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Warm Ups 

 

1) If x is 25% larger than z, and y is 50% larger than z, then y is what percent larger than x? 

 

Solution 

Using the given information, we get the following two equations: 

 

    𝑥 = 1.25𝑧 and 𝑦 = 1.5𝑧 

 

We can solve for z in the first equation, yielding 𝑧 =
𝑥

1.25
, and substitute this into the second 

equation: 𝑦 = 1.5𝑧 = 1.5 (
𝑥

1.25
) = 1.2𝑥. It follows that y is 20% larger than x. 

 

 

2) Given that x2 + y2 = 12x + 4y – 40, what is x + 2y? 

 

Solution 

𝑥2 + 𝑦2 = 12𝑥 + 4𝑦 − 40 

𝑥2 − 12𝑥 + 36 + 𝑦2 − 4𝑦 + 4 = 0 

(𝑥 − 6)2 + (𝑦 − 2)2 = 0 
 

Given that x and y are real numbers, we must have x = 6 and y = 2. It follows that x + 2y = 6 + 

2(2) = 10. 

 

 

3) Three standard six-sided dice are rolled. What is the probability that all three values showing 

are unique? 

 

Solution 
Imagine rolling the dice in sequence. The probability the first die roll is different than all 

previous ones is 1. The probability the second die roll is different than the previous one is 
5

6
. 

Finally, given that the first two rolls were unique, the probability the last die rolled is different 

than the first two is 
4

6
. Multiplying these conditional probabilities together yields the probability 

that all three dice show unique values. Thus, the desired probability is 1 ×
5

6
×

4

6
=

5

9
. 

 

 

  



4) Two cars start 100 miles apart, driving towards each other. The first car drives at a steady rate 

of 30 mph while the second car drives at a steady rate of 20 mph. A bird, flying at 55 mph starts 

at the first car and flies until it reaches the second car, then reverses direction and goes back to 

the first car, and so forth, until the cars meet. Assuming that the bird can instantaneously change 

direction without changing speed, how far did the bird fly in the time that it took the two cars to 

meet? 

 

Solution 

In two hours the first car covers 60 miles and the second car covers 40 miles. Thus, in two hours 

time, the two cars meet. In these two hours, the bird has flown 55 mph x 2 hours = 110 miles. 

 

 

5) Jenny has some Pokemon cards she wants to distribute to her friends. If she tries to give an 

equal number of cards to each of five friends, she's left with two cards. If she tries to give an 

equal number of cards to each of seven friends, she's left with three cards. If she tries to give an 

equal number of cards to each of nine friends, she's left with four cards. If Jenny has less than 

1000 cards, list all possible number of cards Jenny could have. 

 

Solution 
Using the given information, if we let x be the number of cards Jenny has, we get the following 

equations: 

 

𝑥 ≡ 2(𝑚𝑜𝑑5) 

𝑥 ≡ 3(𝑚𝑜𝑑7) 

𝑥 ≡ 4(𝑚𝑜𝑑9) 
 

A formal solution of this problem requires the Chinese Remainder Theorem 

(http://en.wikipedia.org/wiki/Chinese_remainder_theorem). 

 

Since this is unlikely to be known by many, we'll derive an alternate solution here. 

 

For integers a, b and c, the given equations can be rewritten as 

 

𝑥 = 5𝑎 + 2 

𝑥 = 7𝑏 + 3 

𝑥 = 9𝑐 + 4 
 

We start with the first two equations: 

 

     7𝑏 + 3 = 5𝑎 + 2 

5𝑎 = 7𝑏 + 1 
 

The smallest non-negative integer b that satisfies this equation is b = 2, for which the 

corresponding value of a is 3. The next value of b that satisfies this equation is b = 7, while the 

corresponding solution for a = 10. In general, we can see that we can generate more solutions 

from the original base solution by adding 5 to a previous solution for b and 7 to the 

corresponding solution for a. Logically, this makes sense since both additions add 35 to both 



sides of the equation, keeping it balanced. A small brute force shows that for these specific 

numbers, no smaller offset can be added to both sides of the equation to keep it balanced. 

 

These solutions indicate that 𝑥 ≡ 17(𝑚𝑜𝑑 35). Now, for some integers c and d, we have: 

 

 

𝑥 = 35𝑑 + 17 

𝑥 = 9𝑐 + 4 
Setting these equal to one another we get: 

 

9𝑐 + 4 = 35𝑑 + 17 

9𝑐 = 35𝑑 + 13 
 

Substituting integers for d, starting with 0, we get the value of the right hand side to be 13, 48, 

83, 118, and 153. This last value is divisible by 9, so we get a solution of d = 4, c = 17. 

 

Using the same logic as before, we find that 𝑥 ≡ 157(𝑚𝑜𝑑315). 

 

To finish the question, we must simply list each value of x that satisfies this equivalence that is 

less than 1000. These are 157, 472, and 787. 

 

 

 

 

  



Exercises 

 

1) Let a and b be positive integers with a ≤ b such that their greatest common divisor is 12 and 

their least common multiple is 4320. What are all of the possible values of the ordered pair (a, 

b)? 

 

Solution 

Using the Fundamental Theorem of Arithmetic, we can prove that the product of the gcd and lcm 

of two numbers is equal to the product of the two numbers themselves. Thus, we have 

 

𝑎𝑏 = 12 × 4320 = 273451. 
 

We also know that both a and b are divisible by 12. Thus, let a = 12x and b = 12y, for integers x 

amd y. It follows that gcd(x, y) = 1 and xy = 233251. In order to maintain gcd(x, y) = 1 restriction, 

we can assign x and y as follows: 

 

𝑥 = 1, 𝑦 = 23325 

𝑥 = 23, 𝑦 = 325 

𝑥 = 32, 𝑦 = 235 

𝑥 = 5, 𝑦 = 2332 
 

Essentially, the gcd restriction forces us to assign x to a subset of the unique prime factors 2, 3 

and 5. Since a ≤ b, we must restrict our choice of subsets to be less than or equal to the square 

root of 233251. It follows that we have four solutions that satisfy the given information: 

 

(12, 4320), (60, 864), (96, 540), and (108, 480). 

 

 

2) Circle A is centered at (2, 3) with a radius of 6 and circle B is centered at (8, 3) with a radius 

of 4. What is the area of the intersection of circles A and B? 

 

Solution 

Given the radii and that the distance between the centers of the circles is 6, we get the following 

picture: 

   



Use the Law of Cosines on triangle CXY triangle to find half of the central angles of both 

sectors, angles CXY and CYX. Let α be angle CXY and β be angle CYX. We find: 

 

𝑐𝑜𝑠𝛼 =
62 + 62 − 42

2(6)(6)
=

7

9
 

𝑐𝑜𝑠𝛽 =
62 + 42 − 62

2(6)(4)
=

1

3
 

 

To find the area of the intersection, we must split the work into two pieces: Finding the area to 

the right of the line segment CD and the are to the left of the line segment CD. We find the 

former by taking the area of sector CXD and subtracing the area of triangle CXD from that. We 

find the latter by taking the area of sector CYD and subtracting the area of triangle CYD. Both of 

these regions are called circular segments.  

 

First, we must find the sine and cosine of 2α and 2β: 

 

sin(2𝛼) = 2𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝛼 = 2√1 − (
7

9
)2 (

7

9
) =

56√2

81
 

cos(2𝛼) = 2𝑐𝑜𝑠2𝛼 − 1 = 2 (
7

9
)

2

− 1 =
17

81
 

 

sin(2𝛽) = 2𝑠𝑖𝑛𝛽𝑐𝑜𝑠𝛽 = 2√1 − (
1

3
)2 (

1

3
) =

4√2

9
 

cos(2𝛽) = 2𝑐𝑜𝑠2𝛽 − 1 = 2 (
1

3
)

2

− 1 = −
7

9
 

 

In general, the area of a circular segment in a circle with radius r and central angle θ is 
𝜃

2
𝑟2 −

1

2
𝑟2𝑠𝑖𝑛𝜃 =

1

2
𝑟2(𝜃 − 𝑠𝑖𝑛𝜃). Applying this formula to our specific problem to the two circular 

segment areas we must sum, we get the following: 

 

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 =
1

2
62 (𝑐𝑜𝑠−1 (

17

81
) −

56√2

81
) +

1

2
42(𝑐𝑜𝑠−1 (−

7

9
) −

4√2

9
) 

= 18 (𝑐𝑜𝑠−1 (
17

81
) −

56√2

81
) + 8(𝑐𝑜𝑠−1 (−

7

9
) −

4√2

9
) 

~21.54 
 

 

 

 

 

 

 



3)  Two professors arrive at the break room, randomly, in between 10 am and 11 am. If each 

stays in the break room for exactly m minutes, the probability that they run into each other in the 

break room is .6. What is the value of m? 

 

Solution 

Let's visualize the sample space of when the two professors arrive as a square in the Cartesian 

plane. Label both the x and y axes of the square from 0 to 60 minutes and let x be a randomly 

chosen value in between 0 and 60 representing when the first professor arrives and let y be a 

randomly chosen value in between 0 and 60 when the second professor arrives. It follows that 

every point within the square is a point in the sample space. Based on the problem specification, 

we can determine which areas of the square correspond to the professors meeting and which ones 

don't. The times that are within m minutes of each other are represented in the middle "strip": 

 

   
We must set the area of this strip to be .6 of the whole area, 3600 "square minutes". It's easier to 

find the area of this strip by subtracting the area of the two congruent triangles at the edges from 

the area of the whole square. We get the following when doing so: 

 

3600 − 2 (
(60 − 𝑚)(60 − 𝑚)

2
) = 3600(.6) 

3600 − (60 − 𝑚)2 = 2160 

3600 − (3600 − 120𝑚 + 𝑚2) = 2160 

120𝑚 − 𝑚2 = 2160 

𝑚2 − 120𝑚 + 2160 = 0 

𝑚 =
120 ± √1202 − 4(2160)

2
 



𝑚 =
120 ± √242(52 − 15)

2
 

 

𝑚 =
120 ± 24√10

2
 

 

𝑚 = 60 − 12√10 
 

We take the smaller root since the value of m must be in between 0 and 60. Thus, both professors 

take a break of 60 − 12√10 minutes, which is roughly 22.05 minutes. 

 

 

4) David is taking a matching test where he is matching n words with n definitions. (Each word 

maps to exactly one of the definitions given.) Unfortunately, David forgot to study and will 

generate a random matching of words to definitions. What is the expected number of correct 

pairings he'll choose? 

 

Solution 

There are n! possible answers David could give on his test. Since he's matching at random, we 

will assume that he's equally likely to give each of these answers. Of these n! answers, (n-1)! of 

them have the answer to the first question correct. To see this, note that there are exactly (n-1)! 

permutations that have the first answer fixed to be the correct one, since the other n-1 answers 

may be permuted in any way. This logic holds for all of the rest of the questions as well. Thus, 

the probability of getting any of the questions correct is 
(𝑛−1)!

𝑛!
=

1

𝑛
. Using the linearity of 

expectation, we add up the chance of getting each question correct to get the expected number of 

correct responses to be 𝑛 (
1

𝑛
) = 1. 

 

Another way to view the question might be to consider all n! permutations of answers and add up 

the total score of all those permutations. (n-1)! of them will  have the first question correct, for a 

total score of (n-1)!, (n-1)! of them will have the second question correct, adding (n-1)! to the 

total score, and so forth. Thus, to add up the scores of all of these answers, we'd get (n-1)! added 

n times, which equals n!. To get the average score, we must divide by the number of 

permutations, which is n!, to get an average score of 1. 

 

 

  



5) What is the sum of the real roots of the following equation? 

   349𝑥+3 + 3147𝑥 = 398𝑥+3 + 1 
 

Solution 

Noticing that 98 and 147 are multiples of 49, we use a parameter to simplify the original 

equation, letting y = 349x. Substituting, we get: 

 

33𝑦 + 𝑦3 = 33𝑦2 + 1 

𝑦3 − 27𝑦2 + 27𝑦 − 1 = 0 
 

Let the roots of the original equation be x1, x2, and x3. Based on this equation, the product of 

349𝑥1, 349𝑥2, and 349𝑥3, is 1. Setting up this product we find: 

 

349𝑥1349𝑥2349𝑥3 = 1 

349(𝑥1+𝑥2+𝑥3) = 30 

49(𝑥1 + 𝑥2 + 𝑥3) = 0 

𝑥1 + 𝑥2 + 𝑥3 = 0 
 

Finally, we must verify that all of the roots of the original equation are real. Using DesCartes law 

of signs, we find that all three roots of the equation in y are real. Since the range of the function 

f(x) = 3x is the set of all reals, it follows that all three roots of this equation are real and our 

desired sum is 0. 

 

Note: the equation in y can be solved for completely, noting that 1 is a root using synthetic 

division. From there, we can use the quadratic equation to get the other two roots: 

 

𝑦3 − 27𝑦2 + 27𝑦 − 1 = 0 

(𝑦 − 1)(𝑦2 − 26𝑦 + 1) = 0 
 

𝑦 = 1 or 𝑦 =
26±√262−4

2
= 13 ± 2√42 

 

The corresponding roots for x are 𝑥 = 0 or 𝑥 =
𝑙𝑜𝑔3(13+2√42)

49
 or 𝑥 =

𝑙𝑜𝑔3(13−2√42)

49
. 

  



 

Investigations 

1) Suppose that α, β, and γ are angles such that 

   tan(𝛼 + 𝛽) = 2, tan(𝛽 + 𝛾) = 3, and tan(𝛼 + 𝛾) = 4. 
     What are possible value(s) of tan(𝛼 + 𝛽 + 𝛾)? 

 

Solution 

Let 𝑋 = 𝛼 + 𝛽, 𝑌 = 𝛽 + 𝛾, and 𝑍 = 𝛼 + 𝛾. We will first find tan(X + Y + Z). 

 

tan(𝑋 + 𝑌) =
𝑡𝑎𝑛𝑋 + 𝑡𝑎𝑛𝑌

1 − 𝑡𝑎𝑛𝑋𝑡𝑎𝑛𝑌
=

2 + 3

1 − 2(3)
= −1 

 

tan((𝑋 + 𝑌) + 𝑍) =
tan(𝑋 + 𝑌) + 𝑡𝑎𝑛𝑍

1 − tan (𝑋 + 𝑌)𝑡𝑎𝑛𝑍
=

−1 + 4

1 − (−1)4
= −

3

5
 

 

Note that 𝑋 + 𝑌 + 𝑍 = 2(𝛼 + 𝛽 + 𝛾). Thus, we have 

 

tan(2(𝛼 + 𝛽 + 𝛾)) =
2tan (𝛼 + 𝛽 + 𝛾)

1 − 𝑡𝑎𝑛2(𝛼 + 𝛽 + 𝛾)
= −

3

5
 

 

Let W = tan(𝛼 + 𝛽 + 𝛾). Substituting, we have: 

 
2𝑊

1 − 𝑊2
= −

3

5
 

 

10𝑊 = 3 − 3𝑊2 

3𝑊2 + 10𝑊 − 3 = 0 

𝑊 =
−10 ± √102 − 4(3)(−3)

2(3)
 

𝑊 =
−10 ± √136

2(3)
 

𝑊 =
−5 ± √34

3
 

 

Thus, the possible values of tan(𝛼 + 𝛽 + 𝛾) are 
−5+√34

3
 and 

−5−√34

3
. 

 

  



2) Suppose that α, β, γ, and δ are complex numbers satisfying 

𝛼 + 𝛽 + 𝛾 + 𝛿 = 2, 
𝛼𝛽 + 𝛼𝛾 + 𝛼𝛿 +  𝛽𝛾 + 𝛽𝛿 + 𝛾𝛿 = 3, 

𝛼𝛽𝛾 + 𝛼𝛽𝛿 + 𝛼𝛾𝛿 + 𝛽𝛾𝛿 = 5, 
𝛼𝛽𝛾𝛿 = 7. 

    Find the values of: 

    (a) (𝛼 + 𝛽 + 𝛾)(𝛼 + 𝛽 + 𝛿)(𝛼 + 𝛾 + 𝛿)(𝛽 + 𝛾 + 𝛿) 

    (b) (𝛼2 + 𝛽2 + 𝛾2)(𝛼2 + 𝛽2 + 𝛿2)(𝛼2 + 𝛾2 + 𝛿2)(𝛽2 + 𝛾2 + 𝛿2) 

 

Solution 

 

(a) Let f(x) be the polynomial with roots α, β, γ and δ. Using the given equations, we know that 

 

𝑓(𝑥) = (𝑥 − 𝛼)(𝑥 − 𝛽)(𝑥 − 𝛾)(𝑥 − 𝛿) = 𝑥4 − 2𝑥3 + 3𝑥2 − 5𝑥 + 7 
 

Now, note that 𝑓(𝛼 + 𝛽 + 𝛾 + 𝛿) = (𝛼 + 𝛽 + 𝛾)(𝛼 + 𝛽 + 𝛿)(𝛼 + 𝛾 + 𝛿)(𝛽 + 𝛾 + 𝛿). 

 

It follows that the quantity we desire is 

 

𝑓(𝛼 + 𝛽 + 𝛾 + 𝛿) = 𝑓(2) = 16 − 16 + 12 − 10 + 7 = 9 
 

Another alternate solution that roughly utilizes the same idea as above, but less elegantly is 

provided below. 

 

Let 𝑆 = 𝛼 + 𝛽 + 𝛾 + 𝛿. The quantity we desire can be rewritten as (𝑆 − 𝛼)(𝑆 − 𝛽)(𝑆 − 𝛾)(𝑆 −
𝛿). Since we know S = 2, we can further simplify: 

 

(𝛼 + 𝛽 + 𝛾)(𝛼 + 𝛽 + 𝛿)(𝛼 + 𝛾 + 𝛿)(𝛽 + 𝛾 + 𝛿) = 
 

(𝑆 − 𝛼)(𝑆 − 𝛽)(𝑆 − 𝛾)(𝑆 − 𝛿) = 
 

(2 − 𝛼)(2 − 𝛽)(2 − 𝛾)(2 − 𝛿) = 
 

16 − 8(𝛼 + 𝛽 + 𝛾 + 𝛿) + 4(𝛼𝛽 + 𝛼𝛾 + 𝛼𝛿 +  𝛽𝛾 + 𝛽𝛿 + 𝛾𝛿) − 2(𝛼𝛽𝛾 + 𝛼𝛽𝛿 + 𝛼𝛾𝛿 + 𝛽𝛾𝛿)
+  𝛼𝛽𝛾𝛿 = 

 

= 16 − 8(2) + 4(3) − 2(5) + 7 
 

= 9 
 

(b) Note: Since some of the algebra for this problem takes up a great deal of space, some steps 

have been skipped for brevity's sake. Readers are encouraged to verify each step on their own.  

 

Let 𝑔(𝑥2) = (𝑥2 − 𝛼2)(𝑥2 − 𝛽2)(𝑥2 − 𝛾2)(𝑥2 − 𝛿2) = 𝑓(𝑥)𝑓(−𝑥), since each of the terms 

factors and the new roots of this equation are just the negative of the roots of the previous 

function f(x).Using the same logic as the previous part, we desire to find is 𝑔(𝛼2 + 𝛽2 + 𝛾2 +
𝛿2).  



Now, let's calculate g(x2): 

 

𝑔(𝑥2) = 𝑓(𝑥)𝑓(−𝑥) = (𝑥4 − 2𝑥3 + 3𝑥2 − 5𝑥 + 7)(𝑥4 + 2𝑥3 + 3𝑥2 + 5𝑥 + 7) 
 

Due to the symmetry of the factors, all the odd terms cancel out and the polynomial is left with 

only even terms. Multiplying out we find: 

 

𝑔(𝑥2) = 𝑥8 + 2𝑥6 + 3𝑥4 + 17𝑥2 + 49 
 

Thus, 𝑔(𝑥) = 𝑥4 + 2𝑥3 + 3𝑥2 + 17𝑥1 + 49. Now, we just simply determine 𝛼2 + 𝛽2 + 𝛾2 +
𝛿2. Take the first original equation given and square both sides: 

 

(𝛼 + 𝛽 + 𝛾 + 𝛿)2 = 22 

𝛼2 + 𝛽2 + 𝛾2 + 𝛿2 + 2(𝛼𝛽 + 𝛼𝛾 + 𝛼𝛿 +  𝛽𝛾 + 𝛽𝛿 + 𝛾𝛿) = 4 

𝛼2 + 𝛽2 + 𝛾2 + 𝛿2 + 2(3) = 4 

𝛼2 + 𝛽2 + 𝛾2 + 𝛿2 = −2 
 

It follows that the quantity we desire is 𝑔(−2) = 16 − 16 + 12 − 34 + 49 = 27. 

 

 

Another alternate solution that is less elegant than the one above: 

 

Since 𝛼2 + 𝛽2 + 𝛾2 + 𝛿2 = −2, we find that the quantity we desire to find can be expressed as: 

 

(−2 − 𝛼2)(−2 − 𝛽2)(−2 − 𝛾2)(−2 − 𝛿2) = 

(2 + 𝛼2)(2 + 𝛽2)(2 + 𝛾2)(2 + 𝛿2) = 
 

16 + 8(𝛼2 + 𝛽2 + 𝛾2 + 𝛿2) + 4((𝛼𝛽)2 + (𝛼𝛾)2 + (𝛼𝛿)2 + (𝛽𝛾)2 + (𝛽𝛿)2 + (𝛾𝛿)2) + 

2((𝛼𝛽𝛾)2 + (𝛼𝛽𝛿)2 + (𝛼𝛾𝛿)2 + (𝛽𝛾𝛿)2) + 𝛼2𝛽2𝛾2𝛿2 = 
 

16 + 8(−2) + 4((𝛼𝛽)2 + (𝛼𝛾)2 + (𝛼𝛿)2 + (𝛽𝛾)2 + (𝛽𝛿)2 + (𝛾𝛿)2) + 

2((𝛼𝛽𝛾)2 + (𝛼𝛽𝛿)2 + (𝛼𝛾𝛿)2 + (𝛽𝛾𝛿)2) + 72 = 
 

= 49 + 4((𝛼𝛽)2 + (𝛼𝛾)2 + (𝛼𝛿)2 + (𝛽𝛾)2 + (𝛽𝛿)2 + (𝛾𝛿)2)
+ 2((𝛼𝛽𝛾)2 + (𝛼𝛽𝛿)2 + (𝛼𝛾𝛿)2 + (𝛽𝛾𝛿)2) 

 

At this point, we are left with finding the two following quantities: 

 

(𝛼𝛽)2 + (𝛼𝛾)2 + (𝛼𝛿)2 + (𝛽𝛾)2 + (𝛽𝛿)2 + (𝛾𝛿)2 
 

(𝛼𝛽𝛾)2 + (𝛼𝛽𝛿)2 + (𝛼𝛾𝛿)2 + (𝛽𝛾𝛿)2 
 

Let X = (𝛼𝛽)2 + (𝛼𝛾)2 + (𝛼𝛿)2 + (𝛽𝛾)2 + (𝛽𝛿)2 + (𝛾𝛿)2, and  

let Y = (𝛼𝛽𝛾)2 + (𝛼𝛽𝛿)2 + (𝛼𝛾𝛿)2 + (𝛽𝛾𝛿)2. We seek to find 49 + 4𝑋 + 2𝑌. 

 

To solve for Y, take the third equation originally given and square it: 

 



(𝛼𝛽𝛾 + 𝛼𝛽𝛿 + 𝛼𝛾𝛿 + 𝛽𝛾𝛿)2 = 52 
 

(𝛼𝛽𝛾)2 + (𝛼𝛽𝛿)2 + (𝛼𝛾𝛿)2 + (𝛽𝛾𝛿)2 + 2(𝛼𝛽)2𝛾𝛿 + 2(𝛼𝛾)2𝛽𝛿 + 2(𝛼𝛿)2𝛽𝛾 + 2(𝛽𝛾)2𝛼𝛾
+ 2(𝛽𝛿)2𝛼𝛾 + 2(𝛾𝛿)2 𝛼𝛽 = 25 

 

𝑌 + 2𝛼𝛽𝛾𝛿(𝛼𝛽 + 𝛼𝛾 + 𝛼𝛿 +  𝛽𝛾 + 𝛽𝛿 + 𝛾𝛿) = 25 
 

𝑌 + 2(7)(3) = 25 
 

𝑌 = −17 
 

Now, we solve for X. Take the second equation originally given and square it: 

 

(𝛼𝛽 + 𝛼𝛾 + 𝛼𝛿 +  𝛽𝛾 + 𝛽𝛿 + 𝛾𝛿)2 = 32 

 

(𝛼𝛽)2 + (𝛼𝛾)2 + (𝛼𝛿)2 + (𝛽𝛾)2 + (𝛽𝛿)2 + (𝛾𝛿)2 + 2𝛼2𝛽𝛾 + 2𝛼2𝛽𝛿 + 2𝛼2𝛾𝛿 + 2𝛼𝛽2𝛾
+ 2𝛼𝛽2𝛿 + 2𝛽2𝛾𝛿 + 2𝛼𝛽𝛾2 + 2𝛼𝛾2𝛿 + 2𝛽𝛾2𝛿 + 2𝛼𝛽𝛿2 + 2𝛼𝛾𝛿2 + 2𝛽𝛾𝛿2

+ 6𝛼𝛽𝛾𝛿 = 9 
 

𝑋 + 2𝛼𝛽𝛾(𝛼 + 𝛽 + 𝛾) + 2𝛼𝛽𝛿(𝛼 + 𝛽 + 𝛿) + 2𝛼𝛾𝛿(𝛼 + 𝛾 + 𝛿) + 2𝛽𝛾𝛿(𝛽 + 𝛾 + 𝛿) + 6𝛼𝛽𝛾𝛿
= 9 

 

𝑋 + 2𝛼𝛽𝛾(2 − 𝛿) + 2𝛼𝛽𝛿(2 − 𝛾) + 2𝛼𝛾𝛿(2 − 𝛽) + 2𝛽𝛾𝛿(2 − 𝛼) + 6(𝛼𝛽𝛾𝛿) = 9 
 

𝑋 + 4(𝛼𝛽𝛾 + 𝛼𝛽𝛿 + 𝛼𝛾𝛿 + 𝛽𝛾𝛿) − 8𝛼𝛽𝛾𝛿 + 6𝛼𝛽𝛾𝛿 = 9 

𝑋 + 4(5) − 2(7) = 9 

𝑋 = 3 
 

It follows that the quantity we desire, 49 + 4𝑋 + 2𝑌 = 49 + 4(3) + 2(−17) = 27. 
 

 

  



3) How many positive odd integer solutions are there to the equation 

    𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6 ≤ 200? 

 

Solution 

Let's add a dummy variable, x7 to the end of the left hand side of the inequality and let it equal 

the non-negative "slack" in between the sum of the first six numbers and 200. Thus, we are now 

looking for solutions in the following equation: 

 

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6 + 𝑥7 = 200 
 

where x1, x2, x3, x4, x5, and x6, are odd. Note that each solution for this equation maps uniquely to 

a solution to the previously given inequality by removing x7 from the solution. 

 

Since we know that these first six variables are odd, we can create new variables yi, (1 ≤ i ≤ 6), 

with xi = 2yi + 1, for non-negative integers yi. Substituting we must find the total number of non-

negative solutions to the equation: 

 

2𝑦1 + 1 + 2𝑦2 + 1 + 2𝑦3 + 1 + 2𝑦4 + 1 + 2𝑦5 + 1 + 2𝑦6 + 1 + 𝑥7 = 200 

2𝑦1 + 2𝑦2 + 2𝑦3 + 2𝑦4 + 2𝑦5 + 2𝑦6 + 𝑥7 = 194 
 

Notice that for this equation to have any solutions, x7 must also be even. Thus, we can also 

substitute x7 = 2y7, where y7 is a non-negative integer: 

 

2𝑦1 + 2𝑦2 + 2𝑦3 + 2𝑦4 + 2𝑦5 + 2𝑦6 + 2𝑦7 = 194 

𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5 + 𝑦6 + 𝑦7 = 97 
 

Thus, the answer to the original question is equal to the number of non-negative integer solutions 

to the equation above. This is a combinations with repetition problem, where we are looking for 

the number of combinations of size 97 chosen from 7 distinct items. There are (
97 + 7 − 1

7 − 1
) =

(
103

6
) of these. 

 

  



4) There are n teams in a round robin tournament. Each team plays every other team exactly 

once. In each match the chance of each team winning is exactly 50%. What is the probability that 

there is neither an undefeated team nor a winless team at the end of the tournament? 

 

Solution 

There are a total of (
𝑛
2

) games played in the tournament, so the total number of possible 

outcomes, the sample space of the problem, is 2
(

𝑛
2

)
. To obtain the desired probability, we must 

count the number of these outcomes that correspond to no undefeated and no winless team. 

 

It will be easier to count the opposite: the number of outcomes that have either at least one 

undefeated team or one winless team. First, note that no tournament where every pair of teams 

plays each other can produce either two undefeated teams or two winless teams, since every pair 

of teams plays against each other and in any match both teams can't win and both teams can't 

lose. But, a tournament may have exactly one undefeated team and one winless team. Thus, we 

must use the inclusion-exclusion principle to count the number of outcomes with either a 

undefeated or winless team. 

 

There are n distinct teams, each of which could go undefeated. If we set one team's games all to 

wins, there are (
𝑛
2

) − 𝑛 other games, each of which can have any outcome while the tournament 

has an undefeated team. Thus, the total number of tournaments with an undefeated team is 

𝑛2
(

𝑛
2

)−𝑛
.  

 

This same exact logic works to determine the number of tournaments with winless teams. But, in 

this count, we have included some tournaments, namely those with both undefeated and winless 

teams. We must subtract these out of our final count. There are n  ways in which we can choose 

an undefeated team and n-1 ways in which we can choose a winless team. For each of these 

choices, we are fixing 2n-1 games, n of the winner's games to be wins, and the other n-1 games 

of the winless team to be losses. (Note in the first team winning all of its games, the winless team 

was already assigned a loss.) Thus, the outcomes of the remaining (
𝑛
2

) − (2𝑛 − 1) games are 

free to be either wins or losses. It follows that there are 𝑛(𝑛 − 1)2
(

𝑛
2

)−(2𝑛−1)
 ways in which we 

get tournaments with both an undefeated team and a winless team. 

 

Applying the Inclusion-Exclusion principle, we find a total of  

 

2𝑛2
(

𝑛
2

)−𝑛
− 𝑛(𝑛 − 1)2

(
𝑛
2

)−(2𝑛−1)
 

 

possible outcomes with either an undefeated or winless team. Subtracting this from the total we 

find 

2
(

𝑛
2

)
− 2𝑛2

(
𝑛
2

)−𝑛
+ 𝑛(𝑛 − 1)2

(
𝑛
2

)−(2𝑛−1)
 

 

outcomes where there is no undefeated or winless team. Thus, the desired probability is: 

 



2
(

𝑛
2

)
− 2𝑛2

(
𝑛
2

)−𝑛
+ 𝑛(𝑛 − 1)2

(
𝑛
2

)−(2𝑛−1)

2
(

𝑛
2

)
 

 

Alternative, we can simplify this to be: 

 

1 −
𝑛

2𝑛−1
+

𝑛(𝑛 − 1)

22𝑛−1
 

 

  



5) Let a, b, c be positive real numbers. Prove that 
𝑎

𝑏 + 𝑐
+

𝑏

𝑐 + 𝑎
+

𝑐

𝑎 + 𝑏
≥

3

2
 

 

Solution 

The Arithmetic-Harmonic Mean Inequality states that the arithmetic mean of a set of positive 

real numbers is greater than or equal to the harmonic mean of the same numbers.( 

http://www.artofproblemsolving.com/Wiki/index.php/Root-Mean_Square-Arithmetic_Mean-

Geometric_Mean-Harmonic_mean_Inequality) It follows that the reciprocal of the harmonic 

mean is greater than the reciprocal of the arithmetic mean of the same set of positive real 

numbers. Specifically for three positive real numbers x, y, z, we have: 

 
1

3
1
𝑥 +

1
𝑦 +

1
𝑧

≥
1

𝑥 + 𝑦 + 𝑧
3

 

 

Simplifying this, we find that for all positive real numbers x, y, z: 

 
1

𝑥
+

1

𝑦
+

1

𝑧
≥

9

𝑥 + 𝑦 + 𝑧
 

 

Now, let's work with the quantity on the left hand side of the inequality: 

 
𝑎

𝑏 + 𝑐
+

𝑏

𝑐 + 𝑎
+

𝑐

𝑎 + 𝑏
= 

𝑎 + 𝑏 + 𝑐 − (𝑏 + 𝑐)

𝑏 + 𝑐
+

𝑎 + 𝑏 + 𝑐 − (𝑎 + 𝑐)

𝑐 + 𝑎
+

𝑎 + 𝑏 + 𝑐 − (𝑎 + 𝑏)

𝑎 + 𝑏
= 

𝑎 + 𝑏 + 𝑐

𝑏 + 𝑐
− 1 +

𝑎 + 𝑏 + 𝑐

𝑐 + 𝑎
− 1 +

𝑎 + 𝑏 + 𝑐

𝑎 + 𝑏
− 1 = 

(𝑎 + 𝑏 + 𝑐)(
1

𝑏 + 𝑐
+

1

𝑐 + 𝑎
+

1

𝑎 + 𝑏
) − 3 = 

 

Now, plug in x=b+c, y=c+a, z=a+b into the inequality previously derived to yield: 
1

𝑏 + 𝑐
+

1

𝑐 + 𝑎
+

1

𝑎 + 𝑏
≥

9

𝑏 + 𝑐 + 𝑐 + 𝑎 + 𝑎 + 𝑏
=

9

2(𝑎 + 𝑏 + 𝑐)
 

 

Getting back to our problem, we now have that 

(𝑎 + 𝑏 + 𝑐)(
1

𝑏 + 𝑐
+

1

𝑐 + 𝑎
+

1

𝑎 + 𝑏
) − 3 ≥ 

(𝑎 + 𝑏 + 𝑐) (
9

2(𝑎 + 𝑏 + 𝑐)
) − 3 = 

9

2
− 3 =

3

2
 

 

Proving the given assertion. 

 


