of our system. The 
design presented hopefully should accomplish our goals for this. However, motor 
control was not the only unexpected challenge. The design of the LED array 
turned into a rigorous design challenge when it turned out that trying to address 
each and every LED would send our data transfer rates into the nine digit figures. 
Which the FPGA board was capable of handling, the problem is the LED 
controllers available to us were not. This meant having to come up with an 
ingenious method for refreshing our display that our controllers could handle. 
Which lead into an increase in our revolutions per second for the whole device, 
which in turn raised the requirements of our motor again. Power transmission as 
expected gave us many issue, since the process of transferring power over a 
rotating wire is difficult. Since we didn't want to just transfer power but also 
wanted to transfer data from our computer interface, we also needed a process 
that would not lose information or very little at least. In the end, this meant 
sending two different signals, our power signal through a slip ring and our data 
through a coaxial rotational joint. However, in order to do this we wanted a 
medium that was common for our FPGA so it would be easy to transfer and 
receive data. This turned out to be Ethernet since both FPGAs would have an 
Ethernet input. However, needed the Ethernet connection meant we needed to 
convert to coaxial with a converter in order to then use the rotational joint. 
 
These design challenges discussed above or overcome but at a substantial 
increase in our first projected costs. This means that the need for sponsorship 
has tremendously increased. The entire design is under the expectation of an 
almost limitless budget, however the loss of sponsorship would require some 
rather extreme reductions in scale of the design. Specifically our team has 
discuss that the HDMI instantaneous streaming of the display device would most 
likely have to be cut. This is primarily for two reasons. The first reason is that the 
loss of a sponsor would most likely require us to drop the LED count and thus 
dropping the resolution to a level that would not be cohesive with the idea of 
displaying a computer screen for video playback. The second reason for this 
design cut is the ability to purchase less powerful and thus less expensive FPGA 
boards for image processing. Without the demands of the high data transfer 
associated with the instantaneous streaming of the display device our display 
would most likely project much more simplistic animations and text, thus needed 
much less data transfer and processing. Hopefully the cutting of both the HDMI 
and the more expansive FPGA options we would also be able to cut our motor 
demands which would allow us to purchase a far less expensive motor then the 
one outlined in the design. This would be because we could probably redesign 
our controller and LED array for a less demanding refresh rate. However, with 
these cuts it would not spell the end for scalability for the device. Since even with 
a reduction in hardware features there would still be a vast amount of room for 
software features to more than make up for the loss of the instantaneous 
streaming of the display device. 
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For the future of this device our entire group is looking forward to the construction 
of it in Senior Design II. Within the first two weeks of class we are hoping to learn 
whether sponsorship will be a definite possibility or whether rescaling of the 
project should begin. While we are still planning to order many of the parts 
associated with the portions of the project that we do not expect to change with a 
scaling change of the project, such as some of the LEDs for the prototypes, the 
pulse width modulation circuit, and the tachometer components. We do need to 
know whether we are changing gears of this project so ideally we do not 
purchase any components that will not be used since this has turned into an 
expensive endeavor. This will all be based on whether we obtain sponsorship 
from either the navy as originally desired or whether the University of Central 
Florida takes on our sponsorship needs as we had discussed with our 
supervising professor for the Senior Design I. Hopefully we will get sponsored 
and we can begin the process of creating this device which our entire group is 
very excited about seeing realized. 

9.1 Bill of Materials: 
 
As seen in Table 9.1, is a list of major items required to build the POV display. 
 
Bill of Materials 
Item 
Number Part Number Mfr. Description Qty 

Microprocessor 
101 Spartan-6 Atlys FPGA Development Board 2 

102 VMODBB Atlys VHDC Breadboard I/O 
Extender 2 

Motor and Chassis 

201 MUV-6301S Prestolite Motor, DC, Wound Field, 12 
Volts, 1.6 HP, 2800 RPMs. 1 

202 8090T13 McMaster-
Carr 

Bearing, Extended-Ring Type 
ER, rated for 3,145 dynamic 
load pounds and 5,000 RPMs 

1 

203 Custom 
Metal Work 

KEMCO 
Industries 

Custom Aluminum Metal to 
include top plate, base plate 
and support rods. 

1 

LED Array 
301 OVS-3309 Multicomp LED, Type OVS, RGB, SMD 480 
302 TLC5940 TI LED Controller, 16-Channel 180 
Ethernet Communications 

401 EOC-AN/IN EnConn Ethernet of Coax Converter, 
100 Mbps 1 

402 205-HS Mercotac Rotary Joint, 2 Conductor 1 
 

Table 9.1 Bill of Materials 
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10 Appendix: 
 

 
 

Figure 10.a Infrared Sensor Reference Circuit 
 
 
 

 
Figure 10.b Pulse Width Modulation Reference Circuit 
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