
The Beer Grid

Edgar Alastre, Jonathan Chang, Colton Myers,

and Ashish Naik

Dept. of Electrical Engineering and Computer

Science, University of Central Florida, Orlando,

Florida, 32816-2450

Abstract — This project consists of an electronic table filled
with RGB LEDs and infrared sensors that work together to
create a display on the surface of the table that is compatible

with games of “Beer Pong”. The table makes use of several
TLC5940 LED drivers to control about 150 LEDs and
multiple SN74HC165 Shift Registers to receive information

from 100 infrared sensors. This is combined with dynamic
memory allocation techniques to make “LED Nodes” to
manage the information of each LED for programming

patterns on the table. Meanwhile, the table has Bluetooth
connectivity to update game information on player’s phones.

Index Terms — SN74HC165 Shift Registers, TLC5940
LED Drivers, RGB LEDs, Dynamic Memory Allocation,

Bluetooth Communication.

I. INTRODUCTION

“The Beer Grid” is an electronic table that makes use of

a system of 100 RGB LEDS and an equal number of 100

infrared sensors to create a display on the top surface of the

table which can display patterns and respond to surface

impacts during a game of “Beer Pong”. This information is

then processed and sent to an app, which can be

downloaded onto a player’s smartphone, to help them keep

track of the information of each game. Bluetooth

connectivity is used for transferring information to and

from the table, and all of the circuitry for this design is

housed inside of a wooden framework.

The software of our design involves using a system of

“LED Nodes” to hold the current state information of each

of the individual LEDs on the surface of our table. The

table’s program updates the information on each of these

“nodes” as the games progress and various patterns are used

on the display. This way patterns can be programmed in the

table based on this information and easily manage all 100

of the LEDs to respond to each of their corresponding

sensors. These same techniques will also be used to manage

a smaller system which makes spots on the table light up

when cups are placed on them for play. It will help with

keeping track of when someone scores a point because the

cups will be removed when this happens.

Meanwhile, changes in the table’s display are tracked by

the program in response to in-game occurrences. This lets

players know when one team or the other has scored points

and how many turns have passed since the beginning of

play. This information is sent to a database and that

database is referenced by the app we’ve built to let people

know how the game is proceeding.

II. COMPONENTS

A. Atmel SAM3X8E ARM Cortex-M3 CPU

The microcontroller is the part controls most of the

subsystems used in The Beer Grid. Out of all the

microcontrollers considered the Atmel SAM3X8E was the

preferred choice given its versatility and the available

resources. The Atmel SAM3X8E is responsible for sending

data to the Cup Display System, Sensor Array, and RGB

LED powered by the LED Drivers, as well as sending

Bluetooth information about the game to a smartphone

device via a Bluetooth adapter. The project required a

device that was more powerful than an 8-bit 16Kbytes as

the amount of information handled was extensive and as

research shown, similar projects required to move to a more

powerful 32-bit processor. In the case of the SAM3X8E it

features 512kB of memory and runs on 84MHz as well as

its architecture being 32-bits. Additionally, several libraries

were available online of the other components used in the

assembly of The Beer Grid therefore it was convenient for

the team to make this the microcontroller of choice. The

Beer Grid utilizes several communication protocols such as

SPI, serial, and UART to communicate with every

subsystem. The LED Drivers required an SPI port as well

as the shift registers which utilized a more basic serial

protocol that still required a clock pin and a “serial in/out”

pin in order to fully communicate. Bluetooth on the other

hand required UART. The microcontroller required

individual and ample ports as the best configuration

possible required each subsystem its own port. The

SAM3X8E allows for every subsystem to communicate

without the need to share ports between the devices. The

Atmel SAM3X8E is housed on its own separate printed

circuit board as the circuitry required for the

microcontroller is of higher complexity than any other

subsystem. Additionally, having the microcontroller

isolated decreased price given a smaller board and

minimized errors. The choice of the SAM3X8E also

allowed the creation of the subsystems to be less

complicated due to its many libraries provided by the

community which streamlined the software development of

the other subsystems with specific software libraries for

every component used as well as example codes. The

SAM3X8E also proves to be convenient with its

programming as it also houses many ways to communicate

with a programming device such as computer as it also

includes its own native USB port as well as programming

and JTAG ports.

B. TLC5940 LED Drivers

This component is used to take the limited number of

output pins we have on our PCB and use them to control

multiple LEDs simultaneously. This chip allows us to

control the PWM values individually on each of its 16

output channels. We can use this to let us control the

brightness on each of the bulbs in each LED with very

accurate results, which in turn lets us produce a variety of

colors in a fairly simple manner. Each chip has the capacity

to be cascaded from one to another so that we can control

multiple chips, and therefore multiple LEDs, at once. They

are fairly cheap and easy to wire, and our design is very

dependent on their use.

C. RGB Common Anode LEDs

We needed to make use of RGB LEDs because we

wanted to have multiple colors at our disposal for the

display we had in mind. These LEDs specifically had to be

Common Anode LEDs because these are the only type

compatible with the afore-mentioned LED drivers. These

are an easily obtained part and cheap to purchase, which is

important since we expect to use at least 100 LEDs on our

table’s grid.

D. SN74HC165 Shift Registers

These chips serve a similar purpose to that of the LED

Drivers in that they allow us to increase the number of

output pins we can control using a limited number from the

PCB. Unlike the LED Drivers, however, they do not have

any PWM settings for their information channels. This is

appropriate because we are using them as a means of

controlling our array of 100 infrared sensors. We only need

to know when these sensors have been triggered, and these

Shift Registers are design to detect when their individual

channels have been affected and send that information to

the main CPU as a series of ones and zeros. We can then

use that information to determine which infrared sensors

were triggered and which ones weren’t. The rest of our code

can they focus on processing those signals to create the

patterns on the surface of our table.

E. TCRT5000L Infrared Sensors

These sensors are used together with the LEDs to create

our impact sensitive display. They can be used to detect

objects reflecting infrared light to about 15 mm. This is

sufficient for our purposes since we only intend to have

them detect when a ball strikes the surface of our table as a

trigger for the rest of the system to respond to. Each one is

meant to set off a specific LED in our system, so we need

100 of them to match each of our LEDs.

F. HC-05 ZS-040 Bluetooth Module

This module allows wireless communication with the

table so that we can send information from the table to the

smartphone app so that players can see the game

information updated during play. We opted to use

Bluetooth so that we could ensure communication with the

table would exist, even if an internet connection wasn’t

available, and because it was easier to include in our design.

III. PCB DESIGN

At first it was agreed by the team to make a single PCB

that would house all of the components. However, it was

later proven that it would be problematic therefore the final

design was to have a modular design which consists of

different PCBs for different tasks. The main PCB houses

the main microcontroller and it has the required ports to

connect different PCBs that can be connected in cascading

configuration. The creation of the main microcontroller

board proved to be a part of high complexity as the

components required to power the microcontroller and the

overall schematic involved many components to achieve

basic functionality. Fully explaining the functionality of the

main PCB would go out of the scope of this document.

SMD components were required otherwise the size of the

board would increase exponentially.

Fig. 1 shows the main PCB on its final version. The main
PCB has ports on the left and top and right side. On the left

of the board there are two ports. On the top we have the
LED Driver port and on the bottom we have the Shift
Register port which both connect to a PCB that has these
components connected in series or “cascade” configuration.
To the top we have the Bluetooth port where the NC-05
Bluetooth adapter is housed. To the right we have all the

programming ports given the case any port fails there is still
the possibility to upload any code to the microcontroller.
Finally, on the bottom we have the power and USB port.

The next PCB involves the LED Drivers and the Shift

Registers. As it can be seen in Fig X. The board has two

sets of ports. The first set connects servers as the input ports.

In other words, these ports will receive the information

from the main microcontroller or any other equal board and

the second set will send the information to the next set of

boards. Each board is capable of handling up to 25 RGB

LEDs and sensors. Each board has 25 4-pin ports that (R,

G, B, and touch) are used to send/receive information from

and to the board. Additionally, this PCB has 25 VCC and

GND ports to provide power to the aforementioned

components. The same PCB and its ports are also used for

the Cup Display subsystem that allows to keep track of the

game score.

Lastly, an additional PCB to house the Ball Cleaner

System. This one houses the microcontroller required to

program the behavior of the components attached to it. This

one has two voltage rails. One being 5V and the other being

12V. This board is considered as its own isolated system as

it does not communicate with any other subsystem.

IV. LED ARRAY

This is the most obvious system in our design. It makes

use of 100 LEDs that display various patterns across the

surface of the table during gameplay, depending on the

currently running game mode. Each of the 100 LEDs takes

3 output channels to control, where the output channels

being used to control them come from the TLC5940 LED

Drivers. Each of the output channels on these drivers has

4096 different PWM rates that can be programmed to adjust

the brightness on the bulb connected to that specific channel.

Since each LED has a 3 bulbs, and each channel can be

programmed to input a different PWM rate into that bulb,

we can produce a variety of colors for our display.

A. Wiring

In terms of wiring, the SIN port of the first TLC5940 chip

is wired to the PCB where the main MCU has been set. We

use a specific “Master Out Slave In” (MOSI) pin on the

PCB to connect to the SIN port of the LED Driver. This is

the specific pin from the PCB that is responsible for sending

the serial information that is used to control the PWM rates

on the LED Drivers. Meanwhile, the SOUT Port of the first

chip is connected to the SIN port of the next chip in the

array. This allows signals from one chip to travel to the next

so that multiple chips can be connected in series and

controlled via a single MCU. Other than the first chip in the

series, the remaining chips are connected with their SIN

port linked to the SOUT of the previous chip, and their

SOUT port linked to the next chip’s SIN port. The

following is a small diagram of the setup:

Fig. 2. Diagram illustrating the way that TLC5940 chips

are linked together in order to communicate serial

information.

The remainder of our pins connecting between the PCB

and the first TLC5940 are connected in parallel with the

same ports on the remaining TLC5940s. This is because the

information sent to those ports is not dependent on the

number of LED Drivers in use. Thus, we are able to connect

them in parallel without any complications. Below is a

diagram of how these connections are made:

MOSI

SIN

SIN

SOUT

SOUT

TLC5940(1st)

TLC5940(2nd)

Fig. 3. Illustration of parallel connection between two
TLC5940 chips and two pins from the PCB.

B. Programming

This wiring allows us to send signals to the LEDs through

the LED Drivers. The exact code that we use to do this is a

combination of functions obtained from a pre-written

library about controlling the TLC5940 LED Drivers that is

specifically compatible with processor we are using

because it was built into an Arduino Due experimenter

board. The functions of this library include the ability to

pulse any output channel of the TLC5940 chip with a

specific rate between 0 – 4095 baud. The library also

includes several configuration options that allow us to set

the number of LED Driver chips that we expect to use so

that it will automatically know to move from the output

channels on one chip to the next automatically. With these

basic tools at our disposal it is possible to write more

complex patterns for the LEDs in our display to execute.

With the basic means of sending signals to the TLC5940

chips accounted for, we moved on to building a more

complex method of keeping track of the current state

information of each LED. Using Dynamic Memory

Allocation we built “LED Nodes” in the table’s program.

Dynamic Memory Allocation is a technique used for

several different purposes in code. In this particular case, it

was used for making new variables that could have multiple

characteristics. This way the table program could keep track

of multiple objects with several different qualities in an

organized and efficient manner. The following is how the

structure has been written into our code:

typedef struct LedNode {

 int idNumber;

 COLOR current;

 int blinking;

 int off;

 struct LedNode *north;

 struct LedNode *east;

 struct LedNode *south;

 struct LedNode *west;

}LedNode;

Fig. 4. Copy of the code used to build the “LED Node”
structures in our code.

By constructing our “LED Node” with these qualities we

can effectively track the changes in the LEDs as a game

mode is running and several different patterns are working

on the table at once. Each node is assigned the variable

“idNumber” so that we can distinguish each one in a lineup.

This number is also used in a crucial equation for

determining the corresponding channel to output signals on

from the TLC5940 chips. The channels from all chips are

numbered from the first channel on the first chip, the last

channel on the last chip. In order to find the channels

corresponding to a particular LED, we use the following

equation:

idNumber x 3 = first channel (1)

 (idNumber x 3) + 1 = second channel (2)

(idNumber x 3) + 2 = third channel (3)

 This provides us with the channels corresponding to

each LED in a simple manner. Meanwhile, there is also a

“blinking” variable to indicate to the rest of the code that

this LED should have a steady blinking action rather than

remain a solid and constant color. The variable “current” is

based on an enumerated type we’ve built called “COLOR”

which holds the names of each of the different colors we

will be making use of in our program. There are a total of 8

different values of COLOR including the following: BLUE,

GREEN, RED, YELLOW, PINK, PURPLE, ORANGE,

WHITE, and BLACK. Whenever the current color

displayed by an LED on the table matches one of these

specific values of COLOR, our code will update the

information on the corresponding “LED Node” to reflect

that change. Getting the program to track this information

is much easier than trying to do it any other way, so it was

always intended that our code make use of a structure like

this.

Take note that there is also a simple “off” variable in the

node as well. Sometimes patterns in our code will cause an

LED to deactivate, but not change its color. Other times we
PIN 1

PIN 2

TLC5940

TLC5940

will want an LED to remain dark regardless of whether they

have been triggered or not. The “off” variable lets us know

when we have our LED deactivated because a pattern has

indicated that it should be that way, and when it needs to

light up again, it already knows what color it is supposed to

have because that information is stored in “current.

However if we want an LED to completely ignore any of

the conditions that would cause it to light up ordinarily, we

would set that LED’s “current” value to BLACK and it

would always appear as a single dark spot on the grid until

another pattern in our program changes that value.

In addition to keeping track of the current state

information of each LED, these nodes are designed to keep

track of which LEDs in our grid are adjacent to one another

using the following four pointers: north, east, south, and

west. Some of the patterns we implemented use LEDs that

are adjacent to one another to create an effect on the table.

One such effect is the “ripple” effect where a single LED

lights up in response to impact on the surface of the table,

followed by the LEDs surrounding it lighting up afterward

to create an effect similar to a drop of water falling into a

pond. The simplest way to do this is to have each LED keep

a pointer that remembers which LED in the grid is next to

it on all sides. This way we only need to tell a single LED

to light up, followed by the LEDs that it is connected to

through its nodes to create effects like the one we described.

As a direct consequence of the building of these nodes,

making patterns on the surface of the table is much easier.

All nodes can be referenced from a single double pointer

that has been built to hold enough memory for all 100 nodes

in our LED array. Any time there is need to access a

particular node, they can be identified by the unique

“idNumber” of that specific node. Then the program can

modify the properties of it according the patterns running

on the table. With this in place, the table will function as

desired so long as the sensor array is functioning properly.

V. SENSOR ARRAY

In order to make the table responsive to impacts from a

ball used during play, it was armed with an equivalent

number of infrared sensors to match the number of LEDs in

the LED Array. With 100 different infrared sensors being

used at once, there needed to be a means of connecting and

receiving information from each one individually. To do

this, each of the infrared sensors was wired through an

SN74HC165 Shift Register. Doing so allowed for the main

MCU to receive accurate information about which sensor

was triggered and which wasn’t using only a few output

pins to connect to the first Shift Register.

A. Wiring

The Shift Registers used in the design of this sensor array

aren’t that different from the LED Drivers mentioned

earlier. Shift Registers can be used to receive signals from

multiple inputs simultaneously and have those signals

organized as a set of ones and zeros kept in order from first

channel to last channel. Knowing this, the infrared sensors

were wired to the Shift Registers so that any time an object

came within range of the sensors it would be able to send a

signal through a specific channel on the Shift Register that

would indicate the status of that particular sensor had

changed.

In order to connect the PCB holding the main MCU to

multiple Shift Registers, we connected one pin from the

PCB to the “Q7” port on the Shift Register so that the MCU

could receive serial input information. This, however,

would only allow it to receive information from the first

chip in the series. The Sensor Array has to be able to

manage at least 100 separate infrared sensors, and that

specifically requires that we have more than one Shift

Register. To obtain this additional information, the Shift

Registers are cascaded into each other so that they can pass

information from the farthest channel on the last channel of

the last chip, back through the wire connecting the PCB to

the first chip. This serial communication of data through

multiple chips allows for communication with multiple

Shift Registers, and therefore multiple infrared sensors.

Meanwhile, the other wires between the PCB and the first

Shift Register in the series are also connected in parallel

with all other

B. Programming

Each infrared sensor only takes a single channel from a

Shift Register to send information, and each Shift Register

has 8 channels to receive information from. When the main

MCU is told to read information from the shift register, it

receives that information as a string of ones and zeros that

indicate if any of the input channels have changed status.

The rest of the program then reacts to these signal changes

and triggers any patterns that the table has been set to show.

The following is a diagram of how the infrared signal

information is received:

Fig. 5. Illustration of how data from infrared sensors is read
by the shift registers.

The above diagram is useful for understanding how the

signals are gathered from each of the sensors, but to actually

distinguish which sensor was activated and which wasn’t

requires more mathematical analysis. The strings of ones

and zeros are a binary code, and this code is translated into

a base 10 number in the main program in order for the rest

the table’s program to function. When all sensors are

inactive, the binary code sent to the main program from all

of the sensors translates to about

(2^101)-1 = total sensor data (4)

However, when one or more of the sensors are activated,

this number is reduced by a specific sum depending on

which of the sensors was activated. For example, if the very

first sensor in the array was activated, the new value read

from the Shift Registers would be the equivalent of

((2^101)-1) – (2^0) (5)

This is because the first sensor adds the sum of (2^0) to

the overall sum. The next sensor adds (2^1) followed by

(2^2) and (2^3) and so on. As such, the main program for

the table is designed to calculate the difference in the sum

and use this information to deduce which of the sensors in

the array was triggered. That information is then

coordinated with the LED Array to make patterns appear on

the table’s surface.

VI. CUP DISPLAY SYSTEM

This system combines technology from both the LED

Array and the Sensor Array to create a system that is able

to use the infrared sensors to detect when cups have been

put into proper positioning for play in a game of Beer Pong.

When cups have been set for play, the system lights up the

surface of the table on either end in the specific spots where

the cups are supposed to be positioned. Cups will also be

removed from play as part of the game, which helps to

indicate when one team has scored certain points against

another. As such, this particular display system will also

detect when cups are removed as part of the game and send

the corresponding information to update the app that tracks

in-game scores.

VII. GAME-TRACKING APP

A. Android Application

The Beer Grid will be making use of an Android based

application to keep track of player’s statistics and the

current state of any game being played on the table. To

develop this application, the project group will be making

use of the Android Studio IDE.

The smartphone app will allow for players to sign in and

create their own username. To store this information, the

application will be connected to an online MySQL database.

This database will not only hold the players’ usernames and

passwords, but it will store the amount of wins and losses a

player has. To get this information, the smartphone

application will be connected to the table via Bluetooth.

The number of cups remaining on both sides of the table is

the data that table will send to the application. The app will

have a game in progress page which will show the data

received from the table indicating the progress of the game

being played. Once one score equals to zero, the game ends.

A winner (the player who still have points left) and loser

(the player whose score reaches zero) is determined, and the

smartphone app will then send the outcome of the match for

both players to the online database that holds the status

information of the players.

The app will also be handling a queuing mechanic for the

project. While a game is currently in progress, the

application will be able to allow other users to enter in a

queue which will show which users are next to use The Beer

Grid. This queue will also be handled by an online database.

This database just store the username and the position in

which they queued up for playing. To enter this database, a

game will have to be in progress, and once a user hits the

queue up button in the app, their username gets added to the

database. Once that game finishes, the first person added to

the database will get put into the game. Once in the game,

the table will erase that user’s information.

B. Database

For the application database, the Beer Grid uses two

MySQL databases. One database is used to store

player/user information such as username, password, wins,

and losses. The other database will be used to store a queue

1 0 1

0

0

0

0

1

0

1

on the order of who is up next to play. So this database will

only have information stored in it when there are multiple

players trying to play on the table at the same time.

C. Overall Communications Setup

 Although the app will have all features available for any

android operated mobile device, only one device at a time

will be connected to the Beer Grid via Bluetooth. So the

device that is connected to the Bluetooth will be the one

updating the wins and losses in the player’s stats databases.

All other devices that uses the app will not connect to the

table and all the information of the application will be

updated through the databases. The figure below illustrates

how all of this works together.

Fig. 6. Illustration of how all the subsystems are connected
to one another.

VIII. POWER SUPPLY

The power supply required to provide enough power to

drive all LEDs turned on at the same time in order to have

a safe operation. Each LED would require at least 20mA

per channel, therefore 60mA per LED. 100 LEDs would

require at least 6A of current at any given time on a 3.3V

rail that would power the microcontroller, LED Driver,

Shift Registers, RGB LEDs and, Proximity Sensors. During

the design phase it was determined that it would be

beneficial if all the circuits involving all of those

subsystems be running on that voltage as the main

microcontroller runs on the same voltage and rule out any

incapability issue given by voltage. An additional 5V rail is

required for an additional microcontroller that will control

another set of infrared sensors and blower fans that run on

12V which would require additional components for

successful communication.

IX. BALL CLEANER

The ball cleaner is a device that is used to remove any

debris in case a player drops the ball to the ground. This

tends to be a common issue, so it made sense to include

functionality in the table that would account for it.

Additionally the ball cleaner will dry the ball from normal

usage in order to provide players an optimal game

experience and to remove the need to clean the ball

manually with the player’s shirt or a nearby rag. This is also

a frequent occurrence in games of Beer Pong. The

functionality of this subsystem is completely isolated from

the main microcontroller. This decision was mainly done in

order to avoid increasing the complexity of the main

microcontroller board and to avoid any communication

issues given by voltage. The microcontroller chosen is the

Atmel ATMEGA328P as the team acquired coding

experience with it and the overall components requirement

to have the microcontroller running on a circuit board are

much lower than many of the other available choices. The

additional components utilized on this subsystem are the

blower fans and proximity sensors. The proximity sensor

utilized is the Q12AB6FF50 from Banner and the blower

fan is the 41851 Bilge Blower from Seachoice. Both of

these devices require 12V of power to run, but since the

microcontroller runs at 5V of power then some additional

devices were required in order to achieve communication

between the two components. Two selected relays

including the LM2-12D-R from Rayex Elec. and R10S-E1-

Y1-J5.0K from Potter Brumfield were chosen to achieve

this task. The set up consists of a PBC tubing that will go

from one end of the table to the next for each player. The

PBC tubing has an opening on one side where the proximity

sensor is located and the blower fan is placed in a junction.

The microcontroller will constantly check any change in the

infrared spectra emitted by the sensor, once the ball passes

through and a change is made then it activates the blower

fan which runs on PWM at a speed that will send the ball to

the exit which is located at the other end of the table. A

second sensor will then sense the ball at the exit and once

the ball is removed from the second sensors view, the

microcontroller will then turn the blower off. The figure

shown below is a sense of where the sensors are located and

the one side with the blower.

Fig. 7. Illustration of components used in building the Ball
Cleaner System.

X. PROJECT MEMBERS

 Edgar Alastre is a 25-year old
international student from Venezuela
pursuing a Bachelor’s of Science in
Electrical Engineering at the
University of Central Florida. He has
a keen interest in computer hardware
such as CPUs and GPUs and will seek
work experience on these fields.

 Jonathan Chang is a 22 year old

graduating senior pursuing a

Bachelor’s of Science in Computer

Engineering at the University of

Central Florida. Has the ability to

work with a variety of computer

programming languages such as, but

not limited to, Java and C. Currently

searching for a job in fields related to software design.

Colton Myers is a 24-year old

student pursuing a Bachelor’s of

Science in Electrical Engineering

at University of Central Florida.

His interests are working in

military simulation, specifically

on military aircraft weapon

systems at Lockheed.

Ashish Naik is a 23-year old

student raised here in the United

States. He is attempting to obtain

a Bachelor’s of Science in

Computer Engineering at the

University of Central Florida.

Work specialties are coding in C,

Java, and MSP430 Assembly

Code. Will be pursuing a job related to Software Design

after graduation.

ACKNOWLEDGMENT

The authors wish to express their gratitude towards their

families for their support throughout this project. None of

this would have been possible without them.

